]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev_disk.c
Add -lhHpw options to "zpool iostat" for avg latency, histograms, & queues
[mirror_zfs.git] / module / zfs / vdev_disk.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25 * LLNL-CODE-403049.
26 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
27 */
28
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/vdev_disk.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/fs/zfs.h>
34 #include <sys/zio.h>
35 #include <sys/sunldi.h>
36
37 char *zfs_vdev_scheduler = VDEV_SCHEDULER;
38 static void *zfs_vdev_holder = VDEV_HOLDER;
39
40 /*
41 * Virtual device vector for disks.
42 */
43 typedef struct dio_request {
44 struct completion dr_comp; /* Completion for sync IO */
45 zio_t *dr_zio; /* Parent ZIO */
46 atomic_t dr_ref; /* References */
47 int dr_wait; /* Wait for IO */
48 int dr_error; /* Bio error */
49 int dr_bio_count; /* Count of bio's */
50 struct bio *dr_bio[0]; /* Attached bio's */
51 } dio_request_t;
52
53
54 #ifdef HAVE_OPEN_BDEV_EXCLUSIVE
55 static fmode_t
56 vdev_bdev_mode(int smode)
57 {
58 fmode_t mode = 0;
59
60 ASSERT3S(smode & (FREAD | FWRITE), !=, 0);
61
62 if (smode & FREAD)
63 mode |= FMODE_READ;
64
65 if (smode & FWRITE)
66 mode |= FMODE_WRITE;
67
68 return (mode);
69 }
70 #else
71 static int
72 vdev_bdev_mode(int smode)
73 {
74 int mode = 0;
75
76 ASSERT3S(smode & (FREAD | FWRITE), !=, 0);
77
78 if ((smode & FREAD) && !(smode & FWRITE))
79 mode = MS_RDONLY;
80
81 return (mode);
82 }
83 #endif /* HAVE_OPEN_BDEV_EXCLUSIVE */
84
85 static uint64_t
86 bdev_capacity(struct block_device *bdev)
87 {
88 struct hd_struct *part = bdev->bd_part;
89
90 /* The partition capacity referenced by the block device */
91 if (part)
92 return (part->nr_sects << 9);
93
94 /* Otherwise assume the full device capacity */
95 return (get_capacity(bdev->bd_disk) << 9);
96 }
97
98 static void
99 vdev_disk_error(zio_t *zio)
100 {
101 #ifdef ZFS_DEBUG
102 printk("ZFS: zio error=%d type=%d offset=%llu size=%llu "
103 "flags=%x\n", zio->io_error, zio->io_type,
104 (u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
105 zio->io_flags);
106 #endif
107 }
108
109 /*
110 * Use the Linux 'noop' elevator for zfs managed block devices. This
111 * strikes the ideal balance by allowing the zfs elevator to do all
112 * request ordering and prioritization. While allowing the Linux
113 * elevator to do the maximum front/back merging allowed by the
114 * physical device. This yields the largest possible requests for
115 * the device with the lowest total overhead.
116 */
117 static int
118 vdev_elevator_switch(vdev_t *v, char *elevator)
119 {
120 vdev_disk_t *vd = v->vdev_tsd;
121 struct block_device *bdev = vd->vd_bdev;
122 struct request_queue *q = bdev_get_queue(bdev);
123 char *device = bdev->bd_disk->disk_name;
124 int error;
125
126 /*
127 * Skip devices which are not whole disks (partitions).
128 * Device-mapper devices are excepted since they may be whole
129 * disks despite the vdev_wholedisk flag, in which case we can
130 * and should switch the elevator. If the device-mapper device
131 * does not have an elevator (i.e. dm-raid, dm-crypt, etc.) the
132 * "Skip devices without schedulers" check below will fail.
133 */
134 if (!v->vdev_wholedisk && strncmp(device, "dm-", 3) != 0)
135 return (0);
136
137 /* Skip devices without schedulers (loop, ram, dm, etc) */
138 if (!q->elevator || !blk_queue_stackable(q))
139 return (0);
140
141 /* Leave existing scheduler when set to "none" */
142 if ((strncmp(elevator, "none", 4) == 0) && (strlen(elevator) == 4))
143 return (0);
144
145 #ifdef HAVE_ELEVATOR_CHANGE
146 error = elevator_change(q, elevator);
147 #else
148 /*
149 * For pre-2.6.36 kernels elevator_change() is not available.
150 * Therefore we fall back to using a usermodehelper to echo the
151 * elevator into sysfs; This requires /bin/echo and sysfs to be
152 * mounted which may not be true early in the boot process.
153 */
154 #define SET_SCHEDULER_CMD \
155 "exec 0</dev/null " \
156 " 1>/sys/block/%s/queue/scheduler " \
157 " 2>/dev/null; " \
158 "echo %s"
159
160 {
161 char *argv[] = { "/bin/sh", "-c", NULL, NULL };
162 char *envp[] = { NULL };
163
164 argv[2] = kmem_asprintf(SET_SCHEDULER_CMD, device, elevator);
165 error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
166 strfree(argv[2]);
167 }
168 #endif /* HAVE_ELEVATOR_CHANGE */
169 if (error)
170 printk("ZFS: Unable to set \"%s\" scheduler for %s (%s): %d\n",
171 elevator, v->vdev_path, device, error);
172
173 return (error);
174 }
175
176 /*
177 * Expanding a whole disk vdev involves invoking BLKRRPART on the
178 * whole disk device. This poses a problem, because BLKRRPART will
179 * return EBUSY if one of the disk's partitions is open. That's why
180 * we have to do it here, just before opening the data partition.
181 * Unfortunately, BLKRRPART works by dropping all partitions and
182 * recreating them, which means that for a short time window, all
183 * /dev/sdxN device files disappear (until udev recreates them).
184 * This means two things:
185 * - When we open the data partition just after a BLKRRPART, we
186 * can't do it using the normal device file path because of the
187 * obvious race condition with udev. Instead, we use reliable
188 * kernel APIs to get a handle to the new partition device from
189 * the whole disk device.
190 * - Because vdev_disk_open() initially needs to find the device
191 * using its path, multiple vdev_disk_open() invocations in
192 * short succession on the same disk with BLKRRPARTs in the
193 * middle have a high probability of failure (because of the
194 * race condition with udev). A typical situation where this
195 * might happen is when the zpool userspace tool does a
196 * TRYIMPORT immediately followed by an IMPORT. For this
197 * reason, we only invoke BLKRRPART in the module when strictly
198 * necessary (zpool online -e case), and rely on userspace to
199 * do it when possible.
200 */
201 static struct block_device *
202 vdev_disk_rrpart(const char *path, int mode, vdev_disk_t *vd)
203 {
204 #if defined(HAVE_3ARG_BLKDEV_GET) && defined(HAVE_GET_GENDISK)
205 struct block_device *bdev, *result = ERR_PTR(-ENXIO);
206 struct gendisk *disk;
207 int error, partno;
208
209 bdev = vdev_bdev_open(path, vdev_bdev_mode(mode), zfs_vdev_holder);
210 if (IS_ERR(bdev))
211 return (bdev);
212
213 disk = get_gendisk(bdev->bd_dev, &partno);
214 vdev_bdev_close(bdev, vdev_bdev_mode(mode));
215
216 if (disk) {
217 bdev = bdget(disk_devt(disk));
218 if (bdev) {
219 error = blkdev_get(bdev, vdev_bdev_mode(mode), vd);
220 if (error == 0)
221 error = ioctl_by_bdev(bdev, BLKRRPART, 0);
222 vdev_bdev_close(bdev, vdev_bdev_mode(mode));
223 }
224
225 bdev = bdget_disk(disk, partno);
226 if (bdev) {
227 error = blkdev_get(bdev,
228 vdev_bdev_mode(mode) | FMODE_EXCL, vd);
229 if (error == 0)
230 result = bdev;
231 }
232 put_disk(disk);
233 }
234
235 return (result);
236 #else
237 return (ERR_PTR(-EOPNOTSUPP));
238 #endif /* defined(HAVE_3ARG_BLKDEV_GET) && defined(HAVE_GET_GENDISK) */
239 }
240
241 static int
242 vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
243 uint64_t *ashift)
244 {
245 struct block_device *bdev = ERR_PTR(-ENXIO);
246 vdev_disk_t *vd;
247 int count = 0, mode, block_size;
248
249 /* Must have a pathname and it must be absolute. */
250 if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
251 v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
252 return (SET_ERROR(EINVAL));
253 }
254
255 /*
256 * Reopen the device if it's not currently open. Otherwise,
257 * just update the physical size of the device.
258 */
259 if (v->vdev_tsd != NULL) {
260 ASSERT(v->vdev_reopening);
261 vd = v->vdev_tsd;
262 goto skip_open;
263 }
264
265 vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
266 if (vd == NULL)
267 return (SET_ERROR(ENOMEM));
268
269 /*
270 * Devices are always opened by the path provided at configuration
271 * time. This means that if the provided path is a udev by-id path
272 * then drives may be recabled without an issue. If the provided
273 * path is a udev by-path path, then the physical location information
274 * will be preserved. This can be critical for more complicated
275 * configurations where drives are located in specific physical
276 * locations to maximize the systems tolerence to component failure.
277 * Alternatively, you can provide your own udev rule to flexibly map
278 * the drives as you see fit. It is not advised that you use the
279 * /dev/[hd]d devices which may be reordered due to probing order.
280 * Devices in the wrong locations will be detected by the higher
281 * level vdev validation.
282 *
283 * The specified paths may be briefly removed and recreated in
284 * response to udev events. This should be exceptionally unlikely
285 * because the zpool command makes every effort to verify these paths
286 * have already settled prior to reaching this point. Therefore,
287 * a ENOENT failure at this point is highly likely to be transient
288 * and it is reasonable to sleep and retry before giving up. In
289 * practice delays have been observed to be on the order of 100ms.
290 */
291 mode = spa_mode(v->vdev_spa);
292 if (v->vdev_wholedisk && v->vdev_expanding)
293 bdev = vdev_disk_rrpart(v->vdev_path, mode, vd);
294
295 while (IS_ERR(bdev) && count < 50) {
296 bdev = vdev_bdev_open(v->vdev_path,
297 vdev_bdev_mode(mode), zfs_vdev_holder);
298 if (unlikely(PTR_ERR(bdev) == -ENOENT)) {
299 msleep(10);
300 count++;
301 } else if (IS_ERR(bdev)) {
302 break;
303 }
304 }
305
306 if (IS_ERR(bdev)) {
307 dprintf("failed open v->vdev_path=%s, error=%d count=%d\n",
308 v->vdev_path, -PTR_ERR(bdev), count);
309 kmem_free(vd, sizeof (vdev_disk_t));
310 return (SET_ERROR(-PTR_ERR(bdev)));
311 }
312
313 v->vdev_tsd = vd;
314 vd->vd_bdev = bdev;
315
316 skip_open:
317 /* Determine the physical block size */
318 block_size = vdev_bdev_block_size(vd->vd_bdev);
319
320 /* Clear the nowritecache bit, causes vdev_reopen() to try again. */
321 v->vdev_nowritecache = B_FALSE;
322
323 /* Inform the ZIO pipeline that we are non-rotational */
324 v->vdev_nonrot = blk_queue_nonrot(bdev_get_queue(vd->vd_bdev));
325
326 /* Physical volume size in bytes */
327 *psize = bdev_capacity(vd->vd_bdev);
328
329 /* TODO: report possible expansion size */
330 *max_psize = *psize;
331
332 /* Based on the minimum sector size set the block size */
333 *ashift = highbit64(MAX(block_size, SPA_MINBLOCKSIZE)) - 1;
334
335 /* Try to set the io scheduler elevator algorithm */
336 (void) vdev_elevator_switch(v, zfs_vdev_scheduler);
337
338 return (0);
339 }
340
341 static void
342 vdev_disk_close(vdev_t *v)
343 {
344 vdev_disk_t *vd = v->vdev_tsd;
345
346 if (v->vdev_reopening || vd == NULL)
347 return;
348
349 if (vd->vd_bdev != NULL)
350 vdev_bdev_close(vd->vd_bdev,
351 vdev_bdev_mode(spa_mode(v->vdev_spa)));
352
353 kmem_free(vd, sizeof (vdev_disk_t));
354 v->vdev_tsd = NULL;
355 }
356
357 static dio_request_t *
358 vdev_disk_dio_alloc(int bio_count)
359 {
360 dio_request_t *dr;
361 int i;
362
363 dr = kmem_zalloc(sizeof (dio_request_t) +
364 sizeof (struct bio *) * bio_count, KM_SLEEP);
365 if (dr) {
366 init_completion(&dr->dr_comp);
367 atomic_set(&dr->dr_ref, 0);
368 dr->dr_bio_count = bio_count;
369 dr->dr_error = 0;
370
371 for (i = 0; i < dr->dr_bio_count; i++)
372 dr->dr_bio[i] = NULL;
373 }
374
375 return (dr);
376 }
377
378 static void
379 vdev_disk_dio_free(dio_request_t *dr)
380 {
381 int i;
382
383 for (i = 0; i < dr->dr_bio_count; i++)
384 if (dr->dr_bio[i])
385 bio_put(dr->dr_bio[i]);
386
387 kmem_free(dr, sizeof (dio_request_t) +
388 sizeof (struct bio *) * dr->dr_bio_count);
389 }
390
391 static void
392 vdev_disk_dio_get(dio_request_t *dr)
393 {
394 atomic_inc(&dr->dr_ref);
395 }
396
397 static int
398 vdev_disk_dio_put(dio_request_t *dr)
399 {
400 int rc = atomic_dec_return(&dr->dr_ref);
401
402 /*
403 * Free the dio_request when the last reference is dropped and
404 * ensure zio_interpret is called only once with the correct zio
405 */
406 if (rc == 0) {
407 zio_t *zio = dr->dr_zio;
408 int error = dr->dr_error;
409
410 vdev_disk_dio_free(dr);
411
412 if (zio) {
413 zio->io_error = error;
414 ASSERT3S(zio->io_error, >=, 0);
415 if (zio->io_error)
416 vdev_disk_error(zio);
417 zio_interrupt(zio);
418 }
419 }
420
421 return (rc);
422 }
423
424 BIO_END_IO_PROTO(vdev_disk_physio_completion, bio, error)
425 {
426 dio_request_t *dr = bio->bi_private;
427 int rc;
428 int wait;
429
430 if (dr->dr_error == 0) {
431 #ifdef HAVE_1ARG_BIO_END_IO_T
432 dr->dr_error = -(bio->bi_error);
433 #else
434 if (error)
435 dr->dr_error = -(error);
436 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
437 dr->dr_error = EIO;
438 #endif
439 }
440
441 wait = dr->dr_wait;
442 /* Drop reference aquired by __vdev_disk_physio */
443 rc = vdev_disk_dio_put(dr);
444
445 /* Wake up synchronous waiter this is the last outstanding bio */
446 if (wait && rc == 1)
447 complete(&dr->dr_comp);
448 }
449
450 static inline unsigned long
451 bio_nr_pages(void *bio_ptr, unsigned int bio_size)
452 {
453 return ((((unsigned long)bio_ptr + bio_size + PAGE_SIZE - 1) >>
454 PAGE_SHIFT) - ((unsigned long)bio_ptr >> PAGE_SHIFT));
455 }
456
457 static unsigned int
458 bio_map(struct bio *bio, void *bio_ptr, unsigned int bio_size)
459 {
460 unsigned int offset, size, i;
461 struct page *page;
462
463 offset = offset_in_page(bio_ptr);
464 for (i = 0; i < bio->bi_max_vecs; i++) {
465 size = PAGE_SIZE - offset;
466
467 if (bio_size <= 0)
468 break;
469
470 if (size > bio_size)
471 size = bio_size;
472
473 if (is_vmalloc_addr(bio_ptr))
474 page = vmalloc_to_page(bio_ptr);
475 else
476 page = virt_to_page(bio_ptr);
477
478 /*
479 * Some network related block device uses tcp_sendpage, which
480 * doesn't behave well when using 0-count page, this is a
481 * safety net to catch them.
482 */
483 ASSERT3S(page_count(page), >, 0);
484
485 if (bio_add_page(bio, page, size, offset) != size)
486 break;
487
488 bio_ptr += size;
489 bio_size -= size;
490 offset = 0;
491 }
492
493 return (bio_size);
494 }
495
496 static inline void
497 vdev_submit_bio(int rw, struct bio *bio)
498 {
499 #ifdef HAVE_CURRENT_BIO_TAIL
500 struct bio **bio_tail = current->bio_tail;
501 current->bio_tail = NULL;
502 submit_bio(rw, bio);
503 current->bio_tail = bio_tail;
504 #else
505 struct bio_list *bio_list = current->bio_list;
506 current->bio_list = NULL;
507 submit_bio(rw, bio);
508 current->bio_list = bio_list;
509 #endif
510 }
511
512 static int
513 __vdev_disk_physio(struct block_device *bdev, zio_t *zio, caddr_t kbuf_ptr,
514 size_t kbuf_size, uint64_t kbuf_offset, int flags, int wait)
515 {
516 dio_request_t *dr;
517 caddr_t bio_ptr;
518 uint64_t bio_offset;
519 int rw, bio_size, bio_count = 16;
520 int i = 0, error = 0;
521
522 ASSERT3U(kbuf_offset + kbuf_size, <=, bdev->bd_inode->i_size);
523
524 retry:
525 dr = vdev_disk_dio_alloc(bio_count);
526 if (dr == NULL)
527 return (ENOMEM);
528
529 if (zio && !(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))
530 bio_set_flags_failfast(bdev, &flags);
531
532 rw = flags;
533 dr->dr_zio = zio;
534 dr->dr_wait = wait;
535
536 /*
537 * When the IO size exceeds the maximum bio size for the request
538 * queue we are forced to break the IO in multiple bio's and wait
539 * for them all to complete. Ideally, all pool users will set
540 * their volume block size to match the maximum request size and
541 * the common case will be one bio per vdev IO request.
542 */
543 bio_ptr = kbuf_ptr;
544 bio_offset = kbuf_offset;
545 bio_size = kbuf_size;
546 for (i = 0; i <= dr->dr_bio_count; i++) {
547
548 /* Finished constructing bio's for given buffer */
549 if (bio_size <= 0)
550 break;
551
552 /*
553 * By default only 'bio_count' bio's per dio are allowed.
554 * However, if we find ourselves in a situation where more
555 * are needed we allocate a larger dio and warn the user.
556 */
557 if (dr->dr_bio_count == i) {
558 vdev_disk_dio_free(dr);
559 bio_count *= 2;
560 goto retry;
561 }
562
563 /* bio_alloc() with __GFP_WAIT never returns NULL */
564 dr->dr_bio[i] = bio_alloc(GFP_NOIO,
565 MIN(bio_nr_pages(bio_ptr, bio_size), BIO_MAX_PAGES));
566 if (unlikely(dr->dr_bio[i] == NULL)) {
567 vdev_disk_dio_free(dr);
568 return (ENOMEM);
569 }
570
571 /* Matching put called by vdev_disk_physio_completion */
572 vdev_disk_dio_get(dr);
573
574 dr->dr_bio[i]->bi_bdev = bdev;
575 BIO_BI_SECTOR(dr->dr_bio[i]) = bio_offset >> 9;
576 dr->dr_bio[i]->bi_rw = rw;
577 dr->dr_bio[i]->bi_end_io = vdev_disk_physio_completion;
578 dr->dr_bio[i]->bi_private = dr;
579
580 /* Remaining size is returned to become the new size */
581 bio_size = bio_map(dr->dr_bio[i], bio_ptr, bio_size);
582
583 /* Advance in buffer and construct another bio if needed */
584 bio_ptr += BIO_BI_SIZE(dr->dr_bio[i]);
585 bio_offset += BIO_BI_SIZE(dr->dr_bio[i]);
586 }
587
588 /* Extra reference to protect dio_request during vdev_submit_bio */
589 vdev_disk_dio_get(dr);
590
591 /* Submit all bio's associated with this dio */
592 for (i = 0; i < dr->dr_bio_count; i++)
593 if (dr->dr_bio[i])
594 vdev_submit_bio(rw, dr->dr_bio[i]);
595
596 /*
597 * On synchronous blocking requests we wait for all bio the completion
598 * callbacks to run. We will be woken when the last callback runs
599 * for this dio. We are responsible for putting the last dio_request
600 * reference will in turn put back the last bio references. The
601 * only synchronous consumer is vdev_disk_read_rootlabel() all other
602 * IO originating from vdev_disk_io_start() is asynchronous.
603 */
604 if (wait) {
605 wait_for_completion(&dr->dr_comp);
606 error = dr->dr_error;
607 ASSERT3S(atomic_read(&dr->dr_ref), ==, 1);
608 }
609
610 (void) vdev_disk_dio_put(dr);
611
612 return (error);
613 }
614
615 int
616 vdev_disk_physio(struct block_device *bdev, caddr_t kbuf,
617 size_t size, uint64_t offset, int flags)
618 {
619 bio_set_flags_failfast(bdev, &flags);
620 return (__vdev_disk_physio(bdev, NULL, kbuf, size, offset, flags, 1));
621 }
622
623 BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, rc)
624 {
625 zio_t *zio = bio->bi_private;
626 #ifdef HAVE_1ARG_BIO_END_IO_T
627 int rc = bio->bi_error;
628 #endif
629
630 zio->io_error = -rc;
631 if (rc && (rc == -EOPNOTSUPP))
632 zio->io_vd->vdev_nowritecache = B_TRUE;
633
634 bio_put(bio);
635 ASSERT3S(zio->io_error, >=, 0);
636 if (zio->io_error)
637 vdev_disk_error(zio);
638 zio_interrupt(zio);
639 }
640
641 static int
642 vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
643 {
644 struct request_queue *q;
645 struct bio *bio;
646
647 q = bdev_get_queue(bdev);
648 if (!q)
649 return (ENXIO);
650
651 bio = bio_alloc(GFP_NOIO, 0);
652 /* bio_alloc() with __GFP_WAIT never returns NULL */
653 if (unlikely(bio == NULL))
654 return (ENOMEM);
655
656 bio->bi_end_io = vdev_disk_io_flush_completion;
657 bio->bi_private = zio;
658 bio->bi_bdev = bdev;
659 vdev_submit_bio(VDEV_WRITE_FLUSH_FUA, bio);
660 invalidate_bdev(bdev);
661
662 return (0);
663 }
664
665 static void
666 vdev_disk_io_start(zio_t *zio)
667 {
668 vdev_t *v = zio->io_vd;
669 vdev_disk_t *vd = v->vdev_tsd;
670 zio_priority_t pri = zio->io_priority;
671 int flags, error;
672
673 switch (zio->io_type) {
674 case ZIO_TYPE_IOCTL:
675
676 if (!vdev_readable(v)) {
677 zio->io_error = SET_ERROR(ENXIO);
678 zio_interrupt(zio);
679 return;
680 }
681
682 switch (zio->io_cmd) {
683 case DKIOCFLUSHWRITECACHE:
684
685 if (zfs_nocacheflush)
686 break;
687
688 if (v->vdev_nowritecache) {
689 zio->io_error = SET_ERROR(ENOTSUP);
690 break;
691 }
692
693 error = vdev_disk_io_flush(vd->vd_bdev, zio);
694 if (error == 0)
695 return;
696
697 zio->io_error = error;
698 if (error == ENOTSUP)
699 v->vdev_nowritecache = B_TRUE;
700
701 break;
702
703 default:
704 zio->io_error = SET_ERROR(ENOTSUP);
705 }
706
707 zio_execute(zio);
708 return;
709 case ZIO_TYPE_WRITE:
710 if ((pri == ZIO_PRIORITY_SYNC_WRITE) && (v->vdev_nonrot))
711 flags = WRITE_SYNC;
712 else
713 flags = WRITE;
714 break;
715
716 case ZIO_TYPE_READ:
717 if ((pri == ZIO_PRIORITY_SYNC_READ) && (v->vdev_nonrot))
718 flags = READ_SYNC;
719 else
720 flags = READ;
721 break;
722
723 default:
724 zio->io_error = SET_ERROR(ENOTSUP);
725 zio_interrupt(zio);
726 return;
727 }
728
729 error = __vdev_disk_physio(vd->vd_bdev, zio, zio->io_data,
730 zio->io_size, zio->io_offset, flags, 0);
731 if (error) {
732 zio->io_error = error;
733 zio_interrupt(zio);
734 return;
735 }
736 }
737
738 static void
739 vdev_disk_io_done(zio_t *zio)
740 {
741 /*
742 * If the device returned EIO, we revalidate the media. If it is
743 * determined the media has changed this triggers the asynchronous
744 * removal of the device from the configuration.
745 */
746 if (zio->io_error == EIO) {
747 vdev_t *v = zio->io_vd;
748 vdev_disk_t *vd = v->vdev_tsd;
749
750 if (check_disk_change(vd->vd_bdev)) {
751 vdev_bdev_invalidate(vd->vd_bdev);
752 v->vdev_remove_wanted = B_TRUE;
753 spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
754 }
755 }
756 }
757
758 static void
759 vdev_disk_hold(vdev_t *vd)
760 {
761 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
762
763 /* We must have a pathname, and it must be absolute. */
764 if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
765 return;
766
767 /*
768 * Only prefetch path and devid info if the device has
769 * never been opened.
770 */
771 if (vd->vdev_tsd != NULL)
772 return;
773
774 /* XXX: Implement me as a vnode lookup for the device */
775 vd->vdev_name_vp = NULL;
776 vd->vdev_devid_vp = NULL;
777 }
778
779 static void
780 vdev_disk_rele(vdev_t *vd)
781 {
782 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
783
784 /* XXX: Implement me as a vnode rele for the device */
785 }
786
787 vdev_ops_t vdev_disk_ops = {
788 vdev_disk_open,
789 vdev_disk_close,
790 vdev_default_asize,
791 vdev_disk_io_start,
792 vdev_disk_io_done,
793 NULL,
794 vdev_disk_hold,
795 vdev_disk_rele,
796 VDEV_TYPE_DISK, /* name of this vdev type */
797 B_TRUE /* leaf vdev */
798 };
799
800 /*
801 * Given the root disk device devid or pathname, read the label from
802 * the device, and construct a configuration nvlist.
803 */
804 int
805 vdev_disk_read_rootlabel(char *devpath, char *devid, nvlist_t **config)
806 {
807 struct block_device *bdev;
808 vdev_label_t *label;
809 uint64_t s, size;
810 int i;
811
812 bdev = vdev_bdev_open(devpath, vdev_bdev_mode(FREAD), zfs_vdev_holder);
813 if (IS_ERR(bdev))
814 return (-PTR_ERR(bdev));
815
816 s = bdev_capacity(bdev);
817 if (s == 0) {
818 vdev_bdev_close(bdev, vdev_bdev_mode(FREAD));
819 return (EIO);
820 }
821
822 size = P2ALIGN_TYPED(s, sizeof (vdev_label_t), uint64_t);
823 label = vmem_alloc(sizeof (vdev_label_t), KM_SLEEP);
824
825 for (i = 0; i < VDEV_LABELS; i++) {
826 uint64_t offset, state, txg = 0;
827
828 /* read vdev label */
829 offset = vdev_label_offset(size, i, 0);
830 if (vdev_disk_physio(bdev, (caddr_t)label,
831 VDEV_SKIP_SIZE + VDEV_PHYS_SIZE, offset, READ_SYNC) != 0)
832 continue;
833
834 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
835 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) {
836 *config = NULL;
837 continue;
838 }
839
840 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
841 &state) != 0 || state >= POOL_STATE_DESTROYED) {
842 nvlist_free(*config);
843 *config = NULL;
844 continue;
845 }
846
847 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
848 &txg) != 0 || txg == 0) {
849 nvlist_free(*config);
850 *config = NULL;
851 continue;
852 }
853
854 break;
855 }
856
857 vmem_free(label, sizeof (vdev_label_t));
858 vdev_bdev_close(bdev, vdev_bdev_mode(FREAD));
859
860 return (0);
861 }
862
863 module_param(zfs_vdev_scheduler, charp, 0644);
864 MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler");