]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev_label.c
Add request size histograms (-r) to zpool iostat, minor man page fix
[mirror_zfs.git] / module / zfs / vdev_label.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 */
26
27 /*
28 * Virtual Device Labels
29 * ---------------------
30 *
31 * The vdev label serves several distinct purposes:
32 *
33 * 1. Uniquely identify this device as part of a ZFS pool and confirm its
34 * identity within the pool.
35 *
36 * 2. Verify that all the devices given in a configuration are present
37 * within the pool.
38 *
39 * 3. Determine the uberblock for the pool.
40 *
41 * 4. In case of an import operation, determine the configuration of the
42 * toplevel vdev of which it is a part.
43 *
44 * 5. If an import operation cannot find all the devices in the pool,
45 * provide enough information to the administrator to determine which
46 * devices are missing.
47 *
48 * It is important to note that while the kernel is responsible for writing the
49 * label, it only consumes the information in the first three cases. The
50 * latter information is only consumed in userland when determining the
51 * configuration to import a pool.
52 *
53 *
54 * Label Organization
55 * ------------------
56 *
57 * Before describing the contents of the label, it's important to understand how
58 * the labels are written and updated with respect to the uberblock.
59 *
60 * When the pool configuration is altered, either because it was newly created
61 * or a device was added, we want to update all the labels such that we can deal
62 * with fatal failure at any point. To this end, each disk has two labels which
63 * are updated before and after the uberblock is synced. Assuming we have
64 * labels and an uberblock with the following transaction groups:
65 *
66 * L1 UB L2
67 * +------+ +------+ +------+
68 * | | | | | |
69 * | t10 | | t10 | | t10 |
70 * | | | | | |
71 * +------+ +------+ +------+
72 *
73 * In this stable state, the labels and the uberblock were all updated within
74 * the same transaction group (10). Each label is mirrored and checksummed, so
75 * that we can detect when we fail partway through writing the label.
76 *
77 * In order to identify which labels are valid, the labels are written in the
78 * following manner:
79 *
80 * 1. For each vdev, update 'L1' to the new label
81 * 2. Update the uberblock
82 * 3. For each vdev, update 'L2' to the new label
83 *
84 * Given arbitrary failure, we can determine the correct label to use based on
85 * the transaction group. If we fail after updating L1 but before updating the
86 * UB, we will notice that L1's transaction group is greater than the uberblock,
87 * so L2 must be valid. If we fail after writing the uberblock but before
88 * writing L2, we will notice that L2's transaction group is less than L1, and
89 * therefore L1 is valid.
90 *
91 * Another added complexity is that not every label is updated when the config
92 * is synced. If we add a single device, we do not want to have to re-write
93 * every label for every device in the pool. This means that both L1 and L2 may
94 * be older than the pool uberblock, because the necessary information is stored
95 * on another vdev.
96 *
97 *
98 * On-disk Format
99 * --------------
100 *
101 * The vdev label consists of two distinct parts, and is wrapped within the
102 * vdev_label_t structure. The label includes 8k of padding to permit legacy
103 * VTOC disk labels, but is otherwise ignored.
104 *
105 * The first half of the label is a packed nvlist which contains pool wide
106 * properties, per-vdev properties, and configuration information. It is
107 * described in more detail below.
108 *
109 * The latter half of the label consists of a redundant array of uberblocks.
110 * These uberblocks are updated whenever a transaction group is committed,
111 * or when the configuration is updated. When a pool is loaded, we scan each
112 * vdev for the 'best' uberblock.
113 *
114 *
115 * Configuration Information
116 * -------------------------
117 *
118 * The nvlist describing the pool and vdev contains the following elements:
119 *
120 * version ZFS on-disk version
121 * name Pool name
122 * state Pool state
123 * txg Transaction group in which this label was written
124 * pool_guid Unique identifier for this pool
125 * vdev_tree An nvlist describing vdev tree.
126 * features_for_read
127 * An nvlist of the features necessary for reading the MOS.
128 *
129 * Each leaf device label also contains the following:
130 *
131 * top_guid Unique ID for top-level vdev in which this is contained
132 * guid Unique ID for the leaf vdev
133 *
134 * The 'vs' configuration follows the format described in 'spa_config.c'.
135 */
136
137 #include <sys/zfs_context.h>
138 #include <sys/spa.h>
139 #include <sys/spa_impl.h>
140 #include <sys/dmu.h>
141 #include <sys/zap.h>
142 #include <sys/vdev.h>
143 #include <sys/vdev_impl.h>
144 #include <sys/uberblock_impl.h>
145 #include <sys/metaslab.h>
146 #include <sys/zio.h>
147 #include <sys/dsl_scan.h>
148 #include <sys/fs/zfs.h>
149
150 /*
151 * Basic routines to read and write from a vdev label.
152 * Used throughout the rest of this file.
153 */
154 uint64_t
155 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
156 {
157 ASSERT(offset < sizeof (vdev_label_t));
158 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
159
160 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
161 0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
162 }
163
164 /*
165 * Returns back the vdev label associated with the passed in offset.
166 */
167 int
168 vdev_label_number(uint64_t psize, uint64_t offset)
169 {
170 int l;
171
172 if (offset >= psize - VDEV_LABEL_END_SIZE) {
173 offset -= psize - VDEV_LABEL_END_SIZE;
174 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
175 }
176 l = offset / sizeof (vdev_label_t);
177 return (l < VDEV_LABELS ? l : -1);
178 }
179
180 static void
181 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
182 uint64_t size, zio_done_func_t *done, void *private, int flags)
183 {
184 ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) ==
185 SCL_STATE_ALL);
186 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
187
188 zio_nowait(zio_read_phys(zio, vd,
189 vdev_label_offset(vd->vdev_psize, l, offset),
190 size, buf, ZIO_CHECKSUM_LABEL, done, private,
191 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
192 }
193
194 static void
195 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
196 uint64_t size, zio_done_func_t *done, void *private, int flags)
197 {
198 ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL ||
199 (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
200 (SCL_CONFIG | SCL_STATE) &&
201 dsl_pool_sync_context(spa_get_dsl(zio->io_spa))));
202 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
203
204 zio_nowait(zio_write_phys(zio, vd,
205 vdev_label_offset(vd->vdev_psize, l, offset),
206 size, buf, ZIO_CHECKSUM_LABEL, done, private,
207 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
208 }
209
210 /*
211 * Generate the nvlist representing this vdev's stats
212 */
213 void
214 vdev_config_generate_stats(vdev_t *vd, nvlist_t *nv)
215 {
216 nvlist_t *nvx;
217 vdev_stat_t *vs;
218 vdev_stat_ex_t *vsx;
219
220 vs = kmem_alloc(sizeof (*vs), KM_SLEEP);
221 vsx = kmem_alloc(sizeof (*vsx), KM_SLEEP);
222
223 vdev_get_stats_ex(vd, vs, vsx);
224 fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
225 (uint64_t *)vs, sizeof (*vs) / sizeof (uint64_t));
226
227 kmem_free(vs, sizeof (*vs));
228
229 /*
230 * Add extended stats into a special extended stats nvlist. This keeps
231 * all the extended stats nicely grouped together. The extended stats
232 * nvlist is then added to the main nvlist.
233 */
234 nvx = fnvlist_alloc();
235
236 /* ZIOs in flight to disk */
237 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE,
238 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_READ]);
239
240 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE,
241 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_WRITE]);
242
243 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE,
244 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_READ]);
245
246 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE,
247 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_WRITE]);
248
249 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE,
250 vsx->vsx_active_queue[ZIO_PRIORITY_SCRUB]);
251
252 /* ZIOs pending */
253 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE,
254 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_READ]);
255
256 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE,
257 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_WRITE]);
258
259 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE,
260 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_READ]);
261
262 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE,
263 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_WRITE]);
264
265 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE,
266 vsx->vsx_pend_queue[ZIO_PRIORITY_SCRUB]);
267
268 /* Histograms */
269 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO,
270 vsx->vsx_total_histo[ZIO_TYPE_READ],
271 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_READ]));
272
273 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO,
274 vsx->vsx_total_histo[ZIO_TYPE_WRITE],
275 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_WRITE]));
276
277 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO,
278 vsx->vsx_disk_histo[ZIO_TYPE_READ],
279 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_READ]));
280
281 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO,
282 vsx->vsx_disk_histo[ZIO_TYPE_WRITE],
283 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_WRITE]));
284
285 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO,
286 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ],
287 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ]));
288
289 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO,
290 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE],
291 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE]));
292
293 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO,
294 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ],
295 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ]));
296
297 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO,
298 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE],
299 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE]));
300
301 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO,
302 vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB],
303 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB]));
304
305 /* Request sizes */
306 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO,
307 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ],
308 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ]));
309
310 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO,
311 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE],
312 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE]));
313
314 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO,
315 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ],
316 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ]));
317
318 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO,
319 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE],
320 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE]));
321
322 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO,
323 vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB],
324 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB]));
325
326 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO,
327 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ],
328 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ]));
329
330 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO,
331 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE],
332 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE]));
333
334 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO,
335 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ],
336 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ]));
337
338 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO,
339 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE],
340 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE]));
341
342 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO,
343 vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB],
344 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB]));
345
346 /* Add extended stats nvlist to main nvlist */
347 fnvlist_add_nvlist(nv, ZPOOL_CONFIG_VDEV_STATS_EX, nvx);
348
349 kmem_free(vsx, sizeof (*vsx));
350 }
351
352 /*
353 * Generate the nvlist representing this vdev's config.
354 */
355 nvlist_t *
356 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
357 vdev_config_flag_t flags)
358 {
359 nvlist_t *nv = NULL;
360 nv = fnvlist_alloc();
361
362 fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
363 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
364 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id);
365 fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid);
366
367 if (vd->vdev_path != NULL)
368 fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path);
369
370 if (vd->vdev_devid != NULL)
371 fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
372
373 if (vd->vdev_physpath != NULL)
374 fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
375 vd->vdev_physpath);
376
377 if (vd->vdev_fru != NULL)
378 fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
379
380 if (vd->vdev_nparity != 0) {
381 ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
382 VDEV_TYPE_RAIDZ) == 0);
383
384 /*
385 * Make sure someone hasn't managed to sneak a fancy new vdev
386 * into a crufty old storage pool.
387 */
388 ASSERT(vd->vdev_nparity == 1 ||
389 (vd->vdev_nparity <= 2 &&
390 spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
391 (vd->vdev_nparity <= 3 &&
392 spa_version(spa) >= SPA_VERSION_RAIDZ3));
393
394 /*
395 * Note that we'll add the nparity tag even on storage pools
396 * that only support a single parity device -- older software
397 * will just ignore it.
398 */
399 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity);
400 }
401
402 if (vd->vdev_wholedisk != -1ULL)
403 fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
404 vd->vdev_wholedisk);
405
406 if (vd->vdev_not_present)
407 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
408
409 if (vd->vdev_isspare)
410 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
411
412 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
413 vd == vd->vdev_top) {
414 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
415 vd->vdev_ms_array);
416 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
417 vd->vdev_ms_shift);
418 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
419 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
420 vd->vdev_asize);
421 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
422 if (vd->vdev_removing)
423 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
424 vd->vdev_removing);
425 }
426
427 if (vd->vdev_dtl_sm != NULL) {
428 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
429 space_map_object(vd->vdev_dtl_sm));
430 }
431
432 if (vd->vdev_crtxg)
433 fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
434
435 if (flags & VDEV_CONFIG_MOS) {
436 if (vd->vdev_leaf_zap != 0) {
437 ASSERT(vd->vdev_ops->vdev_op_leaf);
438 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP,
439 vd->vdev_leaf_zap);
440 }
441
442 if (vd->vdev_top_zap != 0) {
443 ASSERT(vd == vd->vdev_top);
444 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
445 vd->vdev_top_zap);
446 }
447 }
448
449 if (getstats) {
450 pool_scan_stat_t ps;
451
452 vdev_config_generate_stats(vd, nv);
453
454 /* provide either current or previous scan information */
455 if (spa_scan_get_stats(spa, &ps) == 0) {
456 fnvlist_add_uint64_array(nv,
457 ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
458 sizeof (pool_scan_stat_t) / sizeof (uint64_t));
459 }
460 }
461
462 if (!vd->vdev_ops->vdev_op_leaf) {
463 nvlist_t **child;
464 int c, idx;
465
466 ASSERT(!vd->vdev_ishole);
467
468 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
469 KM_SLEEP);
470
471 for (c = 0, idx = 0; c < vd->vdev_children; c++) {
472 vdev_t *cvd = vd->vdev_child[c];
473
474 /*
475 * If we're generating an nvlist of removing
476 * vdevs then skip over any device which is
477 * not being removed.
478 */
479 if ((flags & VDEV_CONFIG_REMOVING) &&
480 !cvd->vdev_removing)
481 continue;
482
483 child[idx++] = vdev_config_generate(spa, cvd,
484 getstats, flags);
485 }
486
487 if (idx) {
488 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
489 child, idx);
490 }
491
492 for (c = 0; c < idx; c++)
493 nvlist_free(child[c]);
494
495 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
496
497 } else {
498 const char *aux = NULL;
499
500 if (vd->vdev_offline && !vd->vdev_tmpoffline)
501 fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE);
502 if (vd->vdev_resilver_txg != 0)
503 fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
504 vd->vdev_resilver_txg);
505 if (vd->vdev_faulted)
506 fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE);
507 if (vd->vdev_degraded)
508 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE);
509 if (vd->vdev_removed)
510 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE);
511 if (vd->vdev_unspare)
512 fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE);
513 if (vd->vdev_ishole)
514 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE);
515
516 switch (vd->vdev_stat.vs_aux) {
517 case VDEV_AUX_ERR_EXCEEDED:
518 aux = "err_exceeded";
519 break;
520
521 case VDEV_AUX_EXTERNAL:
522 aux = "external";
523 break;
524 }
525
526 if (aux != NULL)
527 fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux);
528
529 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
530 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
531 vd->vdev_orig_guid);
532 }
533 }
534
535 return (nv);
536 }
537
538 /*
539 * Generate a view of the top-level vdevs. If we currently have holes
540 * in the namespace, then generate an array which contains a list of holey
541 * vdevs. Additionally, add the number of top-level children that currently
542 * exist.
543 */
544 void
545 vdev_top_config_generate(spa_t *spa, nvlist_t *config)
546 {
547 vdev_t *rvd = spa->spa_root_vdev;
548 uint64_t *array;
549 uint_t c, idx;
550
551 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
552
553 for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
554 vdev_t *tvd = rvd->vdev_child[c];
555
556 if (tvd->vdev_ishole)
557 array[idx++] = c;
558 }
559
560 if (idx) {
561 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
562 array, idx) == 0);
563 }
564
565 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
566 rvd->vdev_children) == 0);
567
568 kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
569 }
570
571 /*
572 * Returns the configuration from the label of the given vdev. For vdevs
573 * which don't have a txg value stored on their label (i.e. spares/cache)
574 * or have not been completely initialized (txg = 0) just return
575 * the configuration from the first valid label we find. Otherwise,
576 * find the most up-to-date label that does not exceed the specified
577 * 'txg' value.
578 */
579 nvlist_t *
580 vdev_label_read_config(vdev_t *vd, uint64_t txg)
581 {
582 spa_t *spa = vd->vdev_spa;
583 nvlist_t *config = NULL;
584 vdev_phys_t *vp;
585 zio_t *zio;
586 uint64_t best_txg = 0;
587 int error = 0;
588 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
589 ZIO_FLAG_SPECULATIVE;
590 int l;
591
592 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
593
594 if (!vdev_readable(vd))
595 return (NULL);
596
597 vp = zio_buf_alloc(sizeof (vdev_phys_t));
598
599 retry:
600 for (l = 0; l < VDEV_LABELS; l++) {
601 nvlist_t *label = NULL;
602
603 zio = zio_root(spa, NULL, NULL, flags);
604
605 vdev_label_read(zio, vd, l, vp,
606 offsetof(vdev_label_t, vl_vdev_phys),
607 sizeof (vdev_phys_t), NULL, NULL, flags);
608
609 if (zio_wait(zio) == 0 &&
610 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
611 &label, 0) == 0) {
612 uint64_t label_txg = 0;
613
614 /*
615 * Auxiliary vdevs won't have txg values in their
616 * labels and newly added vdevs may not have been
617 * completely initialized so just return the
618 * configuration from the first valid label we
619 * encounter.
620 */
621 error = nvlist_lookup_uint64(label,
622 ZPOOL_CONFIG_POOL_TXG, &label_txg);
623 if ((error || label_txg == 0) && !config) {
624 config = label;
625 break;
626 } else if (label_txg <= txg && label_txg > best_txg) {
627 best_txg = label_txg;
628 nvlist_free(config);
629 config = fnvlist_dup(label);
630 }
631 }
632
633 if (label != NULL) {
634 nvlist_free(label);
635 label = NULL;
636 }
637 }
638
639 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
640 flags |= ZIO_FLAG_TRYHARD;
641 goto retry;
642 }
643
644 zio_buf_free(vp, sizeof (vdev_phys_t));
645
646 return (config);
647 }
648
649 /*
650 * Determine if a device is in use. The 'spare_guid' parameter will be filled
651 * in with the device guid if this spare is active elsewhere on the system.
652 */
653 static boolean_t
654 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
655 uint64_t *spare_guid, uint64_t *l2cache_guid)
656 {
657 spa_t *spa = vd->vdev_spa;
658 uint64_t state, pool_guid, device_guid, txg, spare_pool;
659 uint64_t vdtxg = 0;
660 nvlist_t *label;
661
662 if (spare_guid)
663 *spare_guid = 0ULL;
664 if (l2cache_guid)
665 *l2cache_guid = 0ULL;
666
667 /*
668 * Read the label, if any, and perform some basic sanity checks.
669 */
670 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
671 return (B_FALSE);
672
673 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
674 &vdtxg);
675
676 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
677 &state) != 0 ||
678 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
679 &device_guid) != 0) {
680 nvlist_free(label);
681 return (B_FALSE);
682 }
683
684 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
685 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
686 &pool_guid) != 0 ||
687 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
688 &txg) != 0)) {
689 nvlist_free(label);
690 return (B_FALSE);
691 }
692
693 nvlist_free(label);
694
695 /*
696 * Check to see if this device indeed belongs to the pool it claims to
697 * be a part of. The only way this is allowed is if the device is a hot
698 * spare (which we check for later on).
699 */
700 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
701 !spa_guid_exists(pool_guid, device_guid) &&
702 !spa_spare_exists(device_guid, NULL, NULL) &&
703 !spa_l2cache_exists(device_guid, NULL))
704 return (B_FALSE);
705
706 /*
707 * If the transaction group is zero, then this an initialized (but
708 * unused) label. This is only an error if the create transaction
709 * on-disk is the same as the one we're using now, in which case the
710 * user has attempted to add the same vdev multiple times in the same
711 * transaction.
712 */
713 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
714 txg == 0 && vdtxg == crtxg)
715 return (B_TRUE);
716
717 /*
718 * Check to see if this is a spare device. We do an explicit check for
719 * spa_has_spare() here because it may be on our pending list of spares
720 * to add. We also check if it is an l2cache device.
721 */
722 if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
723 spa_has_spare(spa, device_guid)) {
724 if (spare_guid)
725 *spare_guid = device_guid;
726
727 switch (reason) {
728 case VDEV_LABEL_CREATE:
729 case VDEV_LABEL_L2CACHE:
730 return (B_TRUE);
731
732 case VDEV_LABEL_REPLACE:
733 return (!spa_has_spare(spa, device_guid) ||
734 spare_pool != 0ULL);
735
736 case VDEV_LABEL_SPARE:
737 return (spa_has_spare(spa, device_guid));
738 default:
739 break;
740 }
741 }
742
743 /*
744 * Check to see if this is an l2cache device.
745 */
746 if (spa_l2cache_exists(device_guid, NULL))
747 return (B_TRUE);
748
749 /*
750 * We can't rely on a pool's state if it's been imported
751 * read-only. Instead we look to see if the pools is marked
752 * read-only in the namespace and set the state to active.
753 */
754 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
755 (spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
756 spa_mode(spa) == FREAD)
757 state = POOL_STATE_ACTIVE;
758
759 /*
760 * If the device is marked ACTIVE, then this device is in use by another
761 * pool on the system.
762 */
763 return (state == POOL_STATE_ACTIVE);
764 }
765
766 /*
767 * Initialize a vdev label. We check to make sure each leaf device is not in
768 * use, and writable. We put down an initial label which we will later
769 * overwrite with a complete label. Note that it's important to do this
770 * sequentially, not in parallel, so that we catch cases of multiple use of the
771 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
772 * itself.
773 */
774 int
775 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
776 {
777 spa_t *spa = vd->vdev_spa;
778 nvlist_t *label;
779 vdev_phys_t *vp;
780 char *pad2;
781 uberblock_t *ub;
782 zio_t *zio;
783 char *buf;
784 size_t buflen;
785 int error;
786 uint64_t spare_guid = 0, l2cache_guid = 0;
787 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
788 int c, l;
789 vdev_t *pvd;
790
791 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
792
793 for (c = 0; c < vd->vdev_children; c++)
794 if ((error = vdev_label_init(vd->vdev_child[c],
795 crtxg, reason)) != 0)
796 return (error);
797
798 /* Track the creation time for this vdev */
799 vd->vdev_crtxg = crtxg;
800
801 if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa))
802 return (0);
803
804 /*
805 * Dead vdevs cannot be initialized.
806 */
807 if (vdev_is_dead(vd))
808 return (SET_ERROR(EIO));
809
810 /*
811 * Determine if the vdev is in use.
812 */
813 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
814 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
815 return (SET_ERROR(EBUSY));
816
817 /*
818 * If this is a request to add or replace a spare or l2cache device
819 * that is in use elsewhere on the system, then we must update the
820 * guid (which was initialized to a random value) to reflect the
821 * actual GUID (which is shared between multiple pools).
822 */
823 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
824 spare_guid != 0ULL) {
825 uint64_t guid_delta = spare_guid - vd->vdev_guid;
826
827 vd->vdev_guid += guid_delta;
828
829 for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
830 pvd->vdev_guid_sum += guid_delta;
831
832 /*
833 * If this is a replacement, then we want to fallthrough to the
834 * rest of the code. If we're adding a spare, then it's already
835 * labeled appropriately and we can just return.
836 */
837 if (reason == VDEV_LABEL_SPARE)
838 return (0);
839 ASSERT(reason == VDEV_LABEL_REPLACE ||
840 reason == VDEV_LABEL_SPLIT);
841 }
842
843 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
844 l2cache_guid != 0ULL) {
845 uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
846
847 vd->vdev_guid += guid_delta;
848
849 for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
850 pvd->vdev_guid_sum += guid_delta;
851
852 /*
853 * If this is a replacement, then we want to fallthrough to the
854 * rest of the code. If we're adding an l2cache, then it's
855 * already labeled appropriately and we can just return.
856 */
857 if (reason == VDEV_LABEL_L2CACHE)
858 return (0);
859 ASSERT(reason == VDEV_LABEL_REPLACE);
860 }
861
862 /*
863 * Initialize its label.
864 */
865 vp = zio_buf_alloc(sizeof (vdev_phys_t));
866 bzero(vp, sizeof (vdev_phys_t));
867
868 /*
869 * Generate a label describing the pool and our top-level vdev.
870 * We mark it as being from txg 0 to indicate that it's not
871 * really part of an active pool just yet. The labels will
872 * be written again with a meaningful txg by spa_sync().
873 */
874 if (reason == VDEV_LABEL_SPARE ||
875 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
876 /*
877 * For inactive hot spares, we generate a special label that
878 * identifies as a mutually shared hot spare. We write the
879 * label if we are adding a hot spare, or if we are removing an
880 * active hot spare (in which case we want to revert the
881 * labels).
882 */
883 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
884
885 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
886 spa_version(spa)) == 0);
887 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
888 POOL_STATE_SPARE) == 0);
889 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
890 vd->vdev_guid) == 0);
891 } else if (reason == VDEV_LABEL_L2CACHE ||
892 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
893 /*
894 * For level 2 ARC devices, add a special label.
895 */
896 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
897
898 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
899 spa_version(spa)) == 0);
900 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
901 POOL_STATE_L2CACHE) == 0);
902 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
903 vd->vdev_guid) == 0);
904 } else {
905 uint64_t txg = 0ULL;
906
907 if (reason == VDEV_LABEL_SPLIT)
908 txg = spa->spa_uberblock.ub_txg;
909 label = spa_config_generate(spa, vd, txg, B_FALSE);
910
911 /*
912 * Add our creation time. This allows us to detect multiple
913 * vdev uses as described above, and automatically expires if we
914 * fail.
915 */
916 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
917 crtxg) == 0);
918 }
919
920 buf = vp->vp_nvlist;
921 buflen = sizeof (vp->vp_nvlist);
922
923 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
924 if (error != 0) {
925 nvlist_free(label);
926 zio_buf_free(vp, sizeof (vdev_phys_t));
927 /* EFAULT means nvlist_pack ran out of room */
928 return (error == EFAULT ? ENAMETOOLONG : EINVAL);
929 }
930
931 /*
932 * Initialize uberblock template.
933 */
934 ub = zio_buf_alloc(VDEV_UBERBLOCK_RING);
935 bzero(ub, VDEV_UBERBLOCK_RING);
936 *ub = spa->spa_uberblock;
937 ub->ub_txg = 0;
938
939 /* Initialize the 2nd padding area. */
940 pad2 = zio_buf_alloc(VDEV_PAD_SIZE);
941 bzero(pad2, VDEV_PAD_SIZE);
942
943 /*
944 * Write everything in parallel.
945 */
946 retry:
947 zio = zio_root(spa, NULL, NULL, flags);
948
949 for (l = 0; l < VDEV_LABELS; l++) {
950
951 vdev_label_write(zio, vd, l, vp,
952 offsetof(vdev_label_t, vl_vdev_phys),
953 sizeof (vdev_phys_t), NULL, NULL, flags);
954
955 /*
956 * Skip the 1st padding area.
957 * Zero out the 2nd padding area where it might have
958 * left over data from previous filesystem format.
959 */
960 vdev_label_write(zio, vd, l, pad2,
961 offsetof(vdev_label_t, vl_pad2),
962 VDEV_PAD_SIZE, NULL, NULL, flags);
963
964 vdev_label_write(zio, vd, l, ub,
965 offsetof(vdev_label_t, vl_uberblock),
966 VDEV_UBERBLOCK_RING, NULL, NULL, flags);
967 }
968
969 error = zio_wait(zio);
970
971 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
972 flags |= ZIO_FLAG_TRYHARD;
973 goto retry;
974 }
975
976 nvlist_free(label);
977 zio_buf_free(pad2, VDEV_PAD_SIZE);
978 zio_buf_free(ub, VDEV_UBERBLOCK_RING);
979 zio_buf_free(vp, sizeof (vdev_phys_t));
980
981 /*
982 * If this vdev hasn't been previously identified as a spare, then we
983 * mark it as such only if a) we are labeling it as a spare, or b) it
984 * exists as a spare elsewhere in the system. Do the same for
985 * level 2 ARC devices.
986 */
987 if (error == 0 && !vd->vdev_isspare &&
988 (reason == VDEV_LABEL_SPARE ||
989 spa_spare_exists(vd->vdev_guid, NULL, NULL)))
990 spa_spare_add(vd);
991
992 if (error == 0 && !vd->vdev_isl2cache &&
993 (reason == VDEV_LABEL_L2CACHE ||
994 spa_l2cache_exists(vd->vdev_guid, NULL)))
995 spa_l2cache_add(vd);
996
997 return (error);
998 }
999
1000 /*
1001 * ==========================================================================
1002 * uberblock load/sync
1003 * ==========================================================================
1004 */
1005
1006 /*
1007 * Consider the following situation: txg is safely synced to disk. We've
1008 * written the first uberblock for txg + 1, and then we lose power. When we
1009 * come back up, we fail to see the uberblock for txg + 1 because, say,
1010 * it was on a mirrored device and the replica to which we wrote txg + 1
1011 * is now offline. If we then make some changes and sync txg + 1, and then
1012 * the missing replica comes back, then for a few seconds we'll have two
1013 * conflicting uberblocks on disk with the same txg. The solution is simple:
1014 * among uberblocks with equal txg, choose the one with the latest timestamp.
1015 */
1016 static int
1017 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
1018 {
1019 if (ub1->ub_txg < ub2->ub_txg)
1020 return (-1);
1021 if (ub1->ub_txg > ub2->ub_txg)
1022 return (1);
1023
1024 if (ub1->ub_timestamp < ub2->ub_timestamp)
1025 return (-1);
1026 if (ub1->ub_timestamp > ub2->ub_timestamp)
1027 return (1);
1028
1029 return (0);
1030 }
1031
1032 struct ubl_cbdata {
1033 uberblock_t *ubl_ubbest; /* Best uberblock */
1034 vdev_t *ubl_vd; /* vdev associated with the above */
1035 };
1036
1037 static void
1038 vdev_uberblock_load_done(zio_t *zio)
1039 {
1040 vdev_t *vd = zio->io_vd;
1041 spa_t *spa = zio->io_spa;
1042 zio_t *rio = zio->io_private;
1043 uberblock_t *ub = zio->io_data;
1044 struct ubl_cbdata *cbp = rio->io_private;
1045
1046 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
1047
1048 if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
1049 mutex_enter(&rio->io_lock);
1050 if (ub->ub_txg <= spa->spa_load_max_txg &&
1051 vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
1052 /*
1053 * Keep track of the vdev in which this uberblock
1054 * was found. We will use this information later
1055 * to obtain the config nvlist associated with
1056 * this uberblock.
1057 */
1058 *cbp->ubl_ubbest = *ub;
1059 cbp->ubl_vd = vd;
1060 }
1061 mutex_exit(&rio->io_lock);
1062 }
1063
1064 zio_buf_free(zio->io_data, zio->io_size);
1065 }
1066
1067 static void
1068 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
1069 struct ubl_cbdata *cbp)
1070 {
1071 int c, l, n;
1072
1073 for (c = 0; c < vd->vdev_children; c++)
1074 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
1075
1076 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1077 for (l = 0; l < VDEV_LABELS; l++) {
1078 for (n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1079 vdev_label_read(zio, vd, l,
1080 zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)),
1081 VDEV_UBERBLOCK_OFFSET(vd, n),
1082 VDEV_UBERBLOCK_SIZE(vd),
1083 vdev_uberblock_load_done, zio, flags);
1084 }
1085 }
1086 }
1087 }
1088
1089 /*
1090 * Reads the 'best' uberblock from disk along with its associated
1091 * configuration. First, we read the uberblock array of each label of each
1092 * vdev, keeping track of the uberblock with the highest txg in each array.
1093 * Then, we read the configuration from the same vdev as the best uberblock.
1094 */
1095 void
1096 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
1097 {
1098 zio_t *zio;
1099 spa_t *spa = rvd->vdev_spa;
1100 struct ubl_cbdata cb;
1101 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1102 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
1103
1104 ASSERT(ub);
1105 ASSERT(config);
1106
1107 bzero(ub, sizeof (uberblock_t));
1108 *config = NULL;
1109
1110 cb.ubl_ubbest = ub;
1111 cb.ubl_vd = NULL;
1112
1113 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1114 zio = zio_root(spa, NULL, &cb, flags);
1115 vdev_uberblock_load_impl(zio, rvd, flags, &cb);
1116 (void) zio_wait(zio);
1117
1118 /*
1119 * It's possible that the best uberblock was discovered on a label
1120 * that has a configuration which was written in a future txg.
1121 * Search all labels on this vdev to find the configuration that
1122 * matches the txg for our uberblock.
1123 */
1124 if (cb.ubl_vd != NULL)
1125 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
1126 spa_config_exit(spa, SCL_ALL, FTAG);
1127 }
1128
1129 /*
1130 * On success, increment root zio's count of good writes.
1131 * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
1132 */
1133 static void
1134 vdev_uberblock_sync_done(zio_t *zio)
1135 {
1136 uint64_t *good_writes = zio->io_private;
1137
1138 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
1139 atomic_inc_64(good_writes);
1140 }
1141
1142 /*
1143 * Write the uberblock to all labels of all leaves of the specified vdev.
1144 */
1145 static void
1146 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags)
1147 {
1148 uberblock_t *ubbuf;
1149 int c, l, n;
1150
1151 for (c = 0; c < vd->vdev_children; c++)
1152 vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags);
1153
1154 if (!vd->vdev_ops->vdev_op_leaf)
1155 return;
1156
1157 if (!vdev_writeable(vd))
1158 return;
1159
1160 n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);
1161
1162 ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
1163 bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
1164 *ubbuf = *ub;
1165
1166 for (l = 0; l < VDEV_LABELS; l++)
1167 vdev_label_write(zio, vd, l, ubbuf,
1168 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1169 vdev_uberblock_sync_done, zio->io_private,
1170 flags | ZIO_FLAG_DONT_PROPAGATE);
1171
1172 zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
1173 }
1174
1175 /* Sync the uberblocks to all vdevs in svd[] */
1176 int
1177 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1178 {
1179 spa_t *spa = svd[0]->vdev_spa;
1180 zio_t *zio;
1181 uint64_t good_writes = 0;
1182 int v;
1183
1184 zio = zio_root(spa, NULL, &good_writes, flags);
1185
1186 for (v = 0; v < svdcount; v++)
1187 vdev_uberblock_sync(zio, ub, svd[v], flags);
1188
1189 (void) zio_wait(zio);
1190
1191 /*
1192 * Flush the uberblocks to disk. This ensures that the odd labels
1193 * are no longer needed (because the new uberblocks and the even
1194 * labels are safely on disk), so it is safe to overwrite them.
1195 */
1196 zio = zio_root(spa, NULL, NULL, flags);
1197
1198 for (v = 0; v < svdcount; v++)
1199 zio_flush(zio, svd[v]);
1200
1201 (void) zio_wait(zio);
1202
1203 return (good_writes >= 1 ? 0 : EIO);
1204 }
1205
1206 /*
1207 * On success, increment the count of good writes for our top-level vdev.
1208 */
1209 static void
1210 vdev_label_sync_done(zio_t *zio)
1211 {
1212 uint64_t *good_writes = zio->io_private;
1213
1214 if (zio->io_error == 0)
1215 atomic_inc_64(good_writes);
1216 }
1217
1218 /*
1219 * If there weren't enough good writes, indicate failure to the parent.
1220 */
1221 static void
1222 vdev_label_sync_top_done(zio_t *zio)
1223 {
1224 uint64_t *good_writes = zio->io_private;
1225
1226 if (*good_writes == 0)
1227 zio->io_error = SET_ERROR(EIO);
1228
1229 kmem_free(good_writes, sizeof (uint64_t));
1230 }
1231
1232 /*
1233 * We ignore errors for log and cache devices, simply free the private data.
1234 */
1235 static void
1236 vdev_label_sync_ignore_done(zio_t *zio)
1237 {
1238 kmem_free(zio->io_private, sizeof (uint64_t));
1239 }
1240
1241 /*
1242 * Write all even or odd labels to all leaves of the specified vdev.
1243 */
1244 static void
1245 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags)
1246 {
1247 nvlist_t *label;
1248 vdev_phys_t *vp;
1249 char *buf;
1250 size_t buflen;
1251 int c;
1252
1253 for (c = 0; c < vd->vdev_children; c++)
1254 vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags);
1255
1256 if (!vd->vdev_ops->vdev_op_leaf)
1257 return;
1258
1259 if (!vdev_writeable(vd))
1260 return;
1261
1262 /*
1263 * Generate a label describing the top-level config to which we belong.
1264 */
1265 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1266
1267 vp = zio_buf_alloc(sizeof (vdev_phys_t));
1268 bzero(vp, sizeof (vdev_phys_t));
1269
1270 buf = vp->vp_nvlist;
1271 buflen = sizeof (vp->vp_nvlist);
1272
1273 if (!nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP)) {
1274 for (; l < VDEV_LABELS; l += 2) {
1275 vdev_label_write(zio, vd, l, vp,
1276 offsetof(vdev_label_t, vl_vdev_phys),
1277 sizeof (vdev_phys_t),
1278 vdev_label_sync_done, zio->io_private,
1279 flags | ZIO_FLAG_DONT_PROPAGATE);
1280 }
1281 }
1282
1283 zio_buf_free(vp, sizeof (vdev_phys_t));
1284 nvlist_free(label);
1285 }
1286
1287 int
1288 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1289 {
1290 list_t *dl = &spa->spa_config_dirty_list;
1291 vdev_t *vd;
1292 zio_t *zio;
1293 int error;
1294
1295 /*
1296 * Write the new labels to disk.
1297 */
1298 zio = zio_root(spa, NULL, NULL, flags);
1299
1300 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1301 uint64_t *good_writes;
1302 zio_t *vio;
1303
1304 ASSERT(!vd->vdev_ishole);
1305
1306 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
1307 vio = zio_null(zio, spa, NULL,
1308 (vd->vdev_islog || vd->vdev_aux != NULL) ?
1309 vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1310 good_writes, flags);
1311 vdev_label_sync(vio, vd, l, txg, flags);
1312 zio_nowait(vio);
1313 }
1314
1315 error = zio_wait(zio);
1316
1317 /*
1318 * Flush the new labels to disk.
1319 */
1320 zio = zio_root(spa, NULL, NULL, flags);
1321
1322 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1323 zio_flush(zio, vd);
1324
1325 (void) zio_wait(zio);
1326
1327 return (error);
1328 }
1329
1330 /*
1331 * Sync the uberblock and any changes to the vdev configuration.
1332 *
1333 * The order of operations is carefully crafted to ensure that
1334 * if the system panics or loses power at any time, the state on disk
1335 * is still transactionally consistent. The in-line comments below
1336 * describe the failure semantics at each stage.
1337 *
1338 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1339 * at any time, you can just call it again, and it will resume its work.
1340 */
1341 int
1342 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg)
1343 {
1344 spa_t *spa = svd[0]->vdev_spa;
1345 uberblock_t *ub = &spa->spa_uberblock;
1346 vdev_t *vd;
1347 zio_t *zio;
1348 int error = 0;
1349 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1350
1351 retry:
1352 /*
1353 * Normally, we don't want to try too hard to write every label and
1354 * uberblock. If there is a flaky disk, we don't want the rest of the
1355 * sync process to block while we retry. But if we can't write a
1356 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1357 * bailing out and declaring the pool faulted.
1358 */
1359 if (error != 0) {
1360 if ((flags & ZIO_FLAG_TRYHARD) != 0)
1361 return (error);
1362 flags |= ZIO_FLAG_TRYHARD;
1363 }
1364
1365 ASSERT(ub->ub_txg <= txg);
1366
1367 /*
1368 * If this isn't a resync due to I/O errors,
1369 * and nothing changed in this transaction group,
1370 * and the vdev configuration hasn't changed,
1371 * then there's nothing to do.
1372 */
1373 if (ub->ub_txg < txg &&
1374 uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE &&
1375 list_is_empty(&spa->spa_config_dirty_list))
1376 return (0);
1377
1378 if (txg > spa_freeze_txg(spa))
1379 return (0);
1380
1381 ASSERT(txg <= spa->spa_final_txg);
1382
1383 /*
1384 * Flush the write cache of every disk that's been written to
1385 * in this transaction group. This ensures that all blocks
1386 * written in this txg will be committed to stable storage
1387 * before any uberblock that references them.
1388 */
1389 zio = zio_root(spa, NULL, NULL, flags);
1390
1391 for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
1392 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1393 zio_flush(zio, vd);
1394
1395 (void) zio_wait(zio);
1396
1397 /*
1398 * Sync out the even labels (L0, L2) for every dirty vdev. If the
1399 * system dies in the middle of this process, that's OK: all of the
1400 * even labels that made it to disk will be newer than any uberblock,
1401 * and will therefore be considered invalid. The odd labels (L1, L3),
1402 * which have not yet been touched, will still be valid. We flush
1403 * the new labels to disk to ensure that all even-label updates
1404 * are committed to stable storage before the uberblock update.
1405 */
1406 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0)
1407 goto retry;
1408
1409 /*
1410 * Sync the uberblocks to all vdevs in svd[].
1411 * If the system dies in the middle of this step, there are two cases
1412 * to consider, and the on-disk state is consistent either way:
1413 *
1414 * (1) If none of the new uberblocks made it to disk, then the
1415 * previous uberblock will be the newest, and the odd labels
1416 * (which had not yet been touched) will be valid with respect
1417 * to that uberblock.
1418 *
1419 * (2) If one or more new uberblocks made it to disk, then they
1420 * will be the newest, and the even labels (which had all
1421 * been successfully committed) will be valid with respect
1422 * to the new uberblocks.
1423 */
1424 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0)
1425 goto retry;
1426
1427 /*
1428 * Sync out odd labels for every dirty vdev. If the system dies
1429 * in the middle of this process, the even labels and the new
1430 * uberblocks will suffice to open the pool. The next time
1431 * the pool is opened, the first thing we'll do -- before any
1432 * user data is modified -- is mark every vdev dirty so that
1433 * all labels will be brought up to date. We flush the new labels
1434 * to disk to ensure that all odd-label updates are committed to
1435 * stable storage before the next transaction group begins.
1436 */
1437 if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0)
1438 goto retry;
1439
1440 return (0);
1441 }