]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev_mirror.c
Clean up CSTYLEDs
[mirror_zfs.git] / module / zfs / vdev_mirror.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
28 */
29
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dsl_pool.h>
34 #include <sys/dsl_scan.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/vdev_draid.h>
37 #include <sys/zio.h>
38 #include <sys/abd.h>
39 #include <sys/fs/zfs.h>
40
41 /*
42 * Vdev mirror kstats
43 */
44 static kstat_t *mirror_ksp = NULL;
45
46 typedef struct mirror_stats {
47 kstat_named_t vdev_mirror_stat_rotating_linear;
48 kstat_named_t vdev_mirror_stat_rotating_offset;
49 kstat_named_t vdev_mirror_stat_rotating_seek;
50 kstat_named_t vdev_mirror_stat_non_rotating_linear;
51 kstat_named_t vdev_mirror_stat_non_rotating_seek;
52
53 kstat_named_t vdev_mirror_stat_preferred_found;
54 kstat_named_t vdev_mirror_stat_preferred_not_found;
55 } mirror_stats_t;
56
57 static mirror_stats_t mirror_stats = {
58 /* New I/O follows directly the last I/O */
59 { "rotating_linear", KSTAT_DATA_UINT64 },
60 /* New I/O is within zfs_vdev_mirror_rotating_seek_offset of the last */
61 { "rotating_offset", KSTAT_DATA_UINT64 },
62 /* New I/O requires random seek */
63 { "rotating_seek", KSTAT_DATA_UINT64 },
64 /* New I/O follows directly the last I/O (nonrot) */
65 { "non_rotating_linear", KSTAT_DATA_UINT64 },
66 /* New I/O requires random seek (nonrot) */
67 { "non_rotating_seek", KSTAT_DATA_UINT64 },
68 /* Preferred child vdev found */
69 { "preferred_found", KSTAT_DATA_UINT64 },
70 /* Preferred child vdev not found or equal load */
71 { "preferred_not_found", KSTAT_DATA_UINT64 },
72
73 };
74
75 #define MIRROR_STAT(stat) (mirror_stats.stat.value.ui64)
76 #define MIRROR_INCR(stat, val) atomic_add_64(&MIRROR_STAT(stat), val)
77 #define MIRROR_BUMP(stat) MIRROR_INCR(stat, 1)
78
79 void
80 vdev_mirror_stat_init(void)
81 {
82 mirror_ksp = kstat_create("zfs", 0, "vdev_mirror_stats",
83 "misc", KSTAT_TYPE_NAMED,
84 sizeof (mirror_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
85 if (mirror_ksp != NULL) {
86 mirror_ksp->ks_data = &mirror_stats;
87 kstat_install(mirror_ksp);
88 }
89 }
90
91 void
92 vdev_mirror_stat_fini(void)
93 {
94 if (mirror_ksp != NULL) {
95 kstat_delete(mirror_ksp);
96 mirror_ksp = NULL;
97 }
98 }
99
100 /*
101 * Virtual device vector for mirroring.
102 */
103 typedef struct mirror_child {
104 vdev_t *mc_vd;
105 uint64_t mc_offset;
106 int mc_error;
107 int mc_load;
108 uint8_t mc_tried;
109 uint8_t mc_skipped;
110 uint8_t mc_speculative;
111 uint8_t mc_rebuilding;
112 } mirror_child_t;
113
114 typedef struct mirror_map {
115 int *mm_preferred;
116 int mm_preferred_cnt;
117 int mm_children;
118 boolean_t mm_resilvering;
119 boolean_t mm_rebuilding;
120 boolean_t mm_root;
121 mirror_child_t mm_child[];
122 } mirror_map_t;
123
124 static const int vdev_mirror_shift = 21;
125
126 /*
127 * The load configuration settings below are tuned by default for
128 * the case where all devices are of the same rotational type.
129 *
130 * If there is a mixture of rotating and non-rotating media, setting
131 * zfs_vdev_mirror_non_rotating_seek_inc to 0 may well provide better results
132 * as it will direct more reads to the non-rotating vdevs which are more likely
133 * to have a higher performance.
134 */
135
136 /* Rotating media load calculation configuration. */
137 static int zfs_vdev_mirror_rotating_inc = 0;
138 static int zfs_vdev_mirror_rotating_seek_inc = 5;
139 static int zfs_vdev_mirror_rotating_seek_offset = 1 * 1024 * 1024;
140
141 /* Non-rotating media load calculation configuration. */
142 static int zfs_vdev_mirror_non_rotating_inc = 0;
143 static int zfs_vdev_mirror_non_rotating_seek_inc = 1;
144
145 static inline size_t
146 vdev_mirror_map_size(int children)
147 {
148 return (offsetof(mirror_map_t, mm_child[children]) +
149 sizeof (int) * children);
150 }
151
152 static inline mirror_map_t *
153 vdev_mirror_map_alloc(int children, boolean_t resilvering, boolean_t root)
154 {
155 mirror_map_t *mm;
156
157 mm = kmem_zalloc(vdev_mirror_map_size(children), KM_SLEEP);
158 mm->mm_children = children;
159 mm->mm_resilvering = resilvering;
160 mm->mm_root = root;
161 mm->mm_preferred = (int *)((uintptr_t)mm +
162 offsetof(mirror_map_t, mm_child[children]));
163
164 return (mm);
165 }
166
167 static void
168 vdev_mirror_map_free(zio_t *zio)
169 {
170 mirror_map_t *mm = zio->io_vsd;
171
172 kmem_free(mm, vdev_mirror_map_size(mm->mm_children));
173 }
174
175 static const zio_vsd_ops_t vdev_mirror_vsd_ops = {
176 .vsd_free = vdev_mirror_map_free,
177 };
178
179 static int
180 vdev_mirror_load(mirror_map_t *mm, vdev_t *vd, uint64_t zio_offset)
181 {
182 uint64_t last_offset;
183 int64_t offset_diff;
184 int load;
185
186 /* All DVAs have equal weight at the root. */
187 if (mm->mm_root)
188 return (INT_MAX);
189
190 /*
191 * We don't return INT_MAX if the device is resilvering i.e.
192 * vdev_resilver_txg != 0 as when tested performance was slightly
193 * worse overall when resilvering with compared to without.
194 */
195
196 /* Fix zio_offset for leaf vdevs */
197 if (vd->vdev_ops->vdev_op_leaf)
198 zio_offset += VDEV_LABEL_START_SIZE;
199
200 /* Standard load based on pending queue length. */
201 load = vdev_queue_length(vd);
202 last_offset = vdev_queue_last_offset(vd);
203
204 if (vd->vdev_nonrot) {
205 /* Non-rotating media. */
206 if (last_offset == zio_offset) {
207 MIRROR_BUMP(vdev_mirror_stat_non_rotating_linear);
208 return (load + zfs_vdev_mirror_non_rotating_inc);
209 }
210
211 /*
212 * Apply a seek penalty even for non-rotating devices as
213 * sequential I/O's can be aggregated into fewer operations on
214 * the device, thus avoiding unnecessary per-command overhead
215 * and boosting performance.
216 */
217 MIRROR_BUMP(vdev_mirror_stat_non_rotating_seek);
218 return (load + zfs_vdev_mirror_non_rotating_seek_inc);
219 }
220
221 /* Rotating media I/O's which directly follow the last I/O. */
222 if (last_offset == zio_offset) {
223 MIRROR_BUMP(vdev_mirror_stat_rotating_linear);
224 return (load + zfs_vdev_mirror_rotating_inc);
225 }
226
227 /*
228 * Apply half the seek increment to I/O's within seek offset
229 * of the last I/O issued to this vdev as they should incur less
230 * of a seek increment.
231 */
232 offset_diff = (int64_t)(last_offset - zio_offset);
233 if (ABS(offset_diff) < zfs_vdev_mirror_rotating_seek_offset) {
234 MIRROR_BUMP(vdev_mirror_stat_rotating_offset);
235 return (load + (zfs_vdev_mirror_rotating_seek_inc / 2));
236 }
237
238 /* Apply the full seek increment to all other I/O's. */
239 MIRROR_BUMP(vdev_mirror_stat_rotating_seek);
240 return (load + zfs_vdev_mirror_rotating_seek_inc);
241 }
242
243 static boolean_t
244 vdev_mirror_rebuilding(vdev_t *vd)
245 {
246 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_rebuild_txg)
247 return (B_TRUE);
248
249 for (int i = 0; i < vd->vdev_children; i++) {
250 if (vdev_mirror_rebuilding(vd->vdev_child[i])) {
251 return (B_TRUE);
252 }
253 }
254
255 return (B_FALSE);
256 }
257
258 /*
259 * Avoid inlining the function to keep vdev_mirror_io_start(), which
260 * is this functions only caller, as small as possible on the stack.
261 */
262 noinline static mirror_map_t *
263 vdev_mirror_map_init(zio_t *zio)
264 {
265 mirror_map_t *mm = NULL;
266 mirror_child_t *mc;
267 vdev_t *vd = zio->io_vd;
268 int c;
269
270 if (vd == NULL) {
271 dva_t *dva = zio->io_bp->blk_dva;
272 spa_t *spa = zio->io_spa;
273 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
274 dva_t dva_copy[SPA_DVAS_PER_BP];
275
276 /*
277 * The sequential scrub code sorts and issues all DVAs
278 * of a bp separately. Each of these IOs includes all
279 * original DVA copies so that repairs can be performed
280 * in the event of an error, but we only actually want
281 * to check the first DVA since the others will be
282 * checked by their respective sorted IOs. Only if we
283 * hit an error will we try all DVAs upon retrying.
284 *
285 * Note: This check is safe even if the user switches
286 * from a legacy scrub to a sequential one in the middle
287 * of processing, since scn_is_sorted isn't updated until
288 * all outstanding IOs from the previous scrub pass
289 * complete.
290 */
291 if ((zio->io_flags & ZIO_FLAG_SCRUB) &&
292 !(zio->io_flags & ZIO_FLAG_IO_RETRY) &&
293 dsl_scan_scrubbing(spa->spa_dsl_pool) &&
294 scn->scn_is_sorted) {
295 c = 1;
296 } else {
297 c = BP_GET_NDVAS(zio->io_bp);
298 }
299
300 /*
301 * If the pool cannot be written to, then infer that some
302 * DVAs might be invalid or point to vdevs that do not exist.
303 * We skip them.
304 */
305 if (!spa_writeable(spa)) {
306 ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
307 int j = 0;
308 for (int i = 0; i < c; i++) {
309 if (zfs_dva_valid(spa, &dva[i], zio->io_bp))
310 dva_copy[j++] = dva[i];
311 }
312 if (j == 0) {
313 zio->io_vsd = NULL;
314 zio->io_error = ENXIO;
315 return (NULL);
316 }
317 if (j < c) {
318 dva = dva_copy;
319 c = j;
320 }
321 }
322
323 mm = vdev_mirror_map_alloc(c, B_FALSE, B_TRUE);
324 for (c = 0; c < mm->mm_children; c++) {
325 mc = &mm->mm_child[c];
326
327 mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c]));
328 mc->mc_offset = DVA_GET_OFFSET(&dva[c]);
329 if (mc->mc_vd == NULL) {
330 kmem_free(mm, vdev_mirror_map_size(
331 mm->mm_children));
332 zio->io_vsd = NULL;
333 zio->io_error = ENXIO;
334 return (NULL);
335 }
336 }
337 } else {
338 /*
339 * If we are resilvering, then we should handle scrub reads
340 * differently; we shouldn't issue them to the resilvering
341 * device because it might not have those blocks.
342 *
343 * We are resilvering iff:
344 * 1) We are a replacing vdev (ie our name is "replacing-1" or
345 * "spare-1" or something like that), and
346 * 2) The pool is currently being resilvered.
347 *
348 * We cannot simply check vd->vdev_resilver_txg, because it's
349 * not set in this path.
350 *
351 * Nor can we just check our vdev_ops; there are cases (such as
352 * when a user types "zpool replace pool odev spare_dev" and
353 * spare_dev is in the spare list, or when a spare device is
354 * automatically used to replace a DEGRADED device) when
355 * resilvering is complete but both the original vdev and the
356 * spare vdev remain in the pool. That behavior is intentional.
357 * It helps implement the policy that a spare should be
358 * automatically removed from the pool after the user replaces
359 * the device that originally failed.
360 *
361 * If a spa load is in progress, then spa_dsl_pool may be
362 * uninitialized. But we shouldn't be resilvering during a spa
363 * load anyway.
364 */
365 boolean_t replacing = (vd->vdev_ops == &vdev_replacing_ops ||
366 vd->vdev_ops == &vdev_spare_ops) &&
367 spa_load_state(vd->vdev_spa) == SPA_LOAD_NONE &&
368 dsl_scan_resilvering(vd->vdev_spa->spa_dsl_pool);
369 mm = vdev_mirror_map_alloc(vd->vdev_children, replacing,
370 B_FALSE);
371 for (c = 0; c < mm->mm_children; c++) {
372 mc = &mm->mm_child[c];
373 mc->mc_vd = vd->vdev_child[c];
374 mc->mc_offset = zio->io_offset;
375
376 if (vdev_mirror_rebuilding(mc->mc_vd))
377 mm->mm_rebuilding = mc->mc_rebuilding = B_TRUE;
378 }
379 }
380
381 return (mm);
382 }
383
384 static int
385 vdev_mirror_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
386 uint64_t *logical_ashift, uint64_t *physical_ashift)
387 {
388 int numerrors = 0;
389 int lasterror = 0;
390
391 if (vd->vdev_children == 0) {
392 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
393 return (SET_ERROR(EINVAL));
394 }
395
396 vdev_open_children(vd);
397
398 for (int c = 0; c < vd->vdev_children; c++) {
399 vdev_t *cvd = vd->vdev_child[c];
400
401 if (cvd->vdev_open_error) {
402 lasterror = cvd->vdev_open_error;
403 numerrors++;
404 continue;
405 }
406
407 *asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1;
408 *max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1;
409 *logical_ashift = MAX(*logical_ashift, cvd->vdev_ashift);
410 *physical_ashift = MAX(*physical_ashift,
411 cvd->vdev_physical_ashift);
412 }
413
414 if (numerrors == vd->vdev_children) {
415 if (vdev_children_are_offline(vd))
416 vd->vdev_stat.vs_aux = VDEV_AUX_CHILDREN_OFFLINE;
417 else
418 vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
419 return (lasterror);
420 }
421
422 return (0);
423 }
424
425 static void
426 vdev_mirror_close(vdev_t *vd)
427 {
428 for (int c = 0; c < vd->vdev_children; c++)
429 vdev_close(vd->vdev_child[c]);
430 }
431
432 static void
433 vdev_mirror_child_done(zio_t *zio)
434 {
435 mirror_child_t *mc = zio->io_private;
436
437 mc->mc_error = zio->io_error;
438 mc->mc_tried = 1;
439 mc->mc_skipped = 0;
440 }
441
442 static void
443 vdev_mirror_scrub_done(zio_t *zio)
444 {
445 mirror_child_t *mc = zio->io_private;
446
447 if (zio->io_error == 0) {
448 zio_t *pio;
449 zio_link_t *zl = NULL;
450
451 mutex_enter(&zio->io_lock);
452 while ((pio = zio_walk_parents(zio, &zl)) != NULL) {
453 mutex_enter(&pio->io_lock);
454 ASSERT3U(zio->io_size, >=, pio->io_size);
455 abd_copy(pio->io_abd, zio->io_abd, pio->io_size);
456 mutex_exit(&pio->io_lock);
457 }
458 mutex_exit(&zio->io_lock);
459 }
460
461 abd_free(zio->io_abd);
462
463 mc->mc_error = zio->io_error;
464 mc->mc_tried = 1;
465 mc->mc_skipped = 0;
466 }
467
468 /*
469 * Check the other, lower-index DVAs to see if they're on the same
470 * vdev as the child we picked. If they are, use them since they
471 * are likely to have been allocated from the primary metaslab in
472 * use at the time, and hence are more likely to have locality with
473 * single-copy data.
474 */
475 static int
476 vdev_mirror_dva_select(zio_t *zio, int p)
477 {
478 dva_t *dva = zio->io_bp->blk_dva;
479 mirror_map_t *mm = zio->io_vsd;
480 int preferred;
481 int c;
482
483 preferred = mm->mm_preferred[p];
484 for (p--; p >= 0; p--) {
485 c = mm->mm_preferred[p];
486 if (DVA_GET_VDEV(&dva[c]) == DVA_GET_VDEV(&dva[preferred]))
487 preferred = c;
488 }
489 return (preferred);
490 }
491
492 static int
493 vdev_mirror_preferred_child_randomize(zio_t *zio)
494 {
495 mirror_map_t *mm = zio->io_vsd;
496 int p;
497
498 if (mm->mm_root) {
499 p = random_in_range(mm->mm_preferred_cnt);
500 return (vdev_mirror_dva_select(zio, p));
501 }
502
503 /*
504 * To ensure we don't always favour the first matching vdev,
505 * which could lead to wear leveling issues on SSD's, we
506 * use the I/O offset as a pseudo random seed into the vdevs
507 * which have the lowest load.
508 */
509 p = (zio->io_offset >> vdev_mirror_shift) % mm->mm_preferred_cnt;
510 return (mm->mm_preferred[p]);
511 }
512
513 static boolean_t
514 vdev_mirror_child_readable(mirror_child_t *mc)
515 {
516 vdev_t *vd = mc->mc_vd;
517
518 if (vd->vdev_top != NULL && vd->vdev_top->vdev_ops == &vdev_draid_ops)
519 return (vdev_draid_readable(vd, mc->mc_offset));
520 else
521 return (vdev_readable(vd));
522 }
523
524 static boolean_t
525 vdev_mirror_child_missing(mirror_child_t *mc, uint64_t txg, uint64_t size)
526 {
527 vdev_t *vd = mc->mc_vd;
528
529 if (vd->vdev_top != NULL && vd->vdev_top->vdev_ops == &vdev_draid_ops)
530 return (vdev_draid_missing(vd, mc->mc_offset, txg, size));
531 else
532 return (vdev_dtl_contains(vd, DTL_MISSING, txg, size));
533 }
534
535 /*
536 * Try to find a vdev whose DTL doesn't contain the block we want to read
537 * preferring vdevs based on determined load. If we can't, try the read on
538 * any vdev we haven't already tried.
539 *
540 * Distributed spares are an exception to the above load rule. They are
541 * always preferred in order to detect gaps in the distributed spare which
542 * are created when another disk in the dRAID fails. In order to restore
543 * redundancy those gaps must be read to trigger the required repair IO.
544 */
545 static int
546 vdev_mirror_child_select(zio_t *zio)
547 {
548 mirror_map_t *mm = zio->io_vsd;
549 uint64_t txg = zio->io_txg;
550 int c, lowest_load;
551
552 ASSERT(zio->io_bp == NULL || BP_PHYSICAL_BIRTH(zio->io_bp) == txg);
553
554 lowest_load = INT_MAX;
555 mm->mm_preferred_cnt = 0;
556 for (c = 0; c < mm->mm_children; c++) {
557 mirror_child_t *mc;
558
559 mc = &mm->mm_child[c];
560 if (mc->mc_tried || mc->mc_skipped)
561 continue;
562
563 if (mc->mc_vd == NULL ||
564 !vdev_mirror_child_readable(mc)) {
565 mc->mc_error = SET_ERROR(ENXIO);
566 mc->mc_tried = 1; /* don't even try */
567 mc->mc_skipped = 1;
568 continue;
569 }
570
571 if (vdev_mirror_child_missing(mc, txg, 1)) {
572 mc->mc_error = SET_ERROR(ESTALE);
573 mc->mc_skipped = 1;
574 mc->mc_speculative = 1;
575 continue;
576 }
577
578 if (mc->mc_vd->vdev_ops == &vdev_draid_spare_ops) {
579 mm->mm_preferred[0] = c;
580 mm->mm_preferred_cnt = 1;
581 break;
582 }
583
584 mc->mc_load = vdev_mirror_load(mm, mc->mc_vd, mc->mc_offset);
585 if (mc->mc_load > lowest_load)
586 continue;
587
588 if (mc->mc_load < lowest_load) {
589 lowest_load = mc->mc_load;
590 mm->mm_preferred_cnt = 0;
591 }
592 mm->mm_preferred[mm->mm_preferred_cnt] = c;
593 mm->mm_preferred_cnt++;
594 }
595
596 if (mm->mm_preferred_cnt == 1) {
597 MIRROR_BUMP(vdev_mirror_stat_preferred_found);
598 return (mm->mm_preferred[0]);
599 }
600
601 if (mm->mm_preferred_cnt > 1) {
602 MIRROR_BUMP(vdev_mirror_stat_preferred_not_found);
603 return (vdev_mirror_preferred_child_randomize(zio));
604 }
605
606 /*
607 * Every device is either missing or has this txg in its DTL.
608 * Look for any child we haven't already tried before giving up.
609 */
610 for (c = 0; c < mm->mm_children; c++) {
611 if (!mm->mm_child[c].mc_tried)
612 return (c);
613 }
614
615 /*
616 * Every child failed. There's no place left to look.
617 */
618 return (-1);
619 }
620
621 static void
622 vdev_mirror_io_start(zio_t *zio)
623 {
624 mirror_map_t *mm;
625 mirror_child_t *mc;
626 int c, children;
627
628 mm = vdev_mirror_map_init(zio);
629 zio->io_vsd = mm;
630 zio->io_vsd_ops = &vdev_mirror_vsd_ops;
631
632 if (mm == NULL) {
633 ASSERT(!spa_trust_config(zio->io_spa));
634 ASSERT(zio->io_type == ZIO_TYPE_READ);
635 zio_execute(zio);
636 return;
637 }
638
639 if (zio->io_type == ZIO_TYPE_READ) {
640 if (zio->io_bp != NULL &&
641 (zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_resilvering) {
642 /*
643 * For scrubbing reads (if we can verify the
644 * checksum here, as indicated by io_bp being
645 * non-NULL) we need to allocate a read buffer for
646 * each child and issue reads to all children. If
647 * any child succeeds, it will copy its data into
648 * zio->io_data in vdev_mirror_scrub_done.
649 */
650 for (c = 0; c < mm->mm_children; c++) {
651 mc = &mm->mm_child[c];
652
653 /* Don't issue ZIOs to offline children */
654 if (!vdev_mirror_child_readable(mc)) {
655 mc->mc_error = SET_ERROR(ENXIO);
656 mc->mc_tried = 1;
657 mc->mc_skipped = 1;
658 continue;
659 }
660
661 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
662 mc->mc_vd, mc->mc_offset,
663 abd_alloc_sametype(zio->io_abd,
664 zio->io_size), zio->io_size,
665 zio->io_type, zio->io_priority, 0,
666 vdev_mirror_scrub_done, mc));
667 }
668 zio_execute(zio);
669 return;
670 }
671 /*
672 * For normal reads just pick one child.
673 */
674 c = vdev_mirror_child_select(zio);
675 children = (c >= 0);
676 } else {
677 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
678
679 /*
680 * Writes go to all children.
681 */
682 c = 0;
683 children = mm->mm_children;
684 }
685
686 while (children--) {
687 mc = &mm->mm_child[c];
688 c++;
689
690 /*
691 * When sequentially resilvering only issue write repair
692 * IOs to the vdev which is being rebuilt since performance
693 * is limited by the slowest child. This is an issue for
694 * faster replacement devices such as distributed spares.
695 */
696 if ((zio->io_priority == ZIO_PRIORITY_REBUILD) &&
697 (zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
698 !(zio->io_flags & ZIO_FLAG_SCRUB) &&
699 mm->mm_rebuilding && !mc->mc_rebuilding) {
700 continue;
701 }
702
703 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
704 mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size,
705 zio->io_type, zio->io_priority, 0,
706 vdev_mirror_child_done, mc));
707 }
708
709 zio_execute(zio);
710 }
711
712 static int
713 vdev_mirror_worst_error(mirror_map_t *mm)
714 {
715 int error[2] = { 0, 0 };
716
717 for (int c = 0; c < mm->mm_children; c++) {
718 mirror_child_t *mc = &mm->mm_child[c];
719 int s = mc->mc_speculative;
720 error[s] = zio_worst_error(error[s], mc->mc_error);
721 }
722
723 return (error[0] ? error[0] : error[1]);
724 }
725
726 static void
727 vdev_mirror_io_done(zio_t *zio)
728 {
729 mirror_map_t *mm = zio->io_vsd;
730 mirror_child_t *mc;
731 int c;
732 int good_copies = 0;
733 int unexpected_errors = 0;
734
735 if (mm == NULL)
736 return;
737
738 for (c = 0; c < mm->mm_children; c++) {
739 mc = &mm->mm_child[c];
740
741 if (mc->mc_error) {
742 if (!mc->mc_skipped)
743 unexpected_errors++;
744 } else if (mc->mc_tried) {
745 good_copies++;
746 }
747 }
748
749 if (zio->io_type == ZIO_TYPE_WRITE) {
750 /*
751 * XXX -- for now, treat partial writes as success.
752 *
753 * Now that we support write reallocation, it would be better
754 * to treat partial failure as real failure unless there are
755 * no non-degraded top-level vdevs left, and not update DTLs
756 * if we intend to reallocate.
757 */
758 /* XXPOLICY */
759 if (good_copies != mm->mm_children) {
760 /*
761 * Always require at least one good copy.
762 *
763 * For ditto blocks (io_vd == NULL), require
764 * all copies to be good.
765 *
766 * XXX -- for replacing vdevs, there's no great answer.
767 * If the old device is really dead, we may not even
768 * be able to access it -- so we only want to
769 * require good writes to the new device. But if
770 * the new device turns out to be flaky, we want
771 * to be able to detach it -- which requires all
772 * writes to the old device to have succeeded.
773 */
774 if (good_copies == 0 || zio->io_vd == NULL)
775 zio->io_error = vdev_mirror_worst_error(mm);
776 }
777 return;
778 }
779
780 ASSERT(zio->io_type == ZIO_TYPE_READ);
781
782 /*
783 * If we don't have a good copy yet, keep trying other children.
784 */
785 /* XXPOLICY */
786 if (good_copies == 0 && (c = vdev_mirror_child_select(zio)) != -1) {
787 ASSERT(c >= 0 && c < mm->mm_children);
788 mc = &mm->mm_child[c];
789 zio_vdev_io_redone(zio);
790 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
791 mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size,
792 ZIO_TYPE_READ, zio->io_priority, 0,
793 vdev_mirror_child_done, mc));
794 return;
795 }
796
797 /* XXPOLICY */
798 if (good_copies == 0) {
799 zio->io_error = vdev_mirror_worst_error(mm);
800 ASSERT(zio->io_error != 0);
801 }
802
803 if (good_copies && spa_writeable(zio->io_spa) &&
804 (unexpected_errors ||
805 (zio->io_flags & ZIO_FLAG_RESILVER) ||
806 ((zio->io_flags & ZIO_FLAG_SCRUB) && mm->mm_resilvering))) {
807 /*
808 * Use the good data we have in hand to repair damaged children.
809 */
810 for (c = 0; c < mm->mm_children; c++) {
811 /*
812 * Don't rewrite known good children.
813 * Not only is it unnecessary, it could
814 * actually be harmful: if the system lost
815 * power while rewriting the only good copy,
816 * there would be no good copies left!
817 */
818 mc = &mm->mm_child[c];
819
820 if (mc->mc_error == 0) {
821 vdev_ops_t *ops = mc->mc_vd->vdev_ops;
822
823 if (mc->mc_tried)
824 continue;
825 /*
826 * We didn't try this child. We need to
827 * repair it if:
828 * 1. it's a scrub (in which case we have
829 * tried everything that was healthy)
830 * - or -
831 * 2. it's an indirect or distributed spare
832 * vdev (in which case it could point to any
833 * other vdev, which might have a bad DTL)
834 * - or -
835 * 3. the DTL indicates that this data is
836 * missing from this vdev
837 */
838 if (!(zio->io_flags & ZIO_FLAG_SCRUB) &&
839 ops != &vdev_indirect_ops &&
840 ops != &vdev_draid_spare_ops &&
841 !vdev_dtl_contains(mc->mc_vd, DTL_PARTIAL,
842 zio->io_txg, 1))
843 continue;
844 mc->mc_error = SET_ERROR(ESTALE);
845 }
846
847 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
848 mc->mc_vd, mc->mc_offset,
849 zio->io_abd, zio->io_size, ZIO_TYPE_WRITE,
850 zio->io_priority == ZIO_PRIORITY_REBUILD ?
851 ZIO_PRIORITY_REBUILD : ZIO_PRIORITY_ASYNC_WRITE,
852 ZIO_FLAG_IO_REPAIR | (unexpected_errors ?
853 ZIO_FLAG_SELF_HEAL : 0), NULL, NULL));
854 }
855 }
856 }
857
858 static void
859 vdev_mirror_state_change(vdev_t *vd, int faulted, int degraded)
860 {
861 if (faulted == vd->vdev_children) {
862 if (vdev_children_are_offline(vd)) {
863 vdev_set_state(vd, B_FALSE, VDEV_STATE_OFFLINE,
864 VDEV_AUX_CHILDREN_OFFLINE);
865 } else {
866 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
867 VDEV_AUX_NO_REPLICAS);
868 }
869 } else if (degraded + faulted != 0) {
870 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
871 } else {
872 vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
873 }
874 }
875
876 /*
877 * Return the maximum asize for a rebuild zio in the provided range.
878 */
879 static uint64_t
880 vdev_mirror_rebuild_asize(vdev_t *vd, uint64_t start, uint64_t asize,
881 uint64_t max_segment)
882 {
883 (void) start;
884
885 uint64_t psize = MIN(P2ROUNDUP(max_segment, 1 << vd->vdev_ashift),
886 SPA_MAXBLOCKSIZE);
887
888 return (MIN(asize, vdev_psize_to_asize(vd, psize)));
889 }
890
891 vdev_ops_t vdev_mirror_ops = {
892 .vdev_op_init = NULL,
893 .vdev_op_fini = NULL,
894 .vdev_op_open = vdev_mirror_open,
895 .vdev_op_close = vdev_mirror_close,
896 .vdev_op_asize = vdev_default_asize,
897 .vdev_op_min_asize = vdev_default_min_asize,
898 .vdev_op_min_alloc = NULL,
899 .vdev_op_io_start = vdev_mirror_io_start,
900 .vdev_op_io_done = vdev_mirror_io_done,
901 .vdev_op_state_change = vdev_mirror_state_change,
902 .vdev_op_need_resilver = vdev_default_need_resilver,
903 .vdev_op_hold = NULL,
904 .vdev_op_rele = NULL,
905 .vdev_op_remap = NULL,
906 .vdev_op_xlate = vdev_default_xlate,
907 .vdev_op_rebuild_asize = vdev_mirror_rebuild_asize,
908 .vdev_op_metaslab_init = NULL,
909 .vdev_op_config_generate = NULL,
910 .vdev_op_nparity = NULL,
911 .vdev_op_ndisks = NULL,
912 .vdev_op_type = VDEV_TYPE_MIRROR, /* name of this vdev type */
913 .vdev_op_leaf = B_FALSE /* not a leaf vdev */
914 };
915
916 vdev_ops_t vdev_replacing_ops = {
917 .vdev_op_init = NULL,
918 .vdev_op_fini = NULL,
919 .vdev_op_open = vdev_mirror_open,
920 .vdev_op_close = vdev_mirror_close,
921 .vdev_op_asize = vdev_default_asize,
922 .vdev_op_min_asize = vdev_default_min_asize,
923 .vdev_op_min_alloc = NULL,
924 .vdev_op_io_start = vdev_mirror_io_start,
925 .vdev_op_io_done = vdev_mirror_io_done,
926 .vdev_op_state_change = vdev_mirror_state_change,
927 .vdev_op_need_resilver = vdev_default_need_resilver,
928 .vdev_op_hold = NULL,
929 .vdev_op_rele = NULL,
930 .vdev_op_remap = NULL,
931 .vdev_op_xlate = vdev_default_xlate,
932 .vdev_op_rebuild_asize = vdev_mirror_rebuild_asize,
933 .vdev_op_metaslab_init = NULL,
934 .vdev_op_config_generate = NULL,
935 .vdev_op_nparity = NULL,
936 .vdev_op_ndisks = NULL,
937 .vdev_op_type = VDEV_TYPE_REPLACING, /* name of this vdev type */
938 .vdev_op_leaf = B_FALSE /* not a leaf vdev */
939 };
940
941 vdev_ops_t vdev_spare_ops = {
942 .vdev_op_init = NULL,
943 .vdev_op_fini = NULL,
944 .vdev_op_open = vdev_mirror_open,
945 .vdev_op_close = vdev_mirror_close,
946 .vdev_op_asize = vdev_default_asize,
947 .vdev_op_min_asize = vdev_default_min_asize,
948 .vdev_op_min_alloc = NULL,
949 .vdev_op_io_start = vdev_mirror_io_start,
950 .vdev_op_io_done = vdev_mirror_io_done,
951 .vdev_op_state_change = vdev_mirror_state_change,
952 .vdev_op_need_resilver = vdev_default_need_resilver,
953 .vdev_op_hold = NULL,
954 .vdev_op_rele = NULL,
955 .vdev_op_remap = NULL,
956 .vdev_op_xlate = vdev_default_xlate,
957 .vdev_op_rebuild_asize = vdev_mirror_rebuild_asize,
958 .vdev_op_metaslab_init = NULL,
959 .vdev_op_config_generate = NULL,
960 .vdev_op_nparity = NULL,
961 .vdev_op_ndisks = NULL,
962 .vdev_op_type = VDEV_TYPE_SPARE, /* name of this vdev type */
963 .vdev_op_leaf = B_FALSE /* not a leaf vdev */
964 };
965
966 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, rotating_inc, INT, ZMOD_RW,
967 "Rotating media load increment for non-seeking I/Os");
968
969 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, rotating_seek_inc, INT,
970 ZMOD_RW, "Rotating media load increment for seeking I/Os");
971
972 /* BEGIN CSTYLED */
973 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, rotating_seek_offset, INT,
974 ZMOD_RW,
975 "Offset in bytes from the last I/O which triggers "
976 "a reduced rotating media seek increment");
977 /* END CSTYLED */
978
979 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, non_rotating_inc, INT,
980 ZMOD_RW, "Non-rotating media load increment for non-seeking I/Os");
981
982 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, non_rotating_seek_inc, INT,
983 ZMOD_RW, "Non-rotating media load increment for seeking I/Os");