]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev_mirror.c
Illumos #3598
[mirror_zfs.git] / module / zfs / vdev_mirror.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * Copyright (c) 2013 by Delphix. All rights reserved.
28 */
29
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/zio.h>
34 #include <sys/fs/zfs.h>
35
36 /*
37 * Virtual device vector for mirroring.
38 */
39
40 typedef struct mirror_child {
41 vdev_t *mc_vd;
42 uint64_t mc_offset;
43 int mc_error;
44 int mc_pending;
45 uint8_t mc_tried;
46 uint8_t mc_skipped;
47 uint8_t mc_speculative;
48 } mirror_child_t;
49
50 typedef struct mirror_map {
51 int mm_children;
52 int mm_replacing;
53 int mm_preferred;
54 int mm_root;
55 mirror_child_t mm_child[1];
56 } mirror_map_t;
57
58 /*
59 * When the children are equally busy queue incoming requests to a single
60 * child for N microseconds. This is done to maximize the likelihood that
61 * the Linux elevator will be able to merge requests while it is plugged.
62 * Otherwise, requests are queued to the least busy device.
63 *
64 * For rotational disks the Linux elevator will plug for 10ms which is
65 * why zfs_vdev_mirror_switch_us is set to 10ms by default. For non-
66 * rotational disks the elevator will not plug, but 10ms is still a small
67 * enough value that the requests will get spread over all the children.
68 *
69 * For fast SSDs it may make sense to decrease zfs_vdev_mirror_switch_us
70 * significantly to bound the worst case latencies. It would probably be
71 * ideal to calculate a decaying average of the last observed latencies and
72 * use that to dynamically adjust the zfs_vdev_mirror_switch_us time.
73 */
74 int zfs_vdev_mirror_switch_us = 10000;
75
76 static void
77 vdev_mirror_map_free(zio_t *zio)
78 {
79 mirror_map_t *mm = zio->io_vsd;
80
81 kmem_free(mm, offsetof(mirror_map_t, mm_child[mm->mm_children]));
82 }
83
84 static const zio_vsd_ops_t vdev_mirror_vsd_ops = {
85 vdev_mirror_map_free,
86 zio_vsd_default_cksum_report
87 };
88
89 static int
90 vdev_mirror_pending(vdev_t *vd)
91 {
92 return avl_numnodes(&vd->vdev_queue.vq_pending_tree);
93 }
94
95 static mirror_map_t *
96 vdev_mirror_map_alloc(zio_t *zio)
97 {
98 mirror_map_t *mm = NULL;
99 mirror_child_t *mc;
100 vdev_t *vd = zio->io_vd;
101 int c, d;
102
103 if (vd == NULL) {
104 dva_t *dva = zio->io_bp->blk_dva;
105 spa_t *spa = zio->io_spa;
106
107 c = BP_GET_NDVAS(zio->io_bp);
108
109 mm = kmem_zalloc(offsetof(mirror_map_t, mm_child[c]), KM_PUSHPAGE);
110 mm->mm_children = c;
111 mm->mm_replacing = B_FALSE;
112 mm->mm_preferred = spa_get_random(c);
113 mm->mm_root = B_TRUE;
114
115 /*
116 * Check the other, lower-index DVAs to see if they're on
117 * the same vdev as the child we picked. If they are, use
118 * them since they are likely to have been allocated from
119 * the primary metaslab in use at the time, and hence are
120 * more likely to have locality with single-copy data.
121 */
122 for (c = mm->mm_preferred, d = c - 1; d >= 0; d--) {
123 if (DVA_GET_VDEV(&dva[d]) == DVA_GET_VDEV(&dva[c]))
124 mm->mm_preferred = d;
125 }
126
127 for (c = 0; c < mm->mm_children; c++) {
128 mc = &mm->mm_child[c];
129
130 mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c]));
131 mc->mc_offset = DVA_GET_OFFSET(&dva[c]);
132 }
133 } else {
134 int lowest_pending = INT_MAX;
135 int lowest_nr = 1;
136
137 c = vd->vdev_children;
138
139 mm = kmem_zalloc(offsetof(mirror_map_t, mm_child[c]), KM_PUSHPAGE);
140 mm->mm_children = c;
141 mm->mm_replacing = (vd->vdev_ops == &vdev_replacing_ops ||
142 vd->vdev_ops == &vdev_spare_ops);
143 mm->mm_preferred = 0;
144 mm->mm_root = B_FALSE;
145
146 for (c = 0; c < mm->mm_children; c++) {
147 mc = &mm->mm_child[c];
148 mc->mc_vd = vd->vdev_child[c];
149 mc->mc_offset = zio->io_offset;
150
151 if (mm->mm_replacing)
152 continue;
153
154 if (!vdev_readable(mc->mc_vd)) {
155 mc->mc_error = SET_ERROR(ENXIO);
156 mc->mc_tried = 1;
157 mc->mc_skipped = 1;
158 mc->mc_pending = INT_MAX;
159 continue;
160 }
161
162 mc->mc_pending = vdev_mirror_pending(mc->mc_vd);
163 if (mc->mc_pending < lowest_pending) {
164 lowest_pending = mc->mc_pending;
165 lowest_nr = 1;
166 } else if (mc->mc_pending == lowest_pending) {
167 lowest_nr++;
168 }
169 }
170
171 d = gethrtime() / (NSEC_PER_USEC * zfs_vdev_mirror_switch_us);
172 d = (d % lowest_nr) + 1;
173
174 for (c = 0; c < mm->mm_children; c++) {
175 mc = &mm->mm_child[c];
176
177 if (mm->mm_child[c].mc_pending == lowest_pending) {
178 if (--d == 0) {
179 mm->mm_preferred = c;
180 break;
181 }
182 }
183 }
184 }
185
186 zio->io_vsd = mm;
187 zio->io_vsd_ops = &vdev_mirror_vsd_ops;
188 return (mm);
189 }
190
191 static int
192 vdev_mirror_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
193 uint64_t *ashift)
194 {
195 int numerrors = 0;
196 int lasterror = 0;
197 int c;
198
199 if (vd->vdev_children == 0) {
200 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
201 return (SET_ERROR(EINVAL));
202 }
203
204 vdev_open_children(vd);
205
206 for (c = 0; c < vd->vdev_children; c++) {
207 vdev_t *cvd = vd->vdev_child[c];
208
209 if (cvd->vdev_open_error) {
210 lasterror = cvd->vdev_open_error;
211 numerrors++;
212 continue;
213 }
214
215 *asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1;
216 *max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1;
217 *ashift = MAX(*ashift, cvd->vdev_ashift);
218 }
219
220 if (numerrors == vd->vdev_children) {
221 vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
222 return (lasterror);
223 }
224
225 return (0);
226 }
227
228 static void
229 vdev_mirror_close(vdev_t *vd)
230 {
231 int c;
232
233 for (c = 0; c < vd->vdev_children; c++)
234 vdev_close(vd->vdev_child[c]);
235 }
236
237 static void
238 vdev_mirror_child_done(zio_t *zio)
239 {
240 mirror_child_t *mc = zio->io_private;
241
242 mc->mc_error = zio->io_error;
243 mc->mc_tried = 1;
244 mc->mc_skipped = 0;
245 }
246
247 static void
248 vdev_mirror_scrub_done(zio_t *zio)
249 {
250 mirror_child_t *mc = zio->io_private;
251
252 if (zio->io_error == 0) {
253 zio_t *pio;
254
255 mutex_enter(&zio->io_lock);
256 while ((pio = zio_walk_parents(zio)) != NULL) {
257 mutex_enter(&pio->io_lock);
258 ASSERT3U(zio->io_size, >=, pio->io_size);
259 bcopy(zio->io_data, pio->io_data, pio->io_size);
260 mutex_exit(&pio->io_lock);
261 }
262 mutex_exit(&zio->io_lock);
263 }
264
265 zio_buf_free(zio->io_data, zio->io_size);
266
267 mc->mc_error = zio->io_error;
268 mc->mc_tried = 1;
269 mc->mc_skipped = 0;
270 }
271
272 /*
273 * Try to find a child whose DTL doesn't contain the block we want to read.
274 * If we can't, try the read on any vdev we haven't already tried.
275 */
276 static int
277 vdev_mirror_child_select(zio_t *zio)
278 {
279 mirror_map_t *mm = zio->io_vsd;
280 mirror_child_t *mc;
281 uint64_t txg = zio->io_txg;
282 int i, c;
283
284 ASSERT(zio->io_bp == NULL || BP_PHYSICAL_BIRTH(zio->io_bp) == txg);
285
286 /*
287 * Try to find a child whose DTL doesn't contain the block to read.
288 * If a child is known to be completely inaccessible (indicated by
289 * vdev_readable() returning B_FALSE), don't even try.
290 */
291 for (i = 0, c = mm->mm_preferred; i < mm->mm_children; i++, c++) {
292 if (c >= mm->mm_children)
293 c = 0;
294 mc = &mm->mm_child[c];
295 if (mc->mc_tried || mc->mc_skipped)
296 continue;
297 if (!vdev_readable(mc->mc_vd)) {
298 mc->mc_error = SET_ERROR(ENXIO);
299 mc->mc_tried = 1; /* don't even try */
300 mc->mc_skipped = 1;
301 continue;
302 }
303 if (!vdev_dtl_contains(mc->mc_vd, DTL_MISSING, txg, 1))
304 return (c);
305 mc->mc_error = SET_ERROR(ESTALE);
306 mc->mc_skipped = 1;
307 mc->mc_speculative = 1;
308 }
309
310 /*
311 * Every device is either missing or has this txg in its DTL.
312 * Look for any child we haven't already tried before giving up.
313 */
314 for (c = 0; c < mm->mm_children; c++)
315 if (!mm->mm_child[c].mc_tried)
316 return (c);
317
318 /*
319 * Every child failed. There's no place left to look.
320 */
321 return (-1);
322 }
323
324 static int
325 vdev_mirror_io_start(zio_t *zio)
326 {
327 mirror_map_t *mm;
328 mirror_child_t *mc;
329 int c, children;
330
331 mm = vdev_mirror_map_alloc(zio);
332
333 if (zio->io_type == ZIO_TYPE_READ) {
334 if ((zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_replacing) {
335 /*
336 * For scrubbing reads we need to allocate a read
337 * buffer for each child and issue reads to all
338 * children. If any child succeeds, it will copy its
339 * data into zio->io_data in vdev_mirror_scrub_done.
340 */
341 for (c = 0; c < mm->mm_children; c++) {
342 mc = &mm->mm_child[c];
343 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
344 mc->mc_vd, mc->mc_offset,
345 zio_buf_alloc(zio->io_size), zio->io_size,
346 zio->io_type, zio->io_priority, 0,
347 vdev_mirror_scrub_done, mc));
348 }
349 return (ZIO_PIPELINE_CONTINUE);
350 }
351 /*
352 * For normal reads just pick one child.
353 */
354 c = vdev_mirror_child_select(zio);
355 children = (c >= 0);
356 } else {
357 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
358
359 /*
360 * Writes go to all children.
361 */
362 c = 0;
363 children = mm->mm_children;
364 }
365
366 while (children--) {
367 mc = &mm->mm_child[c];
368 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
369 mc->mc_vd, mc->mc_offset, zio->io_data, zio->io_size,
370 zio->io_type, zio->io_priority, 0,
371 vdev_mirror_child_done, mc));
372 c++;
373 }
374
375 return (ZIO_PIPELINE_CONTINUE);
376 }
377
378 static int
379 vdev_mirror_worst_error(mirror_map_t *mm)
380 {
381 int c, error[2] = { 0, 0 };
382
383 for (c = 0; c < mm->mm_children; c++) {
384 mirror_child_t *mc = &mm->mm_child[c];
385 int s = mc->mc_speculative;
386 error[s] = zio_worst_error(error[s], mc->mc_error);
387 }
388
389 return (error[0] ? error[0] : error[1]);
390 }
391
392 static void
393 vdev_mirror_io_done(zio_t *zio)
394 {
395 mirror_map_t *mm = zio->io_vsd;
396 mirror_child_t *mc;
397 int c;
398 int good_copies = 0;
399 int unexpected_errors = 0;
400
401 for (c = 0; c < mm->mm_children; c++) {
402 mc = &mm->mm_child[c];
403
404 if (mc->mc_error) {
405 if (!mc->mc_skipped)
406 unexpected_errors++;
407 } else if (mc->mc_tried) {
408 good_copies++;
409 }
410 }
411
412 if (zio->io_type == ZIO_TYPE_WRITE) {
413 /*
414 * XXX -- for now, treat partial writes as success.
415 *
416 * Now that we support write reallocation, it would be better
417 * to treat partial failure as real failure unless there are
418 * no non-degraded top-level vdevs left, and not update DTLs
419 * if we intend to reallocate.
420 */
421 /* XXPOLICY */
422 if (good_copies != mm->mm_children) {
423 /*
424 * Always require at least one good copy.
425 *
426 * For ditto blocks (io_vd == NULL), require
427 * all copies to be good.
428 *
429 * XXX -- for replacing vdevs, there's no great answer.
430 * If the old device is really dead, we may not even
431 * be able to access it -- so we only want to
432 * require good writes to the new device. But if
433 * the new device turns out to be flaky, we want
434 * to be able to detach it -- which requires all
435 * writes to the old device to have succeeded.
436 */
437 if (good_copies == 0 || zio->io_vd == NULL)
438 zio->io_error = vdev_mirror_worst_error(mm);
439 }
440 return;
441 }
442
443 ASSERT(zio->io_type == ZIO_TYPE_READ);
444
445 /*
446 * If we don't have a good copy yet, keep trying other children.
447 */
448 /* XXPOLICY */
449 if (good_copies == 0 && (c = vdev_mirror_child_select(zio)) != -1) {
450 ASSERT(c >= 0 && c < mm->mm_children);
451 mc = &mm->mm_child[c];
452 zio_vdev_io_redone(zio);
453 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
454 mc->mc_vd, mc->mc_offset, zio->io_data, zio->io_size,
455 ZIO_TYPE_READ, zio->io_priority, 0,
456 vdev_mirror_child_done, mc));
457 return;
458 }
459
460 /* XXPOLICY */
461 if (good_copies == 0) {
462 zio->io_error = vdev_mirror_worst_error(mm);
463 ASSERT(zio->io_error != 0);
464 }
465
466 if (good_copies && spa_writeable(zio->io_spa) &&
467 (unexpected_errors ||
468 (zio->io_flags & ZIO_FLAG_RESILVER) ||
469 ((zio->io_flags & ZIO_FLAG_SCRUB) && mm->mm_replacing))) {
470 /*
471 * Use the good data we have in hand to repair damaged children.
472 */
473 for (c = 0; c < mm->mm_children; c++) {
474 /*
475 * Don't rewrite known good children.
476 * Not only is it unnecessary, it could
477 * actually be harmful: if the system lost
478 * power while rewriting the only good copy,
479 * there would be no good copies left!
480 */
481 mc = &mm->mm_child[c];
482
483 if (mc->mc_error == 0) {
484 if (mc->mc_tried)
485 continue;
486 if (!(zio->io_flags & ZIO_FLAG_SCRUB) &&
487 !vdev_dtl_contains(mc->mc_vd, DTL_PARTIAL,
488 zio->io_txg, 1))
489 continue;
490 mc->mc_error = SET_ERROR(ESTALE);
491 }
492
493 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
494 mc->mc_vd, mc->mc_offset,
495 zio->io_data, zio->io_size,
496 ZIO_TYPE_WRITE, zio->io_priority,
497 ZIO_FLAG_IO_REPAIR | (unexpected_errors ?
498 ZIO_FLAG_SELF_HEAL : 0), NULL, NULL));
499 }
500 }
501 }
502
503 static void
504 vdev_mirror_state_change(vdev_t *vd, int faulted, int degraded)
505 {
506 if (faulted == vd->vdev_children)
507 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
508 VDEV_AUX_NO_REPLICAS);
509 else if (degraded + faulted != 0)
510 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
511 else
512 vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
513 }
514
515 vdev_ops_t vdev_mirror_ops = {
516 vdev_mirror_open,
517 vdev_mirror_close,
518 vdev_default_asize,
519 vdev_mirror_io_start,
520 vdev_mirror_io_done,
521 vdev_mirror_state_change,
522 NULL,
523 NULL,
524 VDEV_TYPE_MIRROR, /* name of this vdev type */
525 B_FALSE /* not a leaf vdev */
526 };
527
528 vdev_ops_t vdev_replacing_ops = {
529 vdev_mirror_open,
530 vdev_mirror_close,
531 vdev_default_asize,
532 vdev_mirror_io_start,
533 vdev_mirror_io_done,
534 vdev_mirror_state_change,
535 NULL,
536 NULL,
537 VDEV_TYPE_REPLACING, /* name of this vdev type */
538 B_FALSE /* not a leaf vdev */
539 };
540
541 vdev_ops_t vdev_spare_ops = {
542 vdev_mirror_open,
543 vdev_mirror_close,
544 vdev_default_asize,
545 vdev_mirror_io_start,
546 vdev_mirror_io_done,
547 vdev_mirror_state_change,
548 NULL,
549 NULL,
550 VDEV_TYPE_SPARE, /* name of this vdev type */
551 B_FALSE /* not a leaf vdev */
552 };
553
554 #if defined(_KERNEL) && defined(HAVE_SPL)
555 module_param(zfs_vdev_mirror_switch_us, int, 0644);
556 MODULE_PARM_DESC(zfs_vdev_mirror_switch_us, "Switch mirrors every N usecs");
557 #endif