]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev_disk.c
Leaf vdevs should not be reopened
[mirror_zfs.git] / module / zfs / vdev_disk.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25 * LLNL-CODE-403049.
26 */
27
28 #include <sys/zfs_context.h>
29 #include <sys/spa.h>
30 #include <sys/vdev_disk.h>
31 #include <sys/vdev_impl.h>
32 #include <sys/fs/zfs.h>
33 #include <sys/zio.h>
34 #include <sys/sunldi.h>
35
36 char *zfs_vdev_scheduler = VDEV_SCHEDULER;
37
38 /*
39 * Virtual device vector for disks.
40 */
41 typedef struct dio_request {
42 struct completion dr_comp; /* Completion for sync IO */
43 atomic_t dr_ref; /* References */
44 zio_t *dr_zio; /* Parent ZIO */
45 int dr_rw; /* Read/Write */
46 int dr_error; /* Bio error */
47 int dr_bio_count; /* Count of bio's */
48 struct bio *dr_bio[0]; /* Attached bio's */
49 } dio_request_t;
50
51
52 #ifdef HAVE_OPEN_BDEV_EXCLUSIVE
53 static fmode_t
54 vdev_bdev_mode(int smode)
55 {
56 fmode_t mode = 0;
57
58 ASSERT3S(smode & (FREAD | FWRITE), !=, 0);
59
60 if (smode & FREAD)
61 mode |= FMODE_READ;
62
63 if (smode & FWRITE)
64 mode |= FMODE_WRITE;
65
66 return mode;
67 }
68 #else
69 static int
70 vdev_bdev_mode(int smode)
71 {
72 int mode = 0;
73
74 ASSERT3S(smode & (FREAD | FWRITE), !=, 0);
75
76 if ((smode & FREAD) && !(smode & FWRITE))
77 mode = MS_RDONLY;
78
79 return mode;
80 }
81 #endif /* HAVE_OPEN_BDEV_EXCLUSIVE */
82
83 static uint64_t
84 bdev_capacity(struct block_device *bdev)
85 {
86 struct hd_struct *part = bdev->bd_part;
87
88 /* The partition capacity referenced by the block device */
89 if (part)
90 return (part->nr_sects << 9);
91
92 /* Otherwise assume the full device capacity */
93 return (get_capacity(bdev->bd_disk) << 9);
94 }
95
96 static void
97 vdev_disk_error(zio_t *zio)
98 {
99 #ifdef ZFS_DEBUG
100 printk("ZFS: zio error=%d type=%d offset=%llu size=%llu "
101 "flags=%x delay=%llu\n", zio->io_error, zio->io_type,
102 (u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
103 zio->io_flags, (u_longlong_t)zio->io_delay);
104 #endif
105 }
106
107 /*
108 * Use the Linux 'noop' elevator for zfs managed block devices. This
109 * strikes the ideal balance by allowing the zfs elevator to do all
110 * request ordering and prioritization. While allowing the Linux
111 * elevator to do the maximum front/back merging allowed by the
112 * physical device. This yields the largest possible requests for
113 * the device with the lowest total overhead.
114 */
115 static int
116 vdev_elevator_switch(vdev_t *v, char *elevator)
117 {
118 vdev_disk_t *vd = v->vdev_tsd;
119 struct block_device *bdev = vd->vd_bdev;
120 struct request_queue *q = bdev_get_queue(bdev);
121 char *device = bdev->bd_disk->disk_name;
122 int error;
123
124 /*
125 * Skip devices which are not whole disks (partitions).
126 * Device-mapper devices are excepted since they may be whole
127 * disks despite the vdev_wholedisk flag, in which case we can
128 * and should switch the elevator. If the device-mapper device
129 * does not have an elevator (i.e. dm-raid, dm-crypt, etc.) the
130 * "Skip devices without schedulers" check below will fail.
131 */
132 if (!v->vdev_wholedisk && strncmp(device, "dm-", 3) != 0)
133 return (0);
134
135 /* Skip devices without schedulers (loop, ram, dm, etc) */
136 if (!q->elevator || !blk_queue_stackable(q))
137 return (0);
138
139 /* Leave existing scheduler when set to "none" */
140 if (!strncmp(elevator, "none", 4) && (strlen(elevator) == 4))
141 return (0);
142
143 #ifdef HAVE_ELEVATOR_CHANGE
144 error = elevator_change(q, elevator);
145 #else
146 /* For pre-2.6.36 kernels elevator_change() is not available.
147 * Therefore we fall back to using a usermodehelper to echo the
148 * elevator into sysfs; This requires /bin/echo and sysfs to be
149 * mounted which may not be true early in the boot process.
150 */
151 # define SET_SCHEDULER_CMD \
152 "exec 0</dev/null " \
153 " 1>/sys/block/%s/queue/scheduler " \
154 " 2>/dev/null; " \
155 "echo %s"
156
157 {
158 char *argv[] = { "/bin/sh", "-c", NULL, NULL };
159 char *envp[] = { NULL };
160
161 argv[2] = kmem_asprintf(SET_SCHEDULER_CMD, device, elevator);
162 error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
163 strfree(argv[2]);
164 }
165 #endif /* HAVE_ELEVATOR_CHANGE */
166 if (error)
167 printk("ZFS: Unable to set \"%s\" scheduler for %s (%s): %d\n",
168 elevator, v->vdev_path, device, error);
169
170 return (error);
171 }
172
173 /*
174 * Expanding a whole disk vdev involves invoking BLKRRPART on the
175 * whole disk device. This poses a problem, because BLKRRPART will
176 * return EBUSY if one of the disk's partitions is open. That's why
177 * we have to do it here, just before opening the data partition.
178 * Unfortunately, BLKRRPART works by dropping all partitions and
179 * recreating them, which means that for a short time window, all
180 * /dev/sdxN device files disappear (until udev recreates them).
181 * This means two things:
182 * - When we open the data partition just after a BLKRRPART, we
183 * can't do it using the normal device file path because of the
184 * obvious race condition with udev. Instead, we use reliable
185 * kernel APIs to get a handle to the new partition device from
186 * the whole disk device.
187 * - Because vdev_disk_open() initially needs to find the device
188 * using its path, multiple vdev_disk_open() invocations in
189 * short succession on the same disk with BLKRRPARTs in the
190 * middle have a high probability of failure (because of the
191 * race condition with udev). A typical situation where this
192 * might happen is when the zpool userspace tool does a
193 * TRYIMPORT immediately followed by an IMPORT. For this
194 * reason, we only invoke BLKRRPART in the module when strictly
195 * necessary (zpool online -e case), and rely on userspace to
196 * do it when possible.
197 */
198 static struct block_device *
199 vdev_disk_rrpart(const char *path, int mode, vdev_disk_t *vd)
200 {
201 #if defined(HAVE_3ARG_BLKDEV_GET) && defined(HAVE_GET_GENDISK)
202 struct block_device *bdev, *result = ERR_PTR(-ENXIO);
203 struct gendisk *disk;
204 int error, partno;
205
206 bdev = vdev_bdev_open(path, vdev_bdev_mode(mode), vd);
207 if (IS_ERR(bdev))
208 return bdev;
209
210 disk = get_gendisk(bdev->bd_dev, &partno);
211 vdev_bdev_close(bdev, vdev_bdev_mode(mode));
212
213 if (disk) {
214 bdev = bdget(disk_devt(disk));
215 if (bdev) {
216 error = blkdev_get(bdev, vdev_bdev_mode(mode), vd);
217 if (error == 0)
218 error = ioctl_by_bdev(bdev, BLKRRPART, 0);
219 vdev_bdev_close(bdev, vdev_bdev_mode(mode));
220 }
221
222 bdev = bdget_disk(disk, partno);
223 if (bdev) {
224 error = blkdev_get(bdev,
225 vdev_bdev_mode(mode) | FMODE_EXCL, vd);
226 if (error == 0)
227 result = bdev;
228 }
229 put_disk(disk);
230 }
231
232 return result;
233 #else
234 return ERR_PTR(-EOPNOTSUPP);
235 #endif /* defined(HAVE_3ARG_BLKDEV_GET) && defined(HAVE_GET_GENDISK) */
236 }
237
238 static int
239 vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
240 uint64_t *ashift)
241 {
242 struct block_device *bdev = ERR_PTR(-ENXIO);
243 vdev_disk_t *vd;
244 int mode, block_size;
245
246 /* Must have a pathname and it must be absolute. */
247 if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
248 v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
249 return EINVAL;
250 }
251
252 /*
253 * Reopen the device if it's not currently open. Otherwise,
254 * just update the physical size of the device.
255 */
256 if (v->vdev_tsd != NULL) {
257 ASSERT(v->vdev_reopening);
258 vd = v->vdev_tsd;
259 goto skip_open;
260 }
261
262 vd = kmem_zalloc(sizeof(vdev_disk_t), KM_PUSHPAGE);
263 if (vd == NULL)
264 return ENOMEM;
265
266 /*
267 * Devices are always opened by the path provided at configuration
268 * time. This means that if the provided path is a udev by-id path
269 * then drives may be recabled without an issue. If the provided
270 * path is a udev by-path path then the physical location information
271 * will be preserved. This can be critical for more complicated
272 * configurations where drives are located in specific physical
273 * locations to maximize the systems tolerence to component failure.
274 * Alternately you can provide your own udev rule to flexibly map
275 * the drives as you see fit. It is not advised that you use the
276 * /dev/[hd]d devices which may be reorder due to probing order.
277 * Devices in the wrong locations will be detected by the higher
278 * level vdev validation.
279 */
280 mode = spa_mode(v->vdev_spa);
281 if (v->vdev_wholedisk && v->vdev_expanding)
282 bdev = vdev_disk_rrpart(v->vdev_path, mode, vd);
283 if (IS_ERR(bdev))
284 bdev = vdev_bdev_open(v->vdev_path, vdev_bdev_mode(mode), vd);
285 if (IS_ERR(bdev)) {
286 kmem_free(vd, sizeof(vdev_disk_t));
287 return -PTR_ERR(bdev);
288 }
289
290 v->vdev_tsd = vd;
291 vd->vd_bdev = bdev;
292
293 skip_open:
294 /* Determine the physical block size */
295 block_size = vdev_bdev_block_size(vd->vd_bdev);
296
297 /* We think the wholedisk property should always be set when this
298 * function is called. ASSERT here so if any legitimate cases exist
299 * where it's not set, we'll find them during debugging. If we never
300 * hit the ASSERT, this and the following conditional statement can be
301 * removed. */
302 ASSERT3S(v->vdev_wholedisk, !=, -1ULL);
303
304 /* The wholedisk property was initialized to -1 in vdev_alloc() if it
305 * was unspecified. In that case, check if this is a whole device.
306 * When bdev->bd_contains == bdev we have a whole device and not simply
307 * a partition. */
308 if (v->vdev_wholedisk == -1ULL)
309 v->vdev_wholedisk = (bdev->bd_contains == bdev);
310
311 /* Clear the nowritecache bit, causes vdev_reopen() to try again. */
312 v->vdev_nowritecache = B_FALSE;
313
314 /* Physical volume size in bytes */
315 *psize = bdev_capacity(vd->vd_bdev);
316
317 /* TODO: report possible expansion size */
318 *max_psize = *psize;
319
320 /* Based on the minimum sector size set the block size */
321 *ashift = highbit(MAX(block_size, SPA_MINBLOCKSIZE)) - 1;
322
323 /* Try to set the io scheduler elevator algorithm */
324 (void) vdev_elevator_switch(v, zfs_vdev_scheduler);
325
326 return 0;
327 }
328
329 static void
330 vdev_disk_close(vdev_t *v)
331 {
332 vdev_disk_t *vd = v->vdev_tsd;
333
334 if (v->vdev_reopening || vd == NULL)
335 return;
336
337 if (vd->vd_bdev != NULL)
338 vdev_bdev_close(vd->vd_bdev,
339 vdev_bdev_mode(spa_mode(v->vdev_spa)));
340
341 kmem_free(vd, sizeof(vdev_disk_t));
342 v->vdev_tsd = NULL;
343 }
344
345 static dio_request_t *
346 vdev_disk_dio_alloc(int bio_count)
347 {
348 dio_request_t *dr;
349 int i;
350
351 dr = kmem_zalloc(sizeof(dio_request_t) +
352 sizeof(struct bio *) * bio_count, KM_PUSHPAGE);
353 if (dr) {
354 init_completion(&dr->dr_comp);
355 atomic_set(&dr->dr_ref, 0);
356 dr->dr_bio_count = bio_count;
357 dr->dr_error = 0;
358
359 for (i = 0; i < dr->dr_bio_count; i++)
360 dr->dr_bio[i] = NULL;
361 }
362
363 return dr;
364 }
365
366 static void
367 vdev_disk_dio_free(dio_request_t *dr)
368 {
369 int i;
370
371 for (i = 0; i < dr->dr_bio_count; i++)
372 if (dr->dr_bio[i])
373 bio_put(dr->dr_bio[i]);
374
375 kmem_free(dr, sizeof(dio_request_t) +
376 sizeof(struct bio *) * dr->dr_bio_count);
377 }
378
379 static int
380 vdev_disk_dio_is_sync(dio_request_t *dr)
381 {
382 #ifdef HAVE_BIO_RW_SYNC
383 /* BIO_RW_SYNC preferred interface from 2.6.12-2.6.29 */
384 return (dr->dr_rw & (1 << BIO_RW_SYNC));
385 #else
386 # ifdef HAVE_BIO_RW_SYNCIO
387 /* BIO_RW_SYNCIO preferred interface from 2.6.30-2.6.35 */
388 return (dr->dr_rw & (1 << BIO_RW_SYNCIO));
389 # else
390 # ifdef HAVE_REQ_SYNC
391 /* REQ_SYNC preferred interface from 2.6.36-2.6.xx */
392 return (dr->dr_rw & REQ_SYNC);
393 # else
394 # error "Unable to determine bio sync flag"
395 # endif /* HAVE_REQ_SYNC */
396 # endif /* HAVE_BIO_RW_SYNC */
397 #endif /* HAVE_BIO_RW_SYNCIO */
398 }
399
400 static void
401 vdev_disk_dio_get(dio_request_t *dr)
402 {
403 atomic_inc(&dr->dr_ref);
404 }
405
406 static int
407 vdev_disk_dio_put(dio_request_t *dr)
408 {
409 int rc = atomic_dec_return(&dr->dr_ref);
410
411 /*
412 * Free the dio_request when the last reference is dropped and
413 * ensure zio_interpret is called only once with the correct zio
414 */
415 if (rc == 0) {
416 zio_t *zio = dr->dr_zio;
417 int error = dr->dr_error;
418
419 vdev_disk_dio_free(dr);
420
421 if (zio) {
422 zio->io_delay = jiffies_to_msecs(
423 jiffies_64 - zio->io_delay);
424 zio->io_error = error;
425 ASSERT3S(zio->io_error, >=, 0);
426 if (zio->io_error)
427 vdev_disk_error(zio);
428 zio_interrupt(zio);
429 }
430 }
431
432 return rc;
433 }
434
435 BIO_END_IO_PROTO(vdev_disk_physio_completion, bio, size, error)
436 {
437 dio_request_t *dr = bio->bi_private;
438 int rc;
439
440 /* Fatal error but print some useful debugging before asserting */
441 if (dr == NULL)
442 PANIC("dr == NULL, bio->bi_private == NULL\n"
443 "bi_next: %p, bi_flags: %lx, bi_rw: %lu, bi_vcnt: %d\n"
444 "bi_idx: %d, bi_size: %d, bi_end_io: %p, bi_cnt: %d\n",
445 bio->bi_next, bio->bi_flags, bio->bi_rw, bio->bi_vcnt,
446 bio->bi_idx, bio->bi_size, bio->bi_end_io,
447 atomic_read(&bio->bi_cnt));
448
449 #ifndef HAVE_2ARGS_BIO_END_IO_T
450 if (bio->bi_size)
451 return 1;
452 #endif /* HAVE_2ARGS_BIO_END_IO_T */
453
454 if (error == 0 && !test_bit(BIO_UPTODATE, &bio->bi_flags))
455 error = -EIO;
456
457 if (dr->dr_error == 0)
458 dr->dr_error = -error;
459
460 /* Drop reference aquired by __vdev_disk_physio */
461 rc = vdev_disk_dio_put(dr);
462
463 /* Wake up synchronous waiter this is the last outstanding bio */
464 if ((rc == 1) && vdev_disk_dio_is_sync(dr))
465 complete(&dr->dr_comp);
466
467 BIO_END_IO_RETURN(0);
468 }
469
470 static inline unsigned long
471 bio_nr_pages(void *bio_ptr, unsigned int bio_size)
472 {
473 return ((((unsigned long)bio_ptr + bio_size + PAGE_SIZE - 1) >>
474 PAGE_SHIFT) - ((unsigned long)bio_ptr >> PAGE_SHIFT));
475 }
476
477 static unsigned int
478 bio_map(struct bio *bio, void *bio_ptr, unsigned int bio_size)
479 {
480 unsigned int offset, size, i;
481 struct page *page;
482
483 offset = offset_in_page(bio_ptr);
484 for (i = 0; i < bio->bi_max_vecs; i++) {
485 size = PAGE_SIZE - offset;
486
487 if (bio_size <= 0)
488 break;
489
490 if (size > bio_size)
491 size = bio_size;
492
493 if (kmem_virt(bio_ptr))
494 page = vmalloc_to_page(bio_ptr);
495 else
496 page = virt_to_page(bio_ptr);
497
498 if (bio_add_page(bio, page, size, offset) != size)
499 break;
500
501 bio_ptr += size;
502 bio_size -= size;
503 offset = 0;
504 }
505
506 return bio_size;
507 }
508
509 static int
510 __vdev_disk_physio(struct block_device *bdev, zio_t *zio, caddr_t kbuf_ptr,
511 size_t kbuf_size, uint64_t kbuf_offset, int flags)
512 {
513 dio_request_t *dr;
514 caddr_t bio_ptr;
515 uint64_t bio_offset;
516 int bio_size, bio_count = 16;
517 int i = 0, error = 0;
518
519 ASSERT3U(kbuf_offset + kbuf_size, <=, bdev->bd_inode->i_size);
520
521 retry:
522 dr = vdev_disk_dio_alloc(bio_count);
523 if (dr == NULL)
524 return ENOMEM;
525
526 if (zio && !(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))
527 bio_set_flags_failfast(bdev, &flags);
528
529 dr->dr_zio = zio;
530 dr->dr_rw = flags;
531
532 /*
533 * When the IO size exceeds the maximum bio size for the request
534 * queue we are forced to break the IO in multiple bio's and wait
535 * for them all to complete. Ideally, all pool users will set
536 * their volume block size to match the maximum request size and
537 * the common case will be one bio per vdev IO request.
538 */
539 bio_ptr = kbuf_ptr;
540 bio_offset = kbuf_offset;
541 bio_size = kbuf_size;
542 for (i = 0; i <= dr->dr_bio_count; i++) {
543
544 /* Finished constructing bio's for given buffer */
545 if (bio_size <= 0)
546 break;
547
548 /*
549 * By default only 'bio_count' bio's per dio are allowed.
550 * However, if we find ourselves in a situation where more
551 * are needed we allocate a larger dio and warn the user.
552 */
553 if (dr->dr_bio_count == i) {
554 vdev_disk_dio_free(dr);
555 bio_count *= 2;
556 goto retry;
557 }
558
559 dr->dr_bio[i] = bio_alloc(GFP_NOIO,
560 bio_nr_pages(bio_ptr, bio_size));
561 if (dr->dr_bio[i] == NULL) {
562 vdev_disk_dio_free(dr);
563 return ENOMEM;
564 }
565
566 /* Matching put called by vdev_disk_physio_completion */
567 vdev_disk_dio_get(dr);
568
569 dr->dr_bio[i]->bi_bdev = bdev;
570 dr->dr_bio[i]->bi_sector = bio_offset >> 9;
571 dr->dr_bio[i]->bi_rw = dr->dr_rw;
572 dr->dr_bio[i]->bi_end_io = vdev_disk_physio_completion;
573 dr->dr_bio[i]->bi_private = dr;
574
575 /* Remaining size is returned to become the new size */
576 bio_size = bio_map(dr->dr_bio[i], bio_ptr, bio_size);
577
578 /* Advance in buffer and construct another bio if needed */
579 bio_ptr += dr->dr_bio[i]->bi_size;
580 bio_offset += dr->dr_bio[i]->bi_size;
581 }
582
583 /* Extra reference to protect dio_request during submit_bio */
584 vdev_disk_dio_get(dr);
585 if (zio)
586 zio->io_delay = jiffies_64;
587
588 /* Submit all bio's associated with this dio */
589 for (i = 0; i < dr->dr_bio_count; i++)
590 if (dr->dr_bio[i])
591 submit_bio(dr->dr_rw, dr->dr_bio[i]);
592
593 /*
594 * On synchronous blocking requests we wait for all bio the completion
595 * callbacks to run. We will be woken when the last callback runs
596 * for this dio. We are responsible for putting the last dio_request
597 * reference will in turn put back the last bio references. The
598 * only synchronous consumer is vdev_disk_read_rootlabel() all other
599 * IO originating from vdev_disk_io_start() is asynchronous.
600 */
601 if (vdev_disk_dio_is_sync(dr)) {
602 wait_for_completion(&dr->dr_comp);
603 error = dr->dr_error;
604 ASSERT3S(atomic_read(&dr->dr_ref), ==, 1);
605 }
606
607 (void)vdev_disk_dio_put(dr);
608
609 return error;
610 }
611
612 int
613 vdev_disk_physio(struct block_device *bdev, caddr_t kbuf,
614 size_t size, uint64_t offset, int flags)
615 {
616 bio_set_flags_failfast(bdev, &flags);
617 return __vdev_disk_physio(bdev, NULL, kbuf, size, offset, flags);
618 }
619
620 BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, size, rc)
621 {
622 zio_t *zio = bio->bi_private;
623
624 zio->io_delay = jiffies_to_msecs(jiffies_64 - zio->io_delay);
625 zio->io_error = -rc;
626 if (rc && (rc == -EOPNOTSUPP))
627 zio->io_vd->vdev_nowritecache = B_TRUE;
628
629 bio_put(bio);
630 ASSERT3S(zio->io_error, >=, 0);
631 if (zio->io_error)
632 vdev_disk_error(zio);
633 zio_interrupt(zio);
634
635 BIO_END_IO_RETURN(0);
636 }
637
638 static int
639 vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
640 {
641 struct request_queue *q;
642 struct bio *bio;
643
644 q = bdev_get_queue(bdev);
645 if (!q)
646 return ENXIO;
647
648 bio = bio_alloc(GFP_KERNEL, 0);
649 if (!bio)
650 return ENOMEM;
651
652 bio->bi_end_io = vdev_disk_io_flush_completion;
653 bio->bi_private = zio;
654 bio->bi_bdev = bdev;
655 zio->io_delay = jiffies_64;
656 submit_bio(VDEV_WRITE_FLUSH_FUA, bio);
657
658 return 0;
659 }
660
661 static int
662 vdev_disk_io_start(zio_t *zio)
663 {
664 vdev_t *v = zio->io_vd;
665 vdev_disk_t *vd = v->vdev_tsd;
666 int flags, error;
667
668 switch (zio->io_type) {
669 case ZIO_TYPE_IOCTL:
670
671 if (!vdev_readable(v)) {
672 zio->io_error = ENXIO;
673 return ZIO_PIPELINE_CONTINUE;
674 }
675
676 switch (zio->io_cmd) {
677 case DKIOCFLUSHWRITECACHE:
678
679 if (zfs_nocacheflush)
680 break;
681
682 if (v->vdev_nowritecache) {
683 zio->io_error = ENOTSUP;
684 break;
685 }
686
687 error = vdev_disk_io_flush(vd->vd_bdev, zio);
688 if (error == 0)
689 return ZIO_PIPELINE_STOP;
690
691 zio->io_error = error;
692 if (error == ENOTSUP)
693 v->vdev_nowritecache = B_TRUE;
694
695 break;
696
697 default:
698 zio->io_error = ENOTSUP;
699 }
700
701 return ZIO_PIPELINE_CONTINUE;
702
703 case ZIO_TYPE_WRITE:
704 flags = WRITE;
705 break;
706
707 case ZIO_TYPE_READ:
708 flags = READ;
709 break;
710
711 default:
712 zio->io_error = ENOTSUP;
713 return ZIO_PIPELINE_CONTINUE;
714 }
715
716 error = __vdev_disk_physio(vd->vd_bdev, zio, zio->io_data,
717 zio->io_size, zio->io_offset, flags);
718 if (error) {
719 zio->io_error = error;
720 return ZIO_PIPELINE_CONTINUE;
721 }
722
723 return ZIO_PIPELINE_STOP;
724 }
725
726 static void
727 vdev_disk_io_done(zio_t *zio)
728 {
729 /*
730 * If the device returned EIO, we revalidate the media. If it is
731 * determined the media has changed this triggers the asynchronous
732 * removal of the device from the configuration.
733 */
734 if (zio->io_error == EIO) {
735 vdev_t *v = zio->io_vd;
736 vdev_disk_t *vd = v->vdev_tsd;
737
738 if (check_disk_change(vd->vd_bdev)) {
739 vdev_bdev_invalidate(vd->vd_bdev);
740 v->vdev_remove_wanted = B_TRUE;
741 spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
742 }
743 }
744 }
745
746 static void
747 vdev_disk_hold(vdev_t *vd)
748 {
749 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
750
751 /* We must have a pathname, and it must be absolute. */
752 if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
753 return;
754
755 /*
756 * Only prefetch path and devid info if the device has
757 * never been opened.
758 */
759 if (vd->vdev_tsd != NULL)
760 return;
761
762 /* XXX: Implement me as a vnode lookup for the device */
763 vd->vdev_name_vp = NULL;
764 vd->vdev_devid_vp = NULL;
765 }
766
767 static void
768 vdev_disk_rele(vdev_t *vd)
769 {
770 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
771
772 /* XXX: Implement me as a vnode rele for the device */
773 }
774
775 vdev_ops_t vdev_disk_ops = {
776 vdev_disk_open,
777 vdev_disk_close,
778 vdev_default_asize,
779 vdev_disk_io_start,
780 vdev_disk_io_done,
781 NULL,
782 vdev_disk_hold,
783 vdev_disk_rele,
784 VDEV_TYPE_DISK, /* name of this vdev type */
785 B_TRUE /* leaf vdev */
786 };
787
788 /*
789 * Given the root disk device devid or pathname, read the label from
790 * the device, and construct a configuration nvlist.
791 */
792 int
793 vdev_disk_read_rootlabel(char *devpath, char *devid, nvlist_t **config)
794 {
795 struct block_device *bdev;
796 vdev_label_t *label;
797 uint64_t s, size;
798 int i;
799
800 bdev = vdev_bdev_open(devpath, vdev_bdev_mode(FREAD), NULL);
801 if (IS_ERR(bdev))
802 return -PTR_ERR(bdev);
803
804 s = bdev_capacity(bdev);
805 if (s == 0) {
806 vdev_bdev_close(bdev, vdev_bdev_mode(FREAD));
807 return EIO;
808 }
809
810 size = P2ALIGN_TYPED(s, sizeof(vdev_label_t), uint64_t);
811 label = vmem_alloc(sizeof(vdev_label_t), KM_PUSHPAGE);
812
813 for (i = 0; i < VDEV_LABELS; i++) {
814 uint64_t offset, state, txg = 0;
815
816 /* read vdev label */
817 offset = vdev_label_offset(size, i, 0);
818 if (vdev_disk_physio(bdev, (caddr_t)label,
819 VDEV_SKIP_SIZE + VDEV_PHYS_SIZE, offset, READ_SYNC) != 0)
820 continue;
821
822 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
823 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) {
824 *config = NULL;
825 continue;
826 }
827
828 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
829 &state) != 0 || state >= POOL_STATE_DESTROYED) {
830 nvlist_free(*config);
831 *config = NULL;
832 continue;
833 }
834
835 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
836 &txg) != 0 || txg == 0) {
837 nvlist_free(*config);
838 *config = NULL;
839 continue;
840 }
841
842 break;
843 }
844
845 vmem_free(label, sizeof(vdev_label_t));
846 vdev_bdev_close(bdev, vdev_bdev_mode(FREAD));
847
848 return 0;
849 }
850
851 module_param(zfs_vdev_scheduler, charp, 0644);
852 MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler");