]> git.proxmox.com Git - mirror_zfs-debian.git/blob - module/zfs/vdev_label.c
Imported Upstream version 0.6.4.2
[mirror_zfs-debian.git] / module / zfs / vdev_label.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 */
26
27 /*
28 * Virtual Device Labels
29 * ---------------------
30 *
31 * The vdev label serves several distinct purposes:
32 *
33 * 1. Uniquely identify this device as part of a ZFS pool and confirm its
34 * identity within the pool.
35 *
36 * 2. Verify that all the devices given in a configuration are present
37 * within the pool.
38 *
39 * 3. Determine the uberblock for the pool.
40 *
41 * 4. In case of an import operation, determine the configuration of the
42 * toplevel vdev of which it is a part.
43 *
44 * 5. If an import operation cannot find all the devices in the pool,
45 * provide enough information to the administrator to determine which
46 * devices are missing.
47 *
48 * It is important to note that while the kernel is responsible for writing the
49 * label, it only consumes the information in the first three cases. The
50 * latter information is only consumed in userland when determining the
51 * configuration to import a pool.
52 *
53 *
54 * Label Organization
55 * ------------------
56 *
57 * Before describing the contents of the label, it's important to understand how
58 * the labels are written and updated with respect to the uberblock.
59 *
60 * When the pool configuration is altered, either because it was newly created
61 * or a device was added, we want to update all the labels such that we can deal
62 * with fatal failure at any point. To this end, each disk has two labels which
63 * are updated before and after the uberblock is synced. Assuming we have
64 * labels and an uberblock with the following transaction groups:
65 *
66 * L1 UB L2
67 * +------+ +------+ +------+
68 * | | | | | |
69 * | t10 | | t10 | | t10 |
70 * | | | | | |
71 * +------+ +------+ +------+
72 *
73 * In this stable state, the labels and the uberblock were all updated within
74 * the same transaction group (10). Each label is mirrored and checksummed, so
75 * that we can detect when we fail partway through writing the label.
76 *
77 * In order to identify which labels are valid, the labels are written in the
78 * following manner:
79 *
80 * 1. For each vdev, update 'L1' to the new label
81 * 2. Update the uberblock
82 * 3. For each vdev, update 'L2' to the new label
83 *
84 * Given arbitrary failure, we can determine the correct label to use based on
85 * the transaction group. If we fail after updating L1 but before updating the
86 * UB, we will notice that L1's transaction group is greater than the uberblock,
87 * so L2 must be valid. If we fail after writing the uberblock but before
88 * writing L2, we will notice that L2's transaction group is less than L1, and
89 * therefore L1 is valid.
90 *
91 * Another added complexity is that not every label is updated when the config
92 * is synced. If we add a single device, we do not want to have to re-write
93 * every label for every device in the pool. This means that both L1 and L2 may
94 * be older than the pool uberblock, because the necessary information is stored
95 * on another vdev.
96 *
97 *
98 * On-disk Format
99 * --------------
100 *
101 * The vdev label consists of two distinct parts, and is wrapped within the
102 * vdev_label_t structure. The label includes 8k of padding to permit legacy
103 * VTOC disk labels, but is otherwise ignored.
104 *
105 * The first half of the label is a packed nvlist which contains pool wide
106 * properties, per-vdev properties, and configuration information. It is
107 * described in more detail below.
108 *
109 * The latter half of the label consists of a redundant array of uberblocks.
110 * These uberblocks are updated whenever a transaction group is committed,
111 * or when the configuration is updated. When a pool is loaded, we scan each
112 * vdev for the 'best' uberblock.
113 *
114 *
115 * Configuration Information
116 * -------------------------
117 *
118 * The nvlist describing the pool and vdev contains the following elements:
119 *
120 * version ZFS on-disk version
121 * name Pool name
122 * state Pool state
123 * txg Transaction group in which this label was written
124 * pool_guid Unique identifier for this pool
125 * vdev_tree An nvlist describing vdev tree.
126 * features_for_read
127 * An nvlist of the features necessary for reading the MOS.
128 *
129 * Each leaf device label also contains the following:
130 *
131 * top_guid Unique ID for top-level vdev in which this is contained
132 * guid Unique ID for the leaf vdev
133 *
134 * The 'vs' configuration follows the format described in 'spa_config.c'.
135 */
136
137 #include <sys/zfs_context.h>
138 #include <sys/spa.h>
139 #include <sys/spa_impl.h>
140 #include <sys/dmu.h>
141 #include <sys/zap.h>
142 #include <sys/vdev.h>
143 #include <sys/vdev_impl.h>
144 #include <sys/uberblock_impl.h>
145 #include <sys/metaslab.h>
146 #include <sys/zio.h>
147 #include <sys/dsl_scan.h>
148 #include <sys/fs/zfs.h>
149
150 /*
151 * Basic routines to read and write from a vdev label.
152 * Used throughout the rest of this file.
153 */
154 uint64_t
155 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
156 {
157 ASSERT(offset < sizeof (vdev_label_t));
158 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
159
160 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
161 0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
162 }
163
164 /*
165 * Returns back the vdev label associated with the passed in offset.
166 */
167 int
168 vdev_label_number(uint64_t psize, uint64_t offset)
169 {
170 int l;
171
172 if (offset >= psize - VDEV_LABEL_END_SIZE) {
173 offset -= psize - VDEV_LABEL_END_SIZE;
174 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
175 }
176 l = offset / sizeof (vdev_label_t);
177 return (l < VDEV_LABELS ? l : -1);
178 }
179
180 static void
181 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
182 uint64_t size, zio_done_func_t *done, void *private, int flags)
183 {
184 ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) ==
185 SCL_STATE_ALL);
186 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
187
188 zio_nowait(zio_read_phys(zio, vd,
189 vdev_label_offset(vd->vdev_psize, l, offset),
190 size, buf, ZIO_CHECKSUM_LABEL, done, private,
191 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
192 }
193
194 static void
195 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
196 uint64_t size, zio_done_func_t *done, void *private, int flags)
197 {
198 ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL ||
199 (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
200 (SCL_CONFIG | SCL_STATE) &&
201 dsl_pool_sync_context(spa_get_dsl(zio->io_spa))));
202 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
203
204 zio_nowait(zio_write_phys(zio, vd,
205 vdev_label_offset(vd->vdev_psize, l, offset),
206 size, buf, ZIO_CHECKSUM_LABEL, done, private,
207 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
208 }
209
210 /*
211 * Generate the nvlist representing this vdev's config.
212 */
213 nvlist_t *
214 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
215 vdev_config_flag_t flags)
216 {
217 nvlist_t *nv = NULL;
218
219 nv = fnvlist_alloc();
220
221 fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
222 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
223 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id);
224 fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid);
225
226 if (vd->vdev_path != NULL)
227 fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path);
228
229 if (vd->vdev_devid != NULL)
230 fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
231
232 if (vd->vdev_physpath != NULL)
233 fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
234 vd->vdev_physpath);
235
236 if (vd->vdev_fru != NULL)
237 fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
238
239 if (vd->vdev_nparity != 0) {
240 ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
241 VDEV_TYPE_RAIDZ) == 0);
242
243 /*
244 * Make sure someone hasn't managed to sneak a fancy new vdev
245 * into a crufty old storage pool.
246 */
247 ASSERT(vd->vdev_nparity == 1 ||
248 (vd->vdev_nparity <= 2 &&
249 spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
250 (vd->vdev_nparity <= 3 &&
251 spa_version(spa) >= SPA_VERSION_RAIDZ3));
252
253 /*
254 * Note that we'll add the nparity tag even on storage pools
255 * that only support a single parity device -- older software
256 * will just ignore it.
257 */
258 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity);
259 }
260
261 if (vd->vdev_wholedisk != -1ULL)
262 fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
263 vd->vdev_wholedisk);
264
265 if (vd->vdev_not_present)
266 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
267
268 if (vd->vdev_isspare)
269 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
270
271 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
272 vd == vd->vdev_top) {
273 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
274 vd->vdev_ms_array);
275 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
276 vd->vdev_ms_shift);
277 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
278 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
279 vd->vdev_asize);
280 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
281 if (vd->vdev_removing)
282 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
283 vd->vdev_removing);
284 }
285
286 if (vd->vdev_dtl_sm != NULL) {
287 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
288 space_map_object(vd->vdev_dtl_sm));
289 }
290
291 if (vd->vdev_crtxg)
292 fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
293
294 if (getstats) {
295 vdev_stat_t vs;
296 pool_scan_stat_t ps;
297
298 vdev_get_stats(vd, &vs);
299 fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
300 (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t));
301
302 /* provide either current or previous scan information */
303 if (spa_scan_get_stats(spa, &ps) == 0) {
304 fnvlist_add_uint64_array(nv,
305 ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
306 sizeof (pool_scan_stat_t) / sizeof (uint64_t));
307 }
308 }
309
310 if (!vd->vdev_ops->vdev_op_leaf) {
311 nvlist_t **child;
312 int c, idx;
313
314 ASSERT(!vd->vdev_ishole);
315
316 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
317 KM_SLEEP);
318
319 for (c = 0, idx = 0; c < vd->vdev_children; c++) {
320 vdev_t *cvd = vd->vdev_child[c];
321
322 /*
323 * If we're generating an nvlist of removing
324 * vdevs then skip over any device which is
325 * not being removed.
326 */
327 if ((flags & VDEV_CONFIG_REMOVING) &&
328 !cvd->vdev_removing)
329 continue;
330
331 child[idx++] = vdev_config_generate(spa, cvd,
332 getstats, flags);
333 }
334
335 if (idx) {
336 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
337 child, idx);
338 }
339
340 for (c = 0; c < idx; c++)
341 nvlist_free(child[c]);
342
343 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
344
345 } else {
346 const char *aux = NULL;
347
348 if (vd->vdev_offline && !vd->vdev_tmpoffline)
349 fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE);
350 if (vd->vdev_resilver_txg != 0)
351 fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
352 vd->vdev_resilver_txg);
353 if (vd->vdev_faulted)
354 fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE);
355 if (vd->vdev_degraded)
356 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE);
357 if (vd->vdev_removed)
358 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE);
359 if (vd->vdev_unspare)
360 fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE);
361 if (vd->vdev_ishole)
362 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE);
363
364 switch (vd->vdev_stat.vs_aux) {
365 case VDEV_AUX_ERR_EXCEEDED:
366 aux = "err_exceeded";
367 break;
368
369 case VDEV_AUX_EXTERNAL:
370 aux = "external";
371 break;
372 }
373
374 if (aux != NULL)
375 fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux);
376
377 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
378 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
379 vd->vdev_orig_guid);
380 }
381 }
382
383 return (nv);
384 }
385
386 /*
387 * Generate a view of the top-level vdevs. If we currently have holes
388 * in the namespace, then generate an array which contains a list of holey
389 * vdevs. Additionally, add the number of top-level children that currently
390 * exist.
391 */
392 void
393 vdev_top_config_generate(spa_t *spa, nvlist_t *config)
394 {
395 vdev_t *rvd = spa->spa_root_vdev;
396 uint64_t *array;
397 uint_t c, idx;
398
399 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
400
401 for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
402 vdev_t *tvd = rvd->vdev_child[c];
403
404 if (tvd->vdev_ishole)
405 array[idx++] = c;
406 }
407
408 if (idx) {
409 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
410 array, idx) == 0);
411 }
412
413 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
414 rvd->vdev_children) == 0);
415
416 kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
417 }
418
419 /*
420 * Returns the configuration from the label of the given vdev. For vdevs
421 * which don't have a txg value stored on their label (i.e. spares/cache)
422 * or have not been completely initialized (txg = 0) just return
423 * the configuration from the first valid label we find. Otherwise,
424 * find the most up-to-date label that does not exceed the specified
425 * 'txg' value.
426 */
427 nvlist_t *
428 vdev_label_read_config(vdev_t *vd, uint64_t txg)
429 {
430 spa_t *spa = vd->vdev_spa;
431 nvlist_t *config = NULL;
432 vdev_phys_t *vp;
433 zio_t *zio;
434 uint64_t best_txg = 0;
435 int error = 0;
436 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
437 ZIO_FLAG_SPECULATIVE;
438 int l;
439
440 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
441
442 if (!vdev_readable(vd))
443 return (NULL);
444
445 vp = zio_buf_alloc(sizeof (vdev_phys_t));
446
447 retry:
448 for (l = 0; l < VDEV_LABELS; l++) {
449 nvlist_t *label = NULL;
450
451 zio = zio_root(spa, NULL, NULL, flags);
452
453 vdev_label_read(zio, vd, l, vp,
454 offsetof(vdev_label_t, vl_vdev_phys),
455 sizeof (vdev_phys_t), NULL, NULL, flags);
456
457 if (zio_wait(zio) == 0 &&
458 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
459 &label, 0) == 0) {
460 uint64_t label_txg = 0;
461
462 /*
463 * Auxiliary vdevs won't have txg values in their
464 * labels and newly added vdevs may not have been
465 * completely initialized so just return the
466 * configuration from the first valid label we
467 * encounter.
468 */
469 error = nvlist_lookup_uint64(label,
470 ZPOOL_CONFIG_POOL_TXG, &label_txg);
471 if ((error || label_txg == 0) && !config) {
472 config = label;
473 break;
474 } else if (label_txg <= txg && label_txg > best_txg) {
475 best_txg = label_txg;
476 nvlist_free(config);
477 config = fnvlist_dup(label);
478 }
479 }
480
481 if (label != NULL) {
482 nvlist_free(label);
483 label = NULL;
484 }
485 }
486
487 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
488 flags |= ZIO_FLAG_TRYHARD;
489 goto retry;
490 }
491
492 zio_buf_free(vp, sizeof (vdev_phys_t));
493
494 return (config);
495 }
496
497 /*
498 * Determine if a device is in use. The 'spare_guid' parameter will be filled
499 * in with the device guid if this spare is active elsewhere on the system.
500 */
501 static boolean_t
502 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
503 uint64_t *spare_guid, uint64_t *l2cache_guid)
504 {
505 spa_t *spa = vd->vdev_spa;
506 uint64_t state, pool_guid, device_guid, txg, spare_pool;
507 uint64_t vdtxg = 0;
508 nvlist_t *label;
509
510 if (spare_guid)
511 *spare_guid = 0ULL;
512 if (l2cache_guid)
513 *l2cache_guid = 0ULL;
514
515 /*
516 * Read the label, if any, and perform some basic sanity checks.
517 */
518 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
519 return (B_FALSE);
520
521 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
522 &vdtxg);
523
524 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
525 &state) != 0 ||
526 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
527 &device_guid) != 0) {
528 nvlist_free(label);
529 return (B_FALSE);
530 }
531
532 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
533 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
534 &pool_guid) != 0 ||
535 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
536 &txg) != 0)) {
537 nvlist_free(label);
538 return (B_FALSE);
539 }
540
541 nvlist_free(label);
542
543 /*
544 * Check to see if this device indeed belongs to the pool it claims to
545 * be a part of. The only way this is allowed is if the device is a hot
546 * spare (which we check for later on).
547 */
548 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
549 !spa_guid_exists(pool_guid, device_guid) &&
550 !spa_spare_exists(device_guid, NULL, NULL) &&
551 !spa_l2cache_exists(device_guid, NULL))
552 return (B_FALSE);
553
554 /*
555 * If the transaction group is zero, then this an initialized (but
556 * unused) label. This is only an error if the create transaction
557 * on-disk is the same as the one we're using now, in which case the
558 * user has attempted to add the same vdev multiple times in the same
559 * transaction.
560 */
561 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
562 txg == 0 && vdtxg == crtxg)
563 return (B_TRUE);
564
565 /*
566 * Check to see if this is a spare device. We do an explicit check for
567 * spa_has_spare() here because it may be on our pending list of spares
568 * to add. We also check if it is an l2cache device.
569 */
570 if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
571 spa_has_spare(spa, device_guid)) {
572 if (spare_guid)
573 *spare_guid = device_guid;
574
575 switch (reason) {
576 case VDEV_LABEL_CREATE:
577 case VDEV_LABEL_L2CACHE:
578 return (B_TRUE);
579
580 case VDEV_LABEL_REPLACE:
581 return (!spa_has_spare(spa, device_guid) ||
582 spare_pool != 0ULL);
583
584 case VDEV_LABEL_SPARE:
585 return (spa_has_spare(spa, device_guid));
586 default:
587 break;
588 }
589 }
590
591 /*
592 * Check to see if this is an l2cache device.
593 */
594 if (spa_l2cache_exists(device_guid, NULL))
595 return (B_TRUE);
596
597 /*
598 * We can't rely on a pool's state if it's been imported
599 * read-only. Instead we look to see if the pools is marked
600 * read-only in the namespace and set the state to active.
601 */
602 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
603 (spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
604 spa_mode(spa) == FREAD)
605 state = POOL_STATE_ACTIVE;
606
607 /*
608 * If the device is marked ACTIVE, then this device is in use by another
609 * pool on the system.
610 */
611 return (state == POOL_STATE_ACTIVE);
612 }
613
614 /*
615 * Initialize a vdev label. We check to make sure each leaf device is not in
616 * use, and writable. We put down an initial label which we will later
617 * overwrite with a complete label. Note that it's important to do this
618 * sequentially, not in parallel, so that we catch cases of multiple use of the
619 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
620 * itself.
621 */
622 int
623 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
624 {
625 spa_t *spa = vd->vdev_spa;
626 nvlist_t *label;
627 vdev_phys_t *vp;
628 char *pad2;
629 uberblock_t *ub;
630 zio_t *zio;
631 char *buf;
632 size_t buflen;
633 int error;
634 uint64_t spare_guid = 0, l2cache_guid = 0;
635 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
636 int c, l;
637 vdev_t *pvd;
638
639 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
640
641 for (c = 0; c < vd->vdev_children; c++)
642 if ((error = vdev_label_init(vd->vdev_child[c],
643 crtxg, reason)) != 0)
644 return (error);
645
646 /* Track the creation time for this vdev */
647 vd->vdev_crtxg = crtxg;
648
649 if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa))
650 return (0);
651
652 /*
653 * Dead vdevs cannot be initialized.
654 */
655 if (vdev_is_dead(vd))
656 return (SET_ERROR(EIO));
657
658 /*
659 * Determine if the vdev is in use.
660 */
661 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
662 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
663 return (SET_ERROR(EBUSY));
664
665 /*
666 * If this is a request to add or replace a spare or l2cache device
667 * that is in use elsewhere on the system, then we must update the
668 * guid (which was initialized to a random value) to reflect the
669 * actual GUID (which is shared between multiple pools).
670 */
671 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
672 spare_guid != 0ULL) {
673 uint64_t guid_delta = spare_guid - vd->vdev_guid;
674
675 vd->vdev_guid += guid_delta;
676
677 for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
678 pvd->vdev_guid_sum += guid_delta;
679
680 /*
681 * If this is a replacement, then we want to fallthrough to the
682 * rest of the code. If we're adding a spare, then it's already
683 * labeled appropriately and we can just return.
684 */
685 if (reason == VDEV_LABEL_SPARE)
686 return (0);
687 ASSERT(reason == VDEV_LABEL_REPLACE ||
688 reason == VDEV_LABEL_SPLIT);
689 }
690
691 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
692 l2cache_guid != 0ULL) {
693 uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
694
695 vd->vdev_guid += guid_delta;
696
697 for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
698 pvd->vdev_guid_sum += guid_delta;
699
700 /*
701 * If this is a replacement, then we want to fallthrough to the
702 * rest of the code. If we're adding an l2cache, then it's
703 * already labeled appropriately and we can just return.
704 */
705 if (reason == VDEV_LABEL_L2CACHE)
706 return (0);
707 ASSERT(reason == VDEV_LABEL_REPLACE);
708 }
709
710 /*
711 * Initialize its label.
712 */
713 vp = zio_buf_alloc(sizeof (vdev_phys_t));
714 bzero(vp, sizeof (vdev_phys_t));
715
716 /*
717 * Generate a label describing the pool and our top-level vdev.
718 * We mark it as being from txg 0 to indicate that it's not
719 * really part of an active pool just yet. The labels will
720 * be written again with a meaningful txg by spa_sync().
721 */
722 if (reason == VDEV_LABEL_SPARE ||
723 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
724 /*
725 * For inactive hot spares, we generate a special label that
726 * identifies as a mutually shared hot spare. We write the
727 * label if we are adding a hot spare, or if we are removing an
728 * active hot spare (in which case we want to revert the
729 * labels).
730 */
731 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
732
733 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
734 spa_version(spa)) == 0);
735 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
736 POOL_STATE_SPARE) == 0);
737 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
738 vd->vdev_guid) == 0);
739 } else if (reason == VDEV_LABEL_L2CACHE ||
740 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
741 /*
742 * For level 2 ARC devices, add a special label.
743 */
744 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
745
746 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
747 spa_version(spa)) == 0);
748 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
749 POOL_STATE_L2CACHE) == 0);
750 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
751 vd->vdev_guid) == 0);
752 } else {
753 uint64_t txg = 0ULL;
754
755 if (reason == VDEV_LABEL_SPLIT)
756 txg = spa->spa_uberblock.ub_txg;
757 label = spa_config_generate(spa, vd, txg, B_FALSE);
758
759 /*
760 * Add our creation time. This allows us to detect multiple
761 * vdev uses as described above, and automatically expires if we
762 * fail.
763 */
764 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
765 crtxg) == 0);
766 }
767
768 buf = vp->vp_nvlist;
769 buflen = sizeof (vp->vp_nvlist);
770
771 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
772 if (error != 0) {
773 nvlist_free(label);
774 zio_buf_free(vp, sizeof (vdev_phys_t));
775 /* EFAULT means nvlist_pack ran out of room */
776 return (error == EFAULT ? ENAMETOOLONG : EINVAL);
777 }
778
779 /*
780 * Initialize uberblock template.
781 */
782 ub = zio_buf_alloc(VDEV_UBERBLOCK_RING);
783 bzero(ub, VDEV_UBERBLOCK_RING);
784 *ub = spa->spa_uberblock;
785 ub->ub_txg = 0;
786
787 /* Initialize the 2nd padding area. */
788 pad2 = zio_buf_alloc(VDEV_PAD_SIZE);
789 bzero(pad2, VDEV_PAD_SIZE);
790
791 /*
792 * Write everything in parallel.
793 */
794 retry:
795 zio = zio_root(spa, NULL, NULL, flags);
796
797 for (l = 0; l < VDEV_LABELS; l++) {
798
799 vdev_label_write(zio, vd, l, vp,
800 offsetof(vdev_label_t, vl_vdev_phys),
801 sizeof (vdev_phys_t), NULL, NULL, flags);
802
803 /*
804 * Skip the 1st padding area.
805 * Zero out the 2nd padding area where it might have
806 * left over data from previous filesystem format.
807 */
808 vdev_label_write(zio, vd, l, pad2,
809 offsetof(vdev_label_t, vl_pad2),
810 VDEV_PAD_SIZE, NULL, NULL, flags);
811
812 vdev_label_write(zio, vd, l, ub,
813 offsetof(vdev_label_t, vl_uberblock),
814 VDEV_UBERBLOCK_RING, NULL, NULL, flags);
815 }
816
817 error = zio_wait(zio);
818
819 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
820 flags |= ZIO_FLAG_TRYHARD;
821 goto retry;
822 }
823
824 nvlist_free(label);
825 zio_buf_free(pad2, VDEV_PAD_SIZE);
826 zio_buf_free(ub, VDEV_UBERBLOCK_RING);
827 zio_buf_free(vp, sizeof (vdev_phys_t));
828
829 /*
830 * If this vdev hasn't been previously identified as a spare, then we
831 * mark it as such only if a) we are labeling it as a spare, or b) it
832 * exists as a spare elsewhere in the system. Do the same for
833 * level 2 ARC devices.
834 */
835 if (error == 0 && !vd->vdev_isspare &&
836 (reason == VDEV_LABEL_SPARE ||
837 spa_spare_exists(vd->vdev_guid, NULL, NULL)))
838 spa_spare_add(vd);
839
840 if (error == 0 && !vd->vdev_isl2cache &&
841 (reason == VDEV_LABEL_L2CACHE ||
842 spa_l2cache_exists(vd->vdev_guid, NULL)))
843 spa_l2cache_add(vd);
844
845 return (error);
846 }
847
848 /*
849 * ==========================================================================
850 * uberblock load/sync
851 * ==========================================================================
852 */
853
854 /*
855 * Consider the following situation: txg is safely synced to disk. We've
856 * written the first uberblock for txg + 1, and then we lose power. When we
857 * come back up, we fail to see the uberblock for txg + 1 because, say,
858 * it was on a mirrored device and the replica to which we wrote txg + 1
859 * is now offline. If we then make some changes and sync txg + 1, and then
860 * the missing replica comes back, then for a few seconds we'll have two
861 * conflicting uberblocks on disk with the same txg. The solution is simple:
862 * among uberblocks with equal txg, choose the one with the latest timestamp.
863 */
864 static int
865 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
866 {
867 if (ub1->ub_txg < ub2->ub_txg)
868 return (-1);
869 if (ub1->ub_txg > ub2->ub_txg)
870 return (1);
871
872 if (ub1->ub_timestamp < ub2->ub_timestamp)
873 return (-1);
874 if (ub1->ub_timestamp > ub2->ub_timestamp)
875 return (1);
876
877 return (0);
878 }
879
880 struct ubl_cbdata {
881 uberblock_t *ubl_ubbest; /* Best uberblock */
882 vdev_t *ubl_vd; /* vdev associated with the above */
883 };
884
885 static void
886 vdev_uberblock_load_done(zio_t *zio)
887 {
888 vdev_t *vd = zio->io_vd;
889 spa_t *spa = zio->io_spa;
890 zio_t *rio = zio->io_private;
891 uberblock_t *ub = zio->io_data;
892 struct ubl_cbdata *cbp = rio->io_private;
893
894 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
895
896 if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
897 mutex_enter(&rio->io_lock);
898 if (ub->ub_txg <= spa->spa_load_max_txg &&
899 vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
900 /*
901 * Keep track of the vdev in which this uberblock
902 * was found. We will use this information later
903 * to obtain the config nvlist associated with
904 * this uberblock.
905 */
906 *cbp->ubl_ubbest = *ub;
907 cbp->ubl_vd = vd;
908 }
909 mutex_exit(&rio->io_lock);
910 }
911
912 zio_buf_free(zio->io_data, zio->io_size);
913 }
914
915 static void
916 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
917 struct ubl_cbdata *cbp)
918 {
919 int c, l, n;
920
921 for (c = 0; c < vd->vdev_children; c++)
922 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
923
924 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
925 for (l = 0; l < VDEV_LABELS; l++) {
926 for (n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
927 vdev_label_read(zio, vd, l,
928 zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)),
929 VDEV_UBERBLOCK_OFFSET(vd, n),
930 VDEV_UBERBLOCK_SIZE(vd),
931 vdev_uberblock_load_done, zio, flags);
932 }
933 }
934 }
935 }
936
937 /*
938 * Reads the 'best' uberblock from disk along with its associated
939 * configuration. First, we read the uberblock array of each label of each
940 * vdev, keeping track of the uberblock with the highest txg in each array.
941 * Then, we read the configuration from the same vdev as the best uberblock.
942 */
943 void
944 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
945 {
946 zio_t *zio;
947 spa_t *spa = rvd->vdev_spa;
948 struct ubl_cbdata cb;
949 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
950 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
951
952 ASSERT(ub);
953 ASSERT(config);
954
955 bzero(ub, sizeof (uberblock_t));
956 *config = NULL;
957
958 cb.ubl_ubbest = ub;
959 cb.ubl_vd = NULL;
960
961 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
962 zio = zio_root(spa, NULL, &cb, flags);
963 vdev_uberblock_load_impl(zio, rvd, flags, &cb);
964 (void) zio_wait(zio);
965
966 /*
967 * It's possible that the best uberblock was discovered on a label
968 * that has a configuration which was written in a future txg.
969 * Search all labels on this vdev to find the configuration that
970 * matches the txg for our uberblock.
971 */
972 if (cb.ubl_vd != NULL)
973 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
974 spa_config_exit(spa, SCL_ALL, FTAG);
975 }
976
977 /*
978 * On success, increment root zio's count of good writes.
979 * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
980 */
981 static void
982 vdev_uberblock_sync_done(zio_t *zio)
983 {
984 uint64_t *good_writes = zio->io_private;
985
986 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
987 atomic_add_64(good_writes, 1);
988 }
989
990 /*
991 * Write the uberblock to all labels of all leaves of the specified vdev.
992 */
993 static void
994 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags)
995 {
996 uberblock_t *ubbuf;
997 int c, l, n;
998
999 for (c = 0; c < vd->vdev_children; c++)
1000 vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags);
1001
1002 if (!vd->vdev_ops->vdev_op_leaf)
1003 return;
1004
1005 if (!vdev_writeable(vd))
1006 return;
1007
1008 n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);
1009
1010 ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
1011 bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
1012 *ubbuf = *ub;
1013
1014 for (l = 0; l < VDEV_LABELS; l++)
1015 vdev_label_write(zio, vd, l, ubbuf,
1016 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1017 vdev_uberblock_sync_done, zio->io_private,
1018 flags | ZIO_FLAG_DONT_PROPAGATE);
1019
1020 zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
1021 }
1022
1023 /* Sync the uberblocks to all vdevs in svd[] */
1024 int
1025 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1026 {
1027 spa_t *spa = svd[0]->vdev_spa;
1028 zio_t *zio;
1029 uint64_t good_writes = 0;
1030 int v;
1031
1032 zio = zio_root(spa, NULL, &good_writes, flags);
1033
1034 for (v = 0; v < svdcount; v++)
1035 vdev_uberblock_sync(zio, ub, svd[v], flags);
1036
1037 (void) zio_wait(zio);
1038
1039 /*
1040 * Flush the uberblocks to disk. This ensures that the odd labels
1041 * are no longer needed (because the new uberblocks and the even
1042 * labels are safely on disk), so it is safe to overwrite them.
1043 */
1044 zio = zio_root(spa, NULL, NULL, flags);
1045
1046 for (v = 0; v < svdcount; v++)
1047 zio_flush(zio, svd[v]);
1048
1049 (void) zio_wait(zio);
1050
1051 return (good_writes >= 1 ? 0 : EIO);
1052 }
1053
1054 /*
1055 * On success, increment the count of good writes for our top-level vdev.
1056 */
1057 static void
1058 vdev_label_sync_done(zio_t *zio)
1059 {
1060 uint64_t *good_writes = zio->io_private;
1061
1062 if (zio->io_error == 0)
1063 atomic_add_64(good_writes, 1);
1064 }
1065
1066 /*
1067 * If there weren't enough good writes, indicate failure to the parent.
1068 */
1069 static void
1070 vdev_label_sync_top_done(zio_t *zio)
1071 {
1072 uint64_t *good_writes = zio->io_private;
1073
1074 if (*good_writes == 0)
1075 zio->io_error = SET_ERROR(EIO);
1076
1077 kmem_free(good_writes, sizeof (uint64_t));
1078 }
1079
1080 /*
1081 * We ignore errors for log and cache devices, simply free the private data.
1082 */
1083 static void
1084 vdev_label_sync_ignore_done(zio_t *zio)
1085 {
1086 kmem_free(zio->io_private, sizeof (uint64_t));
1087 }
1088
1089 /*
1090 * Write all even or odd labels to all leaves of the specified vdev.
1091 */
1092 static void
1093 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags)
1094 {
1095 nvlist_t *label;
1096 vdev_phys_t *vp;
1097 char *buf;
1098 size_t buflen;
1099 int c;
1100
1101 for (c = 0; c < vd->vdev_children; c++)
1102 vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags);
1103
1104 if (!vd->vdev_ops->vdev_op_leaf)
1105 return;
1106
1107 if (!vdev_writeable(vd))
1108 return;
1109
1110 /*
1111 * Generate a label describing the top-level config to which we belong.
1112 */
1113 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1114
1115 vp = zio_buf_alloc(sizeof (vdev_phys_t));
1116 bzero(vp, sizeof (vdev_phys_t));
1117
1118 buf = vp->vp_nvlist;
1119 buflen = sizeof (vp->vp_nvlist);
1120
1121 if (!nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP)) {
1122 for (; l < VDEV_LABELS; l += 2) {
1123 vdev_label_write(zio, vd, l, vp,
1124 offsetof(vdev_label_t, vl_vdev_phys),
1125 sizeof (vdev_phys_t),
1126 vdev_label_sync_done, zio->io_private,
1127 flags | ZIO_FLAG_DONT_PROPAGATE);
1128 }
1129 }
1130
1131 zio_buf_free(vp, sizeof (vdev_phys_t));
1132 nvlist_free(label);
1133 }
1134
1135 int
1136 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1137 {
1138 list_t *dl = &spa->spa_config_dirty_list;
1139 vdev_t *vd;
1140 zio_t *zio;
1141 int error;
1142
1143 /*
1144 * Write the new labels to disk.
1145 */
1146 zio = zio_root(spa, NULL, NULL, flags);
1147
1148 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1149 uint64_t *good_writes;
1150 zio_t *vio;
1151
1152 ASSERT(!vd->vdev_ishole);
1153
1154 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
1155 vio = zio_null(zio, spa, NULL,
1156 (vd->vdev_islog || vd->vdev_aux != NULL) ?
1157 vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1158 good_writes, flags);
1159 vdev_label_sync(vio, vd, l, txg, flags);
1160 zio_nowait(vio);
1161 }
1162
1163 error = zio_wait(zio);
1164
1165 /*
1166 * Flush the new labels to disk.
1167 */
1168 zio = zio_root(spa, NULL, NULL, flags);
1169
1170 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1171 zio_flush(zio, vd);
1172
1173 (void) zio_wait(zio);
1174
1175 return (error);
1176 }
1177
1178 /*
1179 * Sync the uberblock and any changes to the vdev configuration.
1180 *
1181 * The order of operations is carefully crafted to ensure that
1182 * if the system panics or loses power at any time, the state on disk
1183 * is still transactionally consistent. The in-line comments below
1184 * describe the failure semantics at each stage.
1185 *
1186 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1187 * at any time, you can just call it again, and it will resume its work.
1188 */
1189 int
1190 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg, boolean_t tryhard)
1191 {
1192 spa_t *spa = svd[0]->vdev_spa;
1193 uberblock_t *ub = &spa->spa_uberblock;
1194 vdev_t *vd;
1195 zio_t *zio;
1196 int error;
1197 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1198
1199 /*
1200 * Normally, we don't want to try too hard to write every label and
1201 * uberblock. If there is a flaky disk, we don't want the rest of the
1202 * sync process to block while we retry. But if we can't write a
1203 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1204 * bailing out and declaring the pool faulted.
1205 */
1206 if (tryhard)
1207 flags |= ZIO_FLAG_TRYHARD;
1208
1209 ASSERT(ub->ub_txg <= txg);
1210
1211 /*
1212 * If this isn't a resync due to I/O errors,
1213 * and nothing changed in this transaction group,
1214 * and the vdev configuration hasn't changed,
1215 * then there's nothing to do.
1216 */
1217 if (ub->ub_txg < txg &&
1218 uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE &&
1219 list_is_empty(&spa->spa_config_dirty_list))
1220 return (0);
1221
1222 if (txg > spa_freeze_txg(spa))
1223 return (0);
1224
1225 ASSERT(txg <= spa->spa_final_txg);
1226
1227 /*
1228 * Flush the write cache of every disk that's been written to
1229 * in this transaction group. This ensures that all blocks
1230 * written in this txg will be committed to stable storage
1231 * before any uberblock that references them.
1232 */
1233 zio = zio_root(spa, NULL, NULL, flags);
1234
1235 for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
1236 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1237 zio_flush(zio, vd);
1238
1239 (void) zio_wait(zio);
1240
1241 /*
1242 * Sync out the even labels (L0, L2) for every dirty vdev. If the
1243 * system dies in the middle of this process, that's OK: all of the
1244 * even labels that made it to disk will be newer than any uberblock,
1245 * and will therefore be considered invalid. The odd labels (L1, L3),
1246 * which have not yet been touched, will still be valid. We flush
1247 * the new labels to disk to ensure that all even-label updates
1248 * are committed to stable storage before the uberblock update.
1249 */
1250 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0)
1251 return (error);
1252
1253 /*
1254 * Sync the uberblocks to all vdevs in svd[].
1255 * If the system dies in the middle of this step, there are two cases
1256 * to consider, and the on-disk state is consistent either way:
1257 *
1258 * (1) If none of the new uberblocks made it to disk, then the
1259 * previous uberblock will be the newest, and the odd labels
1260 * (which had not yet been touched) will be valid with respect
1261 * to that uberblock.
1262 *
1263 * (2) If one or more new uberblocks made it to disk, then they
1264 * will be the newest, and the even labels (which had all
1265 * been successfully committed) will be valid with respect
1266 * to the new uberblocks.
1267 */
1268 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0)
1269 return (error);
1270
1271 /*
1272 * Sync out odd labels for every dirty vdev. If the system dies
1273 * in the middle of this process, the even labels and the new
1274 * uberblocks will suffice to open the pool. The next time
1275 * the pool is opened, the first thing we'll do -- before any
1276 * user data is modified -- is mark every vdev dirty so that
1277 * all labels will be brought up to date. We flush the new labels
1278 * to disk to ensure that all odd-label updates are committed to
1279 * stable storage before the next transaction group begins.
1280 */
1281 return (vdev_label_sync_list(spa, 1, txg, flags));
1282 }