]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev_mirror.c
Rebase master to b121
[mirror_zfs.git] / module / zfs / vdev_mirror.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 #include <sys/zfs_context.h>
27 #include <sys/spa.h>
28 #include <sys/vdev_impl.h>
29 #include <sys/zio.h>
30 #include <sys/fs/zfs.h>
31
32 /*
33 * Virtual device vector for mirroring.
34 */
35
36 typedef struct mirror_child {
37 vdev_t *mc_vd;
38 uint64_t mc_offset;
39 int mc_error;
40 uint8_t mc_tried;
41 uint8_t mc_skipped;
42 uint8_t mc_speculative;
43 } mirror_child_t;
44
45 typedef struct mirror_map {
46 int mm_children;
47 int mm_replacing;
48 int mm_preferred;
49 int mm_root;
50 mirror_child_t mm_child[1];
51 } mirror_map_t;
52
53 int vdev_mirror_shift = 21;
54
55 static void
56 vdev_mirror_map_free(zio_t *zio)
57 {
58 mirror_map_t *mm = zio->io_vsd;
59
60 kmem_free(mm, offsetof(mirror_map_t, mm_child[mm->mm_children]));
61 }
62
63 static mirror_map_t *
64 vdev_mirror_map_alloc(zio_t *zio)
65 {
66 mirror_map_t *mm = NULL;
67 mirror_child_t *mc;
68 vdev_t *vd = zio->io_vd;
69 int c, d;
70
71 if (vd == NULL) {
72 dva_t *dva = zio->io_bp->blk_dva;
73 spa_t *spa = zio->io_spa;
74
75 c = BP_GET_NDVAS(zio->io_bp);
76
77 mm = kmem_zalloc(offsetof(mirror_map_t, mm_child[c]), KM_SLEEP);
78 mm->mm_children = c;
79 mm->mm_replacing = B_FALSE;
80 mm->mm_preferred = spa_get_random(c);
81 mm->mm_root = B_TRUE;
82
83 /*
84 * Check the other, lower-index DVAs to see if they're on
85 * the same vdev as the child we picked. If they are, use
86 * them since they are likely to have been allocated from
87 * the primary metaslab in use at the time, and hence are
88 * more likely to have locality with single-copy data.
89 */
90 for (c = mm->mm_preferred, d = c - 1; d >= 0; d--) {
91 if (DVA_GET_VDEV(&dva[d]) == DVA_GET_VDEV(&dva[c]))
92 mm->mm_preferred = d;
93 }
94
95 for (c = 0; c < mm->mm_children; c++) {
96 mc = &mm->mm_child[c];
97
98 mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c]));
99 mc->mc_offset = DVA_GET_OFFSET(&dva[c]);
100 }
101 } else {
102 c = vd->vdev_children;
103
104 mm = kmem_zalloc(offsetof(mirror_map_t, mm_child[c]), KM_SLEEP);
105 mm->mm_children = c;
106 mm->mm_replacing = (vd->vdev_ops == &vdev_replacing_ops ||
107 vd->vdev_ops == &vdev_spare_ops);
108 mm->mm_preferred = mm->mm_replacing ? 0 :
109 (zio->io_offset >> vdev_mirror_shift) % c;
110 mm->mm_root = B_FALSE;
111
112 for (c = 0; c < mm->mm_children; c++) {
113 mc = &mm->mm_child[c];
114 mc->mc_vd = vd->vdev_child[c];
115 mc->mc_offset = zio->io_offset;
116 }
117 }
118
119 zio->io_vsd = mm;
120 zio->io_vsd_free = vdev_mirror_map_free;
121 return (mm);
122 }
123
124 static int
125 vdev_mirror_open(vdev_t *vd, uint64_t *asize, uint64_t *ashift)
126 {
127 int numerrors = 0;
128 int lasterror = 0;
129
130 if (vd->vdev_children == 0) {
131 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
132 return (EINVAL);
133 }
134
135 vdev_open_children(vd);
136
137 for (int c = 0; c < vd->vdev_children; c++) {
138 vdev_t *cvd = vd->vdev_child[c];
139
140 if (cvd->vdev_open_error) {
141 lasterror = cvd->vdev_open_error;
142 numerrors++;
143 continue;
144 }
145
146 *asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1;
147 *ashift = MAX(*ashift, cvd->vdev_ashift);
148 }
149
150 if (numerrors == vd->vdev_children) {
151 vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
152 return (lasterror);
153 }
154
155 return (0);
156 }
157
158 static void
159 vdev_mirror_close(vdev_t *vd)
160 {
161 for (int c = 0; c < vd->vdev_children; c++)
162 vdev_close(vd->vdev_child[c]);
163 }
164
165 static void
166 vdev_mirror_child_done(zio_t *zio)
167 {
168 mirror_child_t *mc = zio->io_private;
169
170 mc->mc_error = zio->io_error;
171 mc->mc_tried = 1;
172 mc->mc_skipped = 0;
173 }
174
175 static void
176 vdev_mirror_scrub_done(zio_t *zio)
177 {
178 mirror_child_t *mc = zio->io_private;
179
180 if (zio->io_error == 0) {
181 zio_t *pio;
182
183 mutex_enter(&zio->io_lock);
184 while ((pio = zio_walk_parents(zio)) != NULL) {
185 mutex_enter(&pio->io_lock);
186 ASSERT3U(zio->io_size, >=, pio->io_size);
187 bcopy(zio->io_data, pio->io_data, pio->io_size);
188 mutex_exit(&pio->io_lock);
189 }
190 mutex_exit(&zio->io_lock);
191 }
192
193 zio_buf_free(zio->io_data, zio->io_size);
194
195 mc->mc_error = zio->io_error;
196 mc->mc_tried = 1;
197 mc->mc_skipped = 0;
198 }
199
200 /*
201 * Try to find a child whose DTL doesn't contain the block we want to read.
202 * If we can't, try the read on any vdev we haven't already tried.
203 */
204 static int
205 vdev_mirror_child_select(zio_t *zio)
206 {
207 mirror_map_t *mm = zio->io_vsd;
208 mirror_child_t *mc;
209 uint64_t txg = zio->io_txg;
210 int i, c;
211
212 ASSERT(zio->io_bp == NULL || zio->io_bp->blk_birth == txg);
213
214 /*
215 * Try to find a child whose DTL doesn't contain the block to read.
216 * If a child is known to be completely inaccessible (indicated by
217 * vdev_readable() returning B_FALSE), don't even try.
218 */
219 for (i = 0, c = mm->mm_preferred; i < mm->mm_children; i++, c++) {
220 if (c >= mm->mm_children)
221 c = 0;
222 mc = &mm->mm_child[c];
223 if (mc->mc_tried || mc->mc_skipped)
224 continue;
225 if (!vdev_readable(mc->mc_vd)) {
226 mc->mc_error = ENXIO;
227 mc->mc_tried = 1; /* don't even try */
228 mc->mc_skipped = 1;
229 continue;
230 }
231 if (!vdev_dtl_contains(mc->mc_vd, DTL_MISSING, txg, 1))
232 return (c);
233 mc->mc_error = ESTALE;
234 mc->mc_skipped = 1;
235 mc->mc_speculative = 1;
236 }
237
238 /*
239 * Every device is either missing or has this txg in its DTL.
240 * Look for any child we haven't already tried before giving up.
241 */
242 for (c = 0; c < mm->mm_children; c++)
243 if (!mm->mm_child[c].mc_tried)
244 return (c);
245
246 /*
247 * Every child failed. There's no place left to look.
248 */
249 return (-1);
250 }
251
252 static int
253 vdev_mirror_io_start(zio_t *zio)
254 {
255 mirror_map_t *mm;
256 mirror_child_t *mc;
257 int c, children;
258
259 mm = vdev_mirror_map_alloc(zio);
260
261 if (zio->io_type == ZIO_TYPE_READ) {
262 if ((zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_replacing) {
263 /*
264 * For scrubbing reads we need to allocate a read
265 * buffer for each child and issue reads to all
266 * children. If any child succeeds, it will copy its
267 * data into zio->io_data in vdev_mirror_scrub_done.
268 */
269 for (c = 0; c < mm->mm_children; c++) {
270 mc = &mm->mm_child[c];
271 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
272 mc->mc_vd, mc->mc_offset,
273 zio_buf_alloc(zio->io_size), zio->io_size,
274 zio->io_type, zio->io_priority, 0,
275 vdev_mirror_scrub_done, mc));
276 }
277 return (ZIO_PIPELINE_CONTINUE);
278 }
279 /*
280 * For normal reads just pick one child.
281 */
282 c = vdev_mirror_child_select(zio);
283 children = (c >= 0);
284 } else {
285 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
286
287 /*
288 * Writes go to all children.
289 */
290 c = 0;
291 children = mm->mm_children;
292 }
293
294 while (children--) {
295 mc = &mm->mm_child[c];
296 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
297 mc->mc_vd, mc->mc_offset, zio->io_data, zio->io_size,
298 zio->io_type, zio->io_priority, 0,
299 vdev_mirror_child_done, mc));
300 c++;
301 }
302
303 return (ZIO_PIPELINE_CONTINUE);
304 }
305
306 static int
307 vdev_mirror_worst_error(mirror_map_t *mm)
308 {
309 int error[2] = { 0, 0 };
310
311 for (int c = 0; c < mm->mm_children; c++) {
312 mirror_child_t *mc = &mm->mm_child[c];
313 int s = mc->mc_speculative;
314 error[s] = zio_worst_error(error[s], mc->mc_error);
315 }
316
317 return (error[0] ? error[0] : error[1]);
318 }
319
320 static void
321 vdev_mirror_io_done(zio_t *zio)
322 {
323 mirror_map_t *mm = zio->io_vsd;
324 mirror_child_t *mc;
325 int c;
326 int good_copies = 0;
327 int unexpected_errors = 0;
328
329 for (c = 0; c < mm->mm_children; c++) {
330 mc = &mm->mm_child[c];
331
332 if (mc->mc_error) {
333 if (!mc->mc_skipped)
334 unexpected_errors++;
335 } else if (mc->mc_tried) {
336 good_copies++;
337 }
338 }
339
340 if (zio->io_type == ZIO_TYPE_WRITE) {
341 /*
342 * XXX -- for now, treat partial writes as success.
343 *
344 * Now that we support write reallocation, it would be better
345 * to treat partial failure as real failure unless there are
346 * no non-degraded top-level vdevs left, and not update DTLs
347 * if we intend to reallocate.
348 */
349 /* XXPOLICY */
350 if (good_copies != mm->mm_children) {
351 /*
352 * Always require at least one good copy.
353 *
354 * For ditto blocks (io_vd == NULL), require
355 * all copies to be good.
356 *
357 * XXX -- for replacing vdevs, there's no great answer.
358 * If the old device is really dead, we may not even
359 * be able to access it -- so we only want to
360 * require good writes to the new device. But if
361 * the new device turns out to be flaky, we want
362 * to be able to detach it -- which requires all
363 * writes to the old device to have succeeded.
364 */
365 if (good_copies == 0 || zio->io_vd == NULL)
366 zio->io_error = vdev_mirror_worst_error(mm);
367 }
368 return;
369 }
370
371 ASSERT(zio->io_type == ZIO_TYPE_READ);
372
373 /*
374 * If we don't have a good copy yet, keep trying other children.
375 */
376 /* XXPOLICY */
377 if (good_copies == 0 && (c = vdev_mirror_child_select(zio)) != -1) {
378 ASSERT(c >= 0 && c < mm->mm_children);
379 mc = &mm->mm_child[c];
380 zio_vdev_io_redone(zio);
381 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
382 mc->mc_vd, mc->mc_offset, zio->io_data, zio->io_size,
383 ZIO_TYPE_READ, zio->io_priority, 0,
384 vdev_mirror_child_done, mc));
385 return;
386 }
387
388 /* XXPOLICY */
389 if (good_copies == 0) {
390 zio->io_error = vdev_mirror_worst_error(mm);
391 ASSERT(zio->io_error != 0);
392 }
393
394 if (good_copies && spa_writeable(zio->io_spa) &&
395 (unexpected_errors ||
396 (zio->io_flags & ZIO_FLAG_RESILVER) ||
397 ((zio->io_flags & ZIO_FLAG_SCRUB) && mm->mm_replacing))) {
398 /*
399 * Use the good data we have in hand to repair damaged children.
400 */
401 for (c = 0; c < mm->mm_children; c++) {
402 /*
403 * Don't rewrite known good children.
404 * Not only is it unnecessary, it could
405 * actually be harmful: if the system lost
406 * power while rewriting the only good copy,
407 * there would be no good copies left!
408 */
409 mc = &mm->mm_child[c];
410
411 if (mc->mc_error == 0) {
412 if (mc->mc_tried)
413 continue;
414 if (!(zio->io_flags & ZIO_FLAG_SCRUB) &&
415 !vdev_dtl_contains(mc->mc_vd, DTL_PARTIAL,
416 zio->io_txg, 1))
417 continue;
418 mc->mc_error = ESTALE;
419 }
420
421 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
422 mc->mc_vd, mc->mc_offset,
423 zio->io_data, zio->io_size,
424 ZIO_TYPE_WRITE, zio->io_priority,
425 ZIO_FLAG_IO_REPAIR | (unexpected_errors ?
426 ZIO_FLAG_SELF_HEAL : 0), NULL, NULL));
427 }
428 }
429 }
430
431 static void
432 vdev_mirror_state_change(vdev_t *vd, int faulted, int degraded)
433 {
434 if (faulted == vd->vdev_children)
435 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
436 VDEV_AUX_NO_REPLICAS);
437 else if (degraded + faulted != 0)
438 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
439 else
440 vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
441 }
442
443 vdev_ops_t vdev_mirror_ops = {
444 vdev_mirror_open,
445 vdev_mirror_close,
446 vdev_default_asize,
447 vdev_mirror_io_start,
448 vdev_mirror_io_done,
449 vdev_mirror_state_change,
450 VDEV_TYPE_MIRROR, /* name of this vdev type */
451 B_FALSE /* not a leaf vdev */
452 };
453
454 vdev_ops_t vdev_replacing_ops = {
455 vdev_mirror_open,
456 vdev_mirror_close,
457 vdev_default_asize,
458 vdev_mirror_io_start,
459 vdev_mirror_io_done,
460 vdev_mirror_state_change,
461 VDEV_TYPE_REPLACING, /* name of this vdev type */
462 B_FALSE /* not a leaf vdev */
463 };
464
465 vdev_ops_t vdev_spare_ops = {
466 vdev_mirror_open,
467 vdev_mirror_close,
468 vdev_default_asize,
469 vdev_mirror_io_start,
470 vdev_mirror_io_done,
471 vdev_mirror_state_change,
472 VDEV_TYPE_SPARE, /* name of this vdev type */
473 B_FALSE /* not a leaf vdev */
474 };