4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
27 * Virtual Device Labels
28 * ---------------------
30 * The vdev label serves several distinct purposes:
32 * 1. Uniquely identify this device as part of a ZFS pool and confirm its
33 * identity within the pool.
35 * 2. Verify that all the devices given in a configuration are present
38 * 3. Determine the uberblock for the pool.
40 * 4. In case of an import operation, determine the configuration of the
41 * toplevel vdev of which it is a part.
43 * 5. If an import operation cannot find all the devices in the pool,
44 * provide enough information to the administrator to determine which
45 * devices are missing.
47 * It is important to note that while the kernel is responsible for writing the
48 * label, it only consumes the information in the first three cases. The
49 * latter information is only consumed in userland when determining the
50 * configuration to import a pool.
56 * Before describing the contents of the label, it's important to understand how
57 * the labels are written and updated with respect to the uberblock.
59 * When the pool configuration is altered, either because it was newly created
60 * or a device was added, we want to update all the labels such that we can deal
61 * with fatal failure at any point. To this end, each disk has two labels which
62 * are updated before and after the uberblock is synced. Assuming we have
63 * labels and an uberblock with the following transaction groups:
66 * +------+ +------+ +------+
68 * | t10 | | t10 | | t10 |
70 * +------+ +------+ +------+
72 * In this stable state, the labels and the uberblock were all updated within
73 * the same transaction group (10). Each label is mirrored and checksummed, so
74 * that we can detect when we fail partway through writing the label.
76 * In order to identify which labels are valid, the labels are written in the
79 * 1. For each vdev, update 'L1' to the new label
80 * 2. Update the uberblock
81 * 3. For each vdev, update 'L2' to the new label
83 * Given arbitrary failure, we can determine the correct label to use based on
84 * the transaction group. If we fail after updating L1 but before updating the
85 * UB, we will notice that L1's transaction group is greater than the uberblock,
86 * so L2 must be valid. If we fail after writing the uberblock but before
87 * writing L2, we will notice that L2's transaction group is less than L1, and
88 * therefore L1 is valid.
90 * Another added complexity is that not every label is updated when the config
91 * is synced. If we add a single device, we do not want to have to re-write
92 * every label for every device in the pool. This means that both L1 and L2 may
93 * be older than the pool uberblock, because the necessary information is stored
100 * The vdev label consists of two distinct parts, and is wrapped within the
101 * vdev_label_t structure. The label includes 8k of padding to permit legacy
102 * VTOC disk labels, but is otherwise ignored.
104 * The first half of the label is a packed nvlist which contains pool wide
105 * properties, per-vdev properties, and configuration information. It is
106 * described in more detail below.
108 * The latter half of the label consists of a redundant array of uberblocks.
109 * These uberblocks are updated whenever a transaction group is committed,
110 * or when the configuration is updated. When a pool is loaded, we scan each
111 * vdev for the 'best' uberblock.
114 * Configuration Information
115 * -------------------------
117 * The nvlist describing the pool and vdev contains the following elements:
119 * version ZFS on-disk version
122 * txg Transaction group in which this label was written
123 * pool_guid Unique identifier for this pool
124 * vdev_tree An nvlist describing vdev tree.
126 * Each leaf device label also contains the following:
128 * top_guid Unique ID for top-level vdev in which this is contained
129 * guid Unique ID for the leaf vdev
131 * The 'vs' configuration follows the format described in 'spa_config.c'.
134 #include <sys/zfs_context.h>
136 #include <sys/spa_impl.h>
139 #include <sys/vdev.h>
140 #include <sys/vdev_impl.h>
141 #include <sys/uberblock_impl.h>
142 #include <sys/metaslab.h>
144 #include <sys/fs/zfs.h>
147 * Basic routines to read and write from a vdev label.
148 * Used throughout the rest of this file.
151 vdev_label_offset(uint64_t psize
, int l
, uint64_t offset
)
153 ASSERT(offset
< sizeof (vdev_label_t
));
154 ASSERT(P2PHASE_TYPED(psize
, sizeof (vdev_label_t
), uint64_t) == 0);
156 return (offset
+ l
* sizeof (vdev_label_t
) + (l
< VDEV_LABELS
/ 2 ?
157 0 : psize
- VDEV_LABELS
* sizeof (vdev_label_t
)));
161 * Returns back the vdev label associated with the passed in offset.
164 vdev_label_number(uint64_t psize
, uint64_t offset
)
168 if (offset
>= psize
- VDEV_LABEL_END_SIZE
) {
169 offset
-= psize
- VDEV_LABEL_END_SIZE
;
170 offset
+= (VDEV_LABELS
/ 2) * sizeof (vdev_label_t
);
172 l
= offset
/ sizeof (vdev_label_t
);
173 return (l
< VDEV_LABELS
? l
: -1);
177 vdev_label_read(zio_t
*zio
, vdev_t
*vd
, int l
, void *buf
, uint64_t offset
,
178 uint64_t size
, zio_done_func_t
*done
, void *private, int flags
)
180 ASSERT(spa_config_held(zio
->io_spa
, SCL_STATE_ALL
, RW_WRITER
) ==
182 ASSERT(flags
& ZIO_FLAG_CONFIG_WRITER
);
184 zio_nowait(zio_read_phys(zio
, vd
,
185 vdev_label_offset(vd
->vdev_psize
, l
, offset
),
186 size
, buf
, ZIO_CHECKSUM_LABEL
, done
, private,
187 ZIO_PRIORITY_SYNC_READ
, flags
, B_TRUE
));
191 vdev_label_write(zio_t
*zio
, vdev_t
*vd
, int l
, void *buf
, uint64_t offset
,
192 uint64_t size
, zio_done_func_t
*done
, void *private, int flags
)
194 ASSERT(spa_config_held(zio
->io_spa
, SCL_ALL
, RW_WRITER
) == SCL_ALL
||
195 (spa_config_held(zio
->io_spa
, SCL_CONFIG
| SCL_STATE
, RW_READER
) ==
196 (SCL_CONFIG
| SCL_STATE
) &&
197 dsl_pool_sync_context(spa_get_dsl(zio
->io_spa
))));
198 ASSERT(flags
& ZIO_FLAG_CONFIG_WRITER
);
200 zio_nowait(zio_write_phys(zio
, vd
,
201 vdev_label_offset(vd
->vdev_psize
, l
, offset
),
202 size
, buf
, ZIO_CHECKSUM_LABEL
, done
, private,
203 ZIO_PRIORITY_SYNC_WRITE
, flags
, B_TRUE
));
207 * Generate the nvlist representing this vdev's config.
210 vdev_config_generate(spa_t
*spa
, vdev_t
*vd
, boolean_t getstats
,
211 boolean_t isspare
, boolean_t isl2cache
)
215 VERIFY(nvlist_alloc(&nv
, NV_UNIQUE_NAME
, KM_SLEEP
) == 0);
217 VERIFY(nvlist_add_string(nv
, ZPOOL_CONFIG_TYPE
,
218 vd
->vdev_ops
->vdev_op_type
) == 0);
219 if (!isspare
&& !isl2cache
)
220 VERIFY(nvlist_add_uint64(nv
, ZPOOL_CONFIG_ID
, vd
->vdev_id
)
222 VERIFY(nvlist_add_uint64(nv
, ZPOOL_CONFIG_GUID
, vd
->vdev_guid
) == 0);
224 if (vd
->vdev_path
!= NULL
)
225 VERIFY(nvlist_add_string(nv
, ZPOOL_CONFIG_PATH
,
226 vd
->vdev_path
) == 0);
228 if (vd
->vdev_devid
!= NULL
)
229 VERIFY(nvlist_add_string(nv
, ZPOOL_CONFIG_DEVID
,
230 vd
->vdev_devid
) == 0);
232 if (vd
->vdev_physpath
!= NULL
)
233 VERIFY(nvlist_add_string(nv
, ZPOOL_CONFIG_PHYS_PATH
,
234 vd
->vdev_physpath
) == 0);
236 if (vd
->vdev_nparity
!= 0) {
237 ASSERT(strcmp(vd
->vdev_ops
->vdev_op_type
,
238 VDEV_TYPE_RAIDZ
) == 0);
241 * Make sure someone hasn't managed to sneak a fancy new vdev
242 * into a crufty old storage pool.
244 ASSERT(vd
->vdev_nparity
== 1 ||
245 (vd
->vdev_nparity
== 2 &&
246 spa_version(spa
) >= SPA_VERSION_RAID6
));
249 * Note that we'll add the nparity tag even on storage pools
250 * that only support a single parity device -- older software
251 * will just ignore it.
253 VERIFY(nvlist_add_uint64(nv
, ZPOOL_CONFIG_NPARITY
,
254 vd
->vdev_nparity
) == 0);
257 if (vd
->vdev_wholedisk
!= -1ULL)
258 VERIFY(nvlist_add_uint64(nv
, ZPOOL_CONFIG_WHOLE_DISK
,
259 vd
->vdev_wholedisk
) == 0);
261 if (vd
->vdev_not_present
)
262 VERIFY(nvlist_add_uint64(nv
, ZPOOL_CONFIG_NOT_PRESENT
, 1) == 0);
264 if (vd
->vdev_isspare
)
265 VERIFY(nvlist_add_uint64(nv
, ZPOOL_CONFIG_IS_SPARE
, 1) == 0);
267 if (!isspare
&& !isl2cache
&& vd
== vd
->vdev_top
) {
268 VERIFY(nvlist_add_uint64(nv
, ZPOOL_CONFIG_METASLAB_ARRAY
,
269 vd
->vdev_ms_array
) == 0);
270 VERIFY(nvlist_add_uint64(nv
, ZPOOL_CONFIG_METASLAB_SHIFT
,
271 vd
->vdev_ms_shift
) == 0);
272 VERIFY(nvlist_add_uint64(nv
, ZPOOL_CONFIG_ASHIFT
,
273 vd
->vdev_ashift
) == 0);
274 VERIFY(nvlist_add_uint64(nv
, ZPOOL_CONFIG_ASIZE
,
275 vd
->vdev_asize
) == 0);
276 VERIFY(nvlist_add_uint64(nv
, ZPOOL_CONFIG_IS_LOG
,
277 vd
->vdev_islog
) == 0);
280 if (vd
->vdev_dtl_smo
.smo_object
!= 0)
281 VERIFY(nvlist_add_uint64(nv
, ZPOOL_CONFIG_DTL
,
282 vd
->vdev_dtl_smo
.smo_object
) == 0);
286 vdev_get_stats(vd
, &vs
);
287 VERIFY(nvlist_add_uint64_array(nv
, ZPOOL_CONFIG_STATS
,
288 (uint64_t *)&vs
, sizeof (vs
) / sizeof (uint64_t)) == 0);
291 if (!vd
->vdev_ops
->vdev_op_leaf
) {
295 child
= kmem_alloc(vd
->vdev_children
* sizeof (nvlist_t
*),
298 for (c
= 0; c
< vd
->vdev_children
; c
++)
299 child
[c
] = vdev_config_generate(spa
, vd
->vdev_child
[c
],
300 getstats
, isspare
, isl2cache
);
302 VERIFY(nvlist_add_nvlist_array(nv
, ZPOOL_CONFIG_CHILDREN
,
303 child
, vd
->vdev_children
) == 0);
305 for (c
= 0; c
< vd
->vdev_children
; c
++)
306 nvlist_free(child
[c
]);
308 kmem_free(child
, vd
->vdev_children
* sizeof (nvlist_t
*));
311 if (vd
->vdev_offline
&& !vd
->vdev_tmpoffline
)
312 VERIFY(nvlist_add_uint64(nv
, ZPOOL_CONFIG_OFFLINE
,
314 if (vd
->vdev_faulted
)
315 VERIFY(nvlist_add_uint64(nv
, ZPOOL_CONFIG_FAULTED
,
317 if (vd
->vdev_degraded
)
318 VERIFY(nvlist_add_uint64(nv
, ZPOOL_CONFIG_DEGRADED
,
320 if (vd
->vdev_removed
)
321 VERIFY(nvlist_add_uint64(nv
, ZPOOL_CONFIG_REMOVED
,
323 if (vd
->vdev_unspare
)
324 VERIFY(nvlist_add_uint64(nv
, ZPOOL_CONFIG_UNSPARE
,
332 vdev_label_read_config(vdev_t
*vd
)
334 spa_t
*spa
= vd
->vdev_spa
;
335 nvlist_t
*config
= NULL
;
339 ZIO_FLAG_CONFIG_WRITER
| ZIO_FLAG_CANFAIL
| ZIO_FLAG_SPECULATIVE
;
341 ASSERT(spa_config_held(spa
, SCL_STATE_ALL
, RW_WRITER
) == SCL_STATE_ALL
);
343 if (!vdev_readable(vd
))
346 vp
= zio_buf_alloc(sizeof (vdev_phys_t
));
348 for (int l
= 0; l
< VDEV_LABELS
; l
++) {
350 zio
= zio_root(spa
, NULL
, NULL
, flags
);
352 vdev_label_read(zio
, vd
, l
, vp
,
353 offsetof(vdev_label_t
, vl_vdev_phys
),
354 sizeof (vdev_phys_t
), NULL
, NULL
, flags
);
356 if (zio_wait(zio
) == 0 &&
357 nvlist_unpack(vp
->vp_nvlist
, sizeof (vp
->vp_nvlist
),
361 if (config
!= NULL
) {
367 zio_buf_free(vp
, sizeof (vdev_phys_t
));
373 * Determine if a device is in use. The 'spare_guid' parameter will be filled
374 * in with the device guid if this spare is active elsewhere on the system.
377 vdev_inuse(vdev_t
*vd
, uint64_t crtxg
, vdev_labeltype_t reason
,
378 uint64_t *spare_guid
, uint64_t *l2cache_guid
)
380 spa_t
*spa
= vd
->vdev_spa
;
381 uint64_t state
, pool_guid
, device_guid
, txg
, spare_pool
;
388 *l2cache_guid
= 0ULL;
391 * Read the label, if any, and perform some basic sanity checks.
393 if ((label
= vdev_label_read_config(vd
)) == NULL
)
396 (void) nvlist_lookup_uint64(label
, ZPOOL_CONFIG_CREATE_TXG
,
399 if (nvlist_lookup_uint64(label
, ZPOOL_CONFIG_POOL_STATE
,
401 nvlist_lookup_uint64(label
, ZPOOL_CONFIG_GUID
,
402 &device_guid
) != 0) {
407 if (state
!= POOL_STATE_SPARE
&& state
!= POOL_STATE_L2CACHE
&&
408 (nvlist_lookup_uint64(label
, ZPOOL_CONFIG_POOL_GUID
,
410 nvlist_lookup_uint64(label
, ZPOOL_CONFIG_POOL_TXG
,
419 * Check to see if this device indeed belongs to the pool it claims to
420 * be a part of. The only way this is allowed is if the device is a hot
421 * spare (which we check for later on).
423 if (state
!= POOL_STATE_SPARE
&& state
!= POOL_STATE_L2CACHE
&&
424 !spa_guid_exists(pool_guid
, device_guid
) &&
425 !spa_spare_exists(device_guid
, NULL
, NULL
) &&
426 !spa_l2cache_exists(device_guid
, NULL
))
430 * If the transaction group is zero, then this an initialized (but
431 * unused) label. This is only an error if the create transaction
432 * on-disk is the same as the one we're using now, in which case the
433 * user has attempted to add the same vdev multiple times in the same
436 if (state
!= POOL_STATE_SPARE
&& state
!= POOL_STATE_L2CACHE
&&
437 txg
== 0 && vdtxg
== crtxg
)
441 * Check to see if this is a spare device. We do an explicit check for
442 * spa_has_spare() here because it may be on our pending list of spares
443 * to add. We also check if it is an l2cache device.
445 if (spa_spare_exists(device_guid
, &spare_pool
, NULL
) ||
446 spa_has_spare(spa
, device_guid
)) {
448 *spare_guid
= device_guid
;
451 case VDEV_LABEL_CREATE
:
452 case VDEV_LABEL_L2CACHE
:
455 case VDEV_LABEL_REPLACE
:
456 return (!spa_has_spare(spa
, device_guid
) ||
459 case VDEV_LABEL_SPARE
:
460 return (spa_has_spare(spa
, device_guid
));
465 * Check to see if this is an l2cache device.
467 if (spa_l2cache_exists(device_guid
, NULL
))
471 * If the device is marked ACTIVE, then this device is in use by another
472 * pool on the system.
474 return (state
== POOL_STATE_ACTIVE
);
478 * Initialize a vdev label. We check to make sure each leaf device is not in
479 * use, and writable. We put down an initial label which we will later
480 * overwrite with a complete label. Note that it's important to do this
481 * sequentially, not in parallel, so that we catch cases of multiple use of the
482 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
486 vdev_label_init(vdev_t
*vd
, uint64_t crtxg
, vdev_labeltype_t reason
)
488 spa_t
*spa
= vd
->vdev_spa
;
491 vdev_boot_header_t
*vb
;
497 uint64_t spare_guid
, l2cache_guid
;
498 int flags
= ZIO_FLAG_CONFIG_WRITER
| ZIO_FLAG_CANFAIL
;
500 ASSERT(spa_config_held(spa
, SCL_ALL
, RW_WRITER
) == SCL_ALL
);
502 for (int c
= 0; c
< vd
->vdev_children
; c
++)
503 if ((error
= vdev_label_init(vd
->vdev_child
[c
],
504 crtxg
, reason
)) != 0)
507 if (!vd
->vdev_ops
->vdev_op_leaf
)
511 * Dead vdevs cannot be initialized.
513 if (vdev_is_dead(vd
))
517 * Determine if the vdev is in use.
519 if (reason
!= VDEV_LABEL_REMOVE
&&
520 vdev_inuse(vd
, crtxg
, reason
, &spare_guid
, &l2cache_guid
))
524 * If this is a request to add or replace a spare or l2cache device
525 * that is in use elsewhere on the system, then we must update the
526 * guid (which was initialized to a random value) to reflect the
527 * actual GUID (which is shared between multiple pools).
529 if (reason
!= VDEV_LABEL_REMOVE
&& reason
!= VDEV_LABEL_L2CACHE
&&
530 spare_guid
!= 0ULL) {
531 uint64_t guid_delta
= spare_guid
- vd
->vdev_guid
;
533 vd
->vdev_guid
+= guid_delta
;
535 for (vdev_t
*pvd
= vd
; pvd
!= NULL
; pvd
= pvd
->vdev_parent
)
536 pvd
->vdev_guid_sum
+= guid_delta
;
539 * If this is a replacement, then we want to fallthrough to the
540 * rest of the code. If we're adding a spare, then it's already
541 * labeled appropriately and we can just return.
543 if (reason
== VDEV_LABEL_SPARE
)
545 ASSERT(reason
== VDEV_LABEL_REPLACE
);
548 if (reason
!= VDEV_LABEL_REMOVE
&& reason
!= VDEV_LABEL_SPARE
&&
549 l2cache_guid
!= 0ULL) {
550 uint64_t guid_delta
= l2cache_guid
- vd
->vdev_guid
;
552 vd
->vdev_guid
+= guid_delta
;
554 for (vdev_t
*pvd
= vd
; pvd
!= NULL
; pvd
= pvd
->vdev_parent
)
555 pvd
->vdev_guid_sum
+= guid_delta
;
558 * If this is a replacement, then we want to fallthrough to the
559 * rest of the code. If we're adding an l2cache, then it's
560 * already labeled appropriately and we can just return.
562 if (reason
== VDEV_LABEL_L2CACHE
)
564 ASSERT(reason
== VDEV_LABEL_REPLACE
);
568 * Initialize its label.
570 vp
= zio_buf_alloc(sizeof (vdev_phys_t
));
571 bzero(vp
, sizeof (vdev_phys_t
));
574 * Generate a label describing the pool and our top-level vdev.
575 * We mark it as being from txg 0 to indicate that it's not
576 * really part of an active pool just yet. The labels will
577 * be written again with a meaningful txg by spa_sync().
579 if (reason
== VDEV_LABEL_SPARE
||
580 (reason
== VDEV_LABEL_REMOVE
&& vd
->vdev_isspare
)) {
582 * For inactive hot spares, we generate a special label that
583 * identifies as a mutually shared hot spare. We write the
584 * label if we are adding a hot spare, or if we are removing an
585 * active hot spare (in which case we want to revert the
588 VERIFY(nvlist_alloc(&label
, NV_UNIQUE_NAME
, KM_SLEEP
) == 0);
590 VERIFY(nvlist_add_uint64(label
, ZPOOL_CONFIG_VERSION
,
591 spa_version(spa
)) == 0);
592 VERIFY(nvlist_add_uint64(label
, ZPOOL_CONFIG_POOL_STATE
,
593 POOL_STATE_SPARE
) == 0);
594 VERIFY(nvlist_add_uint64(label
, ZPOOL_CONFIG_GUID
,
595 vd
->vdev_guid
) == 0);
596 } else if (reason
== VDEV_LABEL_L2CACHE
||
597 (reason
== VDEV_LABEL_REMOVE
&& vd
->vdev_isl2cache
)) {
599 * For level 2 ARC devices, add a special label.
601 VERIFY(nvlist_alloc(&label
, NV_UNIQUE_NAME
, KM_SLEEP
) == 0);
603 VERIFY(nvlist_add_uint64(label
, ZPOOL_CONFIG_VERSION
,
604 spa_version(spa
)) == 0);
605 VERIFY(nvlist_add_uint64(label
, ZPOOL_CONFIG_POOL_STATE
,
606 POOL_STATE_L2CACHE
) == 0);
607 VERIFY(nvlist_add_uint64(label
, ZPOOL_CONFIG_GUID
,
608 vd
->vdev_guid
) == 0);
610 label
= spa_config_generate(spa
, vd
, 0ULL, B_FALSE
);
613 * Add our creation time. This allows us to detect multiple
614 * vdev uses as described above, and automatically expires if we
617 VERIFY(nvlist_add_uint64(label
, ZPOOL_CONFIG_CREATE_TXG
,
622 buflen
= sizeof (vp
->vp_nvlist
);
624 error
= nvlist_pack(label
, &buf
, &buflen
, NV_ENCODE_XDR
, KM_SLEEP
);
627 zio_buf_free(vp
, sizeof (vdev_phys_t
));
628 /* EFAULT means nvlist_pack ran out of room */
629 return (error
== EFAULT
? ENAMETOOLONG
: EINVAL
);
633 * Initialize boot block header.
635 vb
= zio_buf_alloc(sizeof (vdev_boot_header_t
));
636 bzero(vb
, sizeof (vdev_boot_header_t
));
637 vb
->vb_magic
= VDEV_BOOT_MAGIC
;
638 vb
->vb_version
= VDEV_BOOT_VERSION
;
639 vb
->vb_offset
= VDEV_BOOT_OFFSET
;
640 vb
->vb_size
= VDEV_BOOT_SIZE
;
643 * Initialize uberblock template.
645 ub
= zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd
));
646 bzero(ub
, VDEV_UBERBLOCK_SIZE(vd
));
647 *ub
= spa
->spa_uberblock
;
651 * Write everything in parallel.
653 zio
= zio_root(spa
, NULL
, NULL
, flags
);
655 for (int l
= 0; l
< VDEV_LABELS
; l
++) {
657 vdev_label_write(zio
, vd
, l
, vp
,
658 offsetof(vdev_label_t
, vl_vdev_phys
),
659 sizeof (vdev_phys_t
), NULL
, NULL
, flags
);
661 vdev_label_write(zio
, vd
, l
, vb
,
662 offsetof(vdev_label_t
, vl_boot_header
),
663 sizeof (vdev_boot_header_t
), NULL
, NULL
, flags
);
665 for (int n
= 0; n
< VDEV_UBERBLOCK_COUNT(vd
); n
++) {
666 vdev_label_write(zio
, vd
, l
, ub
,
667 VDEV_UBERBLOCK_OFFSET(vd
, n
),
668 VDEV_UBERBLOCK_SIZE(vd
), NULL
, NULL
, flags
);
672 error
= zio_wait(zio
);
675 zio_buf_free(ub
, VDEV_UBERBLOCK_SIZE(vd
));
676 zio_buf_free(vb
, sizeof (vdev_boot_header_t
));
677 zio_buf_free(vp
, sizeof (vdev_phys_t
));
680 * If this vdev hasn't been previously identified as a spare, then we
681 * mark it as such only if a) we are labeling it as a spare, or b) it
682 * exists as a spare elsewhere in the system. Do the same for
683 * level 2 ARC devices.
685 if (error
== 0 && !vd
->vdev_isspare
&&
686 (reason
== VDEV_LABEL_SPARE
||
687 spa_spare_exists(vd
->vdev_guid
, NULL
, NULL
)))
690 if (error
== 0 && !vd
->vdev_isl2cache
&&
691 (reason
== VDEV_LABEL_L2CACHE
||
692 spa_l2cache_exists(vd
->vdev_guid
, NULL
)))
699 * ==========================================================================
700 * uberblock load/sync
701 * ==========================================================================
705 * For use by zdb and debugging purposes only
707 uint64_t ub_max_txg
= UINT64_MAX
;
710 * Consider the following situation: txg is safely synced to disk. We've
711 * written the first uberblock for txg + 1, and then we lose power. When we
712 * come back up, we fail to see the uberblock for txg + 1 because, say,
713 * it was on a mirrored device and the replica to which we wrote txg + 1
714 * is now offline. If we then make some changes and sync txg + 1, and then
715 * the missing replica comes back, then for a new seconds we'll have two
716 * conflicting uberblocks on disk with the same txg. The solution is simple:
717 * among uberblocks with equal txg, choose the one with the latest timestamp.
720 vdev_uberblock_compare(uberblock_t
*ub1
, uberblock_t
*ub2
)
722 if (ub1
->ub_txg
< ub2
->ub_txg
)
724 if (ub1
->ub_txg
> ub2
->ub_txg
)
727 if (ub1
->ub_timestamp
< ub2
->ub_timestamp
)
729 if (ub1
->ub_timestamp
> ub2
->ub_timestamp
)
736 vdev_uberblock_load_done(zio_t
*zio
)
738 zio_t
*rio
= zio
->io_private
;
739 uberblock_t
*ub
= zio
->io_data
;
740 uberblock_t
*ubbest
= rio
->io_private
;
742 ASSERT3U(zio
->io_size
, ==, VDEV_UBERBLOCK_SIZE(zio
->io_vd
));
744 if (zio
->io_error
== 0 && uberblock_verify(ub
) == 0) {
745 mutex_enter(&rio
->io_lock
);
746 if (ub
->ub_txg
<= ub_max_txg
&&
747 vdev_uberblock_compare(ub
, ubbest
) > 0)
749 mutex_exit(&rio
->io_lock
);
752 zio_buf_free(zio
->io_data
, zio
->io_size
);
756 vdev_uberblock_load(zio_t
*zio
, vdev_t
*vd
, uberblock_t
*ubbest
)
758 spa_t
*spa
= vd
->vdev_spa
;
759 vdev_t
*rvd
= spa
->spa_root_vdev
;
761 ZIO_FLAG_CONFIG_WRITER
| ZIO_FLAG_CANFAIL
| ZIO_FLAG_SPECULATIVE
;
765 spa_config_enter(spa
, SCL_ALL
, FTAG
, RW_WRITER
);
766 zio
= zio_root(spa
, NULL
, ubbest
, flags
);
767 bzero(ubbest
, sizeof (uberblock_t
));
772 for (int c
= 0; c
< vd
->vdev_children
; c
++)
773 vdev_uberblock_load(zio
, vd
->vdev_child
[c
], ubbest
);
775 if (vd
->vdev_ops
->vdev_op_leaf
&& vdev_readable(vd
)) {
776 for (int l
= 0; l
< VDEV_LABELS
; l
++) {
777 for (int n
= 0; n
< VDEV_UBERBLOCK_COUNT(vd
); n
++) {
778 vdev_label_read(zio
, vd
, l
,
779 zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd
)),
780 VDEV_UBERBLOCK_OFFSET(vd
, n
),
781 VDEV_UBERBLOCK_SIZE(vd
),
782 vdev_uberblock_load_done
, zio
, flags
);
788 (void) zio_wait(zio
);
789 spa_config_exit(spa
, SCL_ALL
, FTAG
);
794 * On success, increment root zio's count of good writes.
795 * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
798 vdev_uberblock_sync_done(zio_t
*zio
)
800 uint64_t *good_writes
= zio
->io_private
;
802 if (zio
->io_error
== 0 && zio
->io_vd
->vdev_top
->vdev_ms_array
!= 0)
803 atomic_add_64(good_writes
, 1);
807 * Write the uberblock to all labels of all leaves of the specified vdev.
810 vdev_uberblock_sync(zio_t
*zio
, uberblock_t
*ub
, vdev_t
*vd
, int flags
)
815 for (int c
= 0; c
< vd
->vdev_children
; c
++)
816 vdev_uberblock_sync(zio
, ub
, vd
->vdev_child
[c
], flags
);
818 if (!vd
->vdev_ops
->vdev_op_leaf
)
821 if (!vdev_writeable(vd
))
824 n
= ub
->ub_txg
& (VDEV_UBERBLOCK_COUNT(vd
) - 1);
826 ubbuf
= zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd
));
827 bzero(ubbuf
, VDEV_UBERBLOCK_SIZE(vd
));
830 for (int l
= 0; l
< VDEV_LABELS
; l
++)
831 vdev_label_write(zio
, vd
, l
, ubbuf
,
832 VDEV_UBERBLOCK_OFFSET(vd
, n
), VDEV_UBERBLOCK_SIZE(vd
),
833 vdev_uberblock_sync_done
, zio
->io_private
,
834 flags
| ZIO_FLAG_DONT_PROPAGATE
);
836 zio_buf_free(ubbuf
, VDEV_UBERBLOCK_SIZE(vd
));
840 vdev_uberblock_sync_list(vdev_t
**svd
, int svdcount
, uberblock_t
*ub
, int flags
)
842 spa_t
*spa
= svd
[0]->vdev_spa
;
844 uint64_t good_writes
= 0;
846 zio
= zio_root(spa
, NULL
, &good_writes
, flags
);
848 for (int v
= 0; v
< svdcount
; v
++)
849 vdev_uberblock_sync(zio
, ub
, svd
[v
], flags
);
851 (void) zio_wait(zio
);
854 * Flush the uberblocks to disk. This ensures that the odd labels
855 * are no longer needed (because the new uberblocks and the even
856 * labels are safely on disk), so it is safe to overwrite them.
858 zio
= zio_root(spa
, NULL
, NULL
, flags
);
860 for (int v
= 0; v
< svdcount
; v
++)
861 zio_flush(zio
, svd
[v
]);
863 (void) zio_wait(zio
);
865 return (good_writes
>= 1 ? 0 : EIO
);
869 * On success, increment the count of good writes for our top-level vdev.
872 vdev_label_sync_done(zio_t
*zio
)
874 uint64_t *good_writes
= zio
->io_private
;
876 if (zio
->io_error
== 0)
877 atomic_add_64(good_writes
, 1);
881 * If there weren't enough good writes, indicate failure to the parent.
884 vdev_label_sync_top_done(zio_t
*zio
)
886 uint64_t *good_writes
= zio
->io_private
;
888 if (*good_writes
== 0)
891 kmem_free(good_writes
, sizeof (uint64_t));
895 * We ignore errors for log and cache devices, simply free the private data.
898 vdev_label_sync_ignore_done(zio_t
*zio
)
900 kmem_free(zio
->io_private
, sizeof (uint64_t));
904 * Write all even or odd labels to all leaves of the specified vdev.
907 vdev_label_sync(zio_t
*zio
, vdev_t
*vd
, int l
, uint64_t txg
, int flags
)
914 for (int c
= 0; c
< vd
->vdev_children
; c
++)
915 vdev_label_sync(zio
, vd
->vdev_child
[c
], l
, txg
, flags
);
917 if (!vd
->vdev_ops
->vdev_op_leaf
)
920 if (!vdev_writeable(vd
))
924 * Generate a label describing the top-level config to which we belong.
926 label
= spa_config_generate(vd
->vdev_spa
, vd
, txg
, B_FALSE
);
928 vp
= zio_buf_alloc(sizeof (vdev_phys_t
));
929 bzero(vp
, sizeof (vdev_phys_t
));
932 buflen
= sizeof (vp
->vp_nvlist
);
934 if (nvlist_pack(label
, &buf
, &buflen
, NV_ENCODE_XDR
, KM_SLEEP
) == 0) {
935 for (; l
< VDEV_LABELS
; l
+= 2) {
936 vdev_label_write(zio
, vd
, l
, vp
,
937 offsetof(vdev_label_t
, vl_vdev_phys
),
938 sizeof (vdev_phys_t
),
939 vdev_label_sync_done
, zio
->io_private
,
940 flags
| ZIO_FLAG_DONT_PROPAGATE
);
944 zio_buf_free(vp
, sizeof (vdev_phys_t
));
949 vdev_label_sync_list(spa_t
*spa
, int l
, uint64_t txg
, int flags
)
951 list_t
*dl
= &spa
->spa_config_dirty_list
;
957 * Write the new labels to disk.
959 zio
= zio_root(spa
, NULL
, NULL
, flags
);
961 for (vd
= list_head(dl
); vd
!= NULL
; vd
= list_next(dl
, vd
)) {
962 uint64_t *good_writes
= kmem_zalloc(sizeof (uint64_t),
964 zio_t
*vio
= zio_null(zio
, spa
, NULL
,
965 (vd
->vdev_islog
|| vd
->vdev_aux
!= NULL
) ?
966 vdev_label_sync_ignore_done
: vdev_label_sync_top_done
,
968 vdev_label_sync(vio
, vd
, l
, txg
, flags
);
972 error
= zio_wait(zio
);
975 * Flush the new labels to disk.
977 zio
= zio_root(spa
, NULL
, NULL
, flags
);
979 for (vd
= list_head(dl
); vd
!= NULL
; vd
= list_next(dl
, vd
))
982 (void) zio_wait(zio
);
988 * Sync the uberblock and any changes to the vdev configuration.
990 * The order of operations is carefully crafted to ensure that
991 * if the system panics or loses power at any time, the state on disk
992 * is still transactionally consistent. The in-line comments below
993 * describe the failure semantics at each stage.
995 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
996 * at any time, you can just call it again, and it will resume its work.
999 vdev_config_sync(vdev_t
**svd
, int svdcount
, uint64_t txg
)
1001 spa_t
*spa
= svd
[0]->vdev_spa
;
1002 uberblock_t
*ub
= &spa
->spa_uberblock
;
1006 int flags
= ZIO_FLAG_CONFIG_WRITER
| ZIO_FLAG_CANFAIL
;
1008 ASSERT(ub
->ub_txg
<= txg
);
1011 * If this isn't a resync due to I/O errors,
1012 * and nothing changed in this transaction group,
1013 * and the vdev configuration hasn't changed,
1014 * then there's nothing to do.
1016 if (ub
->ub_txg
< txg
&&
1017 uberblock_update(ub
, spa
->spa_root_vdev
, txg
) == B_FALSE
&&
1018 list_is_empty(&spa
->spa_config_dirty_list
))
1021 if (txg
> spa_freeze_txg(spa
))
1024 ASSERT(txg
<= spa
->spa_final_txg
);
1027 * Flush the write cache of every disk that's been written to
1028 * in this transaction group. This ensures that all blocks
1029 * written in this txg will be committed to stable storage
1030 * before any uberblock that references them.
1032 zio
= zio_root(spa
, NULL
, NULL
, flags
);
1034 for (vd
= txg_list_head(&spa
->spa_vdev_txg_list
, TXG_CLEAN(txg
)); vd
;
1035 vd
= txg_list_next(&spa
->spa_vdev_txg_list
, vd
, TXG_CLEAN(txg
)))
1038 (void) zio_wait(zio
);
1041 * Sync out the even labels (L0, L2) for every dirty vdev. If the
1042 * system dies in the middle of this process, that's OK: all of the
1043 * even labels that made it to disk will be newer than any uberblock,
1044 * and will therefore be considered invalid. The odd labels (L1, L3),
1045 * which have not yet been touched, will still be valid. We flush
1046 * the new labels to disk to ensure that all even-label updates
1047 * are committed to stable storage before the uberblock update.
1049 if ((error
= vdev_label_sync_list(spa
, 0, txg
, flags
)) != 0)
1053 * Sync the uberblocks to all vdevs in svd[].
1054 * If the system dies in the middle of this step, there are two cases
1055 * to consider, and the on-disk state is consistent either way:
1057 * (1) If none of the new uberblocks made it to disk, then the
1058 * previous uberblock will be the newest, and the odd labels
1059 * (which had not yet been touched) will be valid with respect
1060 * to that uberblock.
1062 * (2) If one or more new uberblocks made it to disk, then they
1063 * will be the newest, and the even labels (which had all
1064 * been successfully committed) will be valid with respect
1065 * to the new uberblocks.
1067 if ((error
= vdev_uberblock_sync_list(svd
, svdcount
, ub
, flags
)) != 0)
1071 * Sync out odd labels for every dirty vdev. If the system dies
1072 * in the middle of this process, the even labels and the new
1073 * uberblocks will suffice to open the pool. The next time
1074 * the pool is opened, the first thing we'll do -- before any
1075 * user data is modified -- is mark every vdev dirty so that
1076 * all labels will be brought up to date. We flush the new labels
1077 * to disk to ensure that all odd-label updates are committed to
1078 * stable storage before the next transaction group begins.
1080 return (vdev_label_sync_list(spa
, 1, txg
, flags
));