]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev_raidz_math.c
OpenZFS 8607 - variable set but not used
[mirror_zfs.git] / module / zfs / vdev_raidz_math.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (C) 2016 Gvozden Nešković. All rights reserved.
23 */
24
25 #include <sys/zfs_context.h>
26 #include <sys/types.h>
27 #include <sys/zio.h>
28 #include <sys/debug.h>
29 #include <sys/zfs_debug.h>
30
31 #include <sys/vdev_raidz.h>
32 #include <sys/vdev_raidz_impl.h>
33
34 extern boolean_t raidz_will_scalar_work(void);
35
36 /* Opaque implementation with NULL methods to represent original methods */
37 static const raidz_impl_ops_t vdev_raidz_original_impl = {
38 .name = "original",
39 .is_supported = raidz_will_scalar_work,
40 };
41
42 /* RAIDZ parity op that contain the fastest methods */
43 static raidz_impl_ops_t vdev_raidz_fastest_impl = {
44 .name = "fastest"
45 };
46
47 /* All compiled in implementations */
48 const raidz_impl_ops_t *raidz_all_maths[] = {
49 &vdev_raidz_original_impl,
50 &vdev_raidz_scalar_impl,
51 #if defined(__x86_64) && defined(HAVE_SSE2) /* only x86_64 for now */
52 &vdev_raidz_sse2_impl,
53 #endif
54 #if defined(__x86_64) && defined(HAVE_SSSE3) /* only x86_64 for now */
55 &vdev_raidz_ssse3_impl,
56 #endif
57 #if defined(__x86_64) && defined(HAVE_AVX2) /* only x86_64 for now */
58 &vdev_raidz_avx2_impl,
59 #endif
60 #if defined(__x86_64) && defined(HAVE_AVX512F) /* only x86_64 for now */
61 &vdev_raidz_avx512f_impl,
62 #endif
63 #if defined(__x86_64) && defined(HAVE_AVX512BW) /* only x86_64 for now */
64 &vdev_raidz_avx512bw_impl,
65 #endif
66 #if defined(__aarch64__)
67 &vdev_raidz_aarch64_neon_impl,
68 &vdev_raidz_aarch64_neonx2_impl,
69 #endif
70 };
71
72 /* Indicate that benchmark has been completed */
73 static boolean_t raidz_math_initialized = B_FALSE;
74
75 /* Select raidz implementation */
76 #define IMPL_FASTEST (UINT32_MAX)
77 #define IMPL_CYCLE (UINT32_MAX - 1)
78 #define IMPL_ORIGINAL (0)
79 #define IMPL_SCALAR (1)
80
81 #define RAIDZ_IMPL_READ(i) (*(volatile uint32_t *) &(i))
82
83 static uint32_t zfs_vdev_raidz_impl = IMPL_SCALAR;
84 static uint32_t user_sel_impl = IMPL_FASTEST;
85
86 /* Hold all supported implementations */
87 static size_t raidz_supp_impl_cnt = 0;
88 static raidz_impl_ops_t *raidz_supp_impl[ARRAY_SIZE(raidz_all_maths)];
89
90 /*
91 * kstats values for supported implementations
92 * Values represent per disk throughput of 8 disk+parity raidz vdev [B/s]
93 */
94 static raidz_impl_kstat_t raidz_impl_kstats[ARRAY_SIZE(raidz_all_maths) + 1];
95
96 /* kstat for benchmarked implementations */
97 static kstat_t *raidz_math_kstat = NULL;
98
99 /*
100 * Selects the raidz operation for raidz_map
101 * If rm_ops is set to NULL original raidz implementation will be used
102 */
103 raidz_impl_ops_t *
104 vdev_raidz_math_get_ops()
105 {
106 raidz_impl_ops_t *ops = NULL;
107 const uint32_t impl = RAIDZ_IMPL_READ(zfs_vdev_raidz_impl);
108
109 switch (impl) {
110 case IMPL_FASTEST:
111 ASSERT(raidz_math_initialized);
112 ops = &vdev_raidz_fastest_impl;
113 break;
114 #if !defined(_KERNEL)
115 case IMPL_CYCLE:
116 {
117 ASSERT(raidz_math_initialized);
118 ASSERT3U(raidz_supp_impl_cnt, >, 0);
119 /* Cycle through all supported implementations */
120 static size_t cycle_impl_idx = 0;
121 size_t idx = (++cycle_impl_idx) % raidz_supp_impl_cnt;
122 ops = raidz_supp_impl[idx];
123 }
124 break;
125 #endif
126 case IMPL_ORIGINAL:
127 ops = (raidz_impl_ops_t *)&vdev_raidz_original_impl;
128 break;
129 case IMPL_SCALAR:
130 ops = (raidz_impl_ops_t *)&vdev_raidz_scalar_impl;
131 break;
132 default:
133 ASSERT3U(impl, <, raidz_supp_impl_cnt);
134 ASSERT3U(raidz_supp_impl_cnt, >, 0);
135 ops = raidz_supp_impl[impl];
136 break;
137 }
138
139 ASSERT3P(ops, !=, NULL);
140
141 return (ops);
142 }
143
144 /*
145 * Select parity generation method for raidz_map
146 */
147 int
148 vdev_raidz_math_generate(raidz_map_t *rm)
149 {
150 raidz_gen_f gen_parity = NULL;
151
152 switch (raidz_parity(rm)) {
153 case 1:
154 gen_parity = rm->rm_ops->gen[RAIDZ_GEN_P];
155 break;
156 case 2:
157 gen_parity = rm->rm_ops->gen[RAIDZ_GEN_PQ];
158 break;
159 case 3:
160 gen_parity = rm->rm_ops->gen[RAIDZ_GEN_PQR];
161 break;
162 default:
163 gen_parity = NULL;
164 cmn_err(CE_PANIC, "invalid RAID-Z configuration %d",
165 raidz_parity(rm));
166 break;
167 }
168
169 /* if method is NULL execute the original implementation */
170 if (gen_parity == NULL)
171 return (RAIDZ_ORIGINAL_IMPL);
172
173 gen_parity(rm);
174
175 return (0);
176 }
177
178 static raidz_rec_f
179 reconstruct_fun_p_sel(raidz_map_t *rm, const int *parity_valid,
180 const int nbaddata)
181 {
182 if (nbaddata == 1 && parity_valid[CODE_P]) {
183 return (rm->rm_ops->rec[RAIDZ_REC_P]);
184 }
185 return ((raidz_rec_f) NULL);
186 }
187
188 static raidz_rec_f
189 reconstruct_fun_pq_sel(raidz_map_t *rm, const int *parity_valid,
190 const int nbaddata)
191 {
192 if (nbaddata == 1) {
193 if (parity_valid[CODE_P]) {
194 return (rm->rm_ops->rec[RAIDZ_REC_P]);
195 } else if (parity_valid[CODE_Q]) {
196 return (rm->rm_ops->rec[RAIDZ_REC_Q]);
197 }
198 } else if (nbaddata == 2 &&
199 parity_valid[CODE_P] && parity_valid[CODE_Q]) {
200 return (rm->rm_ops->rec[RAIDZ_REC_PQ]);
201 }
202 return ((raidz_rec_f) NULL);
203 }
204
205 static raidz_rec_f
206 reconstruct_fun_pqr_sel(raidz_map_t *rm, const int *parity_valid,
207 const int nbaddata)
208 {
209 if (nbaddata == 1) {
210 if (parity_valid[CODE_P]) {
211 return (rm->rm_ops->rec[RAIDZ_REC_P]);
212 } else if (parity_valid[CODE_Q]) {
213 return (rm->rm_ops->rec[RAIDZ_REC_Q]);
214 } else if (parity_valid[CODE_R]) {
215 return (rm->rm_ops->rec[RAIDZ_REC_R]);
216 }
217 } else if (nbaddata == 2) {
218 if (parity_valid[CODE_P] && parity_valid[CODE_Q]) {
219 return (rm->rm_ops->rec[RAIDZ_REC_PQ]);
220 } else if (parity_valid[CODE_P] && parity_valid[CODE_R]) {
221 return (rm->rm_ops->rec[RAIDZ_REC_PR]);
222 } else if (parity_valid[CODE_Q] && parity_valid[CODE_R]) {
223 return (rm->rm_ops->rec[RAIDZ_REC_QR]);
224 }
225 } else if (nbaddata == 3 &&
226 parity_valid[CODE_P] && parity_valid[CODE_Q] &&
227 parity_valid[CODE_R]) {
228 return (rm->rm_ops->rec[RAIDZ_REC_PQR]);
229 }
230 return ((raidz_rec_f) NULL);
231 }
232
233 /*
234 * Select data reconstruction method for raidz_map
235 * @parity_valid - Parity validity flag
236 * @dt - Failed data index array
237 * @nbaddata - Number of failed data columns
238 */
239 int
240 vdev_raidz_math_reconstruct(raidz_map_t *rm, const int *parity_valid,
241 const int *dt, const int nbaddata)
242 {
243 raidz_rec_f rec_fn = NULL;
244
245 switch (raidz_parity(rm)) {
246 case PARITY_P:
247 rec_fn = reconstruct_fun_p_sel(rm, parity_valid, nbaddata);
248 break;
249 case PARITY_PQ:
250 rec_fn = reconstruct_fun_pq_sel(rm, parity_valid, nbaddata);
251 break;
252 case PARITY_PQR:
253 rec_fn = reconstruct_fun_pqr_sel(rm, parity_valid, nbaddata);
254 break;
255 default:
256 cmn_err(CE_PANIC, "invalid RAID-Z configuration %d",
257 raidz_parity(rm));
258 break;
259 }
260
261 if (rec_fn == NULL)
262 return (RAIDZ_ORIGINAL_IMPL);
263 else
264 return (rec_fn(rm, dt));
265 }
266
267 const char *raidz_gen_name[] = {
268 "gen_p", "gen_pq", "gen_pqr"
269 };
270 const char *raidz_rec_name[] = {
271 "rec_p", "rec_q", "rec_r",
272 "rec_pq", "rec_pr", "rec_qr", "rec_pqr"
273 };
274
275 #define RAIDZ_KSTAT_LINE_LEN (17 + 10*12 + 1)
276
277 static int
278 raidz_math_kstat_headers(char *buf, size_t size)
279 {
280 int i;
281 ssize_t off;
282
283 ASSERT3U(size, >=, RAIDZ_KSTAT_LINE_LEN);
284
285 off = snprintf(buf, size, "%-17s", "implementation");
286
287 for (i = 0; i < ARRAY_SIZE(raidz_gen_name); i++)
288 off += snprintf(buf + off, size - off, "%-16s",
289 raidz_gen_name[i]);
290
291 for (i = 0; i < ARRAY_SIZE(raidz_rec_name); i++)
292 off += snprintf(buf + off, size - off, "%-16s",
293 raidz_rec_name[i]);
294
295 (void) snprintf(buf + off, size - off, "\n");
296
297 return (0);
298 }
299
300 static int
301 raidz_math_kstat_data(char *buf, size_t size, void *data)
302 {
303 raidz_impl_kstat_t *fstat = &raidz_impl_kstats[raidz_supp_impl_cnt];
304 raidz_impl_kstat_t *cstat = (raidz_impl_kstat_t *)data;
305 ssize_t off = 0;
306 int i;
307
308 ASSERT3U(size, >=, RAIDZ_KSTAT_LINE_LEN);
309
310 if (cstat == fstat) {
311 off += snprintf(buf + off, size - off, "%-17s", "fastest");
312
313 for (i = 0; i < ARRAY_SIZE(raidz_gen_name); i++) {
314 int id = fstat->gen[i];
315 off += snprintf(buf + off, size - off, "%-16s",
316 raidz_supp_impl[id]->name);
317 }
318 for (i = 0; i < ARRAY_SIZE(raidz_rec_name); i++) {
319 int id = fstat->rec[i];
320 off += snprintf(buf + off, size - off, "%-16s",
321 raidz_supp_impl[id]->name);
322 }
323 } else {
324 ptrdiff_t id = cstat - raidz_impl_kstats;
325
326 off += snprintf(buf + off, size - off, "%-17s",
327 raidz_supp_impl[id]->name);
328
329 for (i = 0; i < ARRAY_SIZE(raidz_gen_name); i++)
330 off += snprintf(buf + off, size - off, "%-16llu",
331 (u_longlong_t)cstat->gen[i]);
332
333 for (i = 0; i < ARRAY_SIZE(raidz_rec_name); i++)
334 off += snprintf(buf + off, size - off, "%-16llu",
335 (u_longlong_t)cstat->rec[i]);
336 }
337
338 (void) snprintf(buf + off, size - off, "\n");
339
340 return (0);
341 }
342
343 static void *
344 raidz_math_kstat_addr(kstat_t *ksp, loff_t n)
345 {
346 if (n <= raidz_supp_impl_cnt)
347 ksp->ks_private = (void *) (raidz_impl_kstats + n);
348 else
349 ksp->ks_private = NULL;
350
351 return (ksp->ks_private);
352 }
353
354 #define BENCH_D_COLS (8ULL)
355 #define BENCH_COLS (BENCH_D_COLS + PARITY_PQR)
356 #define BENCH_ZIO_SIZE (1ULL << SPA_OLD_MAXBLOCKSHIFT) /* 128 kiB */
357 #define BENCH_NS MSEC2NSEC(25) /* 25ms */
358
359 typedef void (*benchmark_fn)(raidz_map_t *rm, const int fn);
360
361 static void
362 benchmark_gen_impl(raidz_map_t *rm, const int fn)
363 {
364 (void) fn;
365 vdev_raidz_generate_parity(rm);
366 }
367
368 static void
369 benchmark_rec_impl(raidz_map_t *rm, const int fn)
370 {
371 static const int rec_tgt[7][3] = {
372 {1, 2, 3}, /* rec_p: bad QR & D[0] */
373 {0, 2, 3}, /* rec_q: bad PR & D[0] */
374 {0, 1, 3}, /* rec_r: bad PQ & D[0] */
375 {2, 3, 4}, /* rec_pq: bad R & D[0][1] */
376 {1, 3, 4}, /* rec_pr: bad Q & D[0][1] */
377 {0, 3, 4}, /* rec_qr: bad P & D[0][1] */
378 {3, 4, 5} /* rec_pqr: bad & D[0][1][2] */
379 };
380
381 vdev_raidz_reconstruct(rm, rec_tgt[fn], 3);
382 }
383
384 /*
385 * Benchmarking of all supported implementations (raidz_supp_impl_cnt)
386 * is performed by setting the rm_ops pointer and calling the top level
387 * generate/reconstruct methods of bench_rm.
388 */
389 static void
390 benchmark_raidz_impl(raidz_map_t *bench_rm, const int fn, benchmark_fn bench_fn)
391 {
392 uint64_t run_cnt, speed, best_speed = 0;
393 hrtime_t t_start, t_diff;
394 raidz_impl_ops_t *curr_impl;
395 raidz_impl_kstat_t *fstat = &raidz_impl_kstats[raidz_supp_impl_cnt];
396 int impl, i;
397
398 for (impl = 0; impl < raidz_supp_impl_cnt; impl++) {
399 /* set an implementation to benchmark */
400 curr_impl = raidz_supp_impl[impl];
401 bench_rm->rm_ops = curr_impl;
402
403 run_cnt = 0;
404 t_start = gethrtime();
405
406 do {
407 for (i = 0; i < 25; i++, run_cnt++)
408 bench_fn(bench_rm, fn);
409
410 t_diff = gethrtime() - t_start;
411 } while (t_diff < BENCH_NS);
412
413 speed = run_cnt * BENCH_ZIO_SIZE * NANOSEC;
414 speed /= (t_diff * BENCH_COLS);
415
416 if (bench_fn == benchmark_gen_impl)
417 raidz_impl_kstats[impl].gen[fn] = speed;
418 else
419 raidz_impl_kstats[impl].rec[fn] = speed;
420
421 /* Update fastest implementation method */
422 if (speed > best_speed) {
423 best_speed = speed;
424
425 if (bench_fn == benchmark_gen_impl) {
426 fstat->gen[fn] = impl;
427 vdev_raidz_fastest_impl.gen[fn] =
428 curr_impl->gen[fn];
429 } else {
430 fstat->rec[fn] = impl;
431 vdev_raidz_fastest_impl.rec[fn] =
432 curr_impl->rec[fn];
433 }
434 }
435 }
436 }
437
438 void
439 vdev_raidz_math_init(void)
440 {
441 raidz_impl_ops_t *curr_impl;
442 zio_t *bench_zio = NULL;
443 raidz_map_t *bench_rm = NULL;
444 uint64_t bench_parity;
445 int i, c, fn;
446
447 /* move supported impl into raidz_supp_impl */
448 for (i = 0, c = 0; i < ARRAY_SIZE(raidz_all_maths); i++) {
449 curr_impl = (raidz_impl_ops_t *)raidz_all_maths[i];
450
451 /* initialize impl */
452 if (curr_impl->init)
453 curr_impl->init();
454
455 if (curr_impl->is_supported())
456 raidz_supp_impl[c++] = (raidz_impl_ops_t *)curr_impl;
457 }
458 membar_producer(); /* complete raidz_supp_impl[] init */
459 raidz_supp_impl_cnt = c; /* number of supported impl */
460
461 #if !defined(_KERNEL)
462 /* Skip benchmarking and use last implementation as fastest */
463 memcpy(&vdev_raidz_fastest_impl, raidz_supp_impl[raidz_supp_impl_cnt-1],
464 sizeof (vdev_raidz_fastest_impl));
465 strcpy(vdev_raidz_fastest_impl.name, "fastest");
466
467 raidz_math_initialized = B_TRUE;
468
469 /* Use 'cycle' math selection method for userspace */
470 VERIFY0(vdev_raidz_impl_set("cycle"));
471 return;
472 #endif
473
474 /* Fake an zio and run the benchmark on a warmed up buffer */
475 bench_zio = kmem_zalloc(sizeof (zio_t), KM_SLEEP);
476 bench_zio->io_offset = 0;
477 bench_zio->io_size = BENCH_ZIO_SIZE; /* only data columns */
478 bench_zio->io_abd = abd_alloc_linear(BENCH_ZIO_SIZE, B_TRUE);
479 memset(abd_to_buf(bench_zio->io_abd), 0xAA, BENCH_ZIO_SIZE);
480
481 /* Benchmark parity generation methods */
482 for (fn = 0; fn < RAIDZ_GEN_NUM; fn++) {
483 bench_parity = fn + 1;
484 /* New raidz_map is needed for each generate_p/q/r */
485 bench_rm = vdev_raidz_map_alloc(bench_zio, SPA_MINBLOCKSHIFT,
486 BENCH_D_COLS + bench_parity, bench_parity);
487
488 benchmark_raidz_impl(bench_rm, fn, benchmark_gen_impl);
489
490 vdev_raidz_map_free(bench_rm);
491 }
492
493 /* Benchmark data reconstruction methods */
494 bench_rm = vdev_raidz_map_alloc(bench_zio, SPA_MINBLOCKSHIFT,
495 BENCH_COLS, PARITY_PQR);
496
497 for (fn = 0; fn < RAIDZ_REC_NUM; fn++)
498 benchmark_raidz_impl(bench_rm, fn, benchmark_rec_impl);
499
500 vdev_raidz_map_free(bench_rm);
501
502 /* cleanup the bench zio */
503 abd_free(bench_zio->io_abd);
504 kmem_free(bench_zio, sizeof (zio_t));
505
506 /* install kstats for all impl */
507 raidz_math_kstat = kstat_create("zfs", 0, "vdev_raidz_bench", "misc",
508 KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VIRTUAL);
509
510 if (raidz_math_kstat != NULL) {
511 raidz_math_kstat->ks_data = NULL;
512 raidz_math_kstat->ks_ndata = UINT32_MAX;
513 kstat_set_raw_ops(raidz_math_kstat,
514 raidz_math_kstat_headers,
515 raidz_math_kstat_data,
516 raidz_math_kstat_addr);
517 kstat_install(raidz_math_kstat);
518 }
519
520 /* Finish initialization */
521 atomic_swap_32(&zfs_vdev_raidz_impl, user_sel_impl);
522 raidz_math_initialized = B_TRUE;
523 }
524
525 void
526 vdev_raidz_math_fini(void)
527 {
528 raidz_impl_ops_t const *curr_impl;
529 int i;
530
531 if (raidz_math_kstat != NULL) {
532 kstat_delete(raidz_math_kstat);
533 raidz_math_kstat = NULL;
534 }
535
536 /* fini impl */
537 for (i = 0; i < ARRAY_SIZE(raidz_all_maths); i++) {
538 curr_impl = raidz_all_maths[i];
539 if (curr_impl->fini)
540 curr_impl->fini();
541 }
542 }
543
544 static const struct {
545 char *name;
546 uint32_t sel;
547 } math_impl_opts[] = {
548 #if !defined(_KERNEL)
549 { "cycle", IMPL_CYCLE },
550 #endif
551 { "fastest", IMPL_FASTEST },
552 { "original", IMPL_ORIGINAL },
553 { "scalar", IMPL_SCALAR }
554 };
555
556 /*
557 * Function sets desired raidz implementation.
558 *
559 * If we are called before init(), user preference will be saved in
560 * user_sel_impl, and applied in later init() call. This occurs when module
561 * parameter is specified on module load. Otherwise, directly update
562 * zfs_vdev_raidz_impl.
563 *
564 * @val Name of raidz implementation to use
565 * @param Unused.
566 */
567 int
568 vdev_raidz_impl_set(const char *val)
569 {
570 int err = -EINVAL;
571 char req_name[RAIDZ_IMPL_NAME_MAX];
572 uint32_t impl = RAIDZ_IMPL_READ(user_sel_impl);
573 size_t i;
574
575 /* sanitize input */
576 i = strnlen(val, RAIDZ_IMPL_NAME_MAX);
577 if (i == 0 || i == RAIDZ_IMPL_NAME_MAX)
578 return (err);
579
580 strlcpy(req_name, val, RAIDZ_IMPL_NAME_MAX);
581 while (i > 0 && !!isspace(req_name[i-1]))
582 i--;
583 req_name[i] = '\0';
584
585 /* Check mandatory options */
586 for (i = 0; i < ARRAY_SIZE(math_impl_opts); i++) {
587 if (strcmp(req_name, math_impl_opts[i].name) == 0) {
588 impl = math_impl_opts[i].sel;
589 err = 0;
590 break;
591 }
592 }
593
594 /* check all supported impl if init() was already called */
595 if (err != 0 && raidz_math_initialized) {
596 /* check all supported implementations */
597 for (i = 0; i < raidz_supp_impl_cnt; i++) {
598 if (strcmp(req_name, raidz_supp_impl[i]->name) == 0) {
599 impl = i;
600 err = 0;
601 break;
602 }
603 }
604 }
605
606 if (err == 0) {
607 if (raidz_math_initialized)
608 atomic_swap_32(&zfs_vdev_raidz_impl, impl);
609 else
610 atomic_swap_32(&user_sel_impl, impl);
611 }
612
613 return (err);
614 }
615
616 #if defined(_KERNEL) && defined(HAVE_SPL)
617 #include <linux/mod_compat.h>
618
619 static int
620 zfs_vdev_raidz_impl_set(const char *val, zfs_kernel_param_t *kp)
621 {
622 return (vdev_raidz_impl_set(val));
623 }
624
625 static int
626 zfs_vdev_raidz_impl_get(char *buffer, zfs_kernel_param_t *kp)
627 {
628 int i, cnt = 0;
629 char *fmt;
630 const uint32_t impl = RAIDZ_IMPL_READ(zfs_vdev_raidz_impl);
631
632 ASSERT(raidz_math_initialized);
633
634 /* list mandatory options */
635 for (i = 0; i < ARRAY_SIZE(math_impl_opts) - 2; i++) {
636 fmt = (impl == math_impl_opts[i].sel) ? "[%s] " : "%s ";
637 cnt += sprintf(buffer + cnt, fmt, math_impl_opts[i].name);
638 }
639
640 /* list all supported implementations */
641 for (i = 0; i < raidz_supp_impl_cnt; i++) {
642 fmt = (i == impl) ? "[%s] " : "%s ";
643 cnt += sprintf(buffer + cnt, fmt, raidz_supp_impl[i]->name);
644 }
645
646 return (cnt);
647 }
648
649 module_param_call(zfs_vdev_raidz_impl, zfs_vdev_raidz_impl_set,
650 zfs_vdev_raidz_impl_get, NULL, 0644);
651 MODULE_PARM_DESC(zfs_vdev_raidz_impl, "Select raidz implementation.");
652 #endif