]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev_label.c
Pool allocation classes
[mirror_zfs.git] / module / zfs / vdev_label.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
26 * Copyright (c) 2017, Intel Corporation.
27 */
28
29 /*
30 * Virtual Device Labels
31 * ---------------------
32 *
33 * The vdev label serves several distinct purposes:
34 *
35 * 1. Uniquely identify this device as part of a ZFS pool and confirm its
36 * identity within the pool.
37 *
38 * 2. Verify that all the devices given in a configuration are present
39 * within the pool.
40 *
41 * 3. Determine the uberblock for the pool.
42 *
43 * 4. In case of an import operation, determine the configuration of the
44 * toplevel vdev of which it is a part.
45 *
46 * 5. If an import operation cannot find all the devices in the pool,
47 * provide enough information to the administrator to determine which
48 * devices are missing.
49 *
50 * It is important to note that while the kernel is responsible for writing the
51 * label, it only consumes the information in the first three cases. The
52 * latter information is only consumed in userland when determining the
53 * configuration to import a pool.
54 *
55 *
56 * Label Organization
57 * ------------------
58 *
59 * Before describing the contents of the label, it's important to understand how
60 * the labels are written and updated with respect to the uberblock.
61 *
62 * When the pool configuration is altered, either because it was newly created
63 * or a device was added, we want to update all the labels such that we can deal
64 * with fatal failure at any point. To this end, each disk has two labels which
65 * are updated before and after the uberblock is synced. Assuming we have
66 * labels and an uberblock with the following transaction groups:
67 *
68 * L1 UB L2
69 * +------+ +------+ +------+
70 * | | | | | |
71 * | t10 | | t10 | | t10 |
72 * | | | | | |
73 * +------+ +------+ +------+
74 *
75 * In this stable state, the labels and the uberblock were all updated within
76 * the same transaction group (10). Each label is mirrored and checksummed, so
77 * that we can detect when we fail partway through writing the label.
78 *
79 * In order to identify which labels are valid, the labels are written in the
80 * following manner:
81 *
82 * 1. For each vdev, update 'L1' to the new label
83 * 2. Update the uberblock
84 * 3. For each vdev, update 'L2' to the new label
85 *
86 * Given arbitrary failure, we can determine the correct label to use based on
87 * the transaction group. If we fail after updating L1 but before updating the
88 * UB, we will notice that L1's transaction group is greater than the uberblock,
89 * so L2 must be valid. If we fail after writing the uberblock but before
90 * writing L2, we will notice that L2's transaction group is less than L1, and
91 * therefore L1 is valid.
92 *
93 * Another added complexity is that not every label is updated when the config
94 * is synced. If we add a single device, we do not want to have to re-write
95 * every label for every device in the pool. This means that both L1 and L2 may
96 * be older than the pool uberblock, because the necessary information is stored
97 * on another vdev.
98 *
99 *
100 * On-disk Format
101 * --------------
102 *
103 * The vdev label consists of two distinct parts, and is wrapped within the
104 * vdev_label_t structure. The label includes 8k of padding to permit legacy
105 * VTOC disk labels, but is otherwise ignored.
106 *
107 * The first half of the label is a packed nvlist which contains pool wide
108 * properties, per-vdev properties, and configuration information. It is
109 * described in more detail below.
110 *
111 * The latter half of the label consists of a redundant array of uberblocks.
112 * These uberblocks are updated whenever a transaction group is committed,
113 * or when the configuration is updated. When a pool is loaded, we scan each
114 * vdev for the 'best' uberblock.
115 *
116 *
117 * Configuration Information
118 * -------------------------
119 *
120 * The nvlist describing the pool and vdev contains the following elements:
121 *
122 * version ZFS on-disk version
123 * name Pool name
124 * state Pool state
125 * txg Transaction group in which this label was written
126 * pool_guid Unique identifier for this pool
127 * vdev_tree An nvlist describing vdev tree.
128 * features_for_read
129 * An nvlist of the features necessary for reading the MOS.
130 *
131 * Each leaf device label also contains the following:
132 *
133 * top_guid Unique ID for top-level vdev in which this is contained
134 * guid Unique ID for the leaf vdev
135 *
136 * The 'vs' configuration follows the format described in 'spa_config.c'.
137 */
138
139 #include <sys/zfs_context.h>
140 #include <sys/spa.h>
141 #include <sys/spa_impl.h>
142 #include <sys/dmu.h>
143 #include <sys/zap.h>
144 #include <sys/vdev.h>
145 #include <sys/vdev_impl.h>
146 #include <sys/uberblock_impl.h>
147 #include <sys/metaslab.h>
148 #include <sys/metaslab_impl.h>
149 #include <sys/zio.h>
150 #include <sys/dsl_scan.h>
151 #include <sys/abd.h>
152 #include <sys/fs/zfs.h>
153
154 /*
155 * Basic routines to read and write from a vdev label.
156 * Used throughout the rest of this file.
157 */
158 uint64_t
159 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
160 {
161 ASSERT(offset < sizeof (vdev_label_t));
162 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
163
164 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
165 0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
166 }
167
168 /*
169 * Returns back the vdev label associated with the passed in offset.
170 */
171 int
172 vdev_label_number(uint64_t psize, uint64_t offset)
173 {
174 int l;
175
176 if (offset >= psize - VDEV_LABEL_END_SIZE) {
177 offset -= psize - VDEV_LABEL_END_SIZE;
178 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
179 }
180 l = offset / sizeof (vdev_label_t);
181 return (l < VDEV_LABELS ? l : -1);
182 }
183
184 static void
185 vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
186 uint64_t size, zio_done_func_t *done, void *private, int flags)
187 {
188 ASSERT(
189 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
190 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
191 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
192
193 zio_nowait(zio_read_phys(zio, vd,
194 vdev_label_offset(vd->vdev_psize, l, offset),
195 size, buf, ZIO_CHECKSUM_LABEL, done, private,
196 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
197 }
198
199 void
200 vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
201 uint64_t size, zio_done_func_t *done, void *private, int flags)
202 {
203 ASSERT(
204 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
205 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
206 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
207
208 zio_nowait(zio_write_phys(zio, vd,
209 vdev_label_offset(vd->vdev_psize, l, offset),
210 size, buf, ZIO_CHECKSUM_LABEL, done, private,
211 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
212 }
213
214 /*
215 * Generate the nvlist representing this vdev's stats
216 */
217 void
218 vdev_config_generate_stats(vdev_t *vd, nvlist_t *nv)
219 {
220 nvlist_t *nvx;
221 vdev_stat_t *vs;
222 vdev_stat_ex_t *vsx;
223
224 vs = kmem_alloc(sizeof (*vs), KM_SLEEP);
225 vsx = kmem_alloc(sizeof (*vsx), KM_SLEEP);
226
227 vdev_get_stats_ex(vd, vs, vsx);
228 fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
229 (uint64_t *)vs, sizeof (*vs) / sizeof (uint64_t));
230
231 kmem_free(vs, sizeof (*vs));
232
233 /*
234 * Add extended stats into a special extended stats nvlist. This keeps
235 * all the extended stats nicely grouped together. The extended stats
236 * nvlist is then added to the main nvlist.
237 */
238 nvx = fnvlist_alloc();
239
240 /* ZIOs in flight to disk */
241 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE,
242 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_READ]);
243
244 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE,
245 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_WRITE]);
246
247 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE,
248 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_READ]);
249
250 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE,
251 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_WRITE]);
252
253 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE,
254 vsx->vsx_active_queue[ZIO_PRIORITY_SCRUB]);
255
256 /* ZIOs pending */
257 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE,
258 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_READ]);
259
260 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE,
261 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_WRITE]);
262
263 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE,
264 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_READ]);
265
266 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE,
267 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_WRITE]);
268
269 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE,
270 vsx->vsx_pend_queue[ZIO_PRIORITY_SCRUB]);
271
272 /* Histograms */
273 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO,
274 vsx->vsx_total_histo[ZIO_TYPE_READ],
275 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_READ]));
276
277 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO,
278 vsx->vsx_total_histo[ZIO_TYPE_WRITE],
279 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_WRITE]));
280
281 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO,
282 vsx->vsx_disk_histo[ZIO_TYPE_READ],
283 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_READ]));
284
285 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO,
286 vsx->vsx_disk_histo[ZIO_TYPE_WRITE],
287 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_WRITE]));
288
289 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO,
290 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ],
291 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ]));
292
293 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO,
294 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE],
295 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE]));
296
297 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO,
298 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ],
299 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ]));
300
301 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO,
302 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE],
303 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE]));
304
305 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO,
306 vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB],
307 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB]));
308
309 /* Request sizes */
310 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO,
311 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ],
312 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ]));
313
314 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO,
315 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE],
316 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE]));
317
318 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO,
319 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ],
320 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ]));
321
322 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO,
323 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE],
324 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE]));
325
326 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO,
327 vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB],
328 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB]));
329
330 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO,
331 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ],
332 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ]));
333
334 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO,
335 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE],
336 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE]));
337
338 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO,
339 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ],
340 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ]));
341
342 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO,
343 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE],
344 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE]));
345
346 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO,
347 vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB],
348 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB]));
349
350 /* Add extended stats nvlist to main nvlist */
351 fnvlist_add_nvlist(nv, ZPOOL_CONFIG_VDEV_STATS_EX, nvx);
352
353 fnvlist_free(nvx);
354 kmem_free(vsx, sizeof (*vsx));
355 }
356
357 static void
358 root_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl)
359 {
360 spa_t *spa = vd->vdev_spa;
361
362 if (vd != spa->spa_root_vdev)
363 return;
364
365 /* provide either current or previous scan information */
366 pool_scan_stat_t ps;
367 if (spa_scan_get_stats(spa, &ps) == 0) {
368 fnvlist_add_uint64_array(nvl,
369 ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
370 sizeof (pool_scan_stat_t) / sizeof (uint64_t));
371 }
372
373 pool_removal_stat_t prs;
374 if (spa_removal_get_stats(spa, &prs) == 0) {
375 fnvlist_add_uint64_array(nvl,
376 ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs,
377 sizeof (prs) / sizeof (uint64_t));
378 }
379
380 pool_checkpoint_stat_t pcs;
381 if (spa_checkpoint_get_stats(spa, &pcs) == 0) {
382 fnvlist_add_uint64_array(nvl,
383 ZPOOL_CONFIG_CHECKPOINT_STATS, (uint64_t *)&pcs,
384 sizeof (pcs) / sizeof (uint64_t));
385 }
386 }
387
388 /*
389 * Generate the nvlist representing this vdev's config.
390 */
391 nvlist_t *
392 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
393 vdev_config_flag_t flags)
394 {
395 nvlist_t *nv = NULL;
396 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
397
398 nv = fnvlist_alloc();
399
400 fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
401 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
402 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id);
403 fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid);
404
405 if (vd->vdev_path != NULL)
406 fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path);
407
408 if (vd->vdev_devid != NULL)
409 fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
410
411 if (vd->vdev_physpath != NULL)
412 fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
413 vd->vdev_physpath);
414
415 if (vd->vdev_enc_sysfs_path != NULL)
416 fnvlist_add_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
417 vd->vdev_enc_sysfs_path);
418
419 if (vd->vdev_fru != NULL)
420 fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
421
422 if (vd->vdev_nparity != 0) {
423 ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
424 VDEV_TYPE_RAIDZ) == 0);
425
426 /*
427 * Make sure someone hasn't managed to sneak a fancy new vdev
428 * into a crufty old storage pool.
429 */
430 ASSERT(vd->vdev_nparity == 1 ||
431 (vd->vdev_nparity <= 2 &&
432 spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
433 (vd->vdev_nparity <= 3 &&
434 spa_version(spa) >= SPA_VERSION_RAIDZ3));
435
436 /*
437 * Note that we'll add the nparity tag even on storage pools
438 * that only support a single parity device -- older software
439 * will just ignore it.
440 */
441 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity);
442 }
443
444 if (vd->vdev_wholedisk != -1ULL)
445 fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
446 vd->vdev_wholedisk);
447
448 if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING))
449 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
450
451 if (vd->vdev_isspare)
452 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
453
454 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
455 vd == vd->vdev_top) {
456 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
457 vd->vdev_ms_array);
458 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
459 vd->vdev_ms_shift);
460 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
461 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
462 vd->vdev_asize);
463 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
464 if (vd->vdev_removing) {
465 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
466 vd->vdev_removing);
467 }
468
469 /* zpool command expects alloc class data */
470 if (getstats && vd->vdev_alloc_bias != VDEV_BIAS_NONE) {
471 const char *bias = NULL;
472
473 switch (vd->vdev_alloc_bias) {
474 case VDEV_BIAS_LOG:
475 bias = VDEV_ALLOC_BIAS_LOG;
476 break;
477 case VDEV_BIAS_SPECIAL:
478 bias = VDEV_ALLOC_BIAS_SPECIAL;
479 break;
480 case VDEV_BIAS_DEDUP:
481 bias = VDEV_ALLOC_BIAS_DEDUP;
482 break;
483 default:
484 ASSERT3U(vd->vdev_alloc_bias, ==,
485 VDEV_BIAS_NONE);
486 }
487 fnvlist_add_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
488 bias);
489 }
490 }
491
492 if (vd->vdev_dtl_sm != NULL) {
493 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
494 space_map_object(vd->vdev_dtl_sm));
495 }
496
497 if (vic->vic_mapping_object != 0) {
498 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
499 vic->vic_mapping_object);
500 }
501
502 if (vic->vic_births_object != 0) {
503 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
504 vic->vic_births_object);
505 }
506
507 if (vic->vic_prev_indirect_vdev != UINT64_MAX) {
508 fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
509 vic->vic_prev_indirect_vdev);
510 }
511
512 if (vd->vdev_crtxg)
513 fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
514
515 if (flags & VDEV_CONFIG_MOS) {
516 if (vd->vdev_leaf_zap != 0) {
517 ASSERT(vd->vdev_ops->vdev_op_leaf);
518 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP,
519 vd->vdev_leaf_zap);
520 }
521
522 if (vd->vdev_top_zap != 0) {
523 ASSERT(vd == vd->vdev_top);
524 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
525 vd->vdev_top_zap);
526 }
527 }
528
529 if (getstats) {
530 vdev_config_generate_stats(vd, nv);
531
532 root_vdev_actions_getprogress(vd, nv);
533
534 /*
535 * Note: this can be called from open context
536 * (spa_get_stats()), so we need the rwlock to prevent
537 * the mapping from being changed by condensing.
538 */
539 rw_enter(&vd->vdev_indirect_rwlock, RW_READER);
540 if (vd->vdev_indirect_mapping != NULL) {
541 ASSERT(vd->vdev_indirect_births != NULL);
542 vdev_indirect_mapping_t *vim =
543 vd->vdev_indirect_mapping;
544 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
545 vdev_indirect_mapping_size(vim));
546 }
547 rw_exit(&vd->vdev_indirect_rwlock);
548 if (vd->vdev_mg != NULL &&
549 vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) {
550 /*
551 * Compute approximately how much memory would be used
552 * for the indirect mapping if this device were to
553 * be removed.
554 *
555 * Note: If the frag metric is invalid, then not
556 * enough metaslabs have been converted to have
557 * histograms.
558 */
559 uint64_t seg_count = 0;
560 uint64_t to_alloc = vd->vdev_stat.vs_alloc;
561
562 /*
563 * There are the same number of allocated segments
564 * as free segments, so we will have at least one
565 * entry per free segment. However, small free
566 * segments (smaller than vdev_removal_max_span)
567 * will be combined with adjacent allocated segments
568 * as a single mapping.
569 */
570 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
571 if (1ULL << (i + 1) < vdev_removal_max_span) {
572 to_alloc +=
573 vd->vdev_mg->mg_histogram[i] <<
574 (i + 1);
575 } else {
576 seg_count +=
577 vd->vdev_mg->mg_histogram[i];
578 }
579 }
580
581 /*
582 * The maximum length of a mapping is
583 * zfs_remove_max_segment, so we need at least one entry
584 * per zfs_remove_max_segment of allocated data.
585 */
586 seg_count += to_alloc / zfs_remove_max_segment;
587
588 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
589 seg_count *
590 sizeof (vdev_indirect_mapping_entry_phys_t));
591 }
592 }
593
594 if (!vd->vdev_ops->vdev_op_leaf) {
595 nvlist_t **child;
596 int c, idx;
597
598 ASSERT(!vd->vdev_ishole);
599
600 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
601 KM_SLEEP);
602
603 for (c = 0, idx = 0; c < vd->vdev_children; c++) {
604 vdev_t *cvd = vd->vdev_child[c];
605
606 /*
607 * If we're generating an nvlist of removing
608 * vdevs then skip over any device which is
609 * not being removed.
610 */
611 if ((flags & VDEV_CONFIG_REMOVING) &&
612 !cvd->vdev_removing)
613 continue;
614
615 child[idx++] = vdev_config_generate(spa, cvd,
616 getstats, flags);
617 }
618
619 if (idx) {
620 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
621 child, idx);
622 }
623
624 for (c = 0; c < idx; c++)
625 nvlist_free(child[c]);
626
627 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
628
629 } else {
630 const char *aux = NULL;
631
632 if (vd->vdev_offline && !vd->vdev_tmpoffline)
633 fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE);
634 if (vd->vdev_resilver_txg != 0)
635 fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
636 vd->vdev_resilver_txg);
637 if (vd->vdev_faulted)
638 fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE);
639 if (vd->vdev_degraded)
640 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE);
641 if (vd->vdev_removed)
642 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE);
643 if (vd->vdev_unspare)
644 fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE);
645 if (vd->vdev_ishole)
646 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE);
647
648 /* Set the reason why we're FAULTED/DEGRADED. */
649 switch (vd->vdev_stat.vs_aux) {
650 case VDEV_AUX_ERR_EXCEEDED:
651 aux = "err_exceeded";
652 break;
653
654 case VDEV_AUX_EXTERNAL:
655 aux = "external";
656 break;
657 }
658
659 if (aux != NULL && !vd->vdev_tmpoffline) {
660 fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux);
661 } else {
662 /*
663 * We're healthy - clear any previous AUX_STATE values.
664 */
665 if (nvlist_exists(nv, ZPOOL_CONFIG_AUX_STATE))
666 nvlist_remove_all(nv, ZPOOL_CONFIG_AUX_STATE);
667 }
668
669 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
670 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
671 vd->vdev_orig_guid);
672 }
673 }
674
675 return (nv);
676 }
677
678 /*
679 * Generate a view of the top-level vdevs. If we currently have holes
680 * in the namespace, then generate an array which contains a list of holey
681 * vdevs. Additionally, add the number of top-level children that currently
682 * exist.
683 */
684 void
685 vdev_top_config_generate(spa_t *spa, nvlist_t *config)
686 {
687 vdev_t *rvd = spa->spa_root_vdev;
688 uint64_t *array;
689 uint_t c, idx;
690
691 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
692
693 for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
694 vdev_t *tvd = rvd->vdev_child[c];
695
696 if (tvd->vdev_ishole) {
697 array[idx++] = c;
698 }
699 }
700
701 if (idx) {
702 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
703 array, idx) == 0);
704 }
705
706 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
707 rvd->vdev_children) == 0);
708
709 kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
710 }
711
712 /*
713 * Returns the configuration from the label of the given vdev. For vdevs
714 * which don't have a txg value stored on their label (i.e. spares/cache)
715 * or have not been completely initialized (txg = 0) just return
716 * the configuration from the first valid label we find. Otherwise,
717 * find the most up-to-date label that does not exceed the specified
718 * 'txg' value.
719 */
720 nvlist_t *
721 vdev_label_read_config(vdev_t *vd, uint64_t txg)
722 {
723 spa_t *spa = vd->vdev_spa;
724 nvlist_t *config = NULL;
725 vdev_phys_t *vp;
726 abd_t *vp_abd;
727 zio_t *zio;
728 uint64_t best_txg = 0;
729 uint64_t label_txg = 0;
730 int error = 0;
731 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
732 ZIO_FLAG_SPECULATIVE;
733
734 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
735
736 if (!vdev_readable(vd))
737 return (NULL);
738
739 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
740 vp = abd_to_buf(vp_abd);
741
742 retry:
743 for (int l = 0; l < VDEV_LABELS; l++) {
744 nvlist_t *label = NULL;
745
746 zio = zio_root(spa, NULL, NULL, flags);
747
748 vdev_label_read(zio, vd, l, vp_abd,
749 offsetof(vdev_label_t, vl_vdev_phys),
750 sizeof (vdev_phys_t), NULL, NULL, flags);
751
752 if (zio_wait(zio) == 0 &&
753 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
754 &label, 0) == 0) {
755 /*
756 * Auxiliary vdevs won't have txg values in their
757 * labels and newly added vdevs may not have been
758 * completely initialized so just return the
759 * configuration from the first valid label we
760 * encounter.
761 */
762 error = nvlist_lookup_uint64(label,
763 ZPOOL_CONFIG_POOL_TXG, &label_txg);
764 if ((error || label_txg == 0) && !config) {
765 config = label;
766 break;
767 } else if (label_txg <= txg && label_txg > best_txg) {
768 best_txg = label_txg;
769 nvlist_free(config);
770 config = fnvlist_dup(label);
771 }
772 }
773
774 if (label != NULL) {
775 nvlist_free(label);
776 label = NULL;
777 }
778 }
779
780 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
781 flags |= ZIO_FLAG_TRYHARD;
782 goto retry;
783 }
784
785 /*
786 * We found a valid label but it didn't pass txg restrictions.
787 */
788 if (config == NULL && label_txg != 0) {
789 vdev_dbgmsg(vd, "label discarded as txg is too large "
790 "(%llu > %llu)", (u_longlong_t)label_txg,
791 (u_longlong_t)txg);
792 }
793
794 abd_free(vp_abd);
795
796 return (config);
797 }
798
799 /*
800 * Determine if a device is in use. The 'spare_guid' parameter will be filled
801 * in with the device guid if this spare is active elsewhere on the system.
802 */
803 static boolean_t
804 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
805 uint64_t *spare_guid, uint64_t *l2cache_guid)
806 {
807 spa_t *spa = vd->vdev_spa;
808 uint64_t state, pool_guid, device_guid, txg, spare_pool;
809 uint64_t vdtxg = 0;
810 nvlist_t *label;
811
812 if (spare_guid)
813 *spare_guid = 0ULL;
814 if (l2cache_guid)
815 *l2cache_guid = 0ULL;
816
817 /*
818 * Read the label, if any, and perform some basic sanity checks.
819 */
820 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
821 return (B_FALSE);
822
823 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
824 &vdtxg);
825
826 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
827 &state) != 0 ||
828 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
829 &device_guid) != 0) {
830 nvlist_free(label);
831 return (B_FALSE);
832 }
833
834 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
835 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
836 &pool_guid) != 0 ||
837 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
838 &txg) != 0)) {
839 nvlist_free(label);
840 return (B_FALSE);
841 }
842
843 nvlist_free(label);
844
845 /*
846 * Check to see if this device indeed belongs to the pool it claims to
847 * be a part of. The only way this is allowed is if the device is a hot
848 * spare (which we check for later on).
849 */
850 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
851 !spa_guid_exists(pool_guid, device_guid) &&
852 !spa_spare_exists(device_guid, NULL, NULL) &&
853 !spa_l2cache_exists(device_guid, NULL))
854 return (B_FALSE);
855
856 /*
857 * If the transaction group is zero, then this an initialized (but
858 * unused) label. This is only an error if the create transaction
859 * on-disk is the same as the one we're using now, in which case the
860 * user has attempted to add the same vdev multiple times in the same
861 * transaction.
862 */
863 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
864 txg == 0 && vdtxg == crtxg)
865 return (B_TRUE);
866
867 /*
868 * Check to see if this is a spare device. We do an explicit check for
869 * spa_has_spare() here because it may be on our pending list of spares
870 * to add. We also check if it is an l2cache device.
871 */
872 if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
873 spa_has_spare(spa, device_guid)) {
874 if (spare_guid)
875 *spare_guid = device_guid;
876
877 switch (reason) {
878 case VDEV_LABEL_CREATE:
879 case VDEV_LABEL_L2CACHE:
880 return (B_TRUE);
881
882 case VDEV_LABEL_REPLACE:
883 return (!spa_has_spare(spa, device_guid) ||
884 spare_pool != 0ULL);
885
886 case VDEV_LABEL_SPARE:
887 return (spa_has_spare(spa, device_guid));
888 default:
889 break;
890 }
891 }
892
893 /*
894 * Check to see if this is an l2cache device.
895 */
896 if (spa_l2cache_exists(device_guid, NULL))
897 return (B_TRUE);
898
899 /*
900 * We can't rely on a pool's state if it's been imported
901 * read-only. Instead we look to see if the pools is marked
902 * read-only in the namespace and set the state to active.
903 */
904 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
905 (spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
906 spa_mode(spa) == FREAD)
907 state = POOL_STATE_ACTIVE;
908
909 /*
910 * If the device is marked ACTIVE, then this device is in use by another
911 * pool on the system.
912 */
913 return (state == POOL_STATE_ACTIVE);
914 }
915
916 /*
917 * Initialize a vdev label. We check to make sure each leaf device is not in
918 * use, and writable. We put down an initial label which we will later
919 * overwrite with a complete label. Note that it's important to do this
920 * sequentially, not in parallel, so that we catch cases of multiple use of the
921 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
922 * itself.
923 */
924 int
925 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
926 {
927 spa_t *spa = vd->vdev_spa;
928 nvlist_t *label;
929 vdev_phys_t *vp;
930 abd_t *vp_abd;
931 abd_t *pad2;
932 uberblock_t *ub;
933 abd_t *ub_abd;
934 zio_t *zio;
935 char *buf;
936 size_t buflen;
937 int error;
938 uint64_t spare_guid = 0, l2cache_guid = 0;
939 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
940
941 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
942
943 for (int c = 0; c < vd->vdev_children; c++)
944 if ((error = vdev_label_init(vd->vdev_child[c],
945 crtxg, reason)) != 0)
946 return (error);
947
948 /* Track the creation time for this vdev */
949 vd->vdev_crtxg = crtxg;
950
951 if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa))
952 return (0);
953
954 /*
955 * Dead vdevs cannot be initialized.
956 */
957 if (vdev_is_dead(vd))
958 return (SET_ERROR(EIO));
959
960 /*
961 * Determine if the vdev is in use.
962 */
963 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
964 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
965 return (SET_ERROR(EBUSY));
966
967 /*
968 * If this is a request to add or replace a spare or l2cache device
969 * that is in use elsewhere on the system, then we must update the
970 * guid (which was initialized to a random value) to reflect the
971 * actual GUID (which is shared between multiple pools).
972 */
973 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
974 spare_guid != 0ULL) {
975 uint64_t guid_delta = spare_guid - vd->vdev_guid;
976
977 vd->vdev_guid += guid_delta;
978
979 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
980 pvd->vdev_guid_sum += guid_delta;
981
982 /*
983 * If this is a replacement, then we want to fallthrough to the
984 * rest of the code. If we're adding a spare, then it's already
985 * labeled appropriately and we can just return.
986 */
987 if (reason == VDEV_LABEL_SPARE)
988 return (0);
989 ASSERT(reason == VDEV_LABEL_REPLACE ||
990 reason == VDEV_LABEL_SPLIT);
991 }
992
993 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
994 l2cache_guid != 0ULL) {
995 uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
996
997 vd->vdev_guid += guid_delta;
998
999 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1000 pvd->vdev_guid_sum += guid_delta;
1001
1002 /*
1003 * If this is a replacement, then we want to fallthrough to the
1004 * rest of the code. If we're adding an l2cache, then it's
1005 * already labeled appropriately and we can just return.
1006 */
1007 if (reason == VDEV_LABEL_L2CACHE)
1008 return (0);
1009 ASSERT(reason == VDEV_LABEL_REPLACE);
1010 }
1011
1012 /*
1013 * Initialize its label.
1014 */
1015 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1016 abd_zero(vp_abd, sizeof (vdev_phys_t));
1017 vp = abd_to_buf(vp_abd);
1018
1019 /*
1020 * Generate a label describing the pool and our top-level vdev.
1021 * We mark it as being from txg 0 to indicate that it's not
1022 * really part of an active pool just yet. The labels will
1023 * be written again with a meaningful txg by spa_sync().
1024 */
1025 if (reason == VDEV_LABEL_SPARE ||
1026 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
1027 /*
1028 * For inactive hot spares, we generate a special label that
1029 * identifies as a mutually shared hot spare. We write the
1030 * label if we are adding a hot spare, or if we are removing an
1031 * active hot spare (in which case we want to revert the
1032 * labels).
1033 */
1034 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1035
1036 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
1037 spa_version(spa)) == 0);
1038 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1039 POOL_STATE_SPARE) == 0);
1040 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
1041 vd->vdev_guid) == 0);
1042 } else if (reason == VDEV_LABEL_L2CACHE ||
1043 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
1044 /*
1045 * For level 2 ARC devices, add a special label.
1046 */
1047 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1048
1049 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
1050 spa_version(spa)) == 0);
1051 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1052 POOL_STATE_L2CACHE) == 0);
1053 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
1054 vd->vdev_guid) == 0);
1055 } else {
1056 uint64_t txg = 0ULL;
1057
1058 if (reason == VDEV_LABEL_SPLIT)
1059 txg = spa->spa_uberblock.ub_txg;
1060 label = spa_config_generate(spa, vd, txg, B_FALSE);
1061
1062 /*
1063 * Add our creation time. This allows us to detect multiple
1064 * vdev uses as described above, and automatically expires if we
1065 * fail.
1066 */
1067 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
1068 crtxg) == 0);
1069 }
1070
1071 buf = vp->vp_nvlist;
1072 buflen = sizeof (vp->vp_nvlist);
1073
1074 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
1075 if (error != 0) {
1076 nvlist_free(label);
1077 abd_free(vp_abd);
1078 /* EFAULT means nvlist_pack ran out of room */
1079 return (SET_ERROR(error == EFAULT ? ENAMETOOLONG : EINVAL));
1080 }
1081
1082 /*
1083 * Initialize uberblock template.
1084 */
1085 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE);
1086 abd_zero(ub_abd, VDEV_UBERBLOCK_RING);
1087 abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t));
1088 ub = abd_to_buf(ub_abd);
1089 ub->ub_txg = 0;
1090
1091 /* Initialize the 2nd padding area. */
1092 pad2 = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
1093 abd_zero(pad2, VDEV_PAD_SIZE);
1094
1095 /*
1096 * Write everything in parallel.
1097 */
1098 retry:
1099 zio = zio_root(spa, NULL, NULL, flags);
1100
1101 for (int l = 0; l < VDEV_LABELS; l++) {
1102
1103 vdev_label_write(zio, vd, l, vp_abd,
1104 offsetof(vdev_label_t, vl_vdev_phys),
1105 sizeof (vdev_phys_t), NULL, NULL, flags);
1106
1107 /*
1108 * Skip the 1st padding area.
1109 * Zero out the 2nd padding area where it might have
1110 * left over data from previous filesystem format.
1111 */
1112 vdev_label_write(zio, vd, l, pad2,
1113 offsetof(vdev_label_t, vl_pad2),
1114 VDEV_PAD_SIZE, NULL, NULL, flags);
1115
1116 vdev_label_write(zio, vd, l, ub_abd,
1117 offsetof(vdev_label_t, vl_uberblock),
1118 VDEV_UBERBLOCK_RING, NULL, NULL, flags);
1119 }
1120
1121 error = zio_wait(zio);
1122
1123 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
1124 flags |= ZIO_FLAG_TRYHARD;
1125 goto retry;
1126 }
1127
1128 nvlist_free(label);
1129 abd_free(pad2);
1130 abd_free(ub_abd);
1131 abd_free(vp_abd);
1132
1133 /*
1134 * If this vdev hasn't been previously identified as a spare, then we
1135 * mark it as such only if a) we are labeling it as a spare, or b) it
1136 * exists as a spare elsewhere in the system. Do the same for
1137 * level 2 ARC devices.
1138 */
1139 if (error == 0 && !vd->vdev_isspare &&
1140 (reason == VDEV_LABEL_SPARE ||
1141 spa_spare_exists(vd->vdev_guid, NULL, NULL)))
1142 spa_spare_add(vd);
1143
1144 if (error == 0 && !vd->vdev_isl2cache &&
1145 (reason == VDEV_LABEL_L2CACHE ||
1146 spa_l2cache_exists(vd->vdev_guid, NULL)))
1147 spa_l2cache_add(vd);
1148
1149 return (error);
1150 }
1151
1152 /*
1153 * ==========================================================================
1154 * uberblock load/sync
1155 * ==========================================================================
1156 */
1157
1158 /*
1159 * Consider the following situation: txg is safely synced to disk. We've
1160 * written the first uberblock for txg + 1, and then we lose power. When we
1161 * come back up, we fail to see the uberblock for txg + 1 because, say,
1162 * it was on a mirrored device and the replica to which we wrote txg + 1
1163 * is now offline. If we then make some changes and sync txg + 1, and then
1164 * the missing replica comes back, then for a few seconds we'll have two
1165 * conflicting uberblocks on disk with the same txg. The solution is simple:
1166 * among uberblocks with equal txg, choose the one with the latest timestamp.
1167 */
1168 static int
1169 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
1170 {
1171 int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg);
1172 if (likely(cmp))
1173 return (cmp);
1174
1175 return (AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp));
1176 }
1177
1178 struct ubl_cbdata {
1179 uberblock_t *ubl_ubbest; /* Best uberblock */
1180 vdev_t *ubl_vd; /* vdev associated with the above */
1181 };
1182
1183 static void
1184 vdev_uberblock_load_done(zio_t *zio)
1185 {
1186 vdev_t *vd = zio->io_vd;
1187 spa_t *spa = zio->io_spa;
1188 zio_t *rio = zio->io_private;
1189 uberblock_t *ub = abd_to_buf(zio->io_abd);
1190 struct ubl_cbdata *cbp = rio->io_private;
1191
1192 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
1193
1194 if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
1195 mutex_enter(&rio->io_lock);
1196 if (ub->ub_txg <= spa->spa_load_max_txg &&
1197 vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
1198 /*
1199 * Keep track of the vdev in which this uberblock
1200 * was found. We will use this information later
1201 * to obtain the config nvlist associated with
1202 * this uberblock.
1203 */
1204 *cbp->ubl_ubbest = *ub;
1205 cbp->ubl_vd = vd;
1206 }
1207 mutex_exit(&rio->io_lock);
1208 }
1209
1210 abd_free(zio->io_abd);
1211 }
1212
1213 static void
1214 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
1215 struct ubl_cbdata *cbp)
1216 {
1217 for (int c = 0; c < vd->vdev_children; c++)
1218 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
1219
1220 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1221 for (int l = 0; l < VDEV_LABELS; l++) {
1222 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1223 vdev_label_read(zio, vd, l,
1224 abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd),
1225 B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n),
1226 VDEV_UBERBLOCK_SIZE(vd),
1227 vdev_uberblock_load_done, zio, flags);
1228 }
1229 }
1230 }
1231 }
1232
1233 /*
1234 * Reads the 'best' uberblock from disk along with its associated
1235 * configuration. First, we read the uberblock array of each label of each
1236 * vdev, keeping track of the uberblock with the highest txg in each array.
1237 * Then, we read the configuration from the same vdev as the best uberblock.
1238 */
1239 void
1240 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
1241 {
1242 zio_t *zio;
1243 spa_t *spa = rvd->vdev_spa;
1244 struct ubl_cbdata cb;
1245 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1246 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
1247
1248 ASSERT(ub);
1249 ASSERT(config);
1250
1251 bzero(ub, sizeof (uberblock_t));
1252 *config = NULL;
1253
1254 cb.ubl_ubbest = ub;
1255 cb.ubl_vd = NULL;
1256
1257 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1258 zio = zio_root(spa, NULL, &cb, flags);
1259 vdev_uberblock_load_impl(zio, rvd, flags, &cb);
1260 (void) zio_wait(zio);
1261
1262 /*
1263 * It's possible that the best uberblock was discovered on a label
1264 * that has a configuration which was written in a future txg.
1265 * Search all labels on this vdev to find the configuration that
1266 * matches the txg for our uberblock.
1267 */
1268 if (cb.ubl_vd != NULL) {
1269 vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. "
1270 "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg);
1271
1272 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
1273 if (*config == NULL && spa->spa_extreme_rewind) {
1274 vdev_dbgmsg(cb.ubl_vd, "failed to read label config. "
1275 "Trying again without txg restrictions.");
1276 *config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX);
1277 }
1278 if (*config == NULL) {
1279 vdev_dbgmsg(cb.ubl_vd, "failed to read label config");
1280 }
1281 }
1282 spa_config_exit(spa, SCL_ALL, FTAG);
1283 }
1284
1285 /*
1286 * For use when a leaf vdev is expanded.
1287 * The location of labels 2 and 3 changed, and at the new location the
1288 * uberblock rings are either empty or contain garbage. The sync will write
1289 * new configs there because the vdev is dirty, but expansion also needs the
1290 * uberblock rings copied. Read them from label 0 which did not move.
1291 *
1292 * Since the point is to populate labels {2,3} with valid uberblocks,
1293 * we zero uberblocks we fail to read or which are not valid.
1294 */
1295
1296 static void
1297 vdev_copy_uberblocks(vdev_t *vd)
1298 {
1299 abd_t *ub_abd;
1300 zio_t *write_zio;
1301 int locks = (SCL_L2ARC | SCL_ZIO);
1302 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1303 ZIO_FLAG_SPECULATIVE;
1304
1305 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_READER) ==
1306 SCL_STATE);
1307 ASSERT(vd->vdev_ops->vdev_op_leaf);
1308
1309 spa_config_enter(vd->vdev_spa, locks, FTAG, RW_READER);
1310
1311 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
1312
1313 write_zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
1314 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1315 const int src_label = 0;
1316 zio_t *zio;
1317
1318 zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
1319 vdev_label_read(zio, vd, src_label, ub_abd,
1320 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1321 NULL, NULL, flags);
1322
1323 if (zio_wait(zio) || uberblock_verify(abd_to_buf(ub_abd)))
1324 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1325
1326 for (int l = 2; l < VDEV_LABELS; l++)
1327 vdev_label_write(write_zio, vd, l, ub_abd,
1328 VDEV_UBERBLOCK_OFFSET(vd, n),
1329 VDEV_UBERBLOCK_SIZE(vd), NULL, NULL,
1330 flags | ZIO_FLAG_DONT_PROPAGATE);
1331 }
1332 (void) zio_wait(write_zio);
1333
1334 spa_config_exit(vd->vdev_spa, locks, FTAG);
1335
1336 abd_free(ub_abd);
1337 }
1338
1339 /*
1340 * On success, increment root zio's count of good writes.
1341 * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
1342 */
1343 static void
1344 vdev_uberblock_sync_done(zio_t *zio)
1345 {
1346 uint64_t *good_writes = zio->io_private;
1347
1348 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
1349 atomic_inc_64(good_writes);
1350 }
1351
1352 /*
1353 * Write the uberblock to all labels of all leaves of the specified vdev.
1354 */
1355 static void
1356 vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes,
1357 uberblock_t *ub, vdev_t *vd, int flags)
1358 {
1359 for (uint64_t c = 0; c < vd->vdev_children; c++) {
1360 vdev_uberblock_sync(zio, good_writes,
1361 ub, vd->vdev_child[c], flags);
1362 }
1363
1364 if (!vd->vdev_ops->vdev_op_leaf)
1365 return;
1366
1367 if (!vdev_writeable(vd))
1368 return;
1369
1370 /* If the vdev was expanded, need to copy uberblock rings. */
1371 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1372 vd->vdev_copy_uberblocks == B_TRUE) {
1373 vdev_copy_uberblocks(vd);
1374 vd->vdev_copy_uberblocks = B_FALSE;
1375 }
1376
1377 int m = spa_multihost(vd->vdev_spa) ? MMP_BLOCKS_PER_LABEL : 0;
1378 int n = ub->ub_txg % (VDEV_UBERBLOCK_COUNT(vd) - m);
1379
1380 /* Copy the uberblock_t into the ABD */
1381 abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
1382 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1383 abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t));
1384
1385 for (int l = 0; l < VDEV_LABELS; l++)
1386 vdev_label_write(zio, vd, l, ub_abd,
1387 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1388 vdev_uberblock_sync_done, good_writes,
1389 flags | ZIO_FLAG_DONT_PROPAGATE);
1390
1391 abd_free(ub_abd);
1392 }
1393
1394 /* Sync the uberblocks to all vdevs in svd[] */
1395 int
1396 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1397 {
1398 spa_t *spa = svd[0]->vdev_spa;
1399 zio_t *zio;
1400 uint64_t good_writes = 0;
1401
1402 zio = zio_root(spa, NULL, NULL, flags);
1403
1404 for (int v = 0; v < svdcount; v++)
1405 vdev_uberblock_sync(zio, &good_writes, ub, svd[v], flags);
1406
1407 (void) zio_wait(zio);
1408
1409 /*
1410 * Flush the uberblocks to disk. This ensures that the odd labels
1411 * are no longer needed (because the new uberblocks and the even
1412 * labels are safely on disk), so it is safe to overwrite them.
1413 */
1414 zio = zio_root(spa, NULL, NULL, flags);
1415
1416 for (int v = 0; v < svdcount; v++) {
1417 if (vdev_writeable(svd[v])) {
1418 zio_flush(zio, svd[v]);
1419 }
1420 }
1421
1422 (void) zio_wait(zio);
1423
1424 return (good_writes >= 1 ? 0 : EIO);
1425 }
1426
1427 /*
1428 * On success, increment the count of good writes for our top-level vdev.
1429 */
1430 static void
1431 vdev_label_sync_done(zio_t *zio)
1432 {
1433 uint64_t *good_writes = zio->io_private;
1434
1435 if (zio->io_error == 0)
1436 atomic_inc_64(good_writes);
1437 }
1438
1439 /*
1440 * If there weren't enough good writes, indicate failure to the parent.
1441 */
1442 static void
1443 vdev_label_sync_top_done(zio_t *zio)
1444 {
1445 uint64_t *good_writes = zio->io_private;
1446
1447 if (*good_writes == 0)
1448 zio->io_error = SET_ERROR(EIO);
1449
1450 kmem_free(good_writes, sizeof (uint64_t));
1451 }
1452
1453 /*
1454 * We ignore errors for log and cache devices, simply free the private data.
1455 */
1456 static void
1457 vdev_label_sync_ignore_done(zio_t *zio)
1458 {
1459 kmem_free(zio->io_private, sizeof (uint64_t));
1460 }
1461
1462 /*
1463 * Write all even or odd labels to all leaves of the specified vdev.
1464 */
1465 static void
1466 vdev_label_sync(zio_t *zio, uint64_t *good_writes,
1467 vdev_t *vd, int l, uint64_t txg, int flags)
1468 {
1469 nvlist_t *label;
1470 vdev_phys_t *vp;
1471 abd_t *vp_abd;
1472 char *buf;
1473 size_t buflen;
1474
1475 for (int c = 0; c < vd->vdev_children; c++) {
1476 vdev_label_sync(zio, good_writes,
1477 vd->vdev_child[c], l, txg, flags);
1478 }
1479
1480 if (!vd->vdev_ops->vdev_op_leaf)
1481 return;
1482
1483 if (!vdev_writeable(vd))
1484 return;
1485
1486 /*
1487 * Generate a label describing the top-level config to which we belong.
1488 */
1489 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1490
1491 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1492 abd_zero(vp_abd, sizeof (vdev_phys_t));
1493 vp = abd_to_buf(vp_abd);
1494
1495 buf = vp->vp_nvlist;
1496 buflen = sizeof (vp->vp_nvlist);
1497
1498 if (!nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP)) {
1499 for (; l < VDEV_LABELS; l += 2) {
1500 vdev_label_write(zio, vd, l, vp_abd,
1501 offsetof(vdev_label_t, vl_vdev_phys),
1502 sizeof (vdev_phys_t),
1503 vdev_label_sync_done, good_writes,
1504 flags | ZIO_FLAG_DONT_PROPAGATE);
1505 }
1506 }
1507
1508 abd_free(vp_abd);
1509 nvlist_free(label);
1510 }
1511
1512 int
1513 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1514 {
1515 list_t *dl = &spa->spa_config_dirty_list;
1516 vdev_t *vd;
1517 zio_t *zio;
1518 int error;
1519
1520 /*
1521 * Write the new labels to disk.
1522 */
1523 zio = zio_root(spa, NULL, NULL, flags);
1524
1525 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1526 uint64_t *good_writes;
1527
1528 ASSERT(!vd->vdev_ishole);
1529
1530 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
1531 zio_t *vio = zio_null(zio, spa, NULL,
1532 (vd->vdev_islog || vd->vdev_aux != NULL) ?
1533 vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1534 good_writes, flags);
1535 vdev_label_sync(vio, good_writes, vd, l, txg, flags);
1536 zio_nowait(vio);
1537 }
1538
1539 error = zio_wait(zio);
1540
1541 /*
1542 * Flush the new labels to disk.
1543 */
1544 zio = zio_root(spa, NULL, NULL, flags);
1545
1546 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1547 zio_flush(zio, vd);
1548
1549 (void) zio_wait(zio);
1550
1551 return (error);
1552 }
1553
1554 /*
1555 * Sync the uberblock and any changes to the vdev configuration.
1556 *
1557 * The order of operations is carefully crafted to ensure that
1558 * if the system panics or loses power at any time, the state on disk
1559 * is still transactionally consistent. The in-line comments below
1560 * describe the failure semantics at each stage.
1561 *
1562 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1563 * at any time, you can just call it again, and it will resume its work.
1564 */
1565 int
1566 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg)
1567 {
1568 spa_t *spa = svd[0]->vdev_spa;
1569 uberblock_t *ub = &spa->spa_uberblock;
1570 int error = 0;
1571 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1572
1573 ASSERT(svdcount != 0);
1574 retry:
1575 /*
1576 * Normally, we don't want to try too hard to write every label and
1577 * uberblock. If there is a flaky disk, we don't want the rest of the
1578 * sync process to block while we retry. But if we can't write a
1579 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1580 * bailing out and declaring the pool faulted.
1581 */
1582 if (error != 0) {
1583 if ((flags & ZIO_FLAG_TRYHARD) != 0)
1584 return (error);
1585 flags |= ZIO_FLAG_TRYHARD;
1586 }
1587
1588 ASSERT(ub->ub_txg <= txg);
1589
1590 /*
1591 * If this isn't a resync due to I/O errors,
1592 * and nothing changed in this transaction group,
1593 * and the vdev configuration hasn't changed,
1594 * then there's nothing to do.
1595 */
1596 if (ub->ub_txg < txg) {
1597 boolean_t changed = uberblock_update(ub, spa->spa_root_vdev,
1598 txg, spa->spa_mmp.mmp_delay);
1599
1600 if (!changed && list_is_empty(&spa->spa_config_dirty_list))
1601 return (0);
1602 }
1603
1604 if (txg > spa_freeze_txg(spa))
1605 return (0);
1606
1607 ASSERT(txg <= spa->spa_final_txg);
1608
1609 /*
1610 * Flush the write cache of every disk that's been written to
1611 * in this transaction group. This ensures that all blocks
1612 * written in this txg will be committed to stable storage
1613 * before any uberblock that references them.
1614 */
1615 zio_t *zio = zio_root(spa, NULL, NULL, flags);
1616
1617 for (vdev_t *vd =
1618 txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd != NULL;
1619 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1620 zio_flush(zio, vd);
1621
1622 (void) zio_wait(zio);
1623
1624 /*
1625 * Sync out the even labels (L0, L2) for every dirty vdev. If the
1626 * system dies in the middle of this process, that's OK: all of the
1627 * even labels that made it to disk will be newer than any uberblock,
1628 * and will therefore be considered invalid. The odd labels (L1, L3),
1629 * which have not yet been touched, will still be valid. We flush
1630 * the new labels to disk to ensure that all even-label updates
1631 * are committed to stable storage before the uberblock update.
1632 */
1633 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) {
1634 if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1635 zfs_dbgmsg("vdev_label_sync_list() returned error %d "
1636 "for pool '%s' when syncing out the even labels "
1637 "of dirty vdevs", error, spa_name(spa));
1638 }
1639 goto retry;
1640 }
1641
1642 /*
1643 * Sync the uberblocks to all vdevs in svd[].
1644 * If the system dies in the middle of this step, there are two cases
1645 * to consider, and the on-disk state is consistent either way:
1646 *
1647 * (1) If none of the new uberblocks made it to disk, then the
1648 * previous uberblock will be the newest, and the odd labels
1649 * (which had not yet been touched) will be valid with respect
1650 * to that uberblock.
1651 *
1652 * (2) If one or more new uberblocks made it to disk, then they
1653 * will be the newest, and the even labels (which had all
1654 * been successfully committed) will be valid with respect
1655 * to the new uberblocks.
1656 */
1657 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) {
1658 if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1659 zfs_dbgmsg("vdev_uberblock_sync_list() returned error "
1660 "%d for pool '%s'", error, spa_name(spa));
1661 }
1662 goto retry;
1663 }
1664
1665 if (spa_multihost(spa))
1666 mmp_update_uberblock(spa, ub);
1667
1668 /*
1669 * Sync out odd labels for every dirty vdev. If the system dies
1670 * in the middle of this process, the even labels and the new
1671 * uberblocks will suffice to open the pool. The next time
1672 * the pool is opened, the first thing we'll do -- before any
1673 * user data is modified -- is mark every vdev dirty so that
1674 * all labels will be brought up to date. We flush the new labels
1675 * to disk to ensure that all odd-label updates are committed to
1676 * stable storage before the next transaction group begins.
1677 */
1678 if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) {
1679 if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1680 zfs_dbgmsg("vdev_label_sync_list() returned error %d "
1681 "for pool '%s' when syncing out the odd labels of "
1682 "dirty vdevs", error, spa_name(spa));
1683 }
1684 goto retry;
1685 }
1686
1687 return (0);
1688 }