]> git.proxmox.com Git - mirror_zfs-debian.git/blob - module/zfs/vdev_disk.c
Imported Upstream version 0.6.5.7
[mirror_zfs-debian.git] / module / zfs / vdev_disk.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25 * LLNL-CODE-403049.
26 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
27 */
28
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/vdev_disk.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/fs/zfs.h>
34 #include <sys/zio.h>
35 #include <sys/sunldi.h>
36
37 char *zfs_vdev_scheduler = VDEV_SCHEDULER;
38 static void *zfs_vdev_holder = VDEV_HOLDER;
39
40 /*
41 * Virtual device vector for disks.
42 */
43 typedef struct dio_request {
44 struct completion dr_comp; /* Completion for sync IO */
45 zio_t *dr_zio; /* Parent ZIO */
46 atomic_t dr_ref; /* References */
47 int dr_wait; /* Wait for IO */
48 int dr_error; /* Bio error */
49 int dr_bio_count; /* Count of bio's */
50 struct bio *dr_bio[0]; /* Attached bio's */
51 } dio_request_t;
52
53
54 #ifdef HAVE_OPEN_BDEV_EXCLUSIVE
55 static fmode_t
56 vdev_bdev_mode(int smode)
57 {
58 fmode_t mode = 0;
59
60 ASSERT3S(smode & (FREAD | FWRITE), !=, 0);
61
62 if (smode & FREAD)
63 mode |= FMODE_READ;
64
65 if (smode & FWRITE)
66 mode |= FMODE_WRITE;
67
68 return (mode);
69 }
70 #else
71 static int
72 vdev_bdev_mode(int smode)
73 {
74 int mode = 0;
75
76 ASSERT3S(smode & (FREAD | FWRITE), !=, 0);
77
78 if ((smode & FREAD) && !(smode & FWRITE))
79 mode = MS_RDONLY;
80
81 return (mode);
82 }
83 #endif /* HAVE_OPEN_BDEV_EXCLUSIVE */
84
85 static uint64_t
86 bdev_capacity(struct block_device *bdev)
87 {
88 struct hd_struct *part = bdev->bd_part;
89
90 /* The partition capacity referenced by the block device */
91 if (part)
92 return (part->nr_sects << 9);
93
94 /* Otherwise assume the full device capacity */
95 return (get_capacity(bdev->bd_disk) << 9);
96 }
97
98 static void
99 vdev_disk_error(zio_t *zio)
100 {
101 #ifdef ZFS_DEBUG
102 printk("ZFS: zio error=%d type=%d offset=%llu size=%llu "
103 "flags=%x delay=%llu\n", zio->io_error, zio->io_type,
104 (u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
105 zio->io_flags, (u_longlong_t)zio->io_delay);
106 #endif
107 }
108
109 /*
110 * Use the Linux 'noop' elevator for zfs managed block devices. This
111 * strikes the ideal balance by allowing the zfs elevator to do all
112 * request ordering and prioritization. While allowing the Linux
113 * elevator to do the maximum front/back merging allowed by the
114 * physical device. This yields the largest possible requests for
115 * the device with the lowest total overhead.
116 */
117 static int
118 vdev_elevator_switch(vdev_t *v, char *elevator)
119 {
120 vdev_disk_t *vd = v->vdev_tsd;
121 struct block_device *bdev = vd->vd_bdev;
122 struct request_queue *q = bdev_get_queue(bdev);
123 char *device = bdev->bd_disk->disk_name;
124 int error;
125
126 /*
127 * Skip devices which are not whole disks (partitions).
128 * Device-mapper devices are excepted since they may be whole
129 * disks despite the vdev_wholedisk flag, in which case we can
130 * and should switch the elevator. If the device-mapper device
131 * does not have an elevator (i.e. dm-raid, dm-crypt, etc.) the
132 * "Skip devices without schedulers" check below will fail.
133 */
134 if (!v->vdev_wholedisk && strncmp(device, "dm-", 3) != 0)
135 return (0);
136
137 /* Skip devices without schedulers (loop, ram, dm, etc) */
138 if (!q->elevator || !blk_queue_stackable(q))
139 return (0);
140
141 /* Leave existing scheduler when set to "none" */
142 if ((strncmp(elevator, "none", 4) == 0) && (strlen(elevator) == 4))
143 return (0);
144
145 #ifdef HAVE_ELEVATOR_CHANGE
146 error = elevator_change(q, elevator);
147 #else
148 /*
149 * For pre-2.6.36 kernels elevator_change() is not available.
150 * Therefore we fall back to using a usermodehelper to echo the
151 * elevator into sysfs; This requires /bin/echo and sysfs to be
152 * mounted which may not be true early in the boot process.
153 */
154 #define SET_SCHEDULER_CMD \
155 "exec 0</dev/null " \
156 " 1>/sys/block/%s/queue/scheduler " \
157 " 2>/dev/null; " \
158 "echo %s"
159
160 {
161 char *argv[] = { "/bin/sh", "-c", NULL, NULL };
162 char *envp[] = { NULL };
163
164 argv[2] = kmem_asprintf(SET_SCHEDULER_CMD, device, elevator);
165 error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
166 strfree(argv[2]);
167 }
168 #endif /* HAVE_ELEVATOR_CHANGE */
169 if (error)
170 printk("ZFS: Unable to set \"%s\" scheduler for %s (%s): %d\n",
171 elevator, v->vdev_path, device, error);
172
173 return (error);
174 }
175
176 /*
177 * Expanding a whole disk vdev involves invoking BLKRRPART on the
178 * whole disk device. This poses a problem, because BLKRRPART will
179 * return EBUSY if one of the disk's partitions is open. That's why
180 * we have to do it here, just before opening the data partition.
181 * Unfortunately, BLKRRPART works by dropping all partitions and
182 * recreating them, which means that for a short time window, all
183 * /dev/sdxN device files disappear (until udev recreates them).
184 * This means two things:
185 * - When we open the data partition just after a BLKRRPART, we
186 * can't do it using the normal device file path because of the
187 * obvious race condition with udev. Instead, we use reliable
188 * kernel APIs to get a handle to the new partition device from
189 * the whole disk device.
190 * - Because vdev_disk_open() initially needs to find the device
191 * using its path, multiple vdev_disk_open() invocations in
192 * short succession on the same disk with BLKRRPARTs in the
193 * middle have a high probability of failure (because of the
194 * race condition with udev). A typical situation where this
195 * might happen is when the zpool userspace tool does a
196 * TRYIMPORT immediately followed by an IMPORT. For this
197 * reason, we only invoke BLKRRPART in the module when strictly
198 * necessary (zpool online -e case), and rely on userspace to
199 * do it when possible.
200 */
201 static struct block_device *
202 vdev_disk_rrpart(const char *path, int mode, vdev_disk_t *vd)
203 {
204 #if defined(HAVE_3ARG_BLKDEV_GET) && defined(HAVE_GET_GENDISK)
205 struct block_device *bdev, *result = ERR_PTR(-ENXIO);
206 struct gendisk *disk;
207 int error, partno;
208
209 bdev = vdev_bdev_open(path, vdev_bdev_mode(mode), zfs_vdev_holder);
210 if (IS_ERR(bdev))
211 return (bdev);
212
213 disk = get_gendisk(bdev->bd_dev, &partno);
214 vdev_bdev_close(bdev, vdev_bdev_mode(mode));
215
216 if (disk) {
217 bdev = bdget(disk_devt(disk));
218 if (bdev) {
219 error = blkdev_get(bdev, vdev_bdev_mode(mode), vd);
220 if (error == 0)
221 error = ioctl_by_bdev(bdev, BLKRRPART, 0);
222 vdev_bdev_close(bdev, vdev_bdev_mode(mode));
223 }
224
225 bdev = bdget_disk(disk, partno);
226 if (bdev) {
227 error = blkdev_get(bdev,
228 vdev_bdev_mode(mode) | FMODE_EXCL, vd);
229 if (error == 0)
230 result = bdev;
231 }
232 put_disk(disk);
233 }
234
235 return (result);
236 #else
237 return (ERR_PTR(-EOPNOTSUPP));
238 #endif /* defined(HAVE_3ARG_BLKDEV_GET) && defined(HAVE_GET_GENDISK) */
239 }
240
241 static int
242 vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
243 uint64_t *ashift)
244 {
245 struct block_device *bdev = ERR_PTR(-ENXIO);
246 vdev_disk_t *vd;
247 int count = 0, mode, block_size;
248
249 /* Must have a pathname and it must be absolute. */
250 if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
251 v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
252 return (SET_ERROR(EINVAL));
253 }
254
255 /*
256 * Reopen the device if it's not currently open. Otherwise,
257 * just update the physical size of the device.
258 */
259 if (v->vdev_tsd != NULL) {
260 ASSERT(v->vdev_reopening);
261 vd = v->vdev_tsd;
262 goto skip_open;
263 }
264
265 vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
266 if (vd == NULL)
267 return (SET_ERROR(ENOMEM));
268
269 /*
270 * Devices are always opened by the path provided at configuration
271 * time. This means that if the provided path is a udev by-id path
272 * then drives may be recabled without an issue. If the provided
273 * path is a udev by-path path, then the physical location information
274 * will be preserved. This can be critical for more complicated
275 * configurations where drives are located in specific physical
276 * locations to maximize the systems tolerence to component failure.
277 * Alternatively, you can provide your own udev rule to flexibly map
278 * the drives as you see fit. It is not advised that you use the
279 * /dev/[hd]d devices which may be reordered due to probing order.
280 * Devices in the wrong locations will be detected by the higher
281 * level vdev validation.
282 *
283 * The specified paths may be briefly removed and recreated in
284 * response to udev events. This should be exceptionally unlikely
285 * because the zpool command makes every effort to verify these paths
286 * have already settled prior to reaching this point. Therefore,
287 * a ENOENT failure at this point is highly likely to be transient
288 * and it is reasonable to sleep and retry before giving up. In
289 * practice delays have been observed to be on the order of 100ms.
290 */
291 mode = spa_mode(v->vdev_spa);
292 if (v->vdev_wholedisk && v->vdev_expanding)
293 bdev = vdev_disk_rrpart(v->vdev_path, mode, vd);
294
295 while (IS_ERR(bdev) && count < 50) {
296 bdev = vdev_bdev_open(v->vdev_path,
297 vdev_bdev_mode(mode), zfs_vdev_holder);
298 if (unlikely(PTR_ERR(bdev) == -ENOENT)) {
299 msleep(10);
300 count++;
301 } else if (IS_ERR(bdev)) {
302 break;
303 }
304 }
305
306 if (IS_ERR(bdev)) {
307 dprintf("failed open v->vdev_path=%s, error=%d count=%d\n",
308 v->vdev_path, -PTR_ERR(bdev), count);
309 kmem_free(vd, sizeof (vdev_disk_t));
310 return (SET_ERROR(-PTR_ERR(bdev)));
311 }
312
313 v->vdev_tsd = vd;
314 vd->vd_bdev = bdev;
315
316 skip_open:
317 /* Determine the physical block size */
318 block_size = vdev_bdev_block_size(vd->vd_bdev);
319
320 /* Clear the nowritecache bit, causes vdev_reopen() to try again. */
321 v->vdev_nowritecache = B_FALSE;
322
323 /* Inform the ZIO pipeline that we are non-rotational */
324 v->vdev_nonrot = blk_queue_nonrot(bdev_get_queue(vd->vd_bdev));
325
326 /* Physical volume size in bytes */
327 *psize = bdev_capacity(vd->vd_bdev);
328
329 /* TODO: report possible expansion size */
330 *max_psize = *psize;
331
332 /* Based on the minimum sector size set the block size */
333 *ashift = highbit64(MAX(block_size, SPA_MINBLOCKSIZE)) - 1;
334
335 /* Try to set the io scheduler elevator algorithm */
336 (void) vdev_elevator_switch(v, zfs_vdev_scheduler);
337
338 return (0);
339 }
340
341 static void
342 vdev_disk_close(vdev_t *v)
343 {
344 vdev_disk_t *vd = v->vdev_tsd;
345
346 if (v->vdev_reopening || vd == NULL)
347 return;
348
349 if (vd->vd_bdev != NULL)
350 vdev_bdev_close(vd->vd_bdev,
351 vdev_bdev_mode(spa_mode(v->vdev_spa)));
352
353 kmem_free(vd, sizeof (vdev_disk_t));
354 v->vdev_tsd = NULL;
355 }
356
357 static dio_request_t *
358 vdev_disk_dio_alloc(int bio_count)
359 {
360 dio_request_t *dr;
361 int i;
362
363 dr = kmem_zalloc(sizeof (dio_request_t) +
364 sizeof (struct bio *) * bio_count, KM_SLEEP);
365 if (dr) {
366 init_completion(&dr->dr_comp);
367 atomic_set(&dr->dr_ref, 0);
368 dr->dr_bio_count = bio_count;
369 dr->dr_error = 0;
370
371 for (i = 0; i < dr->dr_bio_count; i++)
372 dr->dr_bio[i] = NULL;
373 }
374
375 return (dr);
376 }
377
378 static void
379 vdev_disk_dio_free(dio_request_t *dr)
380 {
381 int i;
382
383 for (i = 0; i < dr->dr_bio_count; i++)
384 if (dr->dr_bio[i])
385 bio_put(dr->dr_bio[i]);
386
387 kmem_free(dr, sizeof (dio_request_t) +
388 sizeof (struct bio *) * dr->dr_bio_count);
389 }
390
391 static void
392 vdev_disk_dio_get(dio_request_t *dr)
393 {
394 atomic_inc(&dr->dr_ref);
395 }
396
397 static int
398 vdev_disk_dio_put(dio_request_t *dr)
399 {
400 int rc = atomic_dec_return(&dr->dr_ref);
401
402 /*
403 * Free the dio_request when the last reference is dropped and
404 * ensure zio_interpret is called only once with the correct zio
405 */
406 if (rc == 0) {
407 zio_t *zio = dr->dr_zio;
408 int error = dr->dr_error;
409
410 vdev_disk_dio_free(dr);
411
412 if (zio) {
413 zio->io_delay = jiffies_64 - zio->io_delay;
414 zio->io_error = error;
415 ASSERT3S(zio->io_error, >=, 0);
416 if (zio->io_error)
417 vdev_disk_error(zio);
418 zio_interrupt(zio);
419 }
420 }
421
422 return (rc);
423 }
424
425 BIO_END_IO_PROTO(vdev_disk_physio_completion, bio, error)
426 {
427 dio_request_t *dr = bio->bi_private;
428 int rc;
429 int wait;
430
431 if (dr->dr_error == 0) {
432 #ifdef HAVE_1ARG_BIO_END_IO_T
433 dr->dr_error = -(bio->bi_error);
434 #else
435 if (error)
436 dr->dr_error = -(error);
437 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
438 dr->dr_error = EIO;
439 #endif
440 }
441
442 wait = dr->dr_wait;
443 /* Drop reference aquired by __vdev_disk_physio */
444 rc = vdev_disk_dio_put(dr);
445
446 /* Wake up synchronous waiter this is the last outstanding bio */
447 if (wait && rc == 1)
448 complete(&dr->dr_comp);
449 }
450
451 static inline unsigned long
452 bio_nr_pages(void *bio_ptr, unsigned int bio_size)
453 {
454 return ((((unsigned long)bio_ptr + bio_size + PAGE_SIZE - 1) >>
455 PAGE_SHIFT) - ((unsigned long)bio_ptr >> PAGE_SHIFT));
456 }
457
458 static unsigned int
459 bio_map(struct bio *bio, void *bio_ptr, unsigned int bio_size)
460 {
461 unsigned int offset, size, i;
462 struct page *page;
463
464 offset = offset_in_page(bio_ptr);
465 for (i = 0; i < bio->bi_max_vecs; i++) {
466 size = PAGE_SIZE - offset;
467
468 if (bio_size <= 0)
469 break;
470
471 if (size > bio_size)
472 size = bio_size;
473
474 if (is_vmalloc_addr(bio_ptr))
475 page = vmalloc_to_page(bio_ptr);
476 else
477 page = virt_to_page(bio_ptr);
478
479 /*
480 * Some network related block device uses tcp_sendpage, which
481 * doesn't behave well when using 0-count page, this is a
482 * safety net to catch them.
483 */
484 ASSERT3S(page_count(page), >, 0);
485
486 if (bio_add_page(bio, page, size, offset) != size)
487 break;
488
489 bio_ptr += size;
490 bio_size -= size;
491 offset = 0;
492 }
493
494 return (bio_size);
495 }
496
497 static inline void
498 vdev_submit_bio(int rw, struct bio *bio)
499 {
500 #ifdef HAVE_CURRENT_BIO_TAIL
501 struct bio **bio_tail = current->bio_tail;
502 current->bio_tail = NULL;
503 submit_bio(rw, bio);
504 current->bio_tail = bio_tail;
505 #else
506 struct bio_list *bio_list = current->bio_list;
507 current->bio_list = NULL;
508 submit_bio(rw, bio);
509 current->bio_list = bio_list;
510 #endif
511 }
512
513 static int
514 __vdev_disk_physio(struct block_device *bdev, zio_t *zio, caddr_t kbuf_ptr,
515 size_t kbuf_size, uint64_t kbuf_offset, int flags, int wait)
516 {
517 dio_request_t *dr;
518 caddr_t bio_ptr;
519 uint64_t bio_offset;
520 int rw, bio_size, bio_count = 16;
521 int i = 0, error = 0;
522
523 ASSERT3U(kbuf_offset + kbuf_size, <=, bdev->bd_inode->i_size);
524
525 retry:
526 dr = vdev_disk_dio_alloc(bio_count);
527 if (dr == NULL)
528 return (ENOMEM);
529
530 if (zio && !(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))
531 bio_set_flags_failfast(bdev, &flags);
532
533 rw = flags;
534 dr->dr_zio = zio;
535 dr->dr_wait = wait;
536
537 /*
538 * When the IO size exceeds the maximum bio size for the request
539 * queue we are forced to break the IO in multiple bio's and wait
540 * for them all to complete. Ideally, all pool users will set
541 * their volume block size to match the maximum request size and
542 * the common case will be one bio per vdev IO request.
543 */
544 bio_ptr = kbuf_ptr;
545 bio_offset = kbuf_offset;
546 bio_size = kbuf_size;
547 for (i = 0; i <= dr->dr_bio_count; i++) {
548
549 /* Finished constructing bio's for given buffer */
550 if (bio_size <= 0)
551 break;
552
553 /*
554 * By default only 'bio_count' bio's per dio are allowed.
555 * However, if we find ourselves in a situation where more
556 * are needed we allocate a larger dio and warn the user.
557 */
558 if (dr->dr_bio_count == i) {
559 vdev_disk_dio_free(dr);
560 bio_count *= 2;
561 goto retry;
562 }
563
564 /* bio_alloc() with __GFP_WAIT never returns NULL */
565 dr->dr_bio[i] = bio_alloc(GFP_NOIO,
566 MIN(bio_nr_pages(bio_ptr, bio_size), BIO_MAX_PAGES));
567 if (unlikely(dr->dr_bio[i] == NULL)) {
568 vdev_disk_dio_free(dr);
569 return (ENOMEM);
570 }
571
572 /* Matching put called by vdev_disk_physio_completion */
573 vdev_disk_dio_get(dr);
574
575 dr->dr_bio[i]->bi_bdev = bdev;
576 BIO_BI_SECTOR(dr->dr_bio[i]) = bio_offset >> 9;
577 dr->dr_bio[i]->bi_rw = rw;
578 dr->dr_bio[i]->bi_end_io = vdev_disk_physio_completion;
579 dr->dr_bio[i]->bi_private = dr;
580
581 /* Remaining size is returned to become the new size */
582 bio_size = bio_map(dr->dr_bio[i], bio_ptr, bio_size);
583
584 /* Advance in buffer and construct another bio if needed */
585 bio_ptr += BIO_BI_SIZE(dr->dr_bio[i]);
586 bio_offset += BIO_BI_SIZE(dr->dr_bio[i]);
587 }
588
589 /* Extra reference to protect dio_request during vdev_submit_bio */
590 vdev_disk_dio_get(dr);
591 if (zio)
592 zio->io_delay = jiffies_64;
593
594 /* Submit all bio's associated with this dio */
595 for (i = 0; i < dr->dr_bio_count; i++)
596 if (dr->dr_bio[i])
597 vdev_submit_bio(rw, dr->dr_bio[i]);
598
599 /*
600 * On synchronous blocking requests we wait for all bio the completion
601 * callbacks to run. We will be woken when the last callback runs
602 * for this dio. We are responsible for putting the last dio_request
603 * reference will in turn put back the last bio references. The
604 * only synchronous consumer is vdev_disk_read_rootlabel() all other
605 * IO originating from vdev_disk_io_start() is asynchronous.
606 */
607 if (wait) {
608 wait_for_completion(&dr->dr_comp);
609 error = dr->dr_error;
610 ASSERT3S(atomic_read(&dr->dr_ref), ==, 1);
611 }
612
613 (void) vdev_disk_dio_put(dr);
614
615 return (error);
616 }
617
618 int
619 vdev_disk_physio(struct block_device *bdev, caddr_t kbuf,
620 size_t size, uint64_t offset, int flags)
621 {
622 bio_set_flags_failfast(bdev, &flags);
623 return (__vdev_disk_physio(bdev, NULL, kbuf, size, offset, flags, 1));
624 }
625
626 BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, rc)
627 {
628 zio_t *zio = bio->bi_private;
629 #ifdef HAVE_1ARG_BIO_END_IO_T
630 int rc = bio->bi_error;
631 #endif
632
633 zio->io_delay = jiffies_64 - zio->io_delay;
634 zio->io_error = -rc;
635 if (rc && (rc == -EOPNOTSUPP))
636 zio->io_vd->vdev_nowritecache = B_TRUE;
637
638 bio_put(bio);
639 ASSERT3S(zio->io_error, >=, 0);
640 if (zio->io_error)
641 vdev_disk_error(zio);
642 zio_interrupt(zio);
643 }
644
645 static int
646 vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
647 {
648 struct request_queue *q;
649 struct bio *bio;
650
651 q = bdev_get_queue(bdev);
652 if (!q)
653 return (ENXIO);
654
655 bio = bio_alloc(GFP_NOIO, 0);
656 /* bio_alloc() with __GFP_WAIT never returns NULL */
657 if (unlikely(bio == NULL))
658 return (ENOMEM);
659
660 bio->bi_end_io = vdev_disk_io_flush_completion;
661 bio->bi_private = zio;
662 bio->bi_bdev = bdev;
663 zio->io_delay = jiffies_64;
664 vdev_submit_bio(VDEV_WRITE_FLUSH_FUA, bio);
665 invalidate_bdev(bdev);
666
667 return (0);
668 }
669
670 static void
671 vdev_disk_io_start(zio_t *zio)
672 {
673 vdev_t *v = zio->io_vd;
674 vdev_disk_t *vd = v->vdev_tsd;
675 zio_priority_t pri = zio->io_priority;
676 int flags, error;
677
678 switch (zio->io_type) {
679 case ZIO_TYPE_IOCTL:
680
681 if (!vdev_readable(v)) {
682 zio->io_error = SET_ERROR(ENXIO);
683 zio_interrupt(zio);
684 return;
685 }
686
687 switch (zio->io_cmd) {
688 case DKIOCFLUSHWRITECACHE:
689
690 if (zfs_nocacheflush)
691 break;
692
693 if (v->vdev_nowritecache) {
694 zio->io_error = SET_ERROR(ENOTSUP);
695 break;
696 }
697
698 error = vdev_disk_io_flush(vd->vd_bdev, zio);
699 if (error == 0)
700 return;
701
702 zio->io_error = error;
703 if (error == ENOTSUP)
704 v->vdev_nowritecache = B_TRUE;
705
706 break;
707
708 default:
709 zio->io_error = SET_ERROR(ENOTSUP);
710 }
711
712 zio_execute(zio);
713 return;
714 case ZIO_TYPE_WRITE:
715 if ((pri == ZIO_PRIORITY_SYNC_WRITE) && (v->vdev_nonrot))
716 flags = WRITE_SYNC;
717 else
718 flags = WRITE;
719 break;
720
721 case ZIO_TYPE_READ:
722 if ((pri == ZIO_PRIORITY_SYNC_READ) && (v->vdev_nonrot))
723 flags = READ_SYNC;
724 else
725 flags = READ;
726 break;
727
728 default:
729 zio->io_error = SET_ERROR(ENOTSUP);
730 zio_interrupt(zio);
731 return;
732 }
733
734 error = __vdev_disk_physio(vd->vd_bdev, zio, zio->io_data,
735 zio->io_size, zio->io_offset, flags, 0);
736 if (error) {
737 zio->io_error = error;
738 zio_interrupt(zio);
739 return;
740 }
741 }
742
743 static void
744 vdev_disk_io_done(zio_t *zio)
745 {
746 /*
747 * If the device returned EIO, we revalidate the media. If it is
748 * determined the media has changed this triggers the asynchronous
749 * removal of the device from the configuration.
750 */
751 if (zio->io_error == EIO) {
752 vdev_t *v = zio->io_vd;
753 vdev_disk_t *vd = v->vdev_tsd;
754
755 if (check_disk_change(vd->vd_bdev)) {
756 vdev_bdev_invalidate(vd->vd_bdev);
757 v->vdev_remove_wanted = B_TRUE;
758 spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
759 }
760 }
761 }
762
763 static void
764 vdev_disk_hold(vdev_t *vd)
765 {
766 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
767
768 /* We must have a pathname, and it must be absolute. */
769 if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
770 return;
771
772 /*
773 * Only prefetch path and devid info if the device has
774 * never been opened.
775 */
776 if (vd->vdev_tsd != NULL)
777 return;
778
779 /* XXX: Implement me as a vnode lookup for the device */
780 vd->vdev_name_vp = NULL;
781 vd->vdev_devid_vp = NULL;
782 }
783
784 static void
785 vdev_disk_rele(vdev_t *vd)
786 {
787 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
788
789 /* XXX: Implement me as a vnode rele for the device */
790 }
791
792 vdev_ops_t vdev_disk_ops = {
793 vdev_disk_open,
794 vdev_disk_close,
795 vdev_default_asize,
796 vdev_disk_io_start,
797 vdev_disk_io_done,
798 NULL,
799 vdev_disk_hold,
800 vdev_disk_rele,
801 VDEV_TYPE_DISK, /* name of this vdev type */
802 B_TRUE /* leaf vdev */
803 };
804
805 /*
806 * Given the root disk device devid or pathname, read the label from
807 * the device, and construct a configuration nvlist.
808 */
809 int
810 vdev_disk_read_rootlabel(char *devpath, char *devid, nvlist_t **config)
811 {
812 struct block_device *bdev;
813 vdev_label_t *label;
814 uint64_t s, size;
815 int i;
816
817 bdev = vdev_bdev_open(devpath, vdev_bdev_mode(FREAD), zfs_vdev_holder);
818 if (IS_ERR(bdev))
819 return (-PTR_ERR(bdev));
820
821 s = bdev_capacity(bdev);
822 if (s == 0) {
823 vdev_bdev_close(bdev, vdev_bdev_mode(FREAD));
824 return (EIO);
825 }
826
827 size = P2ALIGN_TYPED(s, sizeof (vdev_label_t), uint64_t);
828 label = vmem_alloc(sizeof (vdev_label_t), KM_SLEEP);
829
830 for (i = 0; i < VDEV_LABELS; i++) {
831 uint64_t offset, state, txg = 0;
832
833 /* read vdev label */
834 offset = vdev_label_offset(size, i, 0);
835 if (vdev_disk_physio(bdev, (caddr_t)label,
836 VDEV_SKIP_SIZE + VDEV_PHYS_SIZE, offset, READ_SYNC) != 0)
837 continue;
838
839 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
840 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) {
841 *config = NULL;
842 continue;
843 }
844
845 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
846 &state) != 0 || state >= POOL_STATE_DESTROYED) {
847 nvlist_free(*config);
848 *config = NULL;
849 continue;
850 }
851
852 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
853 &txg) != 0 || txg == 0) {
854 nvlist_free(*config);
855 *config = NULL;
856 continue;
857 }
858
859 break;
860 }
861
862 vmem_free(label, sizeof (vdev_label_t));
863 vdev_bdev_close(bdev, vdev_bdev_mode(FREAD));
864
865 return (0);
866 }
867
868 module_param(zfs_vdev_scheduler, charp, 0644);
869 MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler");