]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev_disk.c
zvol processing should use struct bio
[mirror_zfs.git] / module / zfs / vdev_disk.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25 * LLNL-CODE-403049.
26 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
27 */
28
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/vdev_disk.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/fs/zfs.h>
34 #include <sys/zio.h>
35 #include <sys/sunldi.h>
36
37 char *zfs_vdev_scheduler = VDEV_SCHEDULER;
38 static void *zfs_vdev_holder = VDEV_HOLDER;
39
40 /*
41 * Virtual device vector for disks.
42 */
43 typedef struct dio_request {
44 struct completion dr_comp; /* Completion for sync IO */
45 atomic_t dr_ref; /* References */
46 zio_t *dr_zio; /* Parent ZIO */
47 int dr_rw; /* Read/Write */
48 int dr_error; /* Bio error */
49 int dr_bio_count; /* Count of bio's */
50 struct bio *dr_bio[0]; /* Attached bio's */
51 } dio_request_t;
52
53
54 #ifdef HAVE_OPEN_BDEV_EXCLUSIVE
55 static fmode_t
56 vdev_bdev_mode(int smode)
57 {
58 fmode_t mode = 0;
59
60 ASSERT3S(smode & (FREAD | FWRITE), !=, 0);
61
62 if (smode & FREAD)
63 mode |= FMODE_READ;
64
65 if (smode & FWRITE)
66 mode |= FMODE_WRITE;
67
68 return (mode);
69 }
70 #else
71 static int
72 vdev_bdev_mode(int smode)
73 {
74 int mode = 0;
75
76 ASSERT3S(smode & (FREAD | FWRITE), !=, 0);
77
78 if ((smode & FREAD) && !(smode & FWRITE))
79 mode = MS_RDONLY;
80
81 return (mode);
82 }
83 #endif /* HAVE_OPEN_BDEV_EXCLUSIVE */
84
85 static uint64_t
86 bdev_capacity(struct block_device *bdev)
87 {
88 struct hd_struct *part = bdev->bd_part;
89
90 /* The partition capacity referenced by the block device */
91 if (part)
92 return (part->nr_sects << 9);
93
94 /* Otherwise assume the full device capacity */
95 return (get_capacity(bdev->bd_disk) << 9);
96 }
97
98 static void
99 vdev_disk_error(zio_t *zio)
100 {
101 #ifdef ZFS_DEBUG
102 printk("ZFS: zio error=%d type=%d offset=%llu size=%llu "
103 "flags=%x delay=%llu\n", zio->io_error, zio->io_type,
104 (u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
105 zio->io_flags, (u_longlong_t)zio->io_delay);
106 #endif
107 }
108
109 /*
110 * Use the Linux 'noop' elevator for zfs managed block devices. This
111 * strikes the ideal balance by allowing the zfs elevator to do all
112 * request ordering and prioritization. While allowing the Linux
113 * elevator to do the maximum front/back merging allowed by the
114 * physical device. This yields the largest possible requests for
115 * the device with the lowest total overhead.
116 */
117 static int
118 vdev_elevator_switch(vdev_t *v, char *elevator)
119 {
120 vdev_disk_t *vd = v->vdev_tsd;
121 struct block_device *bdev = vd->vd_bdev;
122 struct request_queue *q = bdev_get_queue(bdev);
123 char *device = bdev->bd_disk->disk_name;
124 int error;
125
126 /*
127 * Skip devices which are not whole disks (partitions).
128 * Device-mapper devices are excepted since they may be whole
129 * disks despite the vdev_wholedisk flag, in which case we can
130 * and should switch the elevator. If the device-mapper device
131 * does not have an elevator (i.e. dm-raid, dm-crypt, etc.) the
132 * "Skip devices without schedulers" check below will fail.
133 */
134 if (!v->vdev_wholedisk && strncmp(device, "dm-", 3) != 0)
135 return (0);
136
137 /* Skip devices without schedulers (loop, ram, dm, etc) */
138 if (!q->elevator || !blk_queue_stackable(q))
139 return (0);
140
141 /* Leave existing scheduler when set to "none" */
142 if (strncmp(elevator, "none", 4) && (strlen(elevator) == 4) == 0)
143 return (0);
144
145 #ifdef HAVE_ELEVATOR_CHANGE
146 error = elevator_change(q, elevator);
147 #else
148 /*
149 * For pre-2.6.36 kernels elevator_change() is not available.
150 * Therefore we fall back to using a usermodehelper to echo the
151 * elevator into sysfs; This requires /bin/echo and sysfs to be
152 * mounted which may not be true early in the boot process.
153 */
154 #define SET_SCHEDULER_CMD \
155 "exec 0</dev/null " \
156 " 1>/sys/block/%s/queue/scheduler " \
157 " 2>/dev/null; " \
158 "echo %s"
159
160 {
161 char *argv[] = { "/bin/sh", "-c", NULL, NULL };
162 char *envp[] = { NULL };
163
164 argv[2] = kmem_asprintf(SET_SCHEDULER_CMD, device, elevator);
165 error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
166 strfree(argv[2]);
167 }
168 #endif /* HAVE_ELEVATOR_CHANGE */
169 if (error)
170 printk("ZFS: Unable to set \"%s\" scheduler for %s (%s): %d\n",
171 elevator, v->vdev_path, device, error);
172
173 return (error);
174 }
175
176 /*
177 * Expanding a whole disk vdev involves invoking BLKRRPART on the
178 * whole disk device. This poses a problem, because BLKRRPART will
179 * return EBUSY if one of the disk's partitions is open. That's why
180 * we have to do it here, just before opening the data partition.
181 * Unfortunately, BLKRRPART works by dropping all partitions and
182 * recreating them, which means that for a short time window, all
183 * /dev/sdxN device files disappear (until udev recreates them).
184 * This means two things:
185 * - When we open the data partition just after a BLKRRPART, we
186 * can't do it using the normal device file path because of the
187 * obvious race condition with udev. Instead, we use reliable
188 * kernel APIs to get a handle to the new partition device from
189 * the whole disk device.
190 * - Because vdev_disk_open() initially needs to find the device
191 * using its path, multiple vdev_disk_open() invocations in
192 * short succession on the same disk with BLKRRPARTs in the
193 * middle have a high probability of failure (because of the
194 * race condition with udev). A typical situation where this
195 * might happen is when the zpool userspace tool does a
196 * TRYIMPORT immediately followed by an IMPORT. For this
197 * reason, we only invoke BLKRRPART in the module when strictly
198 * necessary (zpool online -e case), and rely on userspace to
199 * do it when possible.
200 */
201 static struct block_device *
202 vdev_disk_rrpart(const char *path, int mode, vdev_disk_t *vd)
203 {
204 #if defined(HAVE_3ARG_BLKDEV_GET) && defined(HAVE_GET_GENDISK)
205 struct block_device *bdev, *result = ERR_PTR(-ENXIO);
206 struct gendisk *disk;
207 int error, partno;
208
209 bdev = vdev_bdev_open(path, vdev_bdev_mode(mode), zfs_vdev_holder);
210 if (IS_ERR(bdev))
211 return (bdev);
212
213 disk = get_gendisk(bdev->bd_dev, &partno);
214 vdev_bdev_close(bdev, vdev_bdev_mode(mode));
215
216 if (disk) {
217 bdev = bdget(disk_devt(disk));
218 if (bdev) {
219 error = blkdev_get(bdev, vdev_bdev_mode(mode), vd);
220 if (error == 0)
221 error = ioctl_by_bdev(bdev, BLKRRPART, 0);
222 vdev_bdev_close(bdev, vdev_bdev_mode(mode));
223 }
224
225 bdev = bdget_disk(disk, partno);
226 if (bdev) {
227 error = blkdev_get(bdev,
228 vdev_bdev_mode(mode) | FMODE_EXCL, vd);
229 if (error == 0)
230 result = bdev;
231 }
232 put_disk(disk);
233 }
234
235 return (result);
236 #else
237 return (ERR_PTR(-EOPNOTSUPP));
238 #endif /* defined(HAVE_3ARG_BLKDEV_GET) && defined(HAVE_GET_GENDISK) */
239 }
240
241 static int
242 vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
243 uint64_t *ashift)
244 {
245 struct block_device *bdev = ERR_PTR(-ENXIO);
246 vdev_disk_t *vd;
247 int mode, block_size;
248
249 /* Must have a pathname and it must be absolute. */
250 if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
251 v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
252 return (EINVAL);
253 }
254
255 /*
256 * Reopen the device if it's not currently open. Otherwise,
257 * just update the physical size of the device.
258 */
259 if (v->vdev_tsd != NULL) {
260 ASSERT(v->vdev_reopening);
261 vd = v->vdev_tsd;
262 goto skip_open;
263 }
264
265 vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
266 if (vd == NULL)
267 return (ENOMEM);
268
269 /*
270 * Devices are always opened by the path provided at configuration
271 * time. This means that if the provided path is a udev by-id path
272 * then drives may be recabled without an issue. If the provided
273 * path is a udev by-path path, then the physical location information
274 * will be preserved. This can be critical for more complicated
275 * configurations where drives are located in specific physical
276 * locations to maximize the systems tolerence to component failure.
277 * Alternatively, you can provide your own udev rule to flexibly map
278 * the drives as you see fit. It is not advised that you use the
279 * /dev/[hd]d devices which may be reordered due to probing order.
280 * Devices in the wrong locations will be detected by the higher
281 * level vdev validation.
282 */
283 mode = spa_mode(v->vdev_spa);
284 if (v->vdev_wholedisk && v->vdev_expanding)
285 bdev = vdev_disk_rrpart(v->vdev_path, mode, vd);
286 if (IS_ERR(bdev))
287 bdev = vdev_bdev_open(v->vdev_path,
288 vdev_bdev_mode(mode), zfs_vdev_holder);
289 if (IS_ERR(bdev)) {
290 kmem_free(vd, sizeof (vdev_disk_t));
291 return (-PTR_ERR(bdev));
292 }
293
294 v->vdev_tsd = vd;
295 vd->vd_bdev = bdev;
296
297 skip_open:
298 /* Determine the physical block size */
299 block_size = vdev_bdev_block_size(vd->vd_bdev);
300
301 /* Clear the nowritecache bit, causes vdev_reopen() to try again. */
302 v->vdev_nowritecache = B_FALSE;
303
304 /* Inform the ZIO pipeline that we are non-rotational */
305 v->vdev_nonrot = blk_queue_nonrot(bdev_get_queue(vd->vd_bdev));
306
307 /* Physical volume size in bytes */
308 *psize = bdev_capacity(vd->vd_bdev);
309
310 /* TODO: report possible expansion size */
311 *max_psize = *psize;
312
313 /* Based on the minimum sector size set the block size */
314 *ashift = highbit64(MAX(block_size, SPA_MINBLOCKSIZE)) - 1;
315
316 /* Try to set the io scheduler elevator algorithm */
317 (void) vdev_elevator_switch(v, zfs_vdev_scheduler);
318
319 return (0);
320 }
321
322 static void
323 vdev_disk_close(vdev_t *v)
324 {
325 vdev_disk_t *vd = v->vdev_tsd;
326
327 if (v->vdev_reopening || vd == NULL)
328 return;
329
330 if (vd->vd_bdev != NULL)
331 vdev_bdev_close(vd->vd_bdev,
332 vdev_bdev_mode(spa_mode(v->vdev_spa)));
333
334 kmem_free(vd, sizeof (vdev_disk_t));
335 v->vdev_tsd = NULL;
336 }
337
338 static dio_request_t *
339 vdev_disk_dio_alloc(int bio_count)
340 {
341 dio_request_t *dr;
342 int i;
343
344 dr = kmem_zalloc(sizeof (dio_request_t) +
345 sizeof (struct bio *) * bio_count, KM_SLEEP);
346 if (dr) {
347 init_completion(&dr->dr_comp);
348 atomic_set(&dr->dr_ref, 0);
349 dr->dr_bio_count = bio_count;
350 dr->dr_error = 0;
351
352 for (i = 0; i < dr->dr_bio_count; i++)
353 dr->dr_bio[i] = NULL;
354 }
355
356 return (dr);
357 }
358
359 static void
360 vdev_disk_dio_free(dio_request_t *dr)
361 {
362 int i;
363
364 for (i = 0; i < dr->dr_bio_count; i++)
365 if (dr->dr_bio[i])
366 bio_put(dr->dr_bio[i]);
367
368 kmem_free(dr, sizeof (dio_request_t) +
369 sizeof (struct bio *) * dr->dr_bio_count);
370 }
371
372 static int
373 vdev_disk_dio_is_sync(dio_request_t *dr)
374 {
375 #ifdef HAVE_BIO_RW_SYNC
376 /* BIO_RW_SYNC preferred interface from 2.6.12-2.6.29 */
377 return (dr->dr_rw & (1 << BIO_RW_SYNC));
378 #else
379 #ifdef HAVE_BIO_RW_SYNCIO
380 /* BIO_RW_SYNCIO preferred interface from 2.6.30-2.6.35 */
381 return (dr->dr_rw & (1 << BIO_RW_SYNCIO));
382 #else
383 #ifdef HAVE_REQ_SYNC
384 /* REQ_SYNC preferred interface from 2.6.36-2.6.xx */
385 return (dr->dr_rw & REQ_SYNC);
386 #else
387 #error "Unable to determine bio sync flag"
388 #endif /* HAVE_REQ_SYNC */
389 #endif /* HAVE_BIO_RW_SYNC */
390 #endif /* HAVE_BIO_RW_SYNCIO */
391 }
392
393 static void
394 vdev_disk_dio_get(dio_request_t *dr)
395 {
396 atomic_inc(&dr->dr_ref);
397 }
398
399 static int
400 vdev_disk_dio_put(dio_request_t *dr)
401 {
402 int rc = atomic_dec_return(&dr->dr_ref);
403
404 /*
405 * Free the dio_request when the last reference is dropped and
406 * ensure zio_interpret is called only once with the correct zio
407 */
408 if (rc == 0) {
409 zio_t *zio = dr->dr_zio;
410 int error = dr->dr_error;
411
412 vdev_disk_dio_free(dr);
413
414 if (zio) {
415 zio->io_delay = jiffies_64 - zio->io_delay;
416 zio->io_error = error;
417 ASSERT3S(zio->io_error, >=, 0);
418 if (zio->io_error)
419 vdev_disk_error(zio);
420 zio_interrupt(zio);
421 }
422 }
423
424 return (rc);
425 }
426
427 BIO_END_IO_PROTO(vdev_disk_physio_completion, bio, size, error)
428 {
429 dio_request_t *dr = bio->bi_private;
430 int rc;
431
432 #ifndef HAVE_2ARGS_BIO_END_IO_T
433 if (BIO_BI_SIZE(bio))
434 return (1);
435 #endif /* HAVE_2ARGS_BIO_END_IO_T */
436
437 if (error == 0 && !test_bit(BIO_UPTODATE, &bio->bi_flags))
438 error = (-EIO);
439
440 if (dr->dr_error == 0)
441 dr->dr_error = -error;
442
443 /* Drop reference aquired by __vdev_disk_physio */
444 rc = vdev_disk_dio_put(dr);
445
446 /* Wake up synchronous waiter this is the last outstanding bio */
447 if ((rc == 1) && vdev_disk_dio_is_sync(dr))
448 complete(&dr->dr_comp);
449
450 BIO_END_IO_RETURN(0);
451 }
452
453 static inline unsigned long
454 bio_nr_pages(void *bio_ptr, unsigned int bio_size)
455 {
456 return ((((unsigned long)bio_ptr + bio_size + PAGE_SIZE - 1) >>
457 PAGE_SHIFT) - ((unsigned long)bio_ptr >> PAGE_SHIFT));
458 }
459
460 static unsigned int
461 bio_map(struct bio *bio, void *bio_ptr, unsigned int bio_size)
462 {
463 unsigned int offset, size, i;
464 struct page *page;
465
466 offset = offset_in_page(bio_ptr);
467 for (i = 0; i < bio->bi_max_vecs; i++) {
468 size = PAGE_SIZE - offset;
469
470 if (bio_size <= 0)
471 break;
472
473 if (size > bio_size)
474 size = bio_size;
475
476 if (is_vmalloc_addr(bio_ptr))
477 page = vmalloc_to_page(bio_ptr);
478 else
479 page = virt_to_page(bio_ptr);
480
481 /*
482 * Some network related block device uses tcp_sendpage, which
483 * doesn't behave well when using 0-count page, this is a
484 * safety net to catch them.
485 */
486 ASSERT3S(page_count(page), >, 0);
487
488 if (bio_add_page(bio, page, size, offset) != size)
489 break;
490
491 bio_ptr += size;
492 bio_size -= size;
493 offset = 0;
494 }
495
496 return (bio_size);
497 }
498
499 static inline void
500 vdev_submit_bio(int rw, struct bio *bio)
501 {
502 #ifdef HAVE_CURRENT_BIO_TAIL
503 struct bio **bio_tail = current->bio_tail;
504 current->bio_tail = NULL;
505 submit_bio(rw, bio);
506 current->bio_tail = bio_tail;
507 #else
508 struct bio_list *bio_list = current->bio_list;
509 current->bio_list = NULL;
510 submit_bio(rw, bio);
511 current->bio_list = bio_list;
512 #endif
513 }
514
515 static int
516 __vdev_disk_physio(struct block_device *bdev, zio_t *zio, caddr_t kbuf_ptr,
517 size_t kbuf_size, uint64_t kbuf_offset, int flags)
518 {
519 dio_request_t *dr;
520 caddr_t bio_ptr;
521 uint64_t bio_offset;
522 int bio_size, bio_count = 16;
523 int i = 0, error = 0;
524
525 ASSERT3U(kbuf_offset + kbuf_size, <=, bdev->bd_inode->i_size);
526
527 retry:
528 dr = vdev_disk_dio_alloc(bio_count);
529 if (dr == NULL)
530 return (ENOMEM);
531
532 if (zio && !(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))
533 bio_set_flags_failfast(bdev, &flags);
534
535 dr->dr_zio = zio;
536 dr->dr_rw = flags;
537
538 /*
539 * When the IO size exceeds the maximum bio size for the request
540 * queue we are forced to break the IO in multiple bio's and wait
541 * for them all to complete. Ideally, all pool users will set
542 * their volume block size to match the maximum request size and
543 * the common case will be one bio per vdev IO request.
544 */
545 bio_ptr = kbuf_ptr;
546 bio_offset = kbuf_offset;
547 bio_size = kbuf_size;
548 for (i = 0; i <= dr->dr_bio_count; i++) {
549
550 /* Finished constructing bio's for given buffer */
551 if (bio_size <= 0)
552 break;
553
554 /*
555 * By default only 'bio_count' bio's per dio are allowed.
556 * However, if we find ourselves in a situation where more
557 * are needed we allocate a larger dio and warn the user.
558 */
559 if (dr->dr_bio_count == i) {
560 vdev_disk_dio_free(dr);
561 bio_count *= 2;
562 goto retry;
563 }
564
565 /* bio_alloc() with __GFP_WAIT never returns NULL */
566 dr->dr_bio[i] = bio_alloc(GFP_NOIO,
567 MIN(bio_nr_pages(bio_ptr, bio_size), BIO_MAX_PAGES));
568 if (unlikely(dr->dr_bio[i] == NULL)) {
569 vdev_disk_dio_free(dr);
570 return (ENOMEM);
571 }
572
573 /* Matching put called by vdev_disk_physio_completion */
574 vdev_disk_dio_get(dr);
575
576 dr->dr_bio[i]->bi_bdev = bdev;
577 BIO_BI_SECTOR(dr->dr_bio[i]) = bio_offset >> 9;
578 dr->dr_bio[i]->bi_rw = dr->dr_rw;
579 dr->dr_bio[i]->bi_end_io = vdev_disk_physio_completion;
580 dr->dr_bio[i]->bi_private = dr;
581
582 /* Remaining size is returned to become the new size */
583 bio_size = bio_map(dr->dr_bio[i], bio_ptr, bio_size);
584
585 /* Advance in buffer and construct another bio if needed */
586 bio_ptr += BIO_BI_SIZE(dr->dr_bio[i]);
587 bio_offset += BIO_BI_SIZE(dr->dr_bio[i]);
588 }
589
590 /* Extra reference to protect dio_request during vdev_submit_bio */
591 vdev_disk_dio_get(dr);
592 if (zio)
593 zio->io_delay = jiffies_64;
594
595 /* Submit all bio's associated with this dio */
596 for (i = 0; i < dr->dr_bio_count; i++)
597 if (dr->dr_bio[i])
598 vdev_submit_bio(dr->dr_rw, dr->dr_bio[i]);
599
600 /*
601 * On synchronous blocking requests we wait for all bio the completion
602 * callbacks to run. We will be woken when the last callback runs
603 * for this dio. We are responsible for putting the last dio_request
604 * reference will in turn put back the last bio references. The
605 * only synchronous consumer is vdev_disk_read_rootlabel() all other
606 * IO originating from vdev_disk_io_start() is asynchronous.
607 */
608 if (vdev_disk_dio_is_sync(dr)) {
609 wait_for_completion(&dr->dr_comp);
610 error = dr->dr_error;
611 ASSERT3S(atomic_read(&dr->dr_ref), ==, 1);
612 }
613
614 (void) vdev_disk_dio_put(dr);
615
616 return (error);
617 }
618
619 int
620 vdev_disk_physio(struct block_device *bdev, caddr_t kbuf,
621 size_t size, uint64_t offset, int flags)
622 {
623 bio_set_flags_failfast(bdev, &flags);
624 return (__vdev_disk_physio(bdev, NULL, kbuf, size, offset, flags));
625 }
626
627 BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, size, rc)
628 {
629 zio_t *zio = bio->bi_private;
630
631 zio->io_delay = jiffies_64 - zio->io_delay;
632 zio->io_error = -rc;
633 if (rc && (rc == -EOPNOTSUPP))
634 zio->io_vd->vdev_nowritecache = B_TRUE;
635
636 bio_put(bio);
637 ASSERT3S(zio->io_error, >=, 0);
638 if (zio->io_error)
639 vdev_disk_error(zio);
640 zio_interrupt(zio);
641
642 BIO_END_IO_RETURN(0);
643 }
644
645 static int
646 vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
647 {
648 struct request_queue *q;
649 struct bio *bio;
650
651 q = bdev_get_queue(bdev);
652 if (!q)
653 return (ENXIO);
654
655 bio = bio_alloc(GFP_NOIO, 0);
656 /* bio_alloc() with __GFP_WAIT never returns NULL */
657 if (unlikely(bio == NULL))
658 return (ENOMEM);
659
660 bio->bi_end_io = vdev_disk_io_flush_completion;
661 bio->bi_private = zio;
662 bio->bi_bdev = bdev;
663 zio->io_delay = jiffies_64;
664 vdev_submit_bio(VDEV_WRITE_FLUSH_FUA, bio);
665 invalidate_bdev(bdev);
666
667 return (0);
668 }
669
670 static void
671 vdev_disk_io_start(zio_t *zio)
672 {
673 vdev_t *v = zio->io_vd;
674 vdev_disk_t *vd = v->vdev_tsd;
675 int flags, error;
676
677 switch (zio->io_type) {
678 case ZIO_TYPE_IOCTL:
679
680 if (!vdev_readable(v)) {
681 zio->io_error = SET_ERROR(ENXIO);
682 zio_interrupt(zio);
683 return;
684 }
685
686 switch (zio->io_cmd) {
687 case DKIOCFLUSHWRITECACHE:
688
689 if (zfs_nocacheflush)
690 break;
691
692 if (v->vdev_nowritecache) {
693 zio->io_error = SET_ERROR(ENOTSUP);
694 break;
695 }
696
697 error = vdev_disk_io_flush(vd->vd_bdev, zio);
698 if (error == 0)
699 return;
700
701 zio->io_error = error;
702 if (error == ENOTSUP)
703 v->vdev_nowritecache = B_TRUE;
704
705 break;
706
707 default:
708 zio->io_error = SET_ERROR(ENOTSUP);
709 }
710
711 zio_execute(zio);
712 return;
713 case ZIO_TYPE_WRITE:
714 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE)
715 flags = WRITE_SYNC;
716 else
717 flags = WRITE;
718 break;
719
720 case ZIO_TYPE_READ:
721 if (zio->io_priority == ZIO_PRIORITY_SYNC_READ)
722 flags = READ_SYNC;
723 else
724 flags = READ;
725 break;
726
727 default:
728 zio->io_error = SET_ERROR(ENOTSUP);
729 zio_interrupt(zio);
730 return;
731 }
732
733 error = __vdev_disk_physio(vd->vd_bdev, zio, zio->io_data,
734 zio->io_size, zio->io_offset, flags);
735 if (error) {
736 zio->io_error = error;
737 zio_interrupt(zio);
738 return;
739 }
740 }
741
742 static void
743 vdev_disk_io_done(zio_t *zio)
744 {
745 /*
746 * If the device returned EIO, we revalidate the media. If it is
747 * determined the media has changed this triggers the asynchronous
748 * removal of the device from the configuration.
749 */
750 if (zio->io_error == EIO) {
751 vdev_t *v = zio->io_vd;
752 vdev_disk_t *vd = v->vdev_tsd;
753
754 if (check_disk_change(vd->vd_bdev)) {
755 vdev_bdev_invalidate(vd->vd_bdev);
756 v->vdev_remove_wanted = B_TRUE;
757 spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
758 }
759 }
760 }
761
762 static void
763 vdev_disk_hold(vdev_t *vd)
764 {
765 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
766
767 /* We must have a pathname, and it must be absolute. */
768 if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
769 return;
770
771 /*
772 * Only prefetch path and devid info if the device has
773 * never been opened.
774 */
775 if (vd->vdev_tsd != NULL)
776 return;
777
778 /* XXX: Implement me as a vnode lookup for the device */
779 vd->vdev_name_vp = NULL;
780 vd->vdev_devid_vp = NULL;
781 }
782
783 static void
784 vdev_disk_rele(vdev_t *vd)
785 {
786 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
787
788 /* XXX: Implement me as a vnode rele for the device */
789 }
790
791 vdev_ops_t vdev_disk_ops = {
792 vdev_disk_open,
793 vdev_disk_close,
794 vdev_default_asize,
795 vdev_disk_io_start,
796 vdev_disk_io_done,
797 NULL,
798 vdev_disk_hold,
799 vdev_disk_rele,
800 VDEV_TYPE_DISK, /* name of this vdev type */
801 B_TRUE /* leaf vdev */
802 };
803
804 /*
805 * Given the root disk device devid or pathname, read the label from
806 * the device, and construct a configuration nvlist.
807 */
808 int
809 vdev_disk_read_rootlabel(char *devpath, char *devid, nvlist_t **config)
810 {
811 struct block_device *bdev;
812 vdev_label_t *label;
813 uint64_t s, size;
814 int i;
815
816 bdev = vdev_bdev_open(devpath, vdev_bdev_mode(FREAD), zfs_vdev_holder);
817 if (IS_ERR(bdev))
818 return (-PTR_ERR(bdev));
819
820 s = bdev_capacity(bdev);
821 if (s == 0) {
822 vdev_bdev_close(bdev, vdev_bdev_mode(FREAD));
823 return (EIO);
824 }
825
826 size = P2ALIGN_TYPED(s, sizeof (vdev_label_t), uint64_t);
827 label = vmem_alloc(sizeof (vdev_label_t), KM_SLEEP);
828
829 for (i = 0; i < VDEV_LABELS; i++) {
830 uint64_t offset, state, txg = 0;
831
832 /* read vdev label */
833 offset = vdev_label_offset(size, i, 0);
834 if (vdev_disk_physio(bdev, (caddr_t)label,
835 VDEV_SKIP_SIZE + VDEV_PHYS_SIZE, offset, READ_SYNC) != 0)
836 continue;
837
838 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
839 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) {
840 *config = NULL;
841 continue;
842 }
843
844 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
845 &state) != 0 || state >= POOL_STATE_DESTROYED) {
846 nvlist_free(*config);
847 *config = NULL;
848 continue;
849 }
850
851 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
852 &txg) != 0 || txg == 0) {
853 nvlist_free(*config);
854 *config = NULL;
855 continue;
856 }
857
858 break;
859 }
860
861 vmem_free(label, sizeof (vdev_label_t));
862 vdev_bdev_close(bdev, vdev_bdev_mode(FREAD));
863
864 return (0);
865 }
866
867 module_param(zfs_vdev_scheduler, charp, 0644);
868 MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler");