]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev_label.c
Fix ENXIO from spa_ld_verify_logs() in ztest
[mirror_zfs.git] / module / zfs / vdev_label.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
26 * Copyright (c) 2017, Intel Corporation.
27 */
28
29 /*
30 * Virtual Device Labels
31 * ---------------------
32 *
33 * The vdev label serves several distinct purposes:
34 *
35 * 1. Uniquely identify this device as part of a ZFS pool and confirm its
36 * identity within the pool.
37 *
38 * 2. Verify that all the devices given in a configuration are present
39 * within the pool.
40 *
41 * 3. Determine the uberblock for the pool.
42 *
43 * 4. In case of an import operation, determine the configuration of the
44 * toplevel vdev of which it is a part.
45 *
46 * 5. If an import operation cannot find all the devices in the pool,
47 * provide enough information to the administrator to determine which
48 * devices are missing.
49 *
50 * It is important to note that while the kernel is responsible for writing the
51 * label, it only consumes the information in the first three cases. The
52 * latter information is only consumed in userland when determining the
53 * configuration to import a pool.
54 *
55 *
56 * Label Organization
57 * ------------------
58 *
59 * Before describing the contents of the label, it's important to understand how
60 * the labels are written and updated with respect to the uberblock.
61 *
62 * When the pool configuration is altered, either because it was newly created
63 * or a device was added, we want to update all the labels such that we can deal
64 * with fatal failure at any point. To this end, each disk has two labels which
65 * are updated before and after the uberblock is synced. Assuming we have
66 * labels and an uberblock with the following transaction groups:
67 *
68 * L1 UB L2
69 * +------+ +------+ +------+
70 * | | | | | |
71 * | t10 | | t10 | | t10 |
72 * | | | | | |
73 * +------+ +------+ +------+
74 *
75 * In this stable state, the labels and the uberblock were all updated within
76 * the same transaction group (10). Each label is mirrored and checksummed, so
77 * that we can detect when we fail partway through writing the label.
78 *
79 * In order to identify which labels are valid, the labels are written in the
80 * following manner:
81 *
82 * 1. For each vdev, update 'L1' to the new label
83 * 2. Update the uberblock
84 * 3. For each vdev, update 'L2' to the new label
85 *
86 * Given arbitrary failure, we can determine the correct label to use based on
87 * the transaction group. If we fail after updating L1 but before updating the
88 * UB, we will notice that L1's transaction group is greater than the uberblock,
89 * so L2 must be valid. If we fail after writing the uberblock but before
90 * writing L2, we will notice that L2's transaction group is less than L1, and
91 * therefore L1 is valid.
92 *
93 * Another added complexity is that not every label is updated when the config
94 * is synced. If we add a single device, we do not want to have to re-write
95 * every label for every device in the pool. This means that both L1 and L2 may
96 * be older than the pool uberblock, because the necessary information is stored
97 * on another vdev.
98 *
99 *
100 * On-disk Format
101 * --------------
102 *
103 * The vdev label consists of two distinct parts, and is wrapped within the
104 * vdev_label_t structure. The label includes 8k of padding to permit legacy
105 * VTOC disk labels, but is otherwise ignored.
106 *
107 * The first half of the label is a packed nvlist which contains pool wide
108 * properties, per-vdev properties, and configuration information. It is
109 * described in more detail below.
110 *
111 * The latter half of the label consists of a redundant array of uberblocks.
112 * These uberblocks are updated whenever a transaction group is committed,
113 * or when the configuration is updated. When a pool is loaded, we scan each
114 * vdev for the 'best' uberblock.
115 *
116 *
117 * Configuration Information
118 * -------------------------
119 *
120 * The nvlist describing the pool and vdev contains the following elements:
121 *
122 * version ZFS on-disk version
123 * name Pool name
124 * state Pool state
125 * txg Transaction group in which this label was written
126 * pool_guid Unique identifier for this pool
127 * vdev_tree An nvlist describing vdev tree.
128 * features_for_read
129 * An nvlist of the features necessary for reading the MOS.
130 *
131 * Each leaf device label also contains the following:
132 *
133 * top_guid Unique ID for top-level vdev in which this is contained
134 * guid Unique ID for the leaf vdev
135 *
136 * The 'vs' configuration follows the format described in 'spa_config.c'.
137 */
138
139 #include <sys/zfs_context.h>
140 #include <sys/spa.h>
141 #include <sys/spa_impl.h>
142 #include <sys/dmu.h>
143 #include <sys/zap.h>
144 #include <sys/vdev.h>
145 #include <sys/vdev_impl.h>
146 #include <sys/uberblock_impl.h>
147 #include <sys/metaslab.h>
148 #include <sys/metaslab_impl.h>
149 #include <sys/zio.h>
150 #include <sys/dsl_scan.h>
151 #include <sys/abd.h>
152 #include <sys/fs/zfs.h>
153
154 /*
155 * Basic routines to read and write from a vdev label.
156 * Used throughout the rest of this file.
157 */
158 uint64_t
159 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
160 {
161 ASSERT(offset < sizeof (vdev_label_t));
162 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
163
164 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
165 0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
166 }
167
168 /*
169 * Returns back the vdev label associated with the passed in offset.
170 */
171 int
172 vdev_label_number(uint64_t psize, uint64_t offset)
173 {
174 int l;
175
176 if (offset >= psize - VDEV_LABEL_END_SIZE) {
177 offset -= psize - VDEV_LABEL_END_SIZE;
178 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
179 }
180 l = offset / sizeof (vdev_label_t);
181 return (l < VDEV_LABELS ? l : -1);
182 }
183
184 static void
185 vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
186 uint64_t size, zio_done_func_t *done, void *private, int flags)
187 {
188 ASSERT(
189 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
190 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
191 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
192
193 zio_nowait(zio_read_phys(zio, vd,
194 vdev_label_offset(vd->vdev_psize, l, offset),
195 size, buf, ZIO_CHECKSUM_LABEL, done, private,
196 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
197 }
198
199 void
200 vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
201 uint64_t size, zio_done_func_t *done, void *private, int flags)
202 {
203 ASSERT(
204 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
205 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
206 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
207
208 zio_nowait(zio_write_phys(zio, vd,
209 vdev_label_offset(vd->vdev_psize, l, offset),
210 size, buf, ZIO_CHECKSUM_LABEL, done, private,
211 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
212 }
213
214 /*
215 * Generate the nvlist representing this vdev's stats
216 */
217 void
218 vdev_config_generate_stats(vdev_t *vd, nvlist_t *nv)
219 {
220 nvlist_t *nvx;
221 vdev_stat_t *vs;
222 vdev_stat_ex_t *vsx;
223
224 vs = kmem_alloc(sizeof (*vs), KM_SLEEP);
225 vsx = kmem_alloc(sizeof (*vsx), KM_SLEEP);
226
227 vdev_get_stats_ex(vd, vs, vsx);
228 fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
229 (uint64_t *)vs, sizeof (*vs) / sizeof (uint64_t));
230
231 kmem_free(vs, sizeof (*vs));
232
233 /*
234 * Add extended stats into a special extended stats nvlist. This keeps
235 * all the extended stats nicely grouped together. The extended stats
236 * nvlist is then added to the main nvlist.
237 */
238 nvx = fnvlist_alloc();
239
240 /* ZIOs in flight to disk */
241 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE,
242 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_READ]);
243
244 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE,
245 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_WRITE]);
246
247 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE,
248 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_READ]);
249
250 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE,
251 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_WRITE]);
252
253 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE,
254 vsx->vsx_active_queue[ZIO_PRIORITY_SCRUB]);
255
256 /* ZIOs pending */
257 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE,
258 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_READ]);
259
260 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE,
261 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_WRITE]);
262
263 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE,
264 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_READ]);
265
266 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE,
267 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_WRITE]);
268
269 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE,
270 vsx->vsx_pend_queue[ZIO_PRIORITY_SCRUB]);
271
272 /* Histograms */
273 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO,
274 vsx->vsx_total_histo[ZIO_TYPE_READ],
275 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_READ]));
276
277 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO,
278 vsx->vsx_total_histo[ZIO_TYPE_WRITE],
279 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_WRITE]));
280
281 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO,
282 vsx->vsx_disk_histo[ZIO_TYPE_READ],
283 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_READ]));
284
285 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO,
286 vsx->vsx_disk_histo[ZIO_TYPE_WRITE],
287 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_WRITE]));
288
289 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO,
290 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ],
291 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ]));
292
293 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO,
294 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE],
295 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE]));
296
297 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO,
298 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ],
299 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ]));
300
301 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO,
302 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE],
303 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE]));
304
305 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO,
306 vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB],
307 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB]));
308
309 /* Request sizes */
310 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO,
311 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ],
312 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ]));
313
314 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO,
315 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE],
316 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE]));
317
318 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO,
319 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ],
320 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ]));
321
322 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO,
323 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE],
324 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE]));
325
326 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO,
327 vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB],
328 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB]));
329
330 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO,
331 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ],
332 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ]));
333
334 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO,
335 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE],
336 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE]));
337
338 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO,
339 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ],
340 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ]));
341
342 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO,
343 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE],
344 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE]));
345
346 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO,
347 vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB],
348 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB]));
349
350 /* Add extended stats nvlist to main nvlist */
351 fnvlist_add_nvlist(nv, ZPOOL_CONFIG_VDEV_STATS_EX, nvx);
352
353 fnvlist_free(nvx);
354 kmem_free(vsx, sizeof (*vsx));
355 }
356
357 static void
358 root_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl)
359 {
360 spa_t *spa = vd->vdev_spa;
361
362 if (vd != spa->spa_root_vdev)
363 return;
364
365 /* provide either current or previous scan information */
366 pool_scan_stat_t ps;
367 if (spa_scan_get_stats(spa, &ps) == 0) {
368 fnvlist_add_uint64_array(nvl,
369 ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
370 sizeof (pool_scan_stat_t) / sizeof (uint64_t));
371 }
372
373 pool_removal_stat_t prs;
374 if (spa_removal_get_stats(spa, &prs) == 0) {
375 fnvlist_add_uint64_array(nvl,
376 ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs,
377 sizeof (prs) / sizeof (uint64_t));
378 }
379
380 pool_checkpoint_stat_t pcs;
381 if (spa_checkpoint_get_stats(spa, &pcs) == 0) {
382 fnvlist_add_uint64_array(nvl,
383 ZPOOL_CONFIG_CHECKPOINT_STATS, (uint64_t *)&pcs,
384 sizeof (pcs) / sizeof (uint64_t));
385 }
386 }
387
388 /*
389 * Generate the nvlist representing this vdev's config.
390 */
391 nvlist_t *
392 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
393 vdev_config_flag_t flags)
394 {
395 nvlist_t *nv = NULL;
396 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
397
398 nv = fnvlist_alloc();
399
400 fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
401 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
402 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id);
403 fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid);
404
405 if (vd->vdev_path != NULL)
406 fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path);
407
408 if (vd->vdev_devid != NULL)
409 fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
410
411 if (vd->vdev_physpath != NULL)
412 fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
413 vd->vdev_physpath);
414
415 if (vd->vdev_enc_sysfs_path != NULL)
416 fnvlist_add_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
417 vd->vdev_enc_sysfs_path);
418
419 if (vd->vdev_fru != NULL)
420 fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
421
422 if (vd->vdev_nparity != 0) {
423 ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
424 VDEV_TYPE_RAIDZ) == 0);
425
426 /*
427 * Make sure someone hasn't managed to sneak a fancy new vdev
428 * into a crufty old storage pool.
429 */
430 ASSERT(vd->vdev_nparity == 1 ||
431 (vd->vdev_nparity <= 2 &&
432 spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
433 (vd->vdev_nparity <= 3 &&
434 spa_version(spa) >= SPA_VERSION_RAIDZ3));
435
436 /*
437 * Note that we'll add the nparity tag even on storage pools
438 * that only support a single parity device -- older software
439 * will just ignore it.
440 */
441 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity);
442 }
443
444 if (vd->vdev_wholedisk != -1ULL)
445 fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
446 vd->vdev_wholedisk);
447
448 if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING))
449 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
450
451 if (vd->vdev_isspare)
452 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
453
454 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
455 vd == vd->vdev_top) {
456 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
457 vd->vdev_ms_array);
458 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
459 vd->vdev_ms_shift);
460 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
461 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
462 vd->vdev_asize);
463 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
464 if (vd->vdev_removing) {
465 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
466 vd->vdev_removing);
467 }
468
469 /* zpool command expects alloc class data */
470 if (getstats && vd->vdev_alloc_bias != VDEV_BIAS_NONE) {
471 const char *bias = NULL;
472
473 switch (vd->vdev_alloc_bias) {
474 case VDEV_BIAS_LOG:
475 bias = VDEV_ALLOC_BIAS_LOG;
476 break;
477 case VDEV_BIAS_SPECIAL:
478 bias = VDEV_ALLOC_BIAS_SPECIAL;
479 break;
480 case VDEV_BIAS_DEDUP:
481 bias = VDEV_ALLOC_BIAS_DEDUP;
482 break;
483 default:
484 ASSERT3U(vd->vdev_alloc_bias, ==,
485 VDEV_BIAS_NONE);
486 }
487 fnvlist_add_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
488 bias);
489 }
490 }
491
492 if (vd->vdev_dtl_sm != NULL) {
493 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
494 space_map_object(vd->vdev_dtl_sm));
495 }
496
497 if (vic->vic_mapping_object != 0) {
498 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
499 vic->vic_mapping_object);
500 }
501
502 if (vic->vic_births_object != 0) {
503 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
504 vic->vic_births_object);
505 }
506
507 if (vic->vic_prev_indirect_vdev != UINT64_MAX) {
508 fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
509 vic->vic_prev_indirect_vdev);
510 }
511
512 if (vd->vdev_crtxg)
513 fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
514
515 if (flags & VDEV_CONFIG_MOS) {
516 if (vd->vdev_leaf_zap != 0) {
517 ASSERT(vd->vdev_ops->vdev_op_leaf);
518 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP,
519 vd->vdev_leaf_zap);
520 }
521
522 if (vd->vdev_top_zap != 0) {
523 ASSERT(vd == vd->vdev_top);
524 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
525 vd->vdev_top_zap);
526 }
527
528 if (vd->vdev_resilver_deferred) {
529 ASSERT(vd->vdev_ops->vdev_op_leaf);
530 ASSERT(spa->spa_resilver_deferred);
531 fnvlist_add_boolean(nv, ZPOOL_CONFIG_RESILVER_DEFER);
532 }
533 }
534
535 if (getstats) {
536 vdev_config_generate_stats(vd, nv);
537
538 root_vdev_actions_getprogress(vd, nv);
539
540 /*
541 * Note: this can be called from open context
542 * (spa_get_stats()), so we need the rwlock to prevent
543 * the mapping from being changed by condensing.
544 */
545 rw_enter(&vd->vdev_indirect_rwlock, RW_READER);
546 if (vd->vdev_indirect_mapping != NULL) {
547 ASSERT(vd->vdev_indirect_births != NULL);
548 vdev_indirect_mapping_t *vim =
549 vd->vdev_indirect_mapping;
550 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
551 vdev_indirect_mapping_size(vim));
552 }
553 rw_exit(&vd->vdev_indirect_rwlock);
554 if (vd->vdev_mg != NULL &&
555 vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) {
556 /*
557 * Compute approximately how much memory would be used
558 * for the indirect mapping if this device were to
559 * be removed.
560 *
561 * Note: If the frag metric is invalid, then not
562 * enough metaslabs have been converted to have
563 * histograms.
564 */
565 uint64_t seg_count = 0;
566 uint64_t to_alloc = vd->vdev_stat.vs_alloc;
567
568 /*
569 * There are the same number of allocated segments
570 * as free segments, so we will have at least one
571 * entry per free segment. However, small free
572 * segments (smaller than vdev_removal_max_span)
573 * will be combined with adjacent allocated segments
574 * as a single mapping.
575 */
576 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
577 if (1ULL << (i + 1) < vdev_removal_max_span) {
578 to_alloc +=
579 vd->vdev_mg->mg_histogram[i] <<
580 (i + 1);
581 } else {
582 seg_count +=
583 vd->vdev_mg->mg_histogram[i];
584 }
585 }
586
587 /*
588 * The maximum length of a mapping is
589 * zfs_remove_max_segment, so we need at least one entry
590 * per zfs_remove_max_segment of allocated data.
591 */
592 seg_count += to_alloc / zfs_remove_max_segment;
593
594 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
595 seg_count *
596 sizeof (vdev_indirect_mapping_entry_phys_t));
597 }
598 }
599
600 if (!vd->vdev_ops->vdev_op_leaf) {
601 nvlist_t **child;
602 int c, idx;
603
604 ASSERT(!vd->vdev_ishole);
605
606 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
607 KM_SLEEP);
608
609 for (c = 0, idx = 0; c < vd->vdev_children; c++) {
610 vdev_t *cvd = vd->vdev_child[c];
611
612 /*
613 * If we're generating an nvlist of removing
614 * vdevs then skip over any device which is
615 * not being removed.
616 */
617 if ((flags & VDEV_CONFIG_REMOVING) &&
618 !cvd->vdev_removing)
619 continue;
620
621 child[idx++] = vdev_config_generate(spa, cvd,
622 getstats, flags);
623 }
624
625 if (idx) {
626 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
627 child, idx);
628 }
629
630 for (c = 0; c < idx; c++)
631 nvlist_free(child[c]);
632
633 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
634
635 } else {
636 const char *aux = NULL;
637
638 if (vd->vdev_offline && !vd->vdev_tmpoffline)
639 fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE);
640 if (vd->vdev_resilver_txg != 0)
641 fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
642 vd->vdev_resilver_txg);
643 if (vd->vdev_faulted)
644 fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE);
645 if (vd->vdev_degraded)
646 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE);
647 if (vd->vdev_removed)
648 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE);
649 if (vd->vdev_unspare)
650 fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE);
651 if (vd->vdev_ishole)
652 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE);
653
654 /* Set the reason why we're FAULTED/DEGRADED. */
655 switch (vd->vdev_stat.vs_aux) {
656 case VDEV_AUX_ERR_EXCEEDED:
657 aux = "err_exceeded";
658 break;
659
660 case VDEV_AUX_EXTERNAL:
661 aux = "external";
662 break;
663 }
664
665 if (aux != NULL && !vd->vdev_tmpoffline) {
666 fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux);
667 } else {
668 /*
669 * We're healthy - clear any previous AUX_STATE values.
670 */
671 if (nvlist_exists(nv, ZPOOL_CONFIG_AUX_STATE))
672 nvlist_remove_all(nv, ZPOOL_CONFIG_AUX_STATE);
673 }
674
675 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
676 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
677 vd->vdev_orig_guid);
678 }
679 }
680
681 return (nv);
682 }
683
684 /*
685 * Generate a view of the top-level vdevs. If we currently have holes
686 * in the namespace, then generate an array which contains a list of holey
687 * vdevs. Additionally, add the number of top-level children that currently
688 * exist.
689 */
690 void
691 vdev_top_config_generate(spa_t *spa, nvlist_t *config)
692 {
693 vdev_t *rvd = spa->spa_root_vdev;
694 uint64_t *array;
695 uint_t c, idx;
696
697 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
698
699 for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
700 vdev_t *tvd = rvd->vdev_child[c];
701
702 if (tvd->vdev_ishole) {
703 array[idx++] = c;
704 }
705 }
706
707 if (idx) {
708 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
709 array, idx) == 0);
710 }
711
712 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
713 rvd->vdev_children) == 0);
714
715 kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
716 }
717
718 /*
719 * Returns the configuration from the label of the given vdev. For vdevs
720 * which don't have a txg value stored on their label (i.e. spares/cache)
721 * or have not been completely initialized (txg = 0) just return
722 * the configuration from the first valid label we find. Otherwise,
723 * find the most up-to-date label that does not exceed the specified
724 * 'txg' value.
725 */
726 nvlist_t *
727 vdev_label_read_config(vdev_t *vd, uint64_t txg)
728 {
729 spa_t *spa = vd->vdev_spa;
730 nvlist_t *config = NULL;
731 vdev_phys_t *vp;
732 abd_t *vp_abd;
733 zio_t *zio;
734 uint64_t best_txg = 0;
735 uint64_t label_txg = 0;
736 int error = 0;
737 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
738 ZIO_FLAG_SPECULATIVE;
739
740 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
741
742 if (!vdev_readable(vd))
743 return (NULL);
744
745 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
746 vp = abd_to_buf(vp_abd);
747
748 retry:
749 for (int l = 0; l < VDEV_LABELS; l++) {
750 nvlist_t *label = NULL;
751
752 zio = zio_root(spa, NULL, NULL, flags);
753
754 vdev_label_read(zio, vd, l, vp_abd,
755 offsetof(vdev_label_t, vl_vdev_phys),
756 sizeof (vdev_phys_t), NULL, NULL, flags);
757
758 if (zio_wait(zio) == 0 &&
759 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
760 &label, 0) == 0) {
761 /*
762 * Auxiliary vdevs won't have txg values in their
763 * labels and newly added vdevs may not have been
764 * completely initialized so just return the
765 * configuration from the first valid label we
766 * encounter.
767 */
768 error = nvlist_lookup_uint64(label,
769 ZPOOL_CONFIG_POOL_TXG, &label_txg);
770 if ((error || label_txg == 0) && !config) {
771 config = label;
772 break;
773 } else if (label_txg <= txg && label_txg > best_txg) {
774 best_txg = label_txg;
775 nvlist_free(config);
776 config = fnvlist_dup(label);
777 }
778 }
779
780 if (label != NULL) {
781 nvlist_free(label);
782 label = NULL;
783 }
784 }
785
786 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
787 flags |= ZIO_FLAG_TRYHARD;
788 goto retry;
789 }
790
791 /*
792 * We found a valid label but it didn't pass txg restrictions.
793 */
794 if (config == NULL && label_txg != 0) {
795 vdev_dbgmsg(vd, "label discarded as txg is too large "
796 "(%llu > %llu)", (u_longlong_t)label_txg,
797 (u_longlong_t)txg);
798 }
799
800 abd_free(vp_abd);
801
802 return (config);
803 }
804
805 /*
806 * Determine if a device is in use. The 'spare_guid' parameter will be filled
807 * in with the device guid if this spare is active elsewhere on the system.
808 */
809 static boolean_t
810 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
811 uint64_t *spare_guid, uint64_t *l2cache_guid)
812 {
813 spa_t *spa = vd->vdev_spa;
814 uint64_t state, pool_guid, device_guid, txg, spare_pool;
815 uint64_t vdtxg = 0;
816 nvlist_t *label;
817
818 if (spare_guid)
819 *spare_guid = 0ULL;
820 if (l2cache_guid)
821 *l2cache_guid = 0ULL;
822
823 /*
824 * Read the label, if any, and perform some basic sanity checks.
825 */
826 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
827 return (B_FALSE);
828
829 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
830 &vdtxg);
831
832 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
833 &state) != 0 ||
834 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
835 &device_guid) != 0) {
836 nvlist_free(label);
837 return (B_FALSE);
838 }
839
840 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
841 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
842 &pool_guid) != 0 ||
843 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
844 &txg) != 0)) {
845 nvlist_free(label);
846 return (B_FALSE);
847 }
848
849 nvlist_free(label);
850
851 /*
852 * Check to see if this device indeed belongs to the pool it claims to
853 * be a part of. The only way this is allowed is if the device is a hot
854 * spare (which we check for later on).
855 */
856 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
857 !spa_guid_exists(pool_guid, device_guid) &&
858 !spa_spare_exists(device_guid, NULL, NULL) &&
859 !spa_l2cache_exists(device_guid, NULL))
860 return (B_FALSE);
861
862 /*
863 * If the transaction group is zero, then this an initialized (but
864 * unused) label. This is only an error if the create transaction
865 * on-disk is the same as the one we're using now, in which case the
866 * user has attempted to add the same vdev multiple times in the same
867 * transaction.
868 */
869 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
870 txg == 0 && vdtxg == crtxg)
871 return (B_TRUE);
872
873 /*
874 * Check to see if this is a spare device. We do an explicit check for
875 * spa_has_spare() here because it may be on our pending list of spares
876 * to add. We also check if it is an l2cache device.
877 */
878 if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
879 spa_has_spare(spa, device_guid)) {
880 if (spare_guid)
881 *spare_guid = device_guid;
882
883 switch (reason) {
884 case VDEV_LABEL_CREATE:
885 case VDEV_LABEL_L2CACHE:
886 return (B_TRUE);
887
888 case VDEV_LABEL_REPLACE:
889 return (!spa_has_spare(spa, device_guid) ||
890 spare_pool != 0ULL);
891
892 case VDEV_LABEL_SPARE:
893 return (spa_has_spare(spa, device_guid));
894 default:
895 break;
896 }
897 }
898
899 /*
900 * Check to see if this is an l2cache device.
901 */
902 if (spa_l2cache_exists(device_guid, NULL))
903 return (B_TRUE);
904
905 /*
906 * We can't rely on a pool's state if it's been imported
907 * read-only. Instead we look to see if the pools is marked
908 * read-only in the namespace and set the state to active.
909 */
910 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
911 (spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
912 spa_mode(spa) == FREAD)
913 state = POOL_STATE_ACTIVE;
914
915 /*
916 * If the device is marked ACTIVE, then this device is in use by another
917 * pool on the system.
918 */
919 return (state == POOL_STATE_ACTIVE);
920 }
921
922 /*
923 * Initialize a vdev label. We check to make sure each leaf device is not in
924 * use, and writable. We put down an initial label which we will later
925 * overwrite with a complete label. Note that it's important to do this
926 * sequentially, not in parallel, so that we catch cases of multiple use of the
927 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
928 * itself.
929 */
930 int
931 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
932 {
933 spa_t *spa = vd->vdev_spa;
934 nvlist_t *label;
935 vdev_phys_t *vp;
936 abd_t *vp_abd;
937 abd_t *pad2;
938 uberblock_t *ub;
939 abd_t *ub_abd;
940 zio_t *zio;
941 char *buf;
942 size_t buflen;
943 int error;
944 uint64_t spare_guid = 0, l2cache_guid = 0;
945 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
946
947 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
948
949 for (int c = 0; c < vd->vdev_children; c++)
950 if ((error = vdev_label_init(vd->vdev_child[c],
951 crtxg, reason)) != 0)
952 return (error);
953
954 /* Track the creation time for this vdev */
955 vd->vdev_crtxg = crtxg;
956
957 if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa))
958 return (0);
959
960 /*
961 * Dead vdevs cannot be initialized.
962 */
963 if (vdev_is_dead(vd))
964 return (SET_ERROR(EIO));
965
966 /*
967 * Determine if the vdev is in use.
968 */
969 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
970 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
971 return (SET_ERROR(EBUSY));
972
973 /*
974 * If this is a request to add or replace a spare or l2cache device
975 * that is in use elsewhere on the system, then we must update the
976 * guid (which was initialized to a random value) to reflect the
977 * actual GUID (which is shared between multiple pools).
978 */
979 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
980 spare_guid != 0ULL) {
981 uint64_t guid_delta = spare_guid - vd->vdev_guid;
982
983 vd->vdev_guid += guid_delta;
984
985 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
986 pvd->vdev_guid_sum += guid_delta;
987
988 /*
989 * If this is a replacement, then we want to fallthrough to the
990 * rest of the code. If we're adding a spare, then it's already
991 * labeled appropriately and we can just return.
992 */
993 if (reason == VDEV_LABEL_SPARE)
994 return (0);
995 ASSERT(reason == VDEV_LABEL_REPLACE ||
996 reason == VDEV_LABEL_SPLIT);
997 }
998
999 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
1000 l2cache_guid != 0ULL) {
1001 uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
1002
1003 vd->vdev_guid += guid_delta;
1004
1005 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1006 pvd->vdev_guid_sum += guid_delta;
1007
1008 /*
1009 * If this is a replacement, then we want to fallthrough to the
1010 * rest of the code. If we're adding an l2cache, then it's
1011 * already labeled appropriately and we can just return.
1012 */
1013 if (reason == VDEV_LABEL_L2CACHE)
1014 return (0);
1015 ASSERT(reason == VDEV_LABEL_REPLACE);
1016 }
1017
1018 /*
1019 * Initialize its label.
1020 */
1021 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1022 abd_zero(vp_abd, sizeof (vdev_phys_t));
1023 vp = abd_to_buf(vp_abd);
1024
1025 /*
1026 * Generate a label describing the pool and our top-level vdev.
1027 * We mark it as being from txg 0 to indicate that it's not
1028 * really part of an active pool just yet. The labels will
1029 * be written again with a meaningful txg by spa_sync().
1030 */
1031 if (reason == VDEV_LABEL_SPARE ||
1032 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
1033 /*
1034 * For inactive hot spares, we generate a special label that
1035 * identifies as a mutually shared hot spare. We write the
1036 * label if we are adding a hot spare, or if we are removing an
1037 * active hot spare (in which case we want to revert the
1038 * labels).
1039 */
1040 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1041
1042 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
1043 spa_version(spa)) == 0);
1044 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1045 POOL_STATE_SPARE) == 0);
1046 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
1047 vd->vdev_guid) == 0);
1048 } else if (reason == VDEV_LABEL_L2CACHE ||
1049 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
1050 /*
1051 * For level 2 ARC devices, add a special label.
1052 */
1053 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1054
1055 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
1056 spa_version(spa)) == 0);
1057 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1058 POOL_STATE_L2CACHE) == 0);
1059 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
1060 vd->vdev_guid) == 0);
1061 } else {
1062 uint64_t txg = 0ULL;
1063
1064 if (reason == VDEV_LABEL_SPLIT)
1065 txg = spa->spa_uberblock.ub_txg;
1066 label = spa_config_generate(spa, vd, txg, B_FALSE);
1067
1068 /*
1069 * Add our creation time. This allows us to detect multiple
1070 * vdev uses as described above, and automatically expires if we
1071 * fail.
1072 */
1073 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
1074 crtxg) == 0);
1075 }
1076
1077 buf = vp->vp_nvlist;
1078 buflen = sizeof (vp->vp_nvlist);
1079
1080 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
1081 if (error != 0) {
1082 nvlist_free(label);
1083 abd_free(vp_abd);
1084 /* EFAULT means nvlist_pack ran out of room */
1085 return (SET_ERROR(error == EFAULT ? ENAMETOOLONG : EINVAL));
1086 }
1087
1088 /*
1089 * Initialize uberblock template.
1090 */
1091 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE);
1092 abd_zero(ub_abd, VDEV_UBERBLOCK_RING);
1093 abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t));
1094 ub = abd_to_buf(ub_abd);
1095 ub->ub_txg = 0;
1096
1097 /* Initialize the 2nd padding area. */
1098 pad2 = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
1099 abd_zero(pad2, VDEV_PAD_SIZE);
1100
1101 /*
1102 * Write everything in parallel.
1103 */
1104 retry:
1105 zio = zio_root(spa, NULL, NULL, flags);
1106
1107 for (int l = 0; l < VDEV_LABELS; l++) {
1108
1109 vdev_label_write(zio, vd, l, vp_abd,
1110 offsetof(vdev_label_t, vl_vdev_phys),
1111 sizeof (vdev_phys_t), NULL, NULL, flags);
1112
1113 /*
1114 * Skip the 1st padding area.
1115 * Zero out the 2nd padding area where it might have
1116 * left over data from previous filesystem format.
1117 */
1118 vdev_label_write(zio, vd, l, pad2,
1119 offsetof(vdev_label_t, vl_pad2),
1120 VDEV_PAD_SIZE, NULL, NULL, flags);
1121
1122 vdev_label_write(zio, vd, l, ub_abd,
1123 offsetof(vdev_label_t, vl_uberblock),
1124 VDEV_UBERBLOCK_RING, NULL, NULL, flags);
1125 }
1126
1127 error = zio_wait(zio);
1128
1129 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
1130 flags |= ZIO_FLAG_TRYHARD;
1131 goto retry;
1132 }
1133
1134 nvlist_free(label);
1135 abd_free(pad2);
1136 abd_free(ub_abd);
1137 abd_free(vp_abd);
1138
1139 /*
1140 * If this vdev hasn't been previously identified as a spare, then we
1141 * mark it as such only if a) we are labeling it as a spare, or b) it
1142 * exists as a spare elsewhere in the system. Do the same for
1143 * level 2 ARC devices.
1144 */
1145 if (error == 0 && !vd->vdev_isspare &&
1146 (reason == VDEV_LABEL_SPARE ||
1147 spa_spare_exists(vd->vdev_guid, NULL, NULL)))
1148 spa_spare_add(vd);
1149
1150 if (error == 0 && !vd->vdev_isl2cache &&
1151 (reason == VDEV_LABEL_L2CACHE ||
1152 spa_l2cache_exists(vd->vdev_guid, NULL)))
1153 spa_l2cache_add(vd);
1154
1155 return (error);
1156 }
1157
1158 /*
1159 * ==========================================================================
1160 * uberblock load/sync
1161 * ==========================================================================
1162 */
1163
1164 /*
1165 * Consider the following situation: txg is safely synced to disk. We've
1166 * written the first uberblock for txg + 1, and then we lose power. When we
1167 * come back up, we fail to see the uberblock for txg + 1 because, say,
1168 * it was on a mirrored device and the replica to which we wrote txg + 1
1169 * is now offline. If we then make some changes and sync txg + 1, and then
1170 * the missing replica comes back, then for a few seconds we'll have two
1171 * conflicting uberblocks on disk with the same txg. The solution is simple:
1172 * among uberblocks with equal txg, choose the one with the latest timestamp.
1173 */
1174 static int
1175 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
1176 {
1177 int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg);
1178 if (likely(cmp))
1179 return (cmp);
1180
1181 return (AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp));
1182 }
1183
1184 struct ubl_cbdata {
1185 uberblock_t *ubl_ubbest; /* Best uberblock */
1186 vdev_t *ubl_vd; /* vdev associated with the above */
1187 };
1188
1189 static void
1190 vdev_uberblock_load_done(zio_t *zio)
1191 {
1192 vdev_t *vd = zio->io_vd;
1193 spa_t *spa = zio->io_spa;
1194 zio_t *rio = zio->io_private;
1195 uberblock_t *ub = abd_to_buf(zio->io_abd);
1196 struct ubl_cbdata *cbp = rio->io_private;
1197
1198 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
1199
1200 if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
1201 mutex_enter(&rio->io_lock);
1202 if (ub->ub_txg <= spa->spa_load_max_txg &&
1203 vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
1204 /*
1205 * Keep track of the vdev in which this uberblock
1206 * was found. We will use this information later
1207 * to obtain the config nvlist associated with
1208 * this uberblock.
1209 */
1210 *cbp->ubl_ubbest = *ub;
1211 cbp->ubl_vd = vd;
1212 }
1213 mutex_exit(&rio->io_lock);
1214 }
1215
1216 abd_free(zio->io_abd);
1217 }
1218
1219 static void
1220 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
1221 struct ubl_cbdata *cbp)
1222 {
1223 for (int c = 0; c < vd->vdev_children; c++)
1224 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
1225
1226 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1227 for (int l = 0; l < VDEV_LABELS; l++) {
1228 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1229 vdev_label_read(zio, vd, l,
1230 abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd),
1231 B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n),
1232 VDEV_UBERBLOCK_SIZE(vd),
1233 vdev_uberblock_load_done, zio, flags);
1234 }
1235 }
1236 }
1237 }
1238
1239 /*
1240 * Reads the 'best' uberblock from disk along with its associated
1241 * configuration. First, we read the uberblock array of each label of each
1242 * vdev, keeping track of the uberblock with the highest txg in each array.
1243 * Then, we read the configuration from the same vdev as the best uberblock.
1244 */
1245 void
1246 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
1247 {
1248 zio_t *zio;
1249 spa_t *spa = rvd->vdev_spa;
1250 struct ubl_cbdata cb;
1251 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1252 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
1253
1254 ASSERT(ub);
1255 ASSERT(config);
1256
1257 bzero(ub, sizeof (uberblock_t));
1258 *config = NULL;
1259
1260 cb.ubl_ubbest = ub;
1261 cb.ubl_vd = NULL;
1262
1263 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1264 zio = zio_root(spa, NULL, &cb, flags);
1265 vdev_uberblock_load_impl(zio, rvd, flags, &cb);
1266 (void) zio_wait(zio);
1267
1268 /*
1269 * It's possible that the best uberblock was discovered on a label
1270 * that has a configuration which was written in a future txg.
1271 * Search all labels on this vdev to find the configuration that
1272 * matches the txg for our uberblock.
1273 */
1274 if (cb.ubl_vd != NULL) {
1275 vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. "
1276 "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg);
1277
1278 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
1279 if (*config == NULL && spa->spa_extreme_rewind) {
1280 vdev_dbgmsg(cb.ubl_vd, "failed to read label config. "
1281 "Trying again without txg restrictions.");
1282 *config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX);
1283 }
1284 if (*config == NULL) {
1285 vdev_dbgmsg(cb.ubl_vd, "failed to read label config");
1286 }
1287 }
1288 spa_config_exit(spa, SCL_ALL, FTAG);
1289 }
1290
1291 /*
1292 * For use when a leaf vdev is expanded.
1293 * The location of labels 2 and 3 changed, and at the new location the
1294 * uberblock rings are either empty or contain garbage. The sync will write
1295 * new configs there because the vdev is dirty, but expansion also needs the
1296 * uberblock rings copied. Read them from label 0 which did not move.
1297 *
1298 * Since the point is to populate labels {2,3} with valid uberblocks,
1299 * we zero uberblocks we fail to read or which are not valid.
1300 */
1301
1302 static void
1303 vdev_copy_uberblocks(vdev_t *vd)
1304 {
1305 abd_t *ub_abd;
1306 zio_t *write_zio;
1307 int locks = (SCL_L2ARC | SCL_ZIO);
1308 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1309 ZIO_FLAG_SPECULATIVE;
1310
1311 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_READER) ==
1312 SCL_STATE);
1313 ASSERT(vd->vdev_ops->vdev_op_leaf);
1314
1315 spa_config_enter(vd->vdev_spa, locks, FTAG, RW_READER);
1316
1317 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
1318
1319 write_zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
1320 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1321 const int src_label = 0;
1322 zio_t *zio;
1323
1324 zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
1325 vdev_label_read(zio, vd, src_label, ub_abd,
1326 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1327 NULL, NULL, flags);
1328
1329 if (zio_wait(zio) || uberblock_verify(abd_to_buf(ub_abd)))
1330 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1331
1332 for (int l = 2; l < VDEV_LABELS; l++)
1333 vdev_label_write(write_zio, vd, l, ub_abd,
1334 VDEV_UBERBLOCK_OFFSET(vd, n),
1335 VDEV_UBERBLOCK_SIZE(vd), NULL, NULL,
1336 flags | ZIO_FLAG_DONT_PROPAGATE);
1337 }
1338 (void) zio_wait(write_zio);
1339
1340 spa_config_exit(vd->vdev_spa, locks, FTAG);
1341
1342 abd_free(ub_abd);
1343 }
1344
1345 /*
1346 * On success, increment root zio's count of good writes.
1347 * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
1348 */
1349 static void
1350 vdev_uberblock_sync_done(zio_t *zio)
1351 {
1352 uint64_t *good_writes = zio->io_private;
1353
1354 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
1355 atomic_inc_64(good_writes);
1356 }
1357
1358 /*
1359 * Write the uberblock to all labels of all leaves of the specified vdev.
1360 */
1361 static void
1362 vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes,
1363 uberblock_t *ub, vdev_t *vd, int flags)
1364 {
1365 for (uint64_t c = 0; c < vd->vdev_children; c++) {
1366 vdev_uberblock_sync(zio, good_writes,
1367 ub, vd->vdev_child[c], flags);
1368 }
1369
1370 if (!vd->vdev_ops->vdev_op_leaf)
1371 return;
1372
1373 if (!vdev_writeable(vd))
1374 return;
1375
1376 /* If the vdev was expanded, need to copy uberblock rings. */
1377 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1378 vd->vdev_copy_uberblocks == B_TRUE) {
1379 vdev_copy_uberblocks(vd);
1380 vd->vdev_copy_uberblocks = B_FALSE;
1381 }
1382
1383 int m = spa_multihost(vd->vdev_spa) ? MMP_BLOCKS_PER_LABEL : 0;
1384 int n = ub->ub_txg % (VDEV_UBERBLOCK_COUNT(vd) - m);
1385
1386 /* Copy the uberblock_t into the ABD */
1387 abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
1388 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1389 abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t));
1390
1391 for (int l = 0; l < VDEV_LABELS; l++)
1392 vdev_label_write(zio, vd, l, ub_abd,
1393 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1394 vdev_uberblock_sync_done, good_writes,
1395 flags | ZIO_FLAG_DONT_PROPAGATE);
1396
1397 abd_free(ub_abd);
1398 }
1399
1400 /* Sync the uberblocks to all vdevs in svd[] */
1401 int
1402 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1403 {
1404 spa_t *spa = svd[0]->vdev_spa;
1405 zio_t *zio;
1406 uint64_t good_writes = 0;
1407
1408 zio = zio_root(spa, NULL, NULL, flags);
1409
1410 for (int v = 0; v < svdcount; v++)
1411 vdev_uberblock_sync(zio, &good_writes, ub, svd[v], flags);
1412
1413 (void) zio_wait(zio);
1414
1415 /*
1416 * Flush the uberblocks to disk. This ensures that the odd labels
1417 * are no longer needed (because the new uberblocks and the even
1418 * labels are safely on disk), so it is safe to overwrite them.
1419 */
1420 zio = zio_root(spa, NULL, NULL, flags);
1421
1422 for (int v = 0; v < svdcount; v++) {
1423 if (vdev_writeable(svd[v])) {
1424 zio_flush(zio, svd[v]);
1425 }
1426 }
1427
1428 (void) zio_wait(zio);
1429
1430 return (good_writes >= 1 ? 0 : EIO);
1431 }
1432
1433 /*
1434 * On success, increment the count of good writes for our top-level vdev.
1435 */
1436 static void
1437 vdev_label_sync_done(zio_t *zio)
1438 {
1439 uint64_t *good_writes = zio->io_private;
1440
1441 if (zio->io_error == 0)
1442 atomic_inc_64(good_writes);
1443 }
1444
1445 /*
1446 * If there weren't enough good writes, indicate failure to the parent.
1447 */
1448 static void
1449 vdev_label_sync_top_done(zio_t *zio)
1450 {
1451 uint64_t *good_writes = zio->io_private;
1452
1453 if (*good_writes == 0)
1454 zio->io_error = SET_ERROR(EIO);
1455
1456 kmem_free(good_writes, sizeof (uint64_t));
1457 }
1458
1459 /*
1460 * We ignore errors for log and cache devices, simply free the private data.
1461 */
1462 static void
1463 vdev_label_sync_ignore_done(zio_t *zio)
1464 {
1465 kmem_free(zio->io_private, sizeof (uint64_t));
1466 }
1467
1468 /*
1469 * Write all even or odd labels to all leaves of the specified vdev.
1470 */
1471 static void
1472 vdev_label_sync(zio_t *zio, uint64_t *good_writes,
1473 vdev_t *vd, int l, uint64_t txg, int flags)
1474 {
1475 nvlist_t *label;
1476 vdev_phys_t *vp;
1477 abd_t *vp_abd;
1478 char *buf;
1479 size_t buflen;
1480
1481 for (int c = 0; c < vd->vdev_children; c++) {
1482 vdev_label_sync(zio, good_writes,
1483 vd->vdev_child[c], l, txg, flags);
1484 }
1485
1486 if (!vd->vdev_ops->vdev_op_leaf)
1487 return;
1488
1489 if (!vdev_writeable(vd))
1490 return;
1491
1492 /*
1493 * Generate a label describing the top-level config to which we belong.
1494 */
1495 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1496
1497 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1498 abd_zero(vp_abd, sizeof (vdev_phys_t));
1499 vp = abd_to_buf(vp_abd);
1500
1501 buf = vp->vp_nvlist;
1502 buflen = sizeof (vp->vp_nvlist);
1503
1504 if (!nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP)) {
1505 for (; l < VDEV_LABELS; l += 2) {
1506 vdev_label_write(zio, vd, l, vp_abd,
1507 offsetof(vdev_label_t, vl_vdev_phys),
1508 sizeof (vdev_phys_t),
1509 vdev_label_sync_done, good_writes,
1510 flags | ZIO_FLAG_DONT_PROPAGATE);
1511 }
1512 }
1513
1514 abd_free(vp_abd);
1515 nvlist_free(label);
1516 }
1517
1518 int
1519 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1520 {
1521 list_t *dl = &spa->spa_config_dirty_list;
1522 vdev_t *vd;
1523 zio_t *zio;
1524 int error;
1525
1526 /*
1527 * Write the new labels to disk.
1528 */
1529 zio = zio_root(spa, NULL, NULL, flags);
1530
1531 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1532 uint64_t *good_writes;
1533
1534 ASSERT(!vd->vdev_ishole);
1535
1536 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
1537 zio_t *vio = zio_null(zio, spa, NULL,
1538 (vd->vdev_islog || vd->vdev_aux != NULL) ?
1539 vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1540 good_writes, flags);
1541 vdev_label_sync(vio, good_writes, vd, l, txg, flags);
1542 zio_nowait(vio);
1543 }
1544
1545 error = zio_wait(zio);
1546
1547 /*
1548 * Flush the new labels to disk.
1549 */
1550 zio = zio_root(spa, NULL, NULL, flags);
1551
1552 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1553 zio_flush(zio, vd);
1554
1555 (void) zio_wait(zio);
1556
1557 return (error);
1558 }
1559
1560 /*
1561 * Sync the uberblock and any changes to the vdev configuration.
1562 *
1563 * The order of operations is carefully crafted to ensure that
1564 * if the system panics or loses power at any time, the state on disk
1565 * is still transactionally consistent. The in-line comments below
1566 * describe the failure semantics at each stage.
1567 *
1568 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1569 * at any time, you can just call it again, and it will resume its work.
1570 */
1571 int
1572 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg)
1573 {
1574 spa_t *spa = svd[0]->vdev_spa;
1575 uberblock_t *ub = &spa->spa_uberblock;
1576 int error = 0;
1577 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1578
1579 ASSERT(svdcount != 0);
1580 retry:
1581 /*
1582 * Normally, we don't want to try too hard to write every label and
1583 * uberblock. If there is a flaky disk, we don't want the rest of the
1584 * sync process to block while we retry. But if we can't write a
1585 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1586 * bailing out and declaring the pool faulted.
1587 */
1588 if (error != 0) {
1589 if ((flags & ZIO_FLAG_TRYHARD) != 0)
1590 return (error);
1591 flags |= ZIO_FLAG_TRYHARD;
1592 }
1593
1594 ASSERT(ub->ub_txg <= txg);
1595
1596 /*
1597 * If this isn't a resync due to I/O errors,
1598 * and nothing changed in this transaction group,
1599 * and the vdev configuration hasn't changed,
1600 * then there's nothing to do.
1601 */
1602 if (ub->ub_txg < txg) {
1603 boolean_t changed = uberblock_update(ub, spa->spa_root_vdev,
1604 txg, spa->spa_mmp.mmp_delay);
1605
1606 if (!changed && list_is_empty(&spa->spa_config_dirty_list))
1607 return (0);
1608 }
1609
1610 if (txg > spa_freeze_txg(spa))
1611 return (0);
1612
1613 ASSERT(txg <= spa->spa_final_txg);
1614
1615 /*
1616 * Flush the write cache of every disk that's been written to
1617 * in this transaction group. This ensures that all blocks
1618 * written in this txg will be committed to stable storage
1619 * before any uberblock that references them.
1620 */
1621 zio_t *zio = zio_root(spa, NULL, NULL, flags);
1622
1623 for (vdev_t *vd =
1624 txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd != NULL;
1625 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1626 zio_flush(zio, vd);
1627
1628 (void) zio_wait(zio);
1629
1630 /*
1631 * Sync out the even labels (L0, L2) for every dirty vdev. If the
1632 * system dies in the middle of this process, that's OK: all of the
1633 * even labels that made it to disk will be newer than any uberblock,
1634 * and will therefore be considered invalid. The odd labels (L1, L3),
1635 * which have not yet been touched, will still be valid. We flush
1636 * the new labels to disk to ensure that all even-label updates
1637 * are committed to stable storage before the uberblock update.
1638 */
1639 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) {
1640 if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1641 zfs_dbgmsg("vdev_label_sync_list() returned error %d "
1642 "for pool '%s' when syncing out the even labels "
1643 "of dirty vdevs", error, spa_name(spa));
1644 }
1645 goto retry;
1646 }
1647
1648 /*
1649 * Sync the uberblocks to all vdevs in svd[].
1650 * If the system dies in the middle of this step, there are two cases
1651 * to consider, and the on-disk state is consistent either way:
1652 *
1653 * (1) If none of the new uberblocks made it to disk, then the
1654 * previous uberblock will be the newest, and the odd labels
1655 * (which had not yet been touched) will be valid with respect
1656 * to that uberblock.
1657 *
1658 * (2) If one or more new uberblocks made it to disk, then they
1659 * will be the newest, and the even labels (which had all
1660 * been successfully committed) will be valid with respect
1661 * to the new uberblocks.
1662 */
1663 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) {
1664 if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1665 zfs_dbgmsg("vdev_uberblock_sync_list() returned error "
1666 "%d for pool '%s'", error, spa_name(spa));
1667 }
1668 goto retry;
1669 }
1670
1671 if (spa_multihost(spa))
1672 mmp_update_uberblock(spa, ub);
1673
1674 /*
1675 * Sync out odd labels for every dirty vdev. If the system dies
1676 * in the middle of this process, the even labels and the new
1677 * uberblocks will suffice to open the pool. The next time
1678 * the pool is opened, the first thing we'll do -- before any
1679 * user data is modified -- is mark every vdev dirty so that
1680 * all labels will be brought up to date. We flush the new labels
1681 * to disk to ensure that all odd-label updates are committed to
1682 * stable storage before the next transaction group begins.
1683 */
1684 if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) {
1685 if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1686 zfs_dbgmsg("vdev_label_sync_list() returned error %d "
1687 "for pool '%s' when syncing out the odd labels of "
1688 "dirty vdevs", error, spa_name(spa));
1689 }
1690 goto retry;
1691 }
1692
1693 return (0);
1694 }