]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev_removal.c
Clean up CSTYLEDs
[mirror_zfs.git] / module / zfs / vdev_removal.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
26 */
27
28 #include <sys/zfs_context.h>
29 #include <sys/spa_impl.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/zap.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/metaslab.h>
35 #include <sys/metaslab_impl.h>
36 #include <sys/uberblock_impl.h>
37 #include <sys/txg.h>
38 #include <sys/avl.h>
39 #include <sys/bpobj.h>
40 #include <sys/dsl_pool.h>
41 #include <sys/dsl_synctask.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/arc.h>
44 #include <sys/zfeature.h>
45 #include <sys/vdev_indirect_births.h>
46 #include <sys/vdev_indirect_mapping.h>
47 #include <sys/abd.h>
48 #include <sys/vdev_initialize.h>
49 #include <sys/vdev_trim.h>
50 #include <sys/trace_zfs.h>
51
52 /*
53 * This file contains the necessary logic to remove vdevs from a
54 * storage pool. Currently, the only devices that can be removed
55 * are log, cache, and spare devices; and top level vdevs from a pool
56 * w/o raidz or mirrors. (Note that members of a mirror can be removed
57 * by the detach operation.)
58 *
59 * Log vdevs are removed by evacuating them and then turning the vdev
60 * into a hole vdev while holding spa config locks.
61 *
62 * Top level vdevs are removed and converted into an indirect vdev via
63 * a multi-step process:
64 *
65 * - Disable allocations from this device (spa_vdev_remove_top).
66 *
67 * - From a new thread (spa_vdev_remove_thread), copy data from
68 * the removing vdev to a different vdev. The copy happens in open
69 * context (spa_vdev_copy_impl) and issues a sync task
70 * (vdev_mapping_sync) so the sync thread can update the partial
71 * indirect mappings in core and on disk.
72 *
73 * - If a free happens during a removal, it is freed from the
74 * removing vdev, and if it has already been copied, from the new
75 * location as well (free_from_removing_vdev).
76 *
77 * - After the removal is completed, the copy thread converts the vdev
78 * into an indirect vdev (vdev_remove_complete) before instructing
79 * the sync thread to destroy the space maps and finish the removal
80 * (spa_finish_removal).
81 */
82
83 typedef struct vdev_copy_arg {
84 metaslab_t *vca_msp;
85 uint64_t vca_outstanding_bytes;
86 uint64_t vca_read_error_bytes;
87 uint64_t vca_write_error_bytes;
88 kcondvar_t vca_cv;
89 kmutex_t vca_lock;
90 } vdev_copy_arg_t;
91
92 /*
93 * The maximum amount of memory we can use for outstanding i/o while
94 * doing a device removal. This determines how much i/o we can have
95 * in flight concurrently.
96 */
97 static const int zfs_remove_max_copy_bytes = 64 * 1024 * 1024;
98
99 /*
100 * The largest contiguous segment that we will attempt to allocate when
101 * removing a device. This can be no larger than SPA_MAXBLOCKSIZE. If
102 * there is a performance problem with attempting to allocate large blocks,
103 * consider decreasing this.
104 *
105 * See also the accessor function spa_remove_max_segment().
106 */
107 int zfs_remove_max_segment = SPA_MAXBLOCKSIZE;
108
109 /*
110 * Ignore hard IO errors during device removal. When set if a device
111 * encounters hard IO error during the removal process the removal will
112 * not be cancelled. This can result in a normally recoverable block
113 * becoming permanently damaged and is not recommended.
114 */
115 static int zfs_removal_ignore_errors = 0;
116
117 /*
118 * Allow a remap segment to span free chunks of at most this size. The main
119 * impact of a larger span is that we will read and write larger, more
120 * contiguous chunks, with more "unnecessary" data -- trading off bandwidth
121 * for iops. The value here was chosen to align with
122 * zfs_vdev_read_gap_limit, which is a similar concept when doing regular
123 * reads (but there's no reason it has to be the same).
124 *
125 * Additionally, a higher span will have the following relatively minor
126 * effects:
127 * - the mapping will be smaller, since one entry can cover more allocated
128 * segments
129 * - more of the fragmentation in the removing device will be preserved
130 * - we'll do larger allocations, which may fail and fall back on smaller
131 * allocations
132 */
133 int vdev_removal_max_span = 32 * 1024;
134
135 /*
136 * This is used by the test suite so that it can ensure that certain
137 * actions happen while in the middle of a removal.
138 */
139 int zfs_removal_suspend_progress = 0;
140
141 #define VDEV_REMOVAL_ZAP_OBJS "lzap"
142
143 static void spa_vdev_remove_thread(void *arg);
144 static int spa_vdev_remove_cancel_impl(spa_t *spa);
145
146 static void
147 spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx)
148 {
149 VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset,
150 DMU_POOL_DIRECTORY_OBJECT,
151 DMU_POOL_REMOVING, sizeof (uint64_t),
152 sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
153 &spa->spa_removing_phys, tx));
154 }
155
156 static nvlist_t *
157 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
158 {
159 for (int i = 0; i < count; i++) {
160 uint64_t guid =
161 fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID);
162
163 if (guid == target_guid)
164 return (nvpp[i]);
165 }
166
167 return (NULL);
168 }
169
170 static void
171 vdev_activate(vdev_t *vd)
172 {
173 metaslab_group_t *mg = vd->vdev_mg;
174 spa_t *spa = vd->vdev_spa;
175 uint64_t vdev_space = spa_deflate(spa) ?
176 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
177
178 ASSERT(!vd->vdev_islog);
179 ASSERT(vd->vdev_noalloc);
180
181 metaslab_group_activate(mg);
182 metaslab_group_activate(vd->vdev_log_mg);
183
184 ASSERT3U(spa->spa_nonallocating_dspace, >=, vdev_space);
185
186 spa->spa_nonallocating_dspace -= vdev_space;
187
188 vd->vdev_noalloc = B_FALSE;
189 }
190
191 static int
192 vdev_passivate(vdev_t *vd, uint64_t *txg)
193 {
194 spa_t *spa = vd->vdev_spa;
195 int error;
196
197 ASSERT(!vd->vdev_noalloc);
198
199 vdev_t *rvd = spa->spa_root_vdev;
200 metaslab_group_t *mg = vd->vdev_mg;
201 metaslab_class_t *normal = spa_normal_class(spa);
202 if (mg->mg_class == normal) {
203 /*
204 * We must check that this is not the only allocating device in
205 * the pool before passivating, otherwise we will not be able
206 * to make progress because we can't allocate from any vdevs.
207 */
208 boolean_t last = B_TRUE;
209 for (uint64_t id = 0; id < rvd->vdev_children; id++) {
210 vdev_t *cvd = rvd->vdev_child[id];
211
212 if (cvd == vd ||
213 cvd->vdev_ops == &vdev_indirect_ops)
214 continue;
215
216 metaslab_class_t *mc = cvd->vdev_mg->mg_class;
217 if (mc != normal)
218 continue;
219
220 if (!cvd->vdev_noalloc) {
221 last = B_FALSE;
222 break;
223 }
224 }
225 if (last)
226 return (SET_ERROR(EINVAL));
227 }
228
229 metaslab_group_passivate(mg);
230 ASSERT(!vd->vdev_islog);
231 metaslab_group_passivate(vd->vdev_log_mg);
232
233 /*
234 * Wait for the youngest allocations and frees to sync,
235 * and then wait for the deferral of those frees to finish.
236 */
237 spa_vdev_config_exit(spa, NULL,
238 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
239
240 /*
241 * We must ensure that no "stubby" log blocks are allocated
242 * on the device to be removed. These blocks could be
243 * written at any time, including while we are in the middle
244 * of copying them.
245 */
246 error = spa_reset_logs(spa);
247
248 *txg = spa_vdev_config_enter(spa);
249
250 if (error != 0) {
251 metaslab_group_activate(mg);
252 ASSERT(!vd->vdev_islog);
253 if (vd->vdev_log_mg != NULL)
254 metaslab_group_activate(vd->vdev_log_mg);
255 return (error);
256 }
257
258 spa->spa_nonallocating_dspace += spa_deflate(spa) ?
259 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
260 vd->vdev_noalloc = B_TRUE;
261
262 return (0);
263 }
264
265 /*
266 * Turn off allocations for a top-level device from the pool.
267 *
268 * Turning off allocations for a top-level device can take a significant
269 * amount of time. As a result we use the spa_vdev_config_[enter/exit]
270 * functions which allow us to grab and release the spa_config_lock while
271 * still holding the namespace lock. During each step the configuration
272 * is synced out.
273 */
274 int
275 spa_vdev_noalloc(spa_t *spa, uint64_t guid)
276 {
277 vdev_t *vd;
278 uint64_t txg;
279 int error = 0;
280
281 ASSERT(!MUTEX_HELD(&spa_namespace_lock));
282 ASSERT(spa_writeable(spa));
283
284 txg = spa_vdev_enter(spa);
285
286 ASSERT(MUTEX_HELD(&spa_namespace_lock));
287
288 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
289
290 if (vd == NULL)
291 error = SET_ERROR(ENOENT);
292 else if (vd->vdev_mg == NULL)
293 error = SET_ERROR(ZFS_ERR_VDEV_NOTSUP);
294 else if (!vd->vdev_noalloc)
295 error = vdev_passivate(vd, &txg);
296
297 if (error == 0) {
298 vdev_dirty_leaves(vd, VDD_DTL, txg);
299 vdev_config_dirty(vd);
300 }
301
302 error = spa_vdev_exit(spa, NULL, txg, error);
303
304 return (error);
305 }
306
307 int
308 spa_vdev_alloc(spa_t *spa, uint64_t guid)
309 {
310 vdev_t *vd;
311 uint64_t txg;
312 int error = 0;
313
314 ASSERT(!MUTEX_HELD(&spa_namespace_lock));
315 ASSERT(spa_writeable(spa));
316
317 txg = spa_vdev_enter(spa);
318
319 ASSERT(MUTEX_HELD(&spa_namespace_lock));
320
321 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
322
323 if (vd == NULL)
324 error = SET_ERROR(ENOENT);
325 else if (vd->vdev_mg == NULL)
326 error = SET_ERROR(ZFS_ERR_VDEV_NOTSUP);
327 else if (!vd->vdev_removing)
328 vdev_activate(vd);
329
330 if (error == 0) {
331 vdev_dirty_leaves(vd, VDD_DTL, txg);
332 vdev_config_dirty(vd);
333 }
334
335 (void) spa_vdev_exit(spa, NULL, txg, error);
336
337 return (error);
338 }
339
340 static void
341 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
342 nvlist_t *dev_to_remove)
343 {
344 nvlist_t **newdev = NULL;
345
346 if (count > 1)
347 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
348
349 for (int i = 0, j = 0; i < count; i++) {
350 if (dev[i] == dev_to_remove)
351 continue;
352 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
353 }
354
355 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
356 fnvlist_add_nvlist_array(config, name, (const nvlist_t * const *)newdev,
357 count - 1);
358
359 for (int i = 0; i < count - 1; i++)
360 nvlist_free(newdev[i]);
361
362 if (count > 1)
363 kmem_free(newdev, (count - 1) * sizeof (void *));
364 }
365
366 static spa_vdev_removal_t *
367 spa_vdev_removal_create(vdev_t *vd)
368 {
369 spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP);
370 mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL);
371 cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL);
372 svr->svr_allocd_segs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
373 svr->svr_vdev_id = vd->vdev_id;
374
375 for (int i = 0; i < TXG_SIZE; i++) {
376 svr->svr_frees[i] = range_tree_create(NULL, RANGE_SEG64, NULL,
377 0, 0);
378 list_create(&svr->svr_new_segments[i],
379 sizeof (vdev_indirect_mapping_entry_t),
380 offsetof(vdev_indirect_mapping_entry_t, vime_node));
381 }
382
383 return (svr);
384 }
385
386 void
387 spa_vdev_removal_destroy(spa_vdev_removal_t *svr)
388 {
389 for (int i = 0; i < TXG_SIZE; i++) {
390 ASSERT0(svr->svr_bytes_done[i]);
391 ASSERT0(svr->svr_max_offset_to_sync[i]);
392 range_tree_destroy(svr->svr_frees[i]);
393 list_destroy(&svr->svr_new_segments[i]);
394 }
395
396 range_tree_destroy(svr->svr_allocd_segs);
397 mutex_destroy(&svr->svr_lock);
398 cv_destroy(&svr->svr_cv);
399 kmem_free(svr, sizeof (*svr));
400 }
401
402 /*
403 * This is called as a synctask in the txg in which we will mark this vdev
404 * as removing (in the config stored in the MOS).
405 *
406 * It begins the evacuation of a toplevel vdev by:
407 * - initializing the spa_removing_phys which tracks this removal
408 * - computing the amount of space to remove for accounting purposes
409 * - dirtying all dbufs in the spa_config_object
410 * - creating the spa_vdev_removal
411 * - starting the spa_vdev_remove_thread
412 */
413 static void
414 vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx)
415 {
416 int vdev_id = (uintptr_t)arg;
417 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
418 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
419 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
420 objset_t *mos = spa->spa_dsl_pool->dp_meta_objset;
421 spa_vdev_removal_t *svr = NULL;
422 uint64_t txg __maybe_unused = dmu_tx_get_txg(tx);
423
424 ASSERT0(vdev_get_nparity(vd));
425 svr = spa_vdev_removal_create(vd);
426
427 ASSERT(vd->vdev_removing);
428 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
429
430 spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
431 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
432 /*
433 * By activating the OBSOLETE_COUNTS feature, we prevent
434 * the pool from being downgraded and ensure that the
435 * refcounts are precise.
436 */
437 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
438 uint64_t one = 1;
439 VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap,
440 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1,
441 &one, tx));
442 boolean_t are_precise __maybe_unused;
443 ASSERT0(vdev_obsolete_counts_are_precise(vd, &are_precise));
444 ASSERT3B(are_precise, ==, B_TRUE);
445 }
446
447 vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx);
448 vd->vdev_indirect_mapping =
449 vdev_indirect_mapping_open(mos, vic->vic_mapping_object);
450 vic->vic_births_object = vdev_indirect_births_alloc(mos, tx);
451 vd->vdev_indirect_births =
452 vdev_indirect_births_open(mos, vic->vic_births_object);
453 spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id;
454 spa->spa_removing_phys.sr_start_time = gethrestime_sec();
455 spa->spa_removing_phys.sr_end_time = 0;
456 spa->spa_removing_phys.sr_state = DSS_SCANNING;
457 spa->spa_removing_phys.sr_to_copy = 0;
458 spa->spa_removing_phys.sr_copied = 0;
459
460 /*
461 * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because
462 * there may be space in the defer tree, which is free, but still
463 * counted in vs_alloc.
464 */
465 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
466 metaslab_t *ms = vd->vdev_ms[i];
467 if (ms->ms_sm == NULL)
468 continue;
469
470 spa->spa_removing_phys.sr_to_copy +=
471 metaslab_allocated_space(ms);
472
473 /*
474 * Space which we are freeing this txg does not need to
475 * be copied.
476 */
477 spa->spa_removing_phys.sr_to_copy -=
478 range_tree_space(ms->ms_freeing);
479
480 ASSERT0(range_tree_space(ms->ms_freed));
481 for (int t = 0; t < TXG_SIZE; t++)
482 ASSERT0(range_tree_space(ms->ms_allocating[t]));
483 }
484
485 /*
486 * Sync tasks are called before metaslab_sync(), so there should
487 * be no already-synced metaslabs in the TXG_CLEAN list.
488 */
489 ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL);
490
491 spa_sync_removing_state(spa, tx);
492
493 /*
494 * All blocks that we need to read the most recent mapping must be
495 * stored on concrete vdevs. Therefore, we must dirty anything that
496 * is read before spa_remove_init(). Specifically, the
497 * spa_config_object. (Note that although we already modified the
498 * spa_config_object in spa_sync_removing_state, that may not have
499 * modified all blocks of the object.)
500 */
501 dmu_object_info_t doi;
502 VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi));
503 for (uint64_t offset = 0; offset < doi.doi_max_offset; ) {
504 dmu_buf_t *dbuf;
505 VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT,
506 offset, FTAG, &dbuf, 0));
507 dmu_buf_will_dirty(dbuf, tx);
508 offset += dbuf->db_size;
509 dmu_buf_rele(dbuf, FTAG);
510 }
511
512 /*
513 * Now that we've allocated the im_object, dirty the vdev to ensure
514 * that the object gets written to the config on disk.
515 */
516 vdev_config_dirty(vd);
517
518 zfs_dbgmsg("starting removal thread for vdev %llu (%px) in txg %llu "
519 "im_obj=%llu", (u_longlong_t)vd->vdev_id, vd,
520 (u_longlong_t)dmu_tx_get_txg(tx),
521 (u_longlong_t)vic->vic_mapping_object);
522
523 spa_history_log_internal(spa, "vdev remove started", tx,
524 "%s vdev %llu %s", spa_name(spa), (u_longlong_t)vd->vdev_id,
525 (vd->vdev_path != NULL) ? vd->vdev_path : "-");
526 /*
527 * Setting spa_vdev_removal causes subsequent frees to call
528 * free_from_removing_vdev(). Note that we don't need any locking
529 * because we are the sync thread, and metaslab_free_impl() is only
530 * called from syncing context (potentially from a zio taskq thread,
531 * but in any case only when there are outstanding free i/os, which
532 * there are not).
533 */
534 ASSERT3P(spa->spa_vdev_removal, ==, NULL);
535 spa->spa_vdev_removal = svr;
536 svr->svr_thread = thread_create(NULL, 0,
537 spa_vdev_remove_thread, spa, 0, &p0, TS_RUN, minclsyspri);
538 }
539
540 /*
541 * When we are opening a pool, we must read the mapping for each
542 * indirect vdev in order from most recently removed to least
543 * recently removed. We do this because the blocks for the mapping
544 * of older indirect vdevs may be stored on more recently removed vdevs.
545 * In order to read each indirect mapping object, we must have
546 * initialized all more recently removed vdevs.
547 */
548 int
549 spa_remove_init(spa_t *spa)
550 {
551 int error;
552
553 error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset,
554 DMU_POOL_DIRECTORY_OBJECT,
555 DMU_POOL_REMOVING, sizeof (uint64_t),
556 sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
557 &spa->spa_removing_phys);
558
559 if (error == ENOENT) {
560 spa->spa_removing_phys.sr_state = DSS_NONE;
561 spa->spa_removing_phys.sr_removing_vdev = -1;
562 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
563 spa->spa_indirect_vdevs_loaded = B_TRUE;
564 return (0);
565 } else if (error != 0) {
566 return (error);
567 }
568
569 if (spa->spa_removing_phys.sr_state == DSS_SCANNING) {
570 /*
571 * We are currently removing a vdev. Create and
572 * initialize a spa_vdev_removal_t from the bonus
573 * buffer of the removing vdevs vdev_im_object, and
574 * initialize its partial mapping.
575 */
576 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
577 vdev_t *vd = vdev_lookup_top(spa,
578 spa->spa_removing_phys.sr_removing_vdev);
579
580 if (vd == NULL) {
581 spa_config_exit(spa, SCL_STATE, FTAG);
582 return (EINVAL);
583 }
584
585 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
586
587 ASSERT(vdev_is_concrete(vd));
588 spa_vdev_removal_t *svr = spa_vdev_removal_create(vd);
589 ASSERT3U(svr->svr_vdev_id, ==, vd->vdev_id);
590 ASSERT(vd->vdev_removing);
591
592 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
593 spa->spa_meta_objset, vic->vic_mapping_object);
594 vd->vdev_indirect_births = vdev_indirect_births_open(
595 spa->spa_meta_objset, vic->vic_births_object);
596 spa_config_exit(spa, SCL_STATE, FTAG);
597
598 spa->spa_vdev_removal = svr;
599 }
600
601 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
602 uint64_t indirect_vdev_id =
603 spa->spa_removing_phys.sr_prev_indirect_vdev;
604 while (indirect_vdev_id != UINT64_MAX) {
605 vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id);
606 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
607
608 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
609 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
610 spa->spa_meta_objset, vic->vic_mapping_object);
611 vd->vdev_indirect_births = vdev_indirect_births_open(
612 spa->spa_meta_objset, vic->vic_births_object);
613
614 indirect_vdev_id = vic->vic_prev_indirect_vdev;
615 }
616 spa_config_exit(spa, SCL_STATE, FTAG);
617
618 /*
619 * Now that we've loaded all the indirect mappings, we can allow
620 * reads from other blocks (e.g. via predictive prefetch).
621 */
622 spa->spa_indirect_vdevs_loaded = B_TRUE;
623 return (0);
624 }
625
626 void
627 spa_restart_removal(spa_t *spa)
628 {
629 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
630
631 if (svr == NULL)
632 return;
633
634 /*
635 * In general when this function is called there is no
636 * removal thread running. The only scenario where this
637 * is not true is during spa_import() where this function
638 * is called twice [once from spa_import_impl() and
639 * spa_async_resume()]. Thus, in the scenario where we
640 * import a pool that has an ongoing removal we don't
641 * want to spawn a second thread.
642 */
643 if (svr->svr_thread != NULL)
644 return;
645
646 if (!spa_writeable(spa))
647 return;
648
649 zfs_dbgmsg("restarting removal of %llu",
650 (u_longlong_t)svr->svr_vdev_id);
651 svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, spa,
652 0, &p0, TS_RUN, minclsyspri);
653 }
654
655 /*
656 * Process freeing from a device which is in the middle of being removed.
657 * We must handle this carefully so that we attempt to copy freed data,
658 * and we correctly free already-copied data.
659 */
660 void
661 free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size)
662 {
663 spa_t *spa = vd->vdev_spa;
664 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
665 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
666 uint64_t txg = spa_syncing_txg(spa);
667 uint64_t max_offset_yet = 0;
668
669 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
670 ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==,
671 vdev_indirect_mapping_object(vim));
672 ASSERT3U(vd->vdev_id, ==, svr->svr_vdev_id);
673
674 mutex_enter(&svr->svr_lock);
675
676 /*
677 * Remove the segment from the removing vdev's spacemap. This
678 * ensures that we will not attempt to copy this space (if the
679 * removal thread has not yet visited it), and also ensures
680 * that we know what is actually allocated on the new vdevs
681 * (needed if we cancel the removal).
682 *
683 * Note: we must do the metaslab_free_concrete() with the svr_lock
684 * held, so that the remove_thread can not load this metaslab and then
685 * visit this offset between the time that we metaslab_free_concrete()
686 * and when we check to see if it has been visited.
687 *
688 * Note: The checkpoint flag is set to false as having/taking
689 * a checkpoint and removing a device can't happen at the same
690 * time.
691 */
692 ASSERT(!spa_has_checkpoint(spa));
693 metaslab_free_concrete(vd, offset, size, B_FALSE);
694
695 uint64_t synced_size = 0;
696 uint64_t synced_offset = 0;
697 uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim);
698 if (offset < max_offset_synced) {
699 /*
700 * The mapping for this offset is already on disk.
701 * Free from the new location.
702 *
703 * Note that we use svr_max_synced_offset because it is
704 * updated atomically with respect to the in-core mapping.
705 * By contrast, vim_max_offset is not.
706 *
707 * This block may be split between a synced entry and an
708 * in-flight or unvisited entry. Only process the synced
709 * portion of it here.
710 */
711 synced_size = MIN(size, max_offset_synced - offset);
712 synced_offset = offset;
713
714 ASSERT3U(max_offset_yet, <=, max_offset_synced);
715 max_offset_yet = max_offset_synced;
716
717 DTRACE_PROBE3(remove__free__synced,
718 spa_t *, spa,
719 uint64_t, offset,
720 uint64_t, synced_size);
721
722 size -= synced_size;
723 offset += synced_size;
724 }
725
726 /*
727 * Look at all in-flight txgs starting from the currently syncing one
728 * and see if a section of this free is being copied. By starting from
729 * this txg and iterating forward, we might find that this region
730 * was copied in two different txgs and handle it appropriately.
731 */
732 for (int i = 0; i < TXG_CONCURRENT_STATES; i++) {
733 int txgoff = (txg + i) & TXG_MASK;
734 if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) {
735 /*
736 * The mapping for this offset is in flight, and
737 * will be synced in txg+i.
738 */
739 uint64_t inflight_size = MIN(size,
740 svr->svr_max_offset_to_sync[txgoff] - offset);
741
742 DTRACE_PROBE4(remove__free__inflight,
743 spa_t *, spa,
744 uint64_t, offset,
745 uint64_t, inflight_size,
746 uint64_t, txg + i);
747
748 /*
749 * We copy data in order of increasing offset.
750 * Therefore the max_offset_to_sync[] must increase
751 * (or be zero, indicating that nothing is being
752 * copied in that txg).
753 */
754 if (svr->svr_max_offset_to_sync[txgoff] != 0) {
755 ASSERT3U(svr->svr_max_offset_to_sync[txgoff],
756 >=, max_offset_yet);
757 max_offset_yet =
758 svr->svr_max_offset_to_sync[txgoff];
759 }
760
761 /*
762 * We've already committed to copying this segment:
763 * we have allocated space elsewhere in the pool for
764 * it and have an IO outstanding to copy the data. We
765 * cannot free the space before the copy has
766 * completed, or else the copy IO might overwrite any
767 * new data. To free that space, we record the
768 * segment in the appropriate svr_frees tree and free
769 * the mapped space later, in the txg where we have
770 * completed the copy and synced the mapping (see
771 * vdev_mapping_sync).
772 */
773 range_tree_add(svr->svr_frees[txgoff],
774 offset, inflight_size);
775 size -= inflight_size;
776 offset += inflight_size;
777
778 /*
779 * This space is already accounted for as being
780 * done, because it is being copied in txg+i.
781 * However, if i!=0, then it is being copied in
782 * a future txg. If we crash after this txg
783 * syncs but before txg+i syncs, then the space
784 * will be free. Therefore we must account
785 * for the space being done in *this* txg
786 * (when it is freed) rather than the future txg
787 * (when it will be copied).
788 */
789 ASSERT3U(svr->svr_bytes_done[txgoff], >=,
790 inflight_size);
791 svr->svr_bytes_done[txgoff] -= inflight_size;
792 svr->svr_bytes_done[txg & TXG_MASK] += inflight_size;
793 }
794 }
795 ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]);
796
797 if (size > 0) {
798 /*
799 * The copy thread has not yet visited this offset. Ensure
800 * that it doesn't.
801 */
802
803 DTRACE_PROBE3(remove__free__unvisited,
804 spa_t *, spa,
805 uint64_t, offset,
806 uint64_t, size);
807
808 if (svr->svr_allocd_segs != NULL)
809 range_tree_clear(svr->svr_allocd_segs, offset, size);
810
811 /*
812 * Since we now do not need to copy this data, for
813 * accounting purposes we have done our job and can count
814 * it as completed.
815 */
816 svr->svr_bytes_done[txg & TXG_MASK] += size;
817 }
818 mutex_exit(&svr->svr_lock);
819
820 /*
821 * Now that we have dropped svr_lock, process the synced portion
822 * of this free.
823 */
824 if (synced_size > 0) {
825 vdev_indirect_mark_obsolete(vd, synced_offset, synced_size);
826
827 /*
828 * Note: this can only be called from syncing context,
829 * and the vdev_indirect_mapping is only changed from the
830 * sync thread, so we don't need svr_lock while doing
831 * metaslab_free_impl_cb.
832 */
833 boolean_t checkpoint = B_FALSE;
834 vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size,
835 metaslab_free_impl_cb, &checkpoint);
836 }
837 }
838
839 /*
840 * Stop an active removal and update the spa_removing phys.
841 */
842 static void
843 spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx)
844 {
845 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
846 ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa));
847
848 /* Ensure the removal thread has completed before we free the svr. */
849 spa_vdev_remove_suspend(spa);
850
851 ASSERT(state == DSS_FINISHED || state == DSS_CANCELED);
852
853 if (state == DSS_FINISHED) {
854 spa_removing_phys_t *srp = &spa->spa_removing_phys;
855 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
856 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
857
858 if (srp->sr_prev_indirect_vdev != -1) {
859 vdev_t *pvd;
860 pvd = vdev_lookup_top(spa,
861 srp->sr_prev_indirect_vdev);
862 ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops);
863 }
864
865 vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev;
866 srp->sr_prev_indirect_vdev = vd->vdev_id;
867 }
868 spa->spa_removing_phys.sr_state = state;
869 spa->spa_removing_phys.sr_end_time = gethrestime_sec();
870
871 spa->spa_vdev_removal = NULL;
872 spa_vdev_removal_destroy(svr);
873
874 spa_sync_removing_state(spa, tx);
875 spa_notify_waiters(spa);
876
877 vdev_config_dirty(spa->spa_root_vdev);
878 }
879
880 static void
881 free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size)
882 {
883 vdev_t *vd = arg;
884 vdev_indirect_mark_obsolete(vd, offset, size);
885 boolean_t checkpoint = B_FALSE;
886 vdev_indirect_ops.vdev_op_remap(vd, offset, size,
887 metaslab_free_impl_cb, &checkpoint);
888 }
889
890 /*
891 * On behalf of the removal thread, syncs an incremental bit more of
892 * the indirect mapping to disk and updates the in-memory mapping.
893 * Called as a sync task in every txg that the removal thread makes progress.
894 */
895 static void
896 vdev_mapping_sync(void *arg, dmu_tx_t *tx)
897 {
898 spa_vdev_removal_t *svr = arg;
899 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
900 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
901 vdev_indirect_config_t *vic __maybe_unused = &vd->vdev_indirect_config;
902 uint64_t txg = dmu_tx_get_txg(tx);
903 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
904
905 ASSERT(vic->vic_mapping_object != 0);
906 ASSERT3U(txg, ==, spa_syncing_txg(spa));
907
908 vdev_indirect_mapping_add_entries(vim,
909 &svr->svr_new_segments[txg & TXG_MASK], tx);
910 vdev_indirect_births_add_entry(vd->vdev_indirect_births,
911 vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx);
912
913 /*
914 * Free the copied data for anything that was freed while the
915 * mapping entries were in flight.
916 */
917 mutex_enter(&svr->svr_lock);
918 range_tree_vacate(svr->svr_frees[txg & TXG_MASK],
919 free_mapped_segment_cb, vd);
920 ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=,
921 vdev_indirect_mapping_max_offset(vim));
922 svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0;
923 mutex_exit(&svr->svr_lock);
924
925 spa_sync_removing_state(spa, tx);
926 }
927
928 typedef struct vdev_copy_segment_arg {
929 spa_t *vcsa_spa;
930 dva_t *vcsa_dest_dva;
931 uint64_t vcsa_txg;
932 range_tree_t *vcsa_obsolete_segs;
933 } vdev_copy_segment_arg_t;
934
935 static void
936 unalloc_seg(void *arg, uint64_t start, uint64_t size)
937 {
938 vdev_copy_segment_arg_t *vcsa = arg;
939 spa_t *spa = vcsa->vcsa_spa;
940 blkptr_t bp = { { { {0} } } };
941
942 BP_SET_BIRTH(&bp, TXG_INITIAL, TXG_INITIAL);
943 BP_SET_LSIZE(&bp, size);
944 BP_SET_PSIZE(&bp, size);
945 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
946 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_OFF);
947 BP_SET_TYPE(&bp, DMU_OT_NONE);
948 BP_SET_LEVEL(&bp, 0);
949 BP_SET_DEDUP(&bp, 0);
950 BP_SET_BYTEORDER(&bp, ZFS_HOST_BYTEORDER);
951
952 DVA_SET_VDEV(&bp.blk_dva[0], DVA_GET_VDEV(vcsa->vcsa_dest_dva));
953 DVA_SET_OFFSET(&bp.blk_dva[0],
954 DVA_GET_OFFSET(vcsa->vcsa_dest_dva) + start);
955 DVA_SET_ASIZE(&bp.blk_dva[0], size);
956
957 zio_free(spa, vcsa->vcsa_txg, &bp);
958 }
959
960 /*
961 * All reads and writes associated with a call to spa_vdev_copy_segment()
962 * are done.
963 */
964 static void
965 spa_vdev_copy_segment_done(zio_t *zio)
966 {
967 vdev_copy_segment_arg_t *vcsa = zio->io_private;
968
969 range_tree_vacate(vcsa->vcsa_obsolete_segs,
970 unalloc_seg, vcsa);
971 range_tree_destroy(vcsa->vcsa_obsolete_segs);
972 kmem_free(vcsa, sizeof (*vcsa));
973
974 spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa);
975 }
976
977 /*
978 * The write of the new location is done.
979 */
980 static void
981 spa_vdev_copy_segment_write_done(zio_t *zio)
982 {
983 vdev_copy_arg_t *vca = zio->io_private;
984
985 abd_free(zio->io_abd);
986
987 mutex_enter(&vca->vca_lock);
988 vca->vca_outstanding_bytes -= zio->io_size;
989
990 if (zio->io_error != 0)
991 vca->vca_write_error_bytes += zio->io_size;
992
993 cv_signal(&vca->vca_cv);
994 mutex_exit(&vca->vca_lock);
995 }
996
997 /*
998 * The read of the old location is done. The parent zio is the write to
999 * the new location. Allow it to start.
1000 */
1001 static void
1002 spa_vdev_copy_segment_read_done(zio_t *zio)
1003 {
1004 vdev_copy_arg_t *vca = zio->io_private;
1005
1006 if (zio->io_error != 0) {
1007 mutex_enter(&vca->vca_lock);
1008 vca->vca_read_error_bytes += zio->io_size;
1009 mutex_exit(&vca->vca_lock);
1010 }
1011
1012 zio_nowait(zio_unique_parent(zio));
1013 }
1014
1015 /*
1016 * If the old and new vdevs are mirrors, we will read both sides of the old
1017 * mirror, and write each copy to the corresponding side of the new mirror.
1018 * If the old and new vdevs have a different number of children, we will do
1019 * this as best as possible. Since we aren't verifying checksums, this
1020 * ensures that as long as there's a good copy of the data, we'll have a
1021 * good copy after the removal, even if there's silent damage to one side
1022 * of the mirror. If we're removing a mirror that has some silent damage,
1023 * we'll have exactly the same damage in the new location (assuming that
1024 * the new location is also a mirror).
1025 *
1026 * We accomplish this by creating a tree of zio_t's, with as many writes as
1027 * there are "children" of the new vdev (a non-redundant vdev counts as one
1028 * child, a 2-way mirror has 2 children, etc). Each write has an associated
1029 * read from a child of the old vdev. Typically there will be the same
1030 * number of children of the old and new vdevs. However, if there are more
1031 * children of the new vdev, some child(ren) of the old vdev will be issued
1032 * multiple reads. If there are more children of the old vdev, some copies
1033 * will be dropped.
1034 *
1035 * For example, the tree of zio_t's for a 2-way mirror is:
1036 *
1037 * null
1038 * / \
1039 * write(new vdev, child 0) write(new vdev, child 1)
1040 * | |
1041 * read(old vdev, child 0) read(old vdev, child 1)
1042 *
1043 * Child zio's complete before their parents complete. However, zio's
1044 * created with zio_vdev_child_io() may be issued before their children
1045 * complete. In this case we need to make sure that the children (reads)
1046 * complete before the parents (writes) are *issued*. We do this by not
1047 * calling zio_nowait() on each write until its corresponding read has
1048 * completed.
1049 *
1050 * The spa_config_lock must be held while zio's created by
1051 * zio_vdev_child_io() are in progress, to ensure that the vdev tree does
1052 * not change (e.g. due to a concurrent "zpool attach/detach"). The "null"
1053 * zio is needed to release the spa_config_lock after all the reads and
1054 * writes complete. (Note that we can't grab the config lock for each read,
1055 * because it is not reentrant - we could deadlock with a thread waiting
1056 * for a write lock.)
1057 */
1058 static void
1059 spa_vdev_copy_one_child(vdev_copy_arg_t *vca, zio_t *nzio,
1060 vdev_t *source_vd, uint64_t source_offset,
1061 vdev_t *dest_child_vd, uint64_t dest_offset, int dest_id, uint64_t size)
1062 {
1063 ASSERT3U(spa_config_held(nzio->io_spa, SCL_ALL, RW_READER), !=, 0);
1064
1065 /*
1066 * If the destination child in unwritable then there is no point
1067 * in issuing the source reads which cannot be written.
1068 */
1069 if (!vdev_writeable(dest_child_vd))
1070 return;
1071
1072 mutex_enter(&vca->vca_lock);
1073 vca->vca_outstanding_bytes += size;
1074 mutex_exit(&vca->vca_lock);
1075
1076 abd_t *abd = abd_alloc_for_io(size, B_FALSE);
1077
1078 vdev_t *source_child_vd = NULL;
1079 if (source_vd->vdev_ops == &vdev_mirror_ops && dest_id != -1) {
1080 /*
1081 * Source and dest are both mirrors. Copy from the same
1082 * child id as we are copying to (wrapping around if there
1083 * are more dest children than source children). If the
1084 * preferred source child is unreadable select another.
1085 */
1086 for (int i = 0; i < source_vd->vdev_children; i++) {
1087 source_child_vd = source_vd->vdev_child[
1088 (dest_id + i) % source_vd->vdev_children];
1089 if (vdev_readable(source_child_vd))
1090 break;
1091 }
1092 } else {
1093 source_child_vd = source_vd;
1094 }
1095
1096 /*
1097 * There should always be at least one readable source child or
1098 * the pool would be in a suspended state. Somehow selecting an
1099 * unreadable child would result in IO errors, the removal process
1100 * being cancelled, and the pool reverting to its pre-removal state.
1101 */
1102 ASSERT3P(source_child_vd, !=, NULL);
1103
1104 zio_t *write_zio = zio_vdev_child_io(nzio, NULL,
1105 dest_child_vd, dest_offset, abd, size,
1106 ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL,
1107 ZIO_FLAG_CANFAIL,
1108 spa_vdev_copy_segment_write_done, vca);
1109
1110 zio_nowait(zio_vdev_child_io(write_zio, NULL,
1111 source_child_vd, source_offset, abd, size,
1112 ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL,
1113 ZIO_FLAG_CANFAIL,
1114 spa_vdev_copy_segment_read_done, vca));
1115 }
1116
1117 /*
1118 * Allocate a new location for this segment, and create the zio_t's to
1119 * read from the old location and write to the new location.
1120 */
1121 static int
1122 spa_vdev_copy_segment(vdev_t *vd, range_tree_t *segs,
1123 uint64_t maxalloc, uint64_t txg,
1124 vdev_copy_arg_t *vca, zio_alloc_list_t *zal)
1125 {
1126 metaslab_group_t *mg = vd->vdev_mg;
1127 spa_t *spa = vd->vdev_spa;
1128 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1129 vdev_indirect_mapping_entry_t *entry;
1130 dva_t dst = {{ 0 }};
1131 uint64_t start = range_tree_min(segs);
1132 ASSERT0(P2PHASE(start, 1 << spa->spa_min_ashift));
1133
1134 ASSERT3U(maxalloc, <=, SPA_MAXBLOCKSIZE);
1135 ASSERT0(P2PHASE(maxalloc, 1 << spa->spa_min_ashift));
1136
1137 uint64_t size = range_tree_span(segs);
1138 if (range_tree_span(segs) > maxalloc) {
1139 /*
1140 * We can't allocate all the segments. Prefer to end
1141 * the allocation at the end of a segment, thus avoiding
1142 * additional split blocks.
1143 */
1144 range_seg_max_t search;
1145 zfs_btree_index_t where;
1146 rs_set_start(&search, segs, start + maxalloc);
1147 rs_set_end(&search, segs, start + maxalloc);
1148 (void) zfs_btree_find(&segs->rt_root, &search, &where);
1149 range_seg_t *rs = zfs_btree_prev(&segs->rt_root, &where,
1150 &where);
1151 if (rs != NULL) {
1152 size = rs_get_end(rs, segs) - start;
1153 } else {
1154 /*
1155 * There are no segments that end before maxalloc.
1156 * I.e. the first segment is larger than maxalloc,
1157 * so we must split it.
1158 */
1159 size = maxalloc;
1160 }
1161 }
1162 ASSERT3U(size, <=, maxalloc);
1163 ASSERT0(P2PHASE(size, 1 << spa->spa_min_ashift));
1164
1165 /*
1166 * An allocation class might not have any remaining vdevs or space
1167 */
1168 metaslab_class_t *mc = mg->mg_class;
1169 if (mc->mc_groups == 0)
1170 mc = spa_normal_class(spa);
1171 int error = metaslab_alloc_dva(spa, mc, size, &dst, 0, NULL, txg, 0,
1172 zal, 0);
1173 if (error == ENOSPC && mc != spa_normal_class(spa)) {
1174 error = metaslab_alloc_dva(spa, spa_normal_class(spa), size,
1175 &dst, 0, NULL, txg, 0, zal, 0);
1176 }
1177 if (error != 0)
1178 return (error);
1179
1180 /*
1181 * Determine the ranges that are not actually needed. Offsets are
1182 * relative to the start of the range to be copied (i.e. relative to the
1183 * local variable "start").
1184 */
1185 range_tree_t *obsolete_segs = range_tree_create(NULL, RANGE_SEG64, NULL,
1186 0, 0);
1187
1188 zfs_btree_index_t where;
1189 range_seg_t *rs = zfs_btree_first(&segs->rt_root, &where);
1190 ASSERT3U(rs_get_start(rs, segs), ==, start);
1191 uint64_t prev_seg_end = rs_get_end(rs, segs);
1192 while ((rs = zfs_btree_next(&segs->rt_root, &where, &where)) != NULL) {
1193 if (rs_get_start(rs, segs) >= start + size) {
1194 break;
1195 } else {
1196 range_tree_add(obsolete_segs,
1197 prev_seg_end - start,
1198 rs_get_start(rs, segs) - prev_seg_end);
1199 }
1200 prev_seg_end = rs_get_end(rs, segs);
1201 }
1202 /* We don't end in the middle of an obsolete range */
1203 ASSERT3U(start + size, <=, prev_seg_end);
1204
1205 range_tree_clear(segs, start, size);
1206
1207 /*
1208 * We can't have any padding of the allocated size, otherwise we will
1209 * misunderstand what's allocated, and the size of the mapping. We
1210 * prevent padding by ensuring that all devices in the pool have the
1211 * same ashift, and the allocation size is a multiple of the ashift.
1212 */
1213 VERIFY3U(DVA_GET_ASIZE(&dst), ==, size);
1214
1215 entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP);
1216 DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start);
1217 entry->vime_mapping.vimep_dst = dst;
1218 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
1219 entry->vime_obsolete_count = range_tree_space(obsolete_segs);
1220 }
1221
1222 vdev_copy_segment_arg_t *vcsa = kmem_zalloc(sizeof (*vcsa), KM_SLEEP);
1223 vcsa->vcsa_dest_dva = &entry->vime_mapping.vimep_dst;
1224 vcsa->vcsa_obsolete_segs = obsolete_segs;
1225 vcsa->vcsa_spa = spa;
1226 vcsa->vcsa_txg = txg;
1227
1228 /*
1229 * See comment before spa_vdev_copy_one_child().
1230 */
1231 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
1232 zio_t *nzio = zio_null(spa->spa_txg_zio[txg & TXG_MASK], spa, NULL,
1233 spa_vdev_copy_segment_done, vcsa, 0);
1234 vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dst));
1235 if (dest_vd->vdev_ops == &vdev_mirror_ops) {
1236 for (int i = 0; i < dest_vd->vdev_children; i++) {
1237 vdev_t *child = dest_vd->vdev_child[i];
1238 spa_vdev_copy_one_child(vca, nzio, vd, start,
1239 child, DVA_GET_OFFSET(&dst), i, size);
1240 }
1241 } else {
1242 spa_vdev_copy_one_child(vca, nzio, vd, start,
1243 dest_vd, DVA_GET_OFFSET(&dst), -1, size);
1244 }
1245 zio_nowait(nzio);
1246
1247 list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry);
1248 ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift);
1249 vdev_dirty(vd, 0, NULL, txg);
1250
1251 return (0);
1252 }
1253
1254 /*
1255 * Complete the removal of a toplevel vdev. This is called as a
1256 * synctask in the same txg that we will sync out the new config (to the
1257 * MOS object) which indicates that this vdev is indirect.
1258 */
1259 static void
1260 vdev_remove_complete_sync(void *arg, dmu_tx_t *tx)
1261 {
1262 spa_vdev_removal_t *svr = arg;
1263 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1264 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1265
1266 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
1267
1268 for (int i = 0; i < TXG_SIZE; i++) {
1269 ASSERT0(svr->svr_bytes_done[i]);
1270 }
1271
1272 ASSERT3U(spa->spa_removing_phys.sr_copied, ==,
1273 spa->spa_removing_phys.sr_to_copy);
1274
1275 vdev_destroy_spacemaps(vd, tx);
1276
1277 /* destroy leaf zaps, if any */
1278 ASSERT3P(svr->svr_zaplist, !=, NULL);
1279 for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL);
1280 pair != NULL;
1281 pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) {
1282 vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx);
1283 }
1284 fnvlist_free(svr->svr_zaplist);
1285
1286 spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx);
1287 /* vd->vdev_path is not available here */
1288 spa_history_log_internal(spa, "vdev remove completed", tx,
1289 "%s vdev %llu", spa_name(spa), (u_longlong_t)vd->vdev_id);
1290 }
1291
1292 static void
1293 vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist)
1294 {
1295 ASSERT3P(zlist, !=, NULL);
1296 ASSERT0(vdev_get_nparity(vd));
1297
1298 if (vd->vdev_leaf_zap != 0) {
1299 char zkey[32];
1300 (void) snprintf(zkey, sizeof (zkey), "%s-%llu",
1301 VDEV_REMOVAL_ZAP_OBJS, (u_longlong_t)vd->vdev_leaf_zap);
1302 fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap);
1303 }
1304
1305 for (uint64_t id = 0; id < vd->vdev_children; id++) {
1306 vdev_remove_enlist_zaps(vd->vdev_child[id], zlist);
1307 }
1308 }
1309
1310 static void
1311 vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg)
1312 {
1313 vdev_t *ivd;
1314 dmu_tx_t *tx;
1315 spa_t *spa = vd->vdev_spa;
1316 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1317
1318 /*
1319 * First, build a list of leaf zaps to be destroyed.
1320 * This is passed to the sync context thread,
1321 * which does the actual unlinking.
1322 */
1323 svr->svr_zaplist = fnvlist_alloc();
1324 vdev_remove_enlist_zaps(vd, svr->svr_zaplist);
1325
1326 ivd = vdev_add_parent(vd, &vdev_indirect_ops);
1327 ivd->vdev_removing = 0;
1328
1329 vd->vdev_leaf_zap = 0;
1330
1331 vdev_remove_child(ivd, vd);
1332 vdev_compact_children(ivd);
1333
1334 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1335
1336 mutex_enter(&svr->svr_lock);
1337 svr->svr_thread = NULL;
1338 cv_broadcast(&svr->svr_cv);
1339 mutex_exit(&svr->svr_lock);
1340
1341 /* After this, we can not use svr. */
1342 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1343 dsl_sync_task_nowait(spa->spa_dsl_pool,
1344 vdev_remove_complete_sync, svr, tx);
1345 dmu_tx_commit(tx);
1346 }
1347
1348 /*
1349 * Complete the removal of a toplevel vdev. This is called in open
1350 * context by the removal thread after we have copied all vdev's data.
1351 */
1352 static void
1353 vdev_remove_complete(spa_t *spa)
1354 {
1355 uint64_t txg;
1356
1357 /*
1358 * Wait for any deferred frees to be synced before we call
1359 * vdev_metaslab_fini()
1360 */
1361 txg_wait_synced(spa->spa_dsl_pool, 0);
1362 txg = spa_vdev_enter(spa);
1363 vdev_t *vd = vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1364 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1365 ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1366 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
1367 uint64_t vdev_space = spa_deflate(spa) ?
1368 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1369
1370 sysevent_t *ev = spa_event_create(spa, vd, NULL,
1371 ESC_ZFS_VDEV_REMOVE_DEV);
1372
1373 zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu",
1374 (u_longlong_t)vd->vdev_id, (u_longlong_t)txg);
1375
1376 ASSERT3U(0, !=, vdev_space);
1377 ASSERT3U(spa->spa_nonallocating_dspace, >=, vdev_space);
1378
1379 /* the vdev is no longer part of the dspace */
1380 spa->spa_nonallocating_dspace -= vdev_space;
1381
1382 /*
1383 * Discard allocation state.
1384 */
1385 if (vd->vdev_mg != NULL) {
1386 vdev_metaslab_fini(vd);
1387 metaslab_group_destroy(vd->vdev_mg);
1388 vd->vdev_mg = NULL;
1389 spa_log_sm_set_blocklimit(spa);
1390 }
1391 if (vd->vdev_log_mg != NULL) {
1392 ASSERT0(vd->vdev_ms_count);
1393 metaslab_group_destroy(vd->vdev_log_mg);
1394 vd->vdev_log_mg = NULL;
1395 }
1396 ASSERT0(vd->vdev_stat.vs_space);
1397 ASSERT0(vd->vdev_stat.vs_dspace);
1398
1399 vdev_remove_replace_with_indirect(vd, txg);
1400
1401 /*
1402 * We now release the locks, allowing spa_sync to run and finish the
1403 * removal via vdev_remove_complete_sync in syncing context.
1404 *
1405 * Note that we hold on to the vdev_t that has been replaced. Since
1406 * it isn't part of the vdev tree any longer, it can't be concurrently
1407 * manipulated, even while we don't have the config lock.
1408 */
1409 (void) spa_vdev_exit(spa, NULL, txg, 0);
1410
1411 /*
1412 * Top ZAP should have been transferred to the indirect vdev in
1413 * vdev_remove_replace_with_indirect.
1414 */
1415 ASSERT0(vd->vdev_top_zap);
1416
1417 /*
1418 * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect.
1419 */
1420 ASSERT0(vd->vdev_leaf_zap);
1421
1422 txg = spa_vdev_enter(spa);
1423 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1424 /*
1425 * Request to update the config and the config cachefile.
1426 */
1427 vdev_config_dirty(spa->spa_root_vdev);
1428 (void) spa_vdev_exit(spa, vd, txg, 0);
1429
1430 if (ev != NULL)
1431 spa_event_post(ev);
1432 }
1433
1434 /*
1435 * Evacuates a segment of size at most max_alloc from the vdev
1436 * via repeated calls to spa_vdev_copy_segment. If an allocation
1437 * fails, the pool is probably too fragmented to handle such a
1438 * large size, so decrease max_alloc so that the caller will not try
1439 * this size again this txg.
1440 */
1441 static void
1442 spa_vdev_copy_impl(vdev_t *vd, spa_vdev_removal_t *svr, vdev_copy_arg_t *vca,
1443 uint64_t *max_alloc, dmu_tx_t *tx)
1444 {
1445 uint64_t txg = dmu_tx_get_txg(tx);
1446 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1447
1448 mutex_enter(&svr->svr_lock);
1449
1450 /*
1451 * Determine how big of a chunk to copy. We can allocate up
1452 * to max_alloc bytes, and we can span up to vdev_removal_max_span
1453 * bytes of unallocated space at a time. "segs" will track the
1454 * allocated segments that we are copying. We may also be copying
1455 * free segments (of up to vdev_removal_max_span bytes).
1456 */
1457 range_tree_t *segs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1458 for (;;) {
1459 range_tree_t *rt = svr->svr_allocd_segs;
1460 range_seg_t *rs = range_tree_first(rt);
1461
1462 if (rs == NULL)
1463 break;
1464
1465 uint64_t seg_length;
1466
1467 if (range_tree_is_empty(segs)) {
1468 /* need to truncate the first seg based on max_alloc */
1469 seg_length = MIN(rs_get_end(rs, rt) - rs_get_start(rs,
1470 rt), *max_alloc);
1471 } else {
1472 if (rs_get_start(rs, rt) - range_tree_max(segs) >
1473 vdev_removal_max_span) {
1474 /*
1475 * Including this segment would cause us to
1476 * copy a larger unneeded chunk than is allowed.
1477 */
1478 break;
1479 } else if (rs_get_end(rs, rt) - range_tree_min(segs) >
1480 *max_alloc) {
1481 /*
1482 * This additional segment would extend past
1483 * max_alloc. Rather than splitting this
1484 * segment, leave it for the next mapping.
1485 */
1486 break;
1487 } else {
1488 seg_length = rs_get_end(rs, rt) -
1489 rs_get_start(rs, rt);
1490 }
1491 }
1492
1493 range_tree_add(segs, rs_get_start(rs, rt), seg_length);
1494 range_tree_remove(svr->svr_allocd_segs,
1495 rs_get_start(rs, rt), seg_length);
1496 }
1497
1498 if (range_tree_is_empty(segs)) {
1499 mutex_exit(&svr->svr_lock);
1500 range_tree_destroy(segs);
1501 return;
1502 }
1503
1504 if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) {
1505 dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync,
1506 svr, tx);
1507 }
1508
1509 svr->svr_max_offset_to_sync[txg & TXG_MASK] = range_tree_max(segs);
1510
1511 /*
1512 * Note: this is the amount of *allocated* space
1513 * that we are taking care of each txg.
1514 */
1515 svr->svr_bytes_done[txg & TXG_MASK] += range_tree_space(segs);
1516
1517 mutex_exit(&svr->svr_lock);
1518
1519 zio_alloc_list_t zal;
1520 metaslab_trace_init(&zal);
1521 uint64_t thismax = SPA_MAXBLOCKSIZE;
1522 while (!range_tree_is_empty(segs)) {
1523 int error = spa_vdev_copy_segment(vd,
1524 segs, thismax, txg, vca, &zal);
1525
1526 if (error == ENOSPC) {
1527 /*
1528 * Cut our segment in half, and don't try this
1529 * segment size again this txg. Note that the
1530 * allocation size must be aligned to the highest
1531 * ashift in the pool, so that the allocation will
1532 * not be padded out to a multiple of the ashift,
1533 * which could cause us to think that this mapping
1534 * is larger than we intended.
1535 */
1536 ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT);
1537 ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift);
1538 uint64_t attempted =
1539 MIN(range_tree_span(segs), thismax);
1540 thismax = P2ROUNDUP(attempted / 2,
1541 1 << spa->spa_max_ashift);
1542 /*
1543 * The minimum-size allocation can not fail.
1544 */
1545 ASSERT3U(attempted, >, 1 << spa->spa_max_ashift);
1546 *max_alloc = attempted - (1 << spa->spa_max_ashift);
1547 } else {
1548 ASSERT0(error);
1549
1550 /*
1551 * We've performed an allocation, so reset the
1552 * alloc trace list.
1553 */
1554 metaslab_trace_fini(&zal);
1555 metaslab_trace_init(&zal);
1556 }
1557 }
1558 metaslab_trace_fini(&zal);
1559 range_tree_destroy(segs);
1560 }
1561
1562 /*
1563 * The size of each removal mapping is limited by the tunable
1564 * zfs_remove_max_segment, but we must adjust this to be a multiple of the
1565 * pool's ashift, so that we don't try to split individual sectors regardless
1566 * of the tunable value. (Note that device removal requires that all devices
1567 * have the same ashift, so there's no difference between spa_min_ashift and
1568 * spa_max_ashift.) The raw tunable should not be used elsewhere.
1569 */
1570 uint64_t
1571 spa_remove_max_segment(spa_t *spa)
1572 {
1573 return (P2ROUNDUP(zfs_remove_max_segment, 1 << spa->spa_max_ashift));
1574 }
1575
1576 /*
1577 * The removal thread operates in open context. It iterates over all
1578 * allocated space in the vdev, by loading each metaslab's spacemap.
1579 * For each contiguous segment of allocated space (capping the segment
1580 * size at SPA_MAXBLOCKSIZE), we:
1581 * - Allocate space for it on another vdev.
1582 * - Create a new mapping from the old location to the new location
1583 * (as a record in svr_new_segments).
1584 * - Initiate a physical read zio to get the data off the removing disk.
1585 * - In the read zio's done callback, initiate a physical write zio to
1586 * write it to the new vdev.
1587 * Note that all of this will take effect when a particular TXG syncs.
1588 * The sync thread ensures that all the phys reads and writes for the syncing
1589 * TXG have completed (see spa_txg_zio) and writes the new mappings to disk
1590 * (see vdev_mapping_sync()).
1591 */
1592 static void
1593 spa_vdev_remove_thread(void *arg)
1594 {
1595 spa_t *spa = arg;
1596 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1597 vdev_copy_arg_t vca;
1598 uint64_t max_alloc = spa_remove_max_segment(spa);
1599 uint64_t last_txg = 0;
1600
1601 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1602 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1603 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1604 uint64_t start_offset = vdev_indirect_mapping_max_offset(vim);
1605
1606 ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops);
1607 ASSERT(vdev_is_concrete(vd));
1608 ASSERT(vd->vdev_removing);
1609 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
1610 ASSERT(vim != NULL);
1611
1612 mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL);
1613 cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL);
1614 vca.vca_outstanding_bytes = 0;
1615 vca.vca_read_error_bytes = 0;
1616 vca.vca_write_error_bytes = 0;
1617
1618 mutex_enter(&svr->svr_lock);
1619
1620 /*
1621 * Start from vim_max_offset so we pick up where we left off
1622 * if we are restarting the removal after opening the pool.
1623 */
1624 uint64_t msi;
1625 for (msi = start_offset >> vd->vdev_ms_shift;
1626 msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) {
1627 metaslab_t *msp = vd->vdev_ms[msi];
1628 ASSERT3U(msi, <=, vd->vdev_ms_count);
1629
1630 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1631
1632 mutex_enter(&msp->ms_sync_lock);
1633 mutex_enter(&msp->ms_lock);
1634
1635 /*
1636 * Assert nothing in flight -- ms_*tree is empty.
1637 */
1638 for (int i = 0; i < TXG_SIZE; i++) {
1639 ASSERT0(range_tree_space(msp->ms_allocating[i]));
1640 }
1641
1642 /*
1643 * If the metaslab has ever been allocated from (ms_sm!=NULL),
1644 * read the allocated segments from the space map object
1645 * into svr_allocd_segs. Since we do this while holding
1646 * svr_lock and ms_sync_lock, concurrent frees (which
1647 * would have modified the space map) will wait for us
1648 * to finish loading the spacemap, and then take the
1649 * appropriate action (see free_from_removing_vdev()).
1650 */
1651 if (msp->ms_sm != NULL) {
1652 VERIFY0(space_map_load(msp->ms_sm,
1653 svr->svr_allocd_segs, SM_ALLOC));
1654
1655 range_tree_walk(msp->ms_unflushed_allocs,
1656 range_tree_add, svr->svr_allocd_segs);
1657 range_tree_walk(msp->ms_unflushed_frees,
1658 range_tree_remove, svr->svr_allocd_segs);
1659 range_tree_walk(msp->ms_freeing,
1660 range_tree_remove, svr->svr_allocd_segs);
1661
1662 /*
1663 * When we are resuming from a paused removal (i.e.
1664 * when importing a pool with a removal in progress),
1665 * discard any state that we have already processed.
1666 */
1667 range_tree_clear(svr->svr_allocd_segs, 0, start_offset);
1668 }
1669 mutex_exit(&msp->ms_lock);
1670 mutex_exit(&msp->ms_sync_lock);
1671
1672 vca.vca_msp = msp;
1673 zfs_dbgmsg("copying %llu segments for metaslab %llu",
1674 (u_longlong_t)zfs_btree_numnodes(
1675 &svr->svr_allocd_segs->rt_root),
1676 (u_longlong_t)msp->ms_id);
1677
1678 while (!svr->svr_thread_exit &&
1679 !range_tree_is_empty(svr->svr_allocd_segs)) {
1680
1681 mutex_exit(&svr->svr_lock);
1682
1683 /*
1684 * We need to periodically drop the config lock so that
1685 * writers can get in. Additionally, we can't wait
1686 * for a txg to sync while holding a config lock
1687 * (since a waiting writer could cause a 3-way deadlock
1688 * with the sync thread, which also gets a config
1689 * lock for reader). So we can't hold the config lock
1690 * while calling dmu_tx_assign().
1691 */
1692 spa_config_exit(spa, SCL_CONFIG, FTAG);
1693
1694 /*
1695 * This delay will pause the removal around the point
1696 * specified by zfs_removal_suspend_progress. We do this
1697 * solely from the test suite or during debugging.
1698 */
1699 while (zfs_removal_suspend_progress &&
1700 !svr->svr_thread_exit)
1701 delay(hz);
1702
1703 mutex_enter(&vca.vca_lock);
1704 while (vca.vca_outstanding_bytes >
1705 zfs_remove_max_copy_bytes) {
1706 cv_wait(&vca.vca_cv, &vca.vca_lock);
1707 }
1708 mutex_exit(&vca.vca_lock);
1709
1710 dmu_tx_t *tx =
1711 dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1712
1713 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1714 uint64_t txg = dmu_tx_get_txg(tx);
1715
1716 /*
1717 * Reacquire the vdev_config lock. The vdev_t
1718 * that we're removing may have changed, e.g. due
1719 * to a vdev_attach or vdev_detach.
1720 */
1721 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1722 vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1723
1724 if (txg != last_txg)
1725 max_alloc = spa_remove_max_segment(spa);
1726 last_txg = txg;
1727
1728 spa_vdev_copy_impl(vd, svr, &vca, &max_alloc, tx);
1729
1730 dmu_tx_commit(tx);
1731 mutex_enter(&svr->svr_lock);
1732 }
1733
1734 mutex_enter(&vca.vca_lock);
1735 if (zfs_removal_ignore_errors == 0 &&
1736 (vca.vca_read_error_bytes > 0 ||
1737 vca.vca_write_error_bytes > 0)) {
1738 svr->svr_thread_exit = B_TRUE;
1739 }
1740 mutex_exit(&vca.vca_lock);
1741 }
1742
1743 mutex_exit(&svr->svr_lock);
1744
1745 spa_config_exit(spa, SCL_CONFIG, FTAG);
1746
1747 /*
1748 * Wait for all copies to finish before cleaning up the vca.
1749 */
1750 txg_wait_synced(spa->spa_dsl_pool, 0);
1751 ASSERT0(vca.vca_outstanding_bytes);
1752
1753 mutex_destroy(&vca.vca_lock);
1754 cv_destroy(&vca.vca_cv);
1755
1756 if (svr->svr_thread_exit) {
1757 mutex_enter(&svr->svr_lock);
1758 range_tree_vacate(svr->svr_allocd_segs, NULL, NULL);
1759 svr->svr_thread = NULL;
1760 cv_broadcast(&svr->svr_cv);
1761 mutex_exit(&svr->svr_lock);
1762
1763 /*
1764 * During the removal process an unrecoverable read or write
1765 * error was encountered. The removal process must be
1766 * cancelled or this damage may become permanent.
1767 */
1768 if (zfs_removal_ignore_errors == 0 &&
1769 (vca.vca_read_error_bytes > 0 ||
1770 vca.vca_write_error_bytes > 0)) {
1771 zfs_dbgmsg("canceling removal due to IO errors: "
1772 "[read_error_bytes=%llu] [write_error_bytes=%llu]",
1773 (u_longlong_t)vca.vca_read_error_bytes,
1774 (u_longlong_t)vca.vca_write_error_bytes);
1775 spa_vdev_remove_cancel_impl(spa);
1776 }
1777 } else {
1778 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1779 vdev_remove_complete(spa);
1780 }
1781
1782 thread_exit();
1783 }
1784
1785 void
1786 spa_vdev_remove_suspend(spa_t *spa)
1787 {
1788 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1789
1790 if (svr == NULL)
1791 return;
1792
1793 mutex_enter(&svr->svr_lock);
1794 svr->svr_thread_exit = B_TRUE;
1795 while (svr->svr_thread != NULL)
1796 cv_wait(&svr->svr_cv, &svr->svr_lock);
1797 svr->svr_thread_exit = B_FALSE;
1798 mutex_exit(&svr->svr_lock);
1799 }
1800
1801 /*
1802 * Return true if the "allocating" property has been set to "off"
1803 */
1804 static boolean_t
1805 vdev_prop_allocating_off(vdev_t *vd)
1806 {
1807 uint64_t objid = vd->vdev_top_zap;
1808 uint64_t allocating = 1;
1809
1810 /* no vdev property object => no props */
1811 if (objid != 0) {
1812 spa_t *spa = vd->vdev_spa;
1813 objset_t *mos = spa->spa_meta_objset;
1814
1815 mutex_enter(&spa->spa_props_lock);
1816 (void) zap_lookup(mos, objid, "allocating", sizeof (uint64_t),
1817 1, &allocating);
1818 mutex_exit(&spa->spa_props_lock);
1819 }
1820 return (allocating == 0);
1821 }
1822
1823 static int
1824 spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx)
1825 {
1826 (void) arg;
1827 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1828
1829 if (spa->spa_vdev_removal == NULL)
1830 return (ENOTACTIVE);
1831 return (0);
1832 }
1833
1834 /*
1835 * Cancel a removal by freeing all entries from the partial mapping
1836 * and marking the vdev as no longer being removing.
1837 */
1838 static void
1839 spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx)
1840 {
1841 (void) arg;
1842 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1843 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1844 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1845 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1846 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1847 objset_t *mos = spa->spa_meta_objset;
1848
1849 ASSERT3P(svr->svr_thread, ==, NULL);
1850
1851 spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
1852
1853 boolean_t are_precise;
1854 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
1855 if (are_precise) {
1856 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1857 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1858 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx));
1859 }
1860
1861 uint64_t obsolete_sm_object;
1862 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1863 if (obsolete_sm_object != 0) {
1864 ASSERT(vd->vdev_obsolete_sm != NULL);
1865 ASSERT3U(obsolete_sm_object, ==,
1866 space_map_object(vd->vdev_obsolete_sm));
1867
1868 space_map_free(vd->vdev_obsolete_sm, tx);
1869 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1870 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
1871 space_map_close(vd->vdev_obsolete_sm);
1872 vd->vdev_obsolete_sm = NULL;
1873 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1874 }
1875 for (int i = 0; i < TXG_SIZE; i++) {
1876 ASSERT(list_is_empty(&svr->svr_new_segments[i]));
1877 ASSERT3U(svr->svr_max_offset_to_sync[i], <=,
1878 vdev_indirect_mapping_max_offset(vim));
1879 }
1880
1881 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
1882 metaslab_t *msp = vd->vdev_ms[msi];
1883
1884 if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim))
1885 break;
1886
1887 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1888
1889 mutex_enter(&msp->ms_lock);
1890
1891 /*
1892 * Assert nothing in flight -- ms_*tree is empty.
1893 */
1894 for (int i = 0; i < TXG_SIZE; i++)
1895 ASSERT0(range_tree_space(msp->ms_allocating[i]));
1896 for (int i = 0; i < TXG_DEFER_SIZE; i++)
1897 ASSERT0(range_tree_space(msp->ms_defer[i]));
1898 ASSERT0(range_tree_space(msp->ms_freed));
1899
1900 if (msp->ms_sm != NULL) {
1901 mutex_enter(&svr->svr_lock);
1902 VERIFY0(space_map_load(msp->ms_sm,
1903 svr->svr_allocd_segs, SM_ALLOC));
1904
1905 range_tree_walk(msp->ms_unflushed_allocs,
1906 range_tree_add, svr->svr_allocd_segs);
1907 range_tree_walk(msp->ms_unflushed_frees,
1908 range_tree_remove, svr->svr_allocd_segs);
1909 range_tree_walk(msp->ms_freeing,
1910 range_tree_remove, svr->svr_allocd_segs);
1911
1912 /*
1913 * Clear everything past what has been synced,
1914 * because we have not allocated mappings for it yet.
1915 */
1916 uint64_t syncd = vdev_indirect_mapping_max_offset(vim);
1917 uint64_t sm_end = msp->ms_sm->sm_start +
1918 msp->ms_sm->sm_size;
1919 if (sm_end > syncd)
1920 range_tree_clear(svr->svr_allocd_segs,
1921 syncd, sm_end - syncd);
1922
1923 mutex_exit(&svr->svr_lock);
1924 }
1925 mutex_exit(&msp->ms_lock);
1926
1927 mutex_enter(&svr->svr_lock);
1928 range_tree_vacate(svr->svr_allocd_segs,
1929 free_mapped_segment_cb, vd);
1930 mutex_exit(&svr->svr_lock);
1931 }
1932
1933 /*
1934 * Note: this must happen after we invoke free_mapped_segment_cb,
1935 * because it adds to the obsolete_segments.
1936 */
1937 range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
1938
1939 ASSERT3U(vic->vic_mapping_object, ==,
1940 vdev_indirect_mapping_object(vd->vdev_indirect_mapping));
1941 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1942 vd->vdev_indirect_mapping = NULL;
1943 vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
1944 vic->vic_mapping_object = 0;
1945
1946 ASSERT3U(vic->vic_births_object, ==,
1947 vdev_indirect_births_object(vd->vdev_indirect_births));
1948 vdev_indirect_births_close(vd->vdev_indirect_births);
1949 vd->vdev_indirect_births = NULL;
1950 vdev_indirect_births_free(mos, vic->vic_births_object, tx);
1951 vic->vic_births_object = 0;
1952
1953 /*
1954 * We may have processed some frees from the removing vdev in this
1955 * txg, thus increasing svr_bytes_done; discard that here to
1956 * satisfy the assertions in spa_vdev_removal_destroy().
1957 * Note that future txg's can not have any bytes_done, because
1958 * future TXG's are only modified from open context, and we have
1959 * already shut down the copying thread.
1960 */
1961 svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0;
1962 spa_finish_removal(spa, DSS_CANCELED, tx);
1963
1964 vd->vdev_removing = B_FALSE;
1965
1966 if (!vdev_prop_allocating_off(vd)) {
1967 spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER);
1968 vdev_activate(vd);
1969 spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG);
1970 }
1971
1972 vdev_config_dirty(vd);
1973
1974 zfs_dbgmsg("canceled device removal for vdev %llu in %llu",
1975 (u_longlong_t)vd->vdev_id, (u_longlong_t)dmu_tx_get_txg(tx));
1976 spa_history_log_internal(spa, "vdev remove canceled", tx,
1977 "%s vdev %llu %s", spa_name(spa),
1978 (u_longlong_t)vd->vdev_id,
1979 (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1980 }
1981
1982 static int
1983 spa_vdev_remove_cancel_impl(spa_t *spa)
1984 {
1985 int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check,
1986 spa_vdev_remove_cancel_sync, NULL, 0,
1987 ZFS_SPACE_CHECK_EXTRA_RESERVED);
1988 return (error);
1989 }
1990
1991 int
1992 spa_vdev_remove_cancel(spa_t *spa)
1993 {
1994 spa_vdev_remove_suspend(spa);
1995
1996 if (spa->spa_vdev_removal == NULL)
1997 return (ENOTACTIVE);
1998
1999 return (spa_vdev_remove_cancel_impl(spa));
2000 }
2001
2002 void
2003 svr_sync(spa_t *spa, dmu_tx_t *tx)
2004 {
2005 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
2006 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
2007
2008 if (svr == NULL)
2009 return;
2010
2011 /*
2012 * This check is necessary so that we do not dirty the
2013 * DIRECTORY_OBJECT via spa_sync_removing_state() when there
2014 * is nothing to do. Dirtying it every time would prevent us
2015 * from syncing-to-convergence.
2016 */
2017 if (svr->svr_bytes_done[txgoff] == 0)
2018 return;
2019
2020 /*
2021 * Update progress accounting.
2022 */
2023 spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff];
2024 svr->svr_bytes_done[txgoff] = 0;
2025
2026 spa_sync_removing_state(spa, tx);
2027 }
2028
2029 static void
2030 vdev_remove_make_hole_and_free(vdev_t *vd)
2031 {
2032 uint64_t id = vd->vdev_id;
2033 spa_t *spa = vd->vdev_spa;
2034 vdev_t *rvd = spa->spa_root_vdev;
2035
2036 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2037 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2038
2039 vdev_free(vd);
2040
2041 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
2042 vdev_add_child(rvd, vd);
2043 vdev_config_dirty(rvd);
2044
2045 /*
2046 * Reassess the health of our root vdev.
2047 */
2048 vdev_reopen(rvd);
2049 }
2050
2051 /*
2052 * Remove a log device. The config lock is held for the specified TXG.
2053 */
2054 static int
2055 spa_vdev_remove_log(vdev_t *vd, uint64_t *txg)
2056 {
2057 metaslab_group_t *mg = vd->vdev_mg;
2058 spa_t *spa = vd->vdev_spa;
2059 int error = 0;
2060
2061 ASSERT(vd->vdev_islog);
2062 ASSERT(vd == vd->vdev_top);
2063 ASSERT3P(vd->vdev_log_mg, ==, NULL);
2064 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2065
2066 /*
2067 * Stop allocating from this vdev.
2068 */
2069 metaslab_group_passivate(mg);
2070
2071 /*
2072 * Wait for the youngest allocations and frees to sync,
2073 * and then wait for the deferral of those frees to finish.
2074 */
2075 spa_vdev_config_exit(spa, NULL,
2076 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
2077
2078 /*
2079 * Cancel any initialize or TRIM which was in progress.
2080 */
2081 vdev_initialize_stop_all(vd, VDEV_INITIALIZE_CANCELED);
2082 vdev_trim_stop_all(vd, VDEV_TRIM_CANCELED);
2083 vdev_autotrim_stop_wait(vd);
2084
2085 /*
2086 * Evacuate the device. We don't hold the config lock as
2087 * writer since we need to do I/O but we do keep the
2088 * spa_namespace_lock held. Once this completes the device
2089 * should no longer have any blocks allocated on it.
2090 */
2091 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2092 if (vd->vdev_stat.vs_alloc != 0)
2093 error = spa_reset_logs(spa);
2094
2095 *txg = spa_vdev_config_enter(spa);
2096
2097 if (error != 0) {
2098 metaslab_group_activate(mg);
2099 ASSERT3P(vd->vdev_log_mg, ==, NULL);
2100 return (error);
2101 }
2102 ASSERT0(vd->vdev_stat.vs_alloc);
2103
2104 /*
2105 * The evacuation succeeded. Remove any remaining MOS metadata
2106 * associated with this vdev, and wait for these changes to sync.
2107 */
2108 vd->vdev_removing = B_TRUE;
2109
2110 vdev_dirty_leaves(vd, VDD_DTL, *txg);
2111 vdev_config_dirty(vd);
2112
2113 /*
2114 * When the log space map feature is enabled we look at
2115 * the vdev's top_zap to find the on-disk flush data of
2116 * the metaslab we just flushed. Thus, while removing a
2117 * log vdev we make sure to call vdev_metaslab_fini()
2118 * first, which removes all metaslabs of this vdev from
2119 * spa_metaslabs_by_flushed before vdev_remove_empty()
2120 * destroys the top_zap of this log vdev.
2121 *
2122 * This avoids the scenario where we flush a metaslab
2123 * from the log vdev being removed that doesn't have a
2124 * top_zap and end up failing to lookup its on-disk flush
2125 * data.
2126 *
2127 * We don't call metaslab_group_destroy() right away
2128 * though (it will be called in vdev_free() later) as
2129 * during metaslab_sync() of metaslabs from other vdevs
2130 * we may touch the metaslab group of this vdev through
2131 * metaslab_class_histogram_verify()
2132 */
2133 vdev_metaslab_fini(vd);
2134 spa_log_sm_set_blocklimit(spa);
2135
2136 spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
2137 *txg = spa_vdev_config_enter(spa);
2138
2139 sysevent_t *ev = spa_event_create(spa, vd, NULL,
2140 ESC_ZFS_VDEV_REMOVE_DEV);
2141 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2142 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2143
2144 /* The top ZAP should have been destroyed by vdev_remove_empty. */
2145 ASSERT0(vd->vdev_top_zap);
2146 /* The leaf ZAP should have been destroyed by vdev_dtl_sync. */
2147 ASSERT0(vd->vdev_leaf_zap);
2148
2149 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
2150
2151 if (list_link_active(&vd->vdev_state_dirty_node))
2152 vdev_state_clean(vd);
2153 if (list_link_active(&vd->vdev_config_dirty_node))
2154 vdev_config_clean(vd);
2155
2156 ASSERT0(vd->vdev_stat.vs_alloc);
2157
2158 /*
2159 * Clean up the vdev namespace.
2160 */
2161 vdev_remove_make_hole_and_free(vd);
2162
2163 if (ev != NULL)
2164 spa_event_post(ev);
2165
2166 return (0);
2167 }
2168
2169 static int
2170 spa_vdev_remove_top_check(vdev_t *vd)
2171 {
2172 spa_t *spa = vd->vdev_spa;
2173
2174 if (vd != vd->vdev_top)
2175 return (SET_ERROR(ENOTSUP));
2176
2177 if (!vdev_is_concrete(vd))
2178 return (SET_ERROR(ENOTSUP));
2179
2180 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL))
2181 return (SET_ERROR(ENOTSUP));
2182
2183 /*
2184 * This device is already being removed
2185 */
2186 if (vd->vdev_removing)
2187 return (SET_ERROR(EALREADY));
2188
2189 metaslab_class_t *mc = vd->vdev_mg->mg_class;
2190 metaslab_class_t *normal = spa_normal_class(spa);
2191 if (mc != normal) {
2192 /*
2193 * Space allocated from the special (or dedup) class is
2194 * included in the DMU's space usage, but it's not included
2195 * in spa_dspace (or dsl_pool_adjustedsize()). Therefore
2196 * there is always at least as much free space in the normal
2197 * class, as is allocated from the special (and dedup) class.
2198 * As a backup check, we will return ENOSPC if this is
2199 * violated. See also spa_update_dspace().
2200 */
2201 uint64_t available = metaslab_class_get_space(normal) -
2202 metaslab_class_get_alloc(normal);
2203 ASSERT3U(available, >=, vd->vdev_stat.vs_alloc);
2204 if (available < vd->vdev_stat.vs_alloc)
2205 return (SET_ERROR(ENOSPC));
2206 } else if (!vd->vdev_noalloc) {
2207 /* available space in the pool's normal class */
2208 uint64_t available = dsl_dir_space_available(
2209 spa->spa_dsl_pool->dp_root_dir, NULL, 0, B_TRUE);
2210 if (available < vd->vdev_stat.vs_dspace)
2211 return (SET_ERROR(ENOSPC));
2212 }
2213
2214 /*
2215 * There can not be a removal in progress.
2216 */
2217 if (spa->spa_removing_phys.sr_state == DSS_SCANNING)
2218 return (SET_ERROR(EBUSY));
2219
2220 /*
2221 * The device must have all its data.
2222 */
2223 if (!vdev_dtl_empty(vd, DTL_MISSING) ||
2224 !vdev_dtl_empty(vd, DTL_OUTAGE))
2225 return (SET_ERROR(EBUSY));
2226
2227 /*
2228 * The device must be healthy.
2229 */
2230 if (!vdev_readable(vd))
2231 return (SET_ERROR(EIO));
2232
2233 /*
2234 * All vdevs in normal class must have the same ashift.
2235 */
2236 if (spa->spa_max_ashift != spa->spa_min_ashift) {
2237 return (SET_ERROR(EINVAL));
2238 }
2239
2240 /*
2241 * A removed special/dedup vdev must have same ashift as normal class.
2242 */
2243 ASSERT(!vd->vdev_islog);
2244 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE &&
2245 vd->vdev_ashift != spa->spa_max_ashift) {
2246 return (SET_ERROR(EINVAL));
2247 }
2248
2249 /*
2250 * All vdevs in normal class must have the same ashift
2251 * and not be raidz or draid.
2252 */
2253 vdev_t *rvd = spa->spa_root_vdev;
2254 int num_indirect = 0;
2255 for (uint64_t id = 0; id < rvd->vdev_children; id++) {
2256 vdev_t *cvd = rvd->vdev_child[id];
2257
2258 /*
2259 * A removed special/dedup vdev must have the same ashift
2260 * across all vdevs in its class.
2261 */
2262 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE &&
2263 cvd->vdev_alloc_bias == vd->vdev_alloc_bias &&
2264 cvd->vdev_ashift != vd->vdev_ashift) {
2265 return (SET_ERROR(EINVAL));
2266 }
2267 if (cvd->vdev_ashift != 0 &&
2268 cvd->vdev_alloc_bias == VDEV_BIAS_NONE)
2269 ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift);
2270 if (cvd->vdev_ops == &vdev_indirect_ops)
2271 num_indirect++;
2272 if (!vdev_is_concrete(cvd))
2273 continue;
2274 if (vdev_get_nparity(cvd) != 0)
2275 return (SET_ERROR(EINVAL));
2276 /*
2277 * Need the mirror to be mirror of leaf vdevs only
2278 */
2279 if (cvd->vdev_ops == &vdev_mirror_ops) {
2280 for (uint64_t cid = 0;
2281 cid < cvd->vdev_children; cid++) {
2282 if (!cvd->vdev_child[cid]->vdev_ops->
2283 vdev_op_leaf)
2284 return (SET_ERROR(EINVAL));
2285 }
2286 }
2287 }
2288
2289 return (0);
2290 }
2291
2292 /*
2293 * Initiate removal of a top-level vdev, reducing the total space in the pool.
2294 * The config lock is held for the specified TXG. Once initiated,
2295 * evacuation of all allocated space (copying it to other vdevs) happens
2296 * in the background (see spa_vdev_remove_thread()), and can be canceled
2297 * (see spa_vdev_remove_cancel()). If successful, the vdev will
2298 * be transformed to an indirect vdev (see spa_vdev_remove_complete()).
2299 */
2300 static int
2301 spa_vdev_remove_top(vdev_t *vd, uint64_t *txg)
2302 {
2303 spa_t *spa = vd->vdev_spa;
2304 boolean_t set_noalloc = B_FALSE;
2305 int error;
2306
2307 /*
2308 * Check for errors up-front, so that we don't waste time
2309 * passivating the metaslab group and clearing the ZIL if there
2310 * are errors.
2311 */
2312 error = spa_vdev_remove_top_check(vd);
2313
2314 /*
2315 * Stop allocating from this vdev. Note that we must check
2316 * that this is not the only device in the pool before
2317 * passivating, otherwise we will not be able to make
2318 * progress because we can't allocate from any vdevs.
2319 * The above check for sufficient free space serves this
2320 * purpose.
2321 */
2322 if (error == 0 && !vd->vdev_noalloc) {
2323 set_noalloc = B_TRUE;
2324 error = vdev_passivate(vd, txg);
2325 }
2326
2327 if (error != 0)
2328 return (error);
2329
2330 /*
2331 * We stop any initializing and TRIM that is currently in progress
2332 * but leave the state as "active". This will allow the process to
2333 * resume if the removal is canceled sometime later.
2334 */
2335
2336 spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
2337
2338 vdev_initialize_stop_all(vd, VDEV_INITIALIZE_ACTIVE);
2339 vdev_trim_stop_all(vd, VDEV_TRIM_ACTIVE);
2340 vdev_autotrim_stop_wait(vd);
2341
2342 *txg = spa_vdev_config_enter(spa);
2343
2344 /*
2345 * Things might have changed while the config lock was dropped
2346 * (e.g. space usage). Check for errors again.
2347 */
2348 error = spa_vdev_remove_top_check(vd);
2349
2350 if (error != 0) {
2351 if (set_noalloc)
2352 vdev_activate(vd);
2353 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
2354 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
2355 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
2356 return (error);
2357 }
2358
2359 vd->vdev_removing = B_TRUE;
2360
2361 vdev_dirty_leaves(vd, VDD_DTL, *txg);
2362 vdev_config_dirty(vd);
2363 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg);
2364 dsl_sync_task_nowait(spa->spa_dsl_pool,
2365 vdev_remove_initiate_sync, (void *)(uintptr_t)vd->vdev_id, tx);
2366 dmu_tx_commit(tx);
2367
2368 return (0);
2369 }
2370
2371 /*
2372 * Remove a device from the pool.
2373 *
2374 * Removing a device from the vdev namespace requires several steps
2375 * and can take a significant amount of time. As a result we use
2376 * the spa_vdev_config_[enter/exit] functions which allow us to
2377 * grab and release the spa_config_lock while still holding the namespace
2378 * lock. During each step the configuration is synced out.
2379 */
2380 int
2381 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
2382 {
2383 vdev_t *vd;
2384 nvlist_t **spares, **l2cache, *nv;
2385 uint64_t txg = 0;
2386 uint_t nspares, nl2cache;
2387 int error = 0, error_log;
2388 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
2389 sysevent_t *ev = NULL;
2390 char *vd_type = NULL, *vd_path = NULL;
2391
2392 ASSERT(spa_writeable(spa));
2393
2394 if (!locked)
2395 txg = spa_vdev_enter(spa);
2396
2397 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2398 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
2399 error = (spa_has_checkpoint(spa)) ?
2400 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
2401
2402 if (!locked)
2403 return (spa_vdev_exit(spa, NULL, txg, error));
2404
2405 return (error);
2406 }
2407
2408 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
2409
2410 if (spa->spa_spares.sav_vdevs != NULL &&
2411 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2412 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
2413 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
2414 /*
2415 * Only remove the hot spare if it's not currently in use
2416 * in this pool.
2417 */
2418 if (vd == NULL || unspare) {
2419 char *type;
2420 boolean_t draid_spare = B_FALSE;
2421
2422 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type)
2423 == 0 && strcmp(type, VDEV_TYPE_DRAID_SPARE) == 0)
2424 draid_spare = B_TRUE;
2425
2426 if (vd == NULL && draid_spare) {
2427 error = SET_ERROR(ENOTSUP);
2428 } else {
2429 if (vd == NULL)
2430 vd = spa_lookup_by_guid(spa,
2431 guid, B_TRUE);
2432 ev = spa_event_create(spa, vd, NULL,
2433 ESC_ZFS_VDEV_REMOVE_AUX);
2434
2435 vd_type = VDEV_TYPE_SPARE;
2436 vd_path = spa_strdup(fnvlist_lookup_string(
2437 nv, ZPOOL_CONFIG_PATH));
2438 spa_vdev_remove_aux(spa->spa_spares.sav_config,
2439 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
2440 spa_load_spares(spa);
2441 spa->spa_spares.sav_sync = B_TRUE;
2442 }
2443 } else {
2444 error = SET_ERROR(EBUSY);
2445 }
2446 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
2447 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2448 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
2449 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
2450 vd_type = VDEV_TYPE_L2CACHE;
2451 vd_path = spa_strdup(fnvlist_lookup_string(
2452 nv, ZPOOL_CONFIG_PATH));
2453 /*
2454 * Cache devices can always be removed.
2455 */
2456 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2457
2458 /*
2459 * Stop trimming the cache device. We need to release the
2460 * config lock to allow the syncing of TRIM transactions
2461 * without releasing the spa_namespace_lock. The same
2462 * strategy is employed in spa_vdev_remove_top().
2463 */
2464 spa_vdev_config_exit(spa, NULL,
2465 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
2466 mutex_enter(&vd->vdev_trim_lock);
2467 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
2468 mutex_exit(&vd->vdev_trim_lock);
2469 txg = spa_vdev_config_enter(spa);
2470
2471 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
2472 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
2473 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
2474 spa_load_l2cache(spa);
2475 spa->spa_l2cache.sav_sync = B_TRUE;
2476 } else if (vd != NULL && vd->vdev_islog) {
2477 ASSERT(!locked);
2478 vd_type = VDEV_TYPE_LOG;
2479 vd_path = spa_strdup((vd->vdev_path != NULL) ?
2480 vd->vdev_path : "-");
2481 error = spa_vdev_remove_log(vd, &txg);
2482 } else if (vd != NULL) {
2483 ASSERT(!locked);
2484 error = spa_vdev_remove_top(vd, &txg);
2485 } else {
2486 /*
2487 * There is no vdev of any kind with the specified guid.
2488 */
2489 error = SET_ERROR(ENOENT);
2490 }
2491
2492 error_log = error;
2493
2494 if (!locked)
2495 error = spa_vdev_exit(spa, NULL, txg, error);
2496
2497 /*
2498 * Logging must be done outside the spa config lock. Otherwise,
2499 * this code path could end up holding the spa config lock while
2500 * waiting for a txg_sync so it can write to the internal log.
2501 * Doing that would prevent the txg sync from actually happening,
2502 * causing a deadlock.
2503 */
2504 if (error_log == 0 && vd_type != NULL && vd_path != NULL) {
2505 spa_history_log_internal(spa, "vdev remove", NULL,
2506 "%s vdev (%s) %s", spa_name(spa), vd_type, vd_path);
2507 }
2508 if (vd_path != NULL)
2509 spa_strfree(vd_path);
2510
2511 if (ev != NULL)
2512 spa_event_post(ev);
2513
2514 return (error);
2515 }
2516
2517 int
2518 spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs)
2519 {
2520 prs->prs_state = spa->spa_removing_phys.sr_state;
2521
2522 if (prs->prs_state == DSS_NONE)
2523 return (SET_ERROR(ENOENT));
2524
2525 prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev;
2526 prs->prs_start_time = spa->spa_removing_phys.sr_start_time;
2527 prs->prs_end_time = spa->spa_removing_phys.sr_end_time;
2528 prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy;
2529 prs->prs_copied = spa->spa_removing_phys.sr_copied;
2530
2531 prs->prs_mapping_memory = 0;
2532 uint64_t indirect_vdev_id =
2533 spa->spa_removing_phys.sr_prev_indirect_vdev;
2534 while (indirect_vdev_id != -1) {
2535 vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id];
2536 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
2537 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
2538
2539 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2540 prs->prs_mapping_memory += vdev_indirect_mapping_size(vim);
2541 indirect_vdev_id = vic->vic_prev_indirect_vdev;
2542 }
2543
2544 return (0);
2545 }
2546
2547 ZFS_MODULE_PARAM(zfs_vdev, zfs_, removal_ignore_errors, INT, ZMOD_RW,
2548 "Ignore hard IO errors when removing device");
2549
2550 ZFS_MODULE_PARAM(zfs_vdev, zfs_, remove_max_segment, INT, ZMOD_RW,
2551 "Largest contiguous segment to allocate when removing device");
2552
2553 ZFS_MODULE_PARAM(zfs_vdev, vdev_, removal_max_span, INT, ZMOD_RW,
2554 "Largest span of free chunks a remap segment can span");
2555
2556 /* BEGIN CSTYLED */
2557 ZFS_MODULE_PARAM(zfs_vdev, zfs_, removal_suspend_progress, INT, ZMOD_RW,
2558 "Pause device removal after this many bytes are copied "
2559 "(debug use only - causes removal to hang)");
2560 /* END CSTYLED */
2561
2562 EXPORT_SYMBOL(free_from_removing_vdev);
2563 EXPORT_SYMBOL(spa_removal_get_stats);
2564 EXPORT_SYMBOL(spa_remove_init);
2565 EXPORT_SYMBOL(spa_restart_removal);
2566 EXPORT_SYMBOL(spa_vdev_removal_destroy);
2567 EXPORT_SYMBOL(spa_vdev_remove);
2568 EXPORT_SYMBOL(spa_vdev_remove_cancel);
2569 EXPORT_SYMBOL(spa_vdev_remove_suspend);
2570 EXPORT_SYMBOL(svr_sync);