]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev_initialize.c
Fix typos in module/zfs/
[mirror_zfs.git] / module / zfs / vdev_initialize.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2016, 2019 by Delphix. All rights reserved.
24 */
25
26 #include <sys/spa.h>
27 #include <sys/spa_impl.h>
28 #include <sys/txg.h>
29 #include <sys/vdev_impl.h>
30 #include <sys/refcount.h>
31 #include <sys/metaslab_impl.h>
32 #include <sys/dsl_synctask.h>
33 #include <sys/zap.h>
34 #include <sys/dmu_tx.h>
35
36 /*
37 * Value that is written to disk during initialization.
38 */
39 #ifdef _ILP32
40 unsigned long zfs_initialize_value = 0xdeadbeefUL;
41 #else
42 unsigned long zfs_initialize_value = 0xdeadbeefdeadbeeeULL;
43 #endif
44
45 /* maximum number of I/Os outstanding per leaf vdev */
46 int zfs_initialize_limit = 1;
47
48 /* size of initializing writes; default 1MiB, see zfs_remove_max_segment */
49 uint64_t zfs_initialize_chunk_size = 1024 * 1024;
50
51 static boolean_t
52 vdev_initialize_should_stop(vdev_t *vd)
53 {
54 return (vd->vdev_initialize_exit_wanted || !vdev_writeable(vd) ||
55 vd->vdev_detached || vd->vdev_top->vdev_removing);
56 }
57
58 static void
59 vdev_initialize_zap_update_sync(void *arg, dmu_tx_t *tx)
60 {
61 /*
62 * We pass in the guid instead of the vdev_t since the vdev may
63 * have been freed prior to the sync task being processed. This
64 * happens when a vdev is detached as we call spa_config_vdev_exit(),
65 * stop the initializing thread, schedule the sync task, and free
66 * the vdev. Later when the scheduled sync task is invoked, it would
67 * find that the vdev has been freed.
68 */
69 uint64_t guid = *(uint64_t *)arg;
70 uint64_t txg = dmu_tx_get_txg(tx);
71 kmem_free(arg, sizeof (uint64_t));
72
73 vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
74 if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
75 return;
76
77 uint64_t last_offset = vd->vdev_initialize_offset[txg & TXG_MASK];
78 vd->vdev_initialize_offset[txg & TXG_MASK] = 0;
79
80 VERIFY(vd->vdev_leaf_zap != 0);
81
82 objset_t *mos = vd->vdev_spa->spa_meta_objset;
83
84 if (last_offset > 0) {
85 vd->vdev_initialize_last_offset = last_offset;
86 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
87 VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
88 sizeof (last_offset), 1, &last_offset, tx));
89 }
90 if (vd->vdev_initialize_action_time > 0) {
91 uint64_t val = (uint64_t)vd->vdev_initialize_action_time;
92 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
93 VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, sizeof (val),
94 1, &val, tx));
95 }
96
97 uint64_t initialize_state = vd->vdev_initialize_state;
98 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
99 VDEV_LEAF_ZAP_INITIALIZE_STATE, sizeof (initialize_state), 1,
100 &initialize_state, tx));
101 }
102
103 static void
104 vdev_initialize_change_state(vdev_t *vd, vdev_initializing_state_t new_state)
105 {
106 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
107 spa_t *spa = vd->vdev_spa;
108
109 if (new_state == vd->vdev_initialize_state)
110 return;
111
112 /*
113 * Copy the vd's guid, this will be freed by the sync task.
114 */
115 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
116 *guid = vd->vdev_guid;
117
118 /*
119 * If we're suspending, then preserving the original start time.
120 */
121 if (vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED) {
122 vd->vdev_initialize_action_time = gethrestime_sec();
123 }
124 vd->vdev_initialize_state = new_state;
125
126 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
127 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
128 dsl_sync_task_nowait(spa_get_dsl(spa), vdev_initialize_zap_update_sync,
129 guid, 2, ZFS_SPACE_CHECK_NONE, tx);
130
131 switch (new_state) {
132 case VDEV_INITIALIZE_ACTIVE:
133 spa_history_log_internal(spa, "initialize", tx,
134 "vdev=%s activated", vd->vdev_path);
135 break;
136 case VDEV_INITIALIZE_SUSPENDED:
137 spa_history_log_internal(spa, "initialize", tx,
138 "vdev=%s suspended", vd->vdev_path);
139 break;
140 case VDEV_INITIALIZE_CANCELED:
141 spa_history_log_internal(spa, "initialize", tx,
142 "vdev=%s canceled", vd->vdev_path);
143 break;
144 case VDEV_INITIALIZE_COMPLETE:
145 spa_history_log_internal(spa, "initialize", tx,
146 "vdev=%s complete", vd->vdev_path);
147 break;
148 default:
149 panic("invalid state %llu", (unsigned long long)new_state);
150 }
151
152 dmu_tx_commit(tx);
153 }
154
155 static void
156 vdev_initialize_cb(zio_t *zio)
157 {
158 vdev_t *vd = zio->io_vd;
159 mutex_enter(&vd->vdev_initialize_io_lock);
160 if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
161 /*
162 * The I/O failed because the vdev was unavailable; roll the
163 * last offset back. (This works because spa_sync waits on
164 * spa_txg_zio before it runs sync tasks.)
165 */
166 uint64_t *off =
167 &vd->vdev_initialize_offset[zio->io_txg & TXG_MASK];
168 *off = MIN(*off, zio->io_offset);
169 } else {
170 /*
171 * Since initializing is best-effort, we ignore I/O errors and
172 * rely on vdev_probe to determine if the errors are more
173 * critical.
174 */
175 if (zio->io_error != 0)
176 vd->vdev_stat.vs_initialize_errors++;
177
178 vd->vdev_initialize_bytes_done += zio->io_orig_size;
179 }
180 ASSERT3U(vd->vdev_initialize_inflight, >, 0);
181 vd->vdev_initialize_inflight--;
182 cv_broadcast(&vd->vdev_initialize_io_cv);
183 mutex_exit(&vd->vdev_initialize_io_lock);
184
185 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
186 }
187
188 /* Takes care of physical writing and limiting # of concurrent ZIOs. */
189 static int
190 vdev_initialize_write(vdev_t *vd, uint64_t start, uint64_t size, abd_t *data)
191 {
192 spa_t *spa = vd->vdev_spa;
193
194 /* Limit inflight initializing I/Os */
195 mutex_enter(&vd->vdev_initialize_io_lock);
196 while (vd->vdev_initialize_inflight >= zfs_initialize_limit) {
197 cv_wait(&vd->vdev_initialize_io_cv,
198 &vd->vdev_initialize_io_lock);
199 }
200 vd->vdev_initialize_inflight++;
201 mutex_exit(&vd->vdev_initialize_io_lock);
202
203 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
204 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
205 uint64_t txg = dmu_tx_get_txg(tx);
206
207 spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
208 mutex_enter(&vd->vdev_initialize_lock);
209
210 if (vd->vdev_initialize_offset[txg & TXG_MASK] == 0) {
211 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
212 *guid = vd->vdev_guid;
213
214 /* This is the first write of this txg. */
215 dsl_sync_task_nowait(spa_get_dsl(spa),
216 vdev_initialize_zap_update_sync, guid, 2,
217 ZFS_SPACE_CHECK_RESERVED, tx);
218 }
219
220 /*
221 * We know the vdev struct will still be around since all
222 * consumers of vdev_free must stop the initialization first.
223 */
224 if (vdev_initialize_should_stop(vd)) {
225 mutex_enter(&vd->vdev_initialize_io_lock);
226 ASSERT3U(vd->vdev_initialize_inflight, >, 0);
227 vd->vdev_initialize_inflight--;
228 mutex_exit(&vd->vdev_initialize_io_lock);
229 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
230 mutex_exit(&vd->vdev_initialize_lock);
231 dmu_tx_commit(tx);
232 return (SET_ERROR(EINTR));
233 }
234 mutex_exit(&vd->vdev_initialize_lock);
235
236 vd->vdev_initialize_offset[txg & TXG_MASK] = start + size;
237 zio_nowait(zio_write_phys(spa->spa_txg_zio[txg & TXG_MASK], vd, start,
238 size, data, ZIO_CHECKSUM_OFF, vdev_initialize_cb, NULL,
239 ZIO_PRIORITY_INITIALIZING, ZIO_FLAG_CANFAIL, B_FALSE));
240 /* vdev_initialize_cb releases SCL_STATE_ALL */
241
242 dmu_tx_commit(tx);
243
244 return (0);
245 }
246
247 /*
248 * Callback to fill each ABD chunk with zfs_initialize_value. len must be
249 * divisible by sizeof (uint64_t), and buf must be 8-byte aligned. The ABD
250 * allocation will guarantee these for us.
251 */
252 /* ARGSUSED */
253 static int
254 vdev_initialize_block_fill(void *buf, size_t len, void *unused)
255 {
256 ASSERT0(len % sizeof (uint64_t));
257 #ifdef _ILP32
258 for (uint64_t i = 0; i < len; i += sizeof (uint32_t)) {
259 *(uint32_t *)((char *)(buf) + i) = zfs_initialize_value;
260 }
261 #else
262 for (uint64_t i = 0; i < len; i += sizeof (uint64_t)) {
263 *(uint64_t *)((char *)(buf) + i) = zfs_initialize_value;
264 }
265 #endif
266 return (0);
267 }
268
269 static abd_t *
270 vdev_initialize_block_alloc(void)
271 {
272 /* Allocate ABD for filler data */
273 abd_t *data = abd_alloc_for_io(zfs_initialize_chunk_size, B_FALSE);
274
275 ASSERT0(zfs_initialize_chunk_size % sizeof (uint64_t));
276 (void) abd_iterate_func(data, 0, zfs_initialize_chunk_size,
277 vdev_initialize_block_fill, NULL);
278
279 return (data);
280 }
281
282 static void
283 vdev_initialize_block_free(abd_t *data)
284 {
285 abd_free(data);
286 }
287
288 static int
289 vdev_initialize_ranges(vdev_t *vd, abd_t *data)
290 {
291 avl_tree_t *rt = &vd->vdev_initialize_tree->rt_root;
292
293 for (range_seg_t *rs = avl_first(rt); rs != NULL;
294 rs = AVL_NEXT(rt, rs)) {
295 uint64_t size = rs->rs_end - rs->rs_start;
296
297 /* Split range into legally-sized physical chunks */
298 uint64_t writes_required =
299 ((size - 1) / zfs_initialize_chunk_size) + 1;
300
301 for (uint64_t w = 0; w < writes_required; w++) {
302 int error;
303
304 error = vdev_initialize_write(vd,
305 VDEV_LABEL_START_SIZE + rs->rs_start +
306 (w * zfs_initialize_chunk_size),
307 MIN(size - (w * zfs_initialize_chunk_size),
308 zfs_initialize_chunk_size), data);
309 if (error != 0)
310 return (error);
311 }
312 }
313 return (0);
314 }
315
316 static void
317 vdev_initialize_calculate_progress(vdev_t *vd)
318 {
319 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
320 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
321 ASSERT(vd->vdev_leaf_zap != 0);
322
323 vd->vdev_initialize_bytes_est = 0;
324 vd->vdev_initialize_bytes_done = 0;
325
326 for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
327 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
328 mutex_enter(&msp->ms_lock);
329
330 uint64_t ms_free = msp->ms_size -
331 metaslab_allocated_space(msp);
332
333 if (vd->vdev_top->vdev_ops == &vdev_raidz_ops)
334 ms_free /= vd->vdev_top->vdev_children;
335
336 /*
337 * Convert the metaslab range to a physical range
338 * on our vdev. We use this to determine if we are
339 * in the middle of this metaslab range.
340 */
341 range_seg_t logical_rs, physical_rs;
342 logical_rs.rs_start = msp->ms_start;
343 logical_rs.rs_end = msp->ms_start + msp->ms_size;
344 vdev_xlate(vd, &logical_rs, &physical_rs);
345
346 if (vd->vdev_initialize_last_offset <= physical_rs.rs_start) {
347 vd->vdev_initialize_bytes_est += ms_free;
348 mutex_exit(&msp->ms_lock);
349 continue;
350 } else if (vd->vdev_initialize_last_offset >
351 physical_rs.rs_end) {
352 vd->vdev_initialize_bytes_done += ms_free;
353 vd->vdev_initialize_bytes_est += ms_free;
354 mutex_exit(&msp->ms_lock);
355 continue;
356 }
357
358 /*
359 * If we get here, we're in the middle of initializing this
360 * metaslab. Load it and walk the free tree for more accurate
361 * progress estimation.
362 */
363 VERIFY0(metaslab_load(msp));
364
365 for (range_seg_t *rs = avl_first(&msp->ms_allocatable->rt_root);
366 rs; rs = AVL_NEXT(&msp->ms_allocatable->rt_root, rs)) {
367 logical_rs.rs_start = rs->rs_start;
368 logical_rs.rs_end = rs->rs_end;
369 vdev_xlate(vd, &logical_rs, &physical_rs);
370
371 uint64_t size = physical_rs.rs_end -
372 physical_rs.rs_start;
373 vd->vdev_initialize_bytes_est += size;
374 if (vd->vdev_initialize_last_offset >
375 physical_rs.rs_end) {
376 vd->vdev_initialize_bytes_done += size;
377 } else if (vd->vdev_initialize_last_offset >
378 physical_rs.rs_start &&
379 vd->vdev_initialize_last_offset <
380 physical_rs.rs_end) {
381 vd->vdev_initialize_bytes_done +=
382 vd->vdev_initialize_last_offset -
383 physical_rs.rs_start;
384 }
385 }
386 mutex_exit(&msp->ms_lock);
387 }
388 }
389
390 static int
391 vdev_initialize_load(vdev_t *vd)
392 {
393 int err = 0;
394 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
395 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
396 ASSERT(vd->vdev_leaf_zap != 0);
397
398 if (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE ||
399 vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED) {
400 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
401 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
402 sizeof (vd->vdev_initialize_last_offset), 1,
403 &vd->vdev_initialize_last_offset);
404 if (err == ENOENT) {
405 vd->vdev_initialize_last_offset = 0;
406 err = 0;
407 }
408 }
409
410 vdev_initialize_calculate_progress(vd);
411 return (err);
412 }
413
414 /*
415 * Convert the logical range into a physical range and add it to our
416 * avl tree.
417 */
418 void
419 vdev_initialize_range_add(void *arg, uint64_t start, uint64_t size)
420 {
421 vdev_t *vd = arg;
422 range_seg_t logical_rs, physical_rs;
423 logical_rs.rs_start = start;
424 logical_rs.rs_end = start + size;
425
426 ASSERT(vd->vdev_ops->vdev_op_leaf);
427 vdev_xlate(vd, &logical_rs, &physical_rs);
428
429 IMPLY(vd->vdev_top == vd,
430 logical_rs.rs_start == physical_rs.rs_start);
431 IMPLY(vd->vdev_top == vd,
432 logical_rs.rs_end == physical_rs.rs_end);
433
434 /* Only add segments that we have not visited yet */
435 if (physical_rs.rs_end <= vd->vdev_initialize_last_offset)
436 return;
437
438 /* Pick up where we left off mid-range. */
439 if (vd->vdev_initialize_last_offset > physical_rs.rs_start) {
440 zfs_dbgmsg("range write: vd %s changed (%llu, %llu) to "
441 "(%llu, %llu)", vd->vdev_path,
442 (u_longlong_t)physical_rs.rs_start,
443 (u_longlong_t)physical_rs.rs_end,
444 (u_longlong_t)vd->vdev_initialize_last_offset,
445 (u_longlong_t)physical_rs.rs_end);
446 ASSERT3U(physical_rs.rs_end, >,
447 vd->vdev_initialize_last_offset);
448 physical_rs.rs_start = vd->vdev_initialize_last_offset;
449 }
450 ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);
451
452 /*
453 * With raidz, it's possible that the logical range does not live on
454 * this leaf vdev. We only add the physical range to this vdev's if it
455 * has a length greater than 0.
456 */
457 if (physical_rs.rs_end > physical_rs.rs_start) {
458 range_tree_add(vd->vdev_initialize_tree, physical_rs.rs_start,
459 physical_rs.rs_end - physical_rs.rs_start);
460 } else {
461 ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
462 }
463 }
464
465 static void
466 vdev_initialize_thread(void *arg)
467 {
468 vdev_t *vd = arg;
469 spa_t *spa = vd->vdev_spa;
470 int error = 0;
471 uint64_t ms_count = 0;
472
473 ASSERT(vdev_is_concrete(vd));
474 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
475
476 vd->vdev_initialize_last_offset = 0;
477 VERIFY0(vdev_initialize_load(vd));
478
479 abd_t *deadbeef = vdev_initialize_block_alloc();
480
481 vd->vdev_initialize_tree = range_tree_create(NULL, NULL);
482
483 for (uint64_t i = 0; !vd->vdev_detached &&
484 i < vd->vdev_top->vdev_ms_count; i++) {
485 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
486 boolean_t unload_when_done = B_FALSE;
487
488 /*
489 * If we've expanded the top-level vdev or it's our
490 * first pass, calculate our progress.
491 */
492 if (vd->vdev_top->vdev_ms_count != ms_count) {
493 vdev_initialize_calculate_progress(vd);
494 ms_count = vd->vdev_top->vdev_ms_count;
495 }
496
497 spa_config_exit(spa, SCL_CONFIG, FTAG);
498 metaslab_disable(msp);
499 mutex_enter(&msp->ms_lock);
500 if (!msp->ms_loaded && !msp->ms_loading)
501 unload_when_done = B_TRUE;
502 VERIFY0(metaslab_load(msp));
503
504 range_tree_walk(msp->ms_allocatable, vdev_initialize_range_add,
505 vd);
506 mutex_exit(&msp->ms_lock);
507
508 error = vdev_initialize_ranges(vd, deadbeef);
509 metaslab_enable(msp, B_TRUE, unload_when_done);
510 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
511
512 range_tree_vacate(vd->vdev_initialize_tree, NULL, NULL);
513 if (error != 0)
514 break;
515 }
516
517 spa_config_exit(spa, SCL_CONFIG, FTAG);
518 mutex_enter(&vd->vdev_initialize_io_lock);
519 while (vd->vdev_initialize_inflight > 0) {
520 cv_wait(&vd->vdev_initialize_io_cv,
521 &vd->vdev_initialize_io_lock);
522 }
523 mutex_exit(&vd->vdev_initialize_io_lock);
524
525 range_tree_destroy(vd->vdev_initialize_tree);
526 vdev_initialize_block_free(deadbeef);
527 vd->vdev_initialize_tree = NULL;
528
529 mutex_enter(&vd->vdev_initialize_lock);
530 if (!vd->vdev_initialize_exit_wanted && vdev_writeable(vd)) {
531 vdev_initialize_change_state(vd, VDEV_INITIALIZE_COMPLETE);
532 }
533 ASSERT(vd->vdev_initialize_thread != NULL ||
534 vd->vdev_initialize_inflight == 0);
535
536 /*
537 * Drop the vdev_initialize_lock while we sync out the
538 * txg since it's possible that a device might be trying to
539 * come online and must check to see if it needs to restart an
540 * initialization. That thread will be holding the spa_config_lock
541 * which would prevent the txg_wait_synced from completing.
542 */
543 mutex_exit(&vd->vdev_initialize_lock);
544 txg_wait_synced(spa_get_dsl(spa), 0);
545 mutex_enter(&vd->vdev_initialize_lock);
546
547 vd->vdev_initialize_thread = NULL;
548 cv_broadcast(&vd->vdev_initialize_cv);
549 mutex_exit(&vd->vdev_initialize_lock);
550 }
551
552 /*
553 * Initiates a device. Caller must hold vdev_initialize_lock.
554 * Device must be a leaf and not already be initializing.
555 */
556 void
557 vdev_initialize(vdev_t *vd)
558 {
559 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
560 ASSERT(vd->vdev_ops->vdev_op_leaf);
561 ASSERT(vdev_is_concrete(vd));
562 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
563 ASSERT(!vd->vdev_detached);
564 ASSERT(!vd->vdev_initialize_exit_wanted);
565 ASSERT(!vd->vdev_top->vdev_removing);
566
567 vdev_initialize_change_state(vd, VDEV_INITIALIZE_ACTIVE);
568 vd->vdev_initialize_thread = thread_create(NULL, 0,
569 vdev_initialize_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
570 }
571
572 /*
573 * Wait for the initialize thread to be terminated (cancelled or stopped).
574 */
575 static void
576 vdev_initialize_stop_wait_impl(vdev_t *vd)
577 {
578 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
579
580 while (vd->vdev_initialize_thread != NULL)
581 cv_wait(&vd->vdev_initialize_cv, &vd->vdev_initialize_lock);
582
583 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
584 vd->vdev_initialize_exit_wanted = B_FALSE;
585 }
586
587 /*
588 * Wait for vdev initialize threads which were either to cleanly exit.
589 */
590 void
591 vdev_initialize_stop_wait(spa_t *spa, list_t *vd_list)
592 {
593 vdev_t *vd;
594
595 ASSERT(MUTEX_HELD(&spa_namespace_lock));
596
597 while ((vd = list_remove_head(vd_list)) != NULL) {
598 mutex_enter(&vd->vdev_initialize_lock);
599 vdev_initialize_stop_wait_impl(vd);
600 mutex_exit(&vd->vdev_initialize_lock);
601 }
602 }
603
604 /*
605 * Stop initializing a device, with the resultant initializing state being
606 * tgt_state. For blocking behavior pass NULL for vd_list. Otherwise, when
607 * a list_t is provided the stopping vdev is inserted in to the list. Callers
608 * are then required to call vdev_initialize_stop_wait() to block for all the
609 * initialization threads to exit. The caller must hold vdev_initialize_lock
610 * and must not be writing to the spa config, as the initializing thread may
611 * try to enter the config as a reader before exiting.
612 */
613 void
614 vdev_initialize_stop(vdev_t *vd, vdev_initializing_state_t tgt_state,
615 list_t *vd_list)
616 {
617 ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER));
618 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
619 ASSERT(vd->vdev_ops->vdev_op_leaf);
620 ASSERT(vdev_is_concrete(vd));
621
622 /*
623 * Allow cancel requests to proceed even if the initialize thread
624 * has stopped.
625 */
626 if (vd->vdev_initialize_thread == NULL &&
627 tgt_state != VDEV_INITIALIZE_CANCELED) {
628 return;
629 }
630
631 vdev_initialize_change_state(vd, tgt_state);
632 vd->vdev_initialize_exit_wanted = B_TRUE;
633
634 if (vd_list == NULL) {
635 vdev_initialize_stop_wait_impl(vd);
636 } else {
637 ASSERT(MUTEX_HELD(&spa_namespace_lock));
638 list_insert_tail(vd_list, vd);
639 }
640 }
641
642 static void
643 vdev_initialize_stop_all_impl(vdev_t *vd, vdev_initializing_state_t tgt_state,
644 list_t *vd_list)
645 {
646 if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
647 mutex_enter(&vd->vdev_initialize_lock);
648 vdev_initialize_stop(vd, tgt_state, vd_list);
649 mutex_exit(&vd->vdev_initialize_lock);
650 return;
651 }
652
653 for (uint64_t i = 0; i < vd->vdev_children; i++) {
654 vdev_initialize_stop_all_impl(vd->vdev_child[i], tgt_state,
655 vd_list);
656 }
657 }
658
659 /*
660 * Convenience function to stop initializing of a vdev tree and set all
661 * initialize thread pointers to NULL.
662 */
663 void
664 vdev_initialize_stop_all(vdev_t *vd, vdev_initializing_state_t tgt_state)
665 {
666 spa_t *spa = vd->vdev_spa;
667 list_t vd_list;
668
669 ASSERT(MUTEX_HELD(&spa_namespace_lock));
670
671 list_create(&vd_list, sizeof (vdev_t),
672 offsetof(vdev_t, vdev_initialize_node));
673
674 vdev_initialize_stop_all_impl(vd, tgt_state, &vd_list);
675 vdev_initialize_stop_wait(spa, &vd_list);
676
677 if (vd->vdev_spa->spa_sync_on) {
678 /* Make sure that our state has been synced to disk */
679 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
680 }
681
682 list_destroy(&vd_list);
683 }
684
685 void
686 vdev_initialize_restart(vdev_t *vd)
687 {
688 ASSERT(MUTEX_HELD(&spa_namespace_lock));
689 ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
690
691 if (vd->vdev_leaf_zap != 0) {
692 mutex_enter(&vd->vdev_initialize_lock);
693 uint64_t initialize_state = VDEV_INITIALIZE_NONE;
694 int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
695 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_STATE,
696 sizeof (initialize_state), 1, &initialize_state);
697 ASSERT(err == 0 || err == ENOENT);
698 vd->vdev_initialize_state = initialize_state;
699
700 uint64_t timestamp = 0;
701 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
702 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME,
703 sizeof (timestamp), 1, &timestamp);
704 ASSERT(err == 0 || err == ENOENT);
705 vd->vdev_initialize_action_time = (time_t)timestamp;
706
707 if (vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED ||
708 vd->vdev_offline) {
709 /* load progress for reporting, but don't resume */
710 VERIFY0(vdev_initialize_load(vd));
711 } else if (vd->vdev_initialize_state ==
712 VDEV_INITIALIZE_ACTIVE && vdev_writeable(vd) &&
713 !vd->vdev_top->vdev_removing &&
714 vd->vdev_initialize_thread == NULL) {
715 vdev_initialize(vd);
716 }
717
718 mutex_exit(&vd->vdev_initialize_lock);
719 }
720
721 for (uint64_t i = 0; i < vd->vdev_children; i++) {
722 vdev_initialize_restart(vd->vdev_child[i]);
723 }
724 }
725
726 #if defined(_KERNEL)
727 EXPORT_SYMBOL(vdev_initialize);
728 EXPORT_SYMBOL(vdev_initialize_stop);
729 EXPORT_SYMBOL(vdev_initialize_stop_all);
730 EXPORT_SYMBOL(vdev_initialize_stop_wait);
731 EXPORT_SYMBOL(vdev_initialize_restart);
732
733 /* CSTYLED */
734 module_param(zfs_initialize_value, ulong, 0644);
735 MODULE_PARM_DESC(zfs_initialize_value,
736 "Value written during zpool initialize");
737 #endif