]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev_trim.c
Switch from _Noreturn to __attribute__((noreturn))
[mirror_zfs.git] / module / zfs / vdev_trim.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2016 by Delphix. All rights reserved.
24 * Copyright (c) 2019 by Lawrence Livermore National Security, LLC.
25 * Copyright (c) 2021 Hewlett Packard Enterprise Development LP
26 */
27
28 #include <sys/spa.h>
29 #include <sys/spa_impl.h>
30 #include <sys/txg.h>
31 #include <sys/vdev_impl.h>
32 #include <sys/vdev_trim.h>
33 #include <sys/metaslab_impl.h>
34 #include <sys/dsl_synctask.h>
35 #include <sys/zap.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/arc_impl.h>
38
39 /*
40 * TRIM is a feature which is used to notify a SSD that some previously
41 * written space is no longer allocated by the pool. This is useful because
42 * writes to a SSD must be performed to blocks which have first been erased.
43 * Ensuring the SSD always has a supply of erased blocks for new writes
44 * helps prevent the performance from deteriorating.
45 *
46 * There are two supported TRIM methods; manual and automatic.
47 *
48 * Manual TRIM:
49 *
50 * A manual TRIM is initiated by running the 'zpool trim' command. A single
51 * 'vdev_trim' thread is created for each leaf vdev, and it is responsible for
52 * managing that vdev TRIM process. This involves iterating over all the
53 * metaslabs, calculating the unallocated space ranges, and then issuing the
54 * required TRIM I/Os.
55 *
56 * While a metaslab is being actively trimmed it is not eligible to perform
57 * new allocations. After traversing all of the metaslabs the thread is
58 * terminated. Finally, both the requested options and current progress of
59 * the TRIM are regularly written to the pool. This allows the TRIM to be
60 * suspended and resumed as needed.
61 *
62 * Automatic TRIM:
63 *
64 * An automatic TRIM is enabled by setting the 'autotrim' pool property
65 * to 'on'. When enabled, a `vdev_autotrim' thread is created for each
66 * top-level (not leaf) vdev in the pool. These threads perform the same
67 * core TRIM process as a manual TRIM, but with a few key differences.
68 *
69 * 1) Automatic TRIM happens continuously in the background and operates
70 * solely on recently freed blocks (ms_trim not ms_allocatable).
71 *
72 * 2) Each thread is associated with a top-level (not leaf) vdev. This has
73 * the benefit of simplifying the threading model, it makes it easier
74 * to coordinate administrative commands, and it ensures only a single
75 * metaslab is disabled at a time. Unlike manual TRIM, this means each
76 * 'vdev_autotrim' thread is responsible for issuing TRIM I/Os for its
77 * children.
78 *
79 * 3) There is no automatic TRIM progress information stored on disk, nor
80 * is it reported by 'zpool status'.
81 *
82 * While the automatic TRIM process is highly effective it is more likely
83 * than a manual TRIM to encounter tiny ranges. Ranges less than or equal to
84 * 'zfs_trim_extent_bytes_min' (32k) are considered too small to efficiently
85 * TRIM and are skipped. This means small amounts of freed space may not
86 * be automatically trimmed.
87 *
88 * Furthermore, devices with attached hot spares and devices being actively
89 * replaced are skipped. This is done to avoid adding additional stress to
90 * a potentially unhealthy device and to minimize the required rebuild time.
91 *
92 * For this reason it may be beneficial to occasionally manually TRIM a pool
93 * even when automatic TRIM is enabled.
94 */
95
96 /*
97 * Maximum size of TRIM I/O, ranges will be chunked in to 128MiB lengths.
98 */
99 static unsigned int zfs_trim_extent_bytes_max = 128 * 1024 * 1024;
100
101 /*
102 * Minimum size of TRIM I/O, extents smaller than 32Kib will be skipped.
103 */
104 static unsigned int zfs_trim_extent_bytes_min = 32 * 1024;
105
106 /*
107 * Skip uninitialized metaslabs during the TRIM process. This option is
108 * useful for pools constructed from large thinly-provisioned devices where
109 * TRIM operations are slow. As a pool ages an increasing fraction of
110 * the pools metaslabs will be initialized progressively degrading the
111 * usefulness of this option. This setting is stored when starting a
112 * manual TRIM and will persist for the duration of the requested TRIM.
113 */
114 unsigned int zfs_trim_metaslab_skip = 0;
115
116 /*
117 * Maximum number of queued TRIM I/Os per leaf vdev. The number of
118 * concurrent TRIM I/Os issued to the device is controlled by the
119 * zfs_vdev_trim_min_active and zfs_vdev_trim_max_active module options.
120 */
121 static unsigned int zfs_trim_queue_limit = 10;
122
123 /*
124 * The minimum number of transaction groups between automatic trims of a
125 * metaslab. This setting represents a trade-off between issuing more
126 * efficient TRIM operations, by allowing them to be aggregated longer,
127 * and issuing them promptly so the trimmed space is available. Note
128 * that this value is a minimum; metaslabs can be trimmed less frequently
129 * when there are a large number of ranges which need to be trimmed.
130 *
131 * Increasing this value will allow frees to be aggregated for a longer
132 * time. This can result is larger TRIM operations, and increased memory
133 * usage in order to track the ranges to be trimmed. Decreasing this value
134 * has the opposite effect. The default value of 32 was determined though
135 * testing to be a reasonable compromise.
136 */
137 static unsigned int zfs_trim_txg_batch = 32;
138
139 /*
140 * The trim_args are a control structure which describe how a leaf vdev
141 * should be trimmed. The core elements are the vdev, the metaslab being
142 * trimmed and a range tree containing the extents to TRIM. All provided
143 * ranges must be within the metaslab.
144 */
145 typedef struct trim_args {
146 /*
147 * These fields are set by the caller of vdev_trim_ranges().
148 */
149 vdev_t *trim_vdev; /* Leaf vdev to TRIM */
150 metaslab_t *trim_msp; /* Disabled metaslab */
151 range_tree_t *trim_tree; /* TRIM ranges (in metaslab) */
152 trim_type_t trim_type; /* Manual or auto TRIM */
153 uint64_t trim_extent_bytes_max; /* Maximum TRIM I/O size */
154 uint64_t trim_extent_bytes_min; /* Minimum TRIM I/O size */
155 enum trim_flag trim_flags; /* TRIM flags (secure) */
156
157 /*
158 * These fields are updated by vdev_trim_ranges().
159 */
160 hrtime_t trim_start_time; /* Start time */
161 uint64_t trim_bytes_done; /* Bytes trimmed */
162 } trim_args_t;
163
164 /*
165 * Determines whether a vdev_trim_thread() should be stopped.
166 */
167 static boolean_t
168 vdev_trim_should_stop(vdev_t *vd)
169 {
170 return (vd->vdev_trim_exit_wanted || !vdev_writeable(vd) ||
171 vd->vdev_detached || vd->vdev_top->vdev_removing);
172 }
173
174 /*
175 * Determines whether a vdev_autotrim_thread() should be stopped.
176 */
177 static boolean_t
178 vdev_autotrim_should_stop(vdev_t *tvd)
179 {
180 return (tvd->vdev_autotrim_exit_wanted ||
181 !vdev_writeable(tvd) || tvd->vdev_removing ||
182 spa_get_autotrim(tvd->vdev_spa) == SPA_AUTOTRIM_OFF);
183 }
184
185 /*
186 * The sync task for updating the on-disk state of a manual TRIM. This
187 * is scheduled by vdev_trim_change_state().
188 */
189 static void
190 vdev_trim_zap_update_sync(void *arg, dmu_tx_t *tx)
191 {
192 /*
193 * We pass in the guid instead of the vdev_t since the vdev may
194 * have been freed prior to the sync task being processed. This
195 * happens when a vdev is detached as we call spa_config_vdev_exit(),
196 * stop the trimming thread, schedule the sync task, and free
197 * the vdev. Later when the scheduled sync task is invoked, it would
198 * find that the vdev has been freed.
199 */
200 uint64_t guid = *(uint64_t *)arg;
201 uint64_t txg = dmu_tx_get_txg(tx);
202 kmem_free(arg, sizeof (uint64_t));
203
204 vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
205 if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
206 return;
207
208 uint64_t last_offset = vd->vdev_trim_offset[txg & TXG_MASK];
209 vd->vdev_trim_offset[txg & TXG_MASK] = 0;
210
211 VERIFY3U(vd->vdev_leaf_zap, !=, 0);
212
213 objset_t *mos = vd->vdev_spa->spa_meta_objset;
214
215 if (last_offset > 0 || vd->vdev_trim_last_offset == UINT64_MAX) {
216
217 if (vd->vdev_trim_last_offset == UINT64_MAX)
218 last_offset = 0;
219
220 vd->vdev_trim_last_offset = last_offset;
221 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
222 VDEV_LEAF_ZAP_TRIM_LAST_OFFSET,
223 sizeof (last_offset), 1, &last_offset, tx));
224 }
225
226 if (vd->vdev_trim_action_time > 0) {
227 uint64_t val = (uint64_t)vd->vdev_trim_action_time;
228 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
229 VDEV_LEAF_ZAP_TRIM_ACTION_TIME, sizeof (val),
230 1, &val, tx));
231 }
232
233 if (vd->vdev_trim_rate > 0) {
234 uint64_t rate = (uint64_t)vd->vdev_trim_rate;
235
236 if (rate == UINT64_MAX)
237 rate = 0;
238
239 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
240 VDEV_LEAF_ZAP_TRIM_RATE, sizeof (rate), 1, &rate, tx));
241 }
242
243 uint64_t partial = vd->vdev_trim_partial;
244 if (partial == UINT64_MAX)
245 partial = 0;
246
247 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL,
248 sizeof (partial), 1, &partial, tx));
249
250 uint64_t secure = vd->vdev_trim_secure;
251 if (secure == UINT64_MAX)
252 secure = 0;
253
254 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE,
255 sizeof (secure), 1, &secure, tx));
256
257
258 uint64_t trim_state = vd->vdev_trim_state;
259 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE,
260 sizeof (trim_state), 1, &trim_state, tx));
261 }
262
263 /*
264 * Update the on-disk state of a manual TRIM. This is called to request
265 * that a TRIM be started/suspended/canceled, or to change one of the
266 * TRIM options (partial, secure, rate).
267 */
268 static void
269 vdev_trim_change_state(vdev_t *vd, vdev_trim_state_t new_state,
270 uint64_t rate, boolean_t partial, boolean_t secure)
271 {
272 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
273 spa_t *spa = vd->vdev_spa;
274
275 if (new_state == vd->vdev_trim_state)
276 return;
277
278 /*
279 * Copy the vd's guid, this will be freed by the sync task.
280 */
281 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
282 *guid = vd->vdev_guid;
283
284 /*
285 * If we're suspending, then preserve the original start time.
286 */
287 if (vd->vdev_trim_state != VDEV_TRIM_SUSPENDED) {
288 vd->vdev_trim_action_time = gethrestime_sec();
289 }
290
291 /*
292 * If we're activating, then preserve the requested rate and trim
293 * method. Setting the last offset and rate to UINT64_MAX is used
294 * as a sentinel to indicate they should be reset to default values.
295 */
296 if (new_state == VDEV_TRIM_ACTIVE) {
297 if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE ||
298 vd->vdev_trim_state == VDEV_TRIM_CANCELED) {
299 vd->vdev_trim_last_offset = UINT64_MAX;
300 vd->vdev_trim_rate = UINT64_MAX;
301 vd->vdev_trim_partial = UINT64_MAX;
302 vd->vdev_trim_secure = UINT64_MAX;
303 }
304
305 if (rate != 0)
306 vd->vdev_trim_rate = rate;
307
308 if (partial != 0)
309 vd->vdev_trim_partial = partial;
310
311 if (secure != 0)
312 vd->vdev_trim_secure = secure;
313 }
314
315 vdev_trim_state_t old_state = vd->vdev_trim_state;
316 boolean_t resumed = (old_state == VDEV_TRIM_SUSPENDED);
317 vd->vdev_trim_state = new_state;
318
319 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
320 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
321 dsl_sync_task_nowait(spa_get_dsl(spa), vdev_trim_zap_update_sync,
322 guid, tx);
323
324 switch (new_state) {
325 case VDEV_TRIM_ACTIVE:
326 spa_event_notify(spa, vd, NULL,
327 resumed ? ESC_ZFS_TRIM_RESUME : ESC_ZFS_TRIM_START);
328 spa_history_log_internal(spa, "trim", tx,
329 "vdev=%s activated", vd->vdev_path);
330 break;
331 case VDEV_TRIM_SUSPENDED:
332 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_SUSPEND);
333 spa_history_log_internal(spa, "trim", tx,
334 "vdev=%s suspended", vd->vdev_path);
335 break;
336 case VDEV_TRIM_CANCELED:
337 if (old_state == VDEV_TRIM_ACTIVE ||
338 old_state == VDEV_TRIM_SUSPENDED) {
339 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_CANCEL);
340 spa_history_log_internal(spa, "trim", tx,
341 "vdev=%s canceled", vd->vdev_path);
342 }
343 break;
344 case VDEV_TRIM_COMPLETE:
345 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_FINISH);
346 spa_history_log_internal(spa, "trim", tx,
347 "vdev=%s complete", vd->vdev_path);
348 break;
349 default:
350 panic("invalid state %llu", (unsigned long long)new_state);
351 }
352
353 dmu_tx_commit(tx);
354
355 if (new_state != VDEV_TRIM_ACTIVE)
356 spa_notify_waiters(spa);
357 }
358
359 /*
360 * The zio_done_func_t done callback for each manual TRIM issued. It is
361 * responsible for updating the TRIM stats, reissuing failed TRIM I/Os,
362 * and limiting the number of in flight TRIM I/Os.
363 */
364 static void
365 vdev_trim_cb(zio_t *zio)
366 {
367 vdev_t *vd = zio->io_vd;
368
369 mutex_enter(&vd->vdev_trim_io_lock);
370 if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
371 /*
372 * The I/O failed because the vdev was unavailable; roll the
373 * last offset back. (This works because spa_sync waits on
374 * spa_txg_zio before it runs sync tasks.)
375 */
376 uint64_t *offset =
377 &vd->vdev_trim_offset[zio->io_txg & TXG_MASK];
378 *offset = MIN(*offset, zio->io_offset);
379 } else {
380 if (zio->io_error != 0) {
381 vd->vdev_stat.vs_trim_errors++;
382 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL,
383 0, 0, 0, 0, 1, zio->io_orig_size);
384 } else {
385 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL,
386 1, zio->io_orig_size, 0, 0, 0, 0);
387 }
388
389 vd->vdev_trim_bytes_done += zio->io_orig_size;
390 }
391
392 ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_MANUAL], >, 0);
393 vd->vdev_trim_inflight[TRIM_TYPE_MANUAL]--;
394 cv_broadcast(&vd->vdev_trim_io_cv);
395 mutex_exit(&vd->vdev_trim_io_lock);
396
397 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
398 }
399
400 /*
401 * The zio_done_func_t done callback for each automatic TRIM issued. It
402 * is responsible for updating the TRIM stats and limiting the number of
403 * in flight TRIM I/Os. Automatic TRIM I/Os are best effort and are
404 * never reissued on failure.
405 */
406 static void
407 vdev_autotrim_cb(zio_t *zio)
408 {
409 vdev_t *vd = zio->io_vd;
410
411 mutex_enter(&vd->vdev_trim_io_lock);
412
413 if (zio->io_error != 0) {
414 vd->vdev_stat.vs_trim_errors++;
415 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO,
416 0, 0, 0, 0, 1, zio->io_orig_size);
417 } else {
418 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO,
419 1, zio->io_orig_size, 0, 0, 0, 0);
420 }
421
422 ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_AUTO], >, 0);
423 vd->vdev_trim_inflight[TRIM_TYPE_AUTO]--;
424 cv_broadcast(&vd->vdev_trim_io_cv);
425 mutex_exit(&vd->vdev_trim_io_lock);
426
427 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
428 }
429
430 /*
431 * The zio_done_func_t done callback for each TRIM issued via
432 * vdev_trim_simple(). It is responsible for updating the TRIM stats and
433 * limiting the number of in flight TRIM I/Os. Simple TRIM I/Os are best
434 * effort and are never reissued on failure.
435 */
436 static void
437 vdev_trim_simple_cb(zio_t *zio)
438 {
439 vdev_t *vd = zio->io_vd;
440
441 mutex_enter(&vd->vdev_trim_io_lock);
442
443 if (zio->io_error != 0) {
444 vd->vdev_stat.vs_trim_errors++;
445 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE,
446 0, 0, 0, 0, 1, zio->io_orig_size);
447 } else {
448 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE,
449 1, zio->io_orig_size, 0, 0, 0, 0);
450 }
451
452 ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE], >, 0);
453 vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE]--;
454 cv_broadcast(&vd->vdev_trim_io_cv);
455 mutex_exit(&vd->vdev_trim_io_lock);
456
457 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
458 }
459 /*
460 * Returns the average trim rate in bytes/sec for the ta->trim_vdev.
461 */
462 static uint64_t
463 vdev_trim_calculate_rate(trim_args_t *ta)
464 {
465 return (ta->trim_bytes_done * 1000 /
466 (NSEC2MSEC(gethrtime() - ta->trim_start_time) + 1));
467 }
468
469 /*
470 * Issues a physical TRIM and takes care of rate limiting (bytes/sec)
471 * and number of concurrent TRIM I/Os.
472 */
473 static int
474 vdev_trim_range(trim_args_t *ta, uint64_t start, uint64_t size)
475 {
476 vdev_t *vd = ta->trim_vdev;
477 spa_t *spa = vd->vdev_spa;
478 void *cb;
479
480 mutex_enter(&vd->vdev_trim_io_lock);
481
482 /*
483 * Limit manual TRIM I/Os to the requested rate. This does not
484 * apply to automatic TRIM since no per vdev rate can be specified.
485 */
486 if (ta->trim_type == TRIM_TYPE_MANUAL) {
487 while (vd->vdev_trim_rate != 0 && !vdev_trim_should_stop(vd) &&
488 vdev_trim_calculate_rate(ta) > vd->vdev_trim_rate) {
489 cv_timedwait_idle(&vd->vdev_trim_io_cv,
490 &vd->vdev_trim_io_lock, ddi_get_lbolt() +
491 MSEC_TO_TICK(10));
492 }
493 }
494 ta->trim_bytes_done += size;
495
496 /* Limit in flight trimming I/Os */
497 while (vd->vdev_trim_inflight[0] + vd->vdev_trim_inflight[1] +
498 vd->vdev_trim_inflight[2] >= zfs_trim_queue_limit) {
499 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
500 }
501 vd->vdev_trim_inflight[ta->trim_type]++;
502 mutex_exit(&vd->vdev_trim_io_lock);
503
504 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
505 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
506 uint64_t txg = dmu_tx_get_txg(tx);
507
508 spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
509 mutex_enter(&vd->vdev_trim_lock);
510
511 if (ta->trim_type == TRIM_TYPE_MANUAL &&
512 vd->vdev_trim_offset[txg & TXG_MASK] == 0) {
513 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
514 *guid = vd->vdev_guid;
515
516 /* This is the first write of this txg. */
517 dsl_sync_task_nowait(spa_get_dsl(spa),
518 vdev_trim_zap_update_sync, guid, tx);
519 }
520
521 /*
522 * We know the vdev_t will still be around since all consumers of
523 * vdev_free must stop the trimming first.
524 */
525 if ((ta->trim_type == TRIM_TYPE_MANUAL &&
526 vdev_trim_should_stop(vd)) ||
527 (ta->trim_type == TRIM_TYPE_AUTO &&
528 vdev_autotrim_should_stop(vd->vdev_top))) {
529 mutex_enter(&vd->vdev_trim_io_lock);
530 vd->vdev_trim_inflight[ta->trim_type]--;
531 mutex_exit(&vd->vdev_trim_io_lock);
532 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
533 mutex_exit(&vd->vdev_trim_lock);
534 dmu_tx_commit(tx);
535 return (SET_ERROR(EINTR));
536 }
537 mutex_exit(&vd->vdev_trim_lock);
538
539 if (ta->trim_type == TRIM_TYPE_MANUAL)
540 vd->vdev_trim_offset[txg & TXG_MASK] = start + size;
541
542 if (ta->trim_type == TRIM_TYPE_MANUAL) {
543 cb = vdev_trim_cb;
544 } else if (ta->trim_type == TRIM_TYPE_AUTO) {
545 cb = vdev_autotrim_cb;
546 } else {
547 cb = vdev_trim_simple_cb;
548 }
549
550 zio_nowait(zio_trim(spa->spa_txg_zio[txg & TXG_MASK], vd,
551 start, size, cb, NULL, ZIO_PRIORITY_TRIM, ZIO_FLAG_CANFAIL,
552 ta->trim_flags));
553 /* vdev_trim_cb and vdev_autotrim_cb release SCL_STATE_ALL */
554
555 dmu_tx_commit(tx);
556
557 return (0);
558 }
559
560 /*
561 * Issues TRIM I/Os for all ranges in the provided ta->trim_tree range tree.
562 * Additional parameters describing how the TRIM should be performed must
563 * be set in the trim_args structure. See the trim_args definition for
564 * additional information.
565 */
566 static int
567 vdev_trim_ranges(trim_args_t *ta)
568 {
569 vdev_t *vd = ta->trim_vdev;
570 zfs_btree_t *t = &ta->trim_tree->rt_root;
571 zfs_btree_index_t idx;
572 uint64_t extent_bytes_max = ta->trim_extent_bytes_max;
573 uint64_t extent_bytes_min = ta->trim_extent_bytes_min;
574 spa_t *spa = vd->vdev_spa;
575
576 ta->trim_start_time = gethrtime();
577 ta->trim_bytes_done = 0;
578
579 for (range_seg_t *rs = zfs_btree_first(t, &idx); rs != NULL;
580 rs = zfs_btree_next(t, &idx, &idx)) {
581 uint64_t size = rs_get_end(rs, ta->trim_tree) - rs_get_start(rs,
582 ta->trim_tree);
583
584 if (extent_bytes_min && size < extent_bytes_min) {
585 spa_iostats_trim_add(spa, ta->trim_type,
586 0, 0, 1, size, 0, 0);
587 continue;
588 }
589
590 /* Split range into legally-sized physical chunks */
591 uint64_t writes_required = ((size - 1) / extent_bytes_max) + 1;
592
593 for (uint64_t w = 0; w < writes_required; w++) {
594 int error;
595
596 error = vdev_trim_range(ta, VDEV_LABEL_START_SIZE +
597 rs_get_start(rs, ta->trim_tree) +
598 (w *extent_bytes_max), MIN(size -
599 (w * extent_bytes_max), extent_bytes_max));
600 if (error != 0) {
601 return (error);
602 }
603 }
604 }
605
606 return (0);
607 }
608
609 static void
610 vdev_trim_xlate_last_rs_end(void *arg, range_seg64_t *physical_rs)
611 {
612 uint64_t *last_rs_end = (uint64_t *)arg;
613
614 if (physical_rs->rs_end > *last_rs_end)
615 *last_rs_end = physical_rs->rs_end;
616 }
617
618 static void
619 vdev_trim_xlate_progress(void *arg, range_seg64_t *physical_rs)
620 {
621 vdev_t *vd = (vdev_t *)arg;
622
623 uint64_t size = physical_rs->rs_end - physical_rs->rs_start;
624 vd->vdev_trim_bytes_est += size;
625
626 if (vd->vdev_trim_last_offset >= physical_rs->rs_end) {
627 vd->vdev_trim_bytes_done += size;
628 } else if (vd->vdev_trim_last_offset > physical_rs->rs_start &&
629 vd->vdev_trim_last_offset <= physical_rs->rs_end) {
630 vd->vdev_trim_bytes_done +=
631 vd->vdev_trim_last_offset - physical_rs->rs_start;
632 }
633 }
634
635 /*
636 * Calculates the completion percentage of a manual TRIM.
637 */
638 static void
639 vdev_trim_calculate_progress(vdev_t *vd)
640 {
641 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
642 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
643 ASSERT(vd->vdev_leaf_zap != 0);
644
645 vd->vdev_trim_bytes_est = 0;
646 vd->vdev_trim_bytes_done = 0;
647
648 for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
649 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
650 mutex_enter(&msp->ms_lock);
651
652 uint64_t ms_free = (msp->ms_size -
653 metaslab_allocated_space(msp)) /
654 vdev_get_ndisks(vd->vdev_top);
655
656 /*
657 * Convert the metaslab range to a physical range
658 * on our vdev. We use this to determine if we are
659 * in the middle of this metaslab range.
660 */
661 range_seg64_t logical_rs, physical_rs, remain_rs;
662 logical_rs.rs_start = msp->ms_start;
663 logical_rs.rs_end = msp->ms_start + msp->ms_size;
664
665 /* Metaslab space after this offset has not been trimmed. */
666 vdev_xlate(vd, &logical_rs, &physical_rs, &remain_rs);
667 if (vd->vdev_trim_last_offset <= physical_rs.rs_start) {
668 vd->vdev_trim_bytes_est += ms_free;
669 mutex_exit(&msp->ms_lock);
670 continue;
671 }
672
673 /* Metaslab space before this offset has been trimmed */
674 uint64_t last_rs_end = physical_rs.rs_end;
675 if (!vdev_xlate_is_empty(&remain_rs)) {
676 vdev_xlate_walk(vd, &remain_rs,
677 vdev_trim_xlate_last_rs_end, &last_rs_end);
678 }
679
680 if (vd->vdev_trim_last_offset > last_rs_end) {
681 vd->vdev_trim_bytes_done += ms_free;
682 vd->vdev_trim_bytes_est += ms_free;
683 mutex_exit(&msp->ms_lock);
684 continue;
685 }
686
687 /*
688 * If we get here, we're in the middle of trimming this
689 * metaslab. Load it and walk the free tree for more
690 * accurate progress estimation.
691 */
692 VERIFY0(metaslab_load(msp));
693
694 range_tree_t *rt = msp->ms_allocatable;
695 zfs_btree_t *bt = &rt->rt_root;
696 zfs_btree_index_t idx;
697 for (range_seg_t *rs = zfs_btree_first(bt, &idx);
698 rs != NULL; rs = zfs_btree_next(bt, &idx, &idx)) {
699 logical_rs.rs_start = rs_get_start(rs, rt);
700 logical_rs.rs_end = rs_get_end(rs, rt);
701
702 vdev_xlate_walk(vd, &logical_rs,
703 vdev_trim_xlate_progress, vd);
704 }
705 mutex_exit(&msp->ms_lock);
706 }
707 }
708
709 /*
710 * Load from disk the vdev's manual TRIM information. This includes the
711 * state, progress, and options provided when initiating the manual TRIM.
712 */
713 static int
714 vdev_trim_load(vdev_t *vd)
715 {
716 int err = 0;
717 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
718 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
719 ASSERT(vd->vdev_leaf_zap != 0);
720
721 if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE ||
722 vd->vdev_trim_state == VDEV_TRIM_SUSPENDED) {
723 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
724 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_LAST_OFFSET,
725 sizeof (vd->vdev_trim_last_offset), 1,
726 &vd->vdev_trim_last_offset);
727 if (err == ENOENT) {
728 vd->vdev_trim_last_offset = 0;
729 err = 0;
730 }
731
732 if (err == 0) {
733 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
734 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_RATE,
735 sizeof (vd->vdev_trim_rate), 1,
736 &vd->vdev_trim_rate);
737 if (err == ENOENT) {
738 vd->vdev_trim_rate = 0;
739 err = 0;
740 }
741 }
742
743 if (err == 0) {
744 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
745 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL,
746 sizeof (vd->vdev_trim_partial), 1,
747 &vd->vdev_trim_partial);
748 if (err == ENOENT) {
749 vd->vdev_trim_partial = 0;
750 err = 0;
751 }
752 }
753
754 if (err == 0) {
755 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
756 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE,
757 sizeof (vd->vdev_trim_secure), 1,
758 &vd->vdev_trim_secure);
759 if (err == ENOENT) {
760 vd->vdev_trim_secure = 0;
761 err = 0;
762 }
763 }
764 }
765
766 vdev_trim_calculate_progress(vd);
767
768 return (err);
769 }
770
771 static void
772 vdev_trim_xlate_range_add(void *arg, range_seg64_t *physical_rs)
773 {
774 trim_args_t *ta = arg;
775 vdev_t *vd = ta->trim_vdev;
776
777 /*
778 * Only a manual trim will be traversing the vdev sequentially.
779 * For an auto trim all valid ranges should be added.
780 */
781 if (ta->trim_type == TRIM_TYPE_MANUAL) {
782
783 /* Only add segments that we have not visited yet */
784 if (physical_rs->rs_end <= vd->vdev_trim_last_offset)
785 return;
786
787 /* Pick up where we left off mid-range. */
788 if (vd->vdev_trim_last_offset > physical_rs->rs_start) {
789 ASSERT3U(physical_rs->rs_end, >,
790 vd->vdev_trim_last_offset);
791 physical_rs->rs_start = vd->vdev_trim_last_offset;
792 }
793 }
794
795 ASSERT3U(physical_rs->rs_end, >, physical_rs->rs_start);
796
797 range_tree_add(ta->trim_tree, physical_rs->rs_start,
798 physical_rs->rs_end - physical_rs->rs_start);
799 }
800
801 /*
802 * Convert the logical range into physical ranges and add them to the
803 * range tree passed in the trim_args_t.
804 */
805 static void
806 vdev_trim_range_add(void *arg, uint64_t start, uint64_t size)
807 {
808 trim_args_t *ta = arg;
809 vdev_t *vd = ta->trim_vdev;
810 range_seg64_t logical_rs;
811 logical_rs.rs_start = start;
812 logical_rs.rs_end = start + size;
813
814 /*
815 * Every range to be trimmed must be part of ms_allocatable.
816 * When ZFS_DEBUG_TRIM is set load the metaslab to verify this
817 * is always the case.
818 */
819 if (zfs_flags & ZFS_DEBUG_TRIM) {
820 metaslab_t *msp = ta->trim_msp;
821 VERIFY0(metaslab_load(msp));
822 VERIFY3B(msp->ms_loaded, ==, B_TRUE);
823 VERIFY(range_tree_contains(msp->ms_allocatable, start, size));
824 }
825
826 ASSERT(vd->vdev_ops->vdev_op_leaf);
827 vdev_xlate_walk(vd, &logical_rs, vdev_trim_xlate_range_add, arg);
828 }
829
830 /*
831 * Each manual TRIM thread is responsible for trimming the unallocated
832 * space for each leaf vdev. This is accomplished by sequentially iterating
833 * over its top-level metaslabs and issuing TRIM I/O for the space described
834 * by its ms_allocatable. While a metaslab is undergoing trimming it is
835 * not eligible for new allocations.
836 */
837 static __attribute__((noreturn)) void
838 vdev_trim_thread(void *arg)
839 {
840 vdev_t *vd = arg;
841 spa_t *spa = vd->vdev_spa;
842 trim_args_t ta;
843 int error = 0;
844
845 /*
846 * The VDEV_LEAF_ZAP_TRIM_* entries may have been updated by
847 * vdev_trim(). Wait for the updated values to be reflected
848 * in the zap in order to start with the requested settings.
849 */
850 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
851
852 ASSERT(vdev_is_concrete(vd));
853 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
854
855 vd->vdev_trim_last_offset = 0;
856 vd->vdev_trim_rate = 0;
857 vd->vdev_trim_partial = 0;
858 vd->vdev_trim_secure = 0;
859
860 VERIFY0(vdev_trim_load(vd));
861
862 ta.trim_vdev = vd;
863 ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
864 ta.trim_extent_bytes_min = zfs_trim_extent_bytes_min;
865 ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
866 ta.trim_type = TRIM_TYPE_MANUAL;
867 ta.trim_flags = 0;
868
869 /*
870 * When a secure TRIM has been requested infer that the intent
871 * is that everything must be trimmed. Override the default
872 * minimum TRIM size to prevent ranges from being skipped.
873 */
874 if (vd->vdev_trim_secure) {
875 ta.trim_flags |= ZIO_TRIM_SECURE;
876 ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
877 }
878
879 uint64_t ms_count = 0;
880 for (uint64_t i = 0; !vd->vdev_detached &&
881 i < vd->vdev_top->vdev_ms_count; i++) {
882 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
883
884 /*
885 * If we've expanded the top-level vdev or it's our
886 * first pass, calculate our progress.
887 */
888 if (vd->vdev_top->vdev_ms_count != ms_count) {
889 vdev_trim_calculate_progress(vd);
890 ms_count = vd->vdev_top->vdev_ms_count;
891 }
892
893 spa_config_exit(spa, SCL_CONFIG, FTAG);
894 metaslab_disable(msp);
895 mutex_enter(&msp->ms_lock);
896 VERIFY0(metaslab_load(msp));
897
898 /*
899 * If a partial TRIM was requested skip metaslabs which have
900 * never been initialized and thus have never been written.
901 */
902 if (msp->ms_sm == NULL && vd->vdev_trim_partial) {
903 mutex_exit(&msp->ms_lock);
904 metaslab_enable(msp, B_FALSE, B_FALSE);
905 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
906 vdev_trim_calculate_progress(vd);
907 continue;
908 }
909
910 ta.trim_msp = msp;
911 range_tree_walk(msp->ms_allocatable, vdev_trim_range_add, &ta);
912 range_tree_vacate(msp->ms_trim, NULL, NULL);
913 mutex_exit(&msp->ms_lock);
914
915 error = vdev_trim_ranges(&ta);
916 metaslab_enable(msp, B_TRUE, B_FALSE);
917 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
918
919 range_tree_vacate(ta.trim_tree, NULL, NULL);
920 if (error != 0)
921 break;
922 }
923
924 spa_config_exit(spa, SCL_CONFIG, FTAG);
925 mutex_enter(&vd->vdev_trim_io_lock);
926 while (vd->vdev_trim_inflight[0] > 0) {
927 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
928 }
929 mutex_exit(&vd->vdev_trim_io_lock);
930
931 range_tree_destroy(ta.trim_tree);
932
933 mutex_enter(&vd->vdev_trim_lock);
934 if (!vd->vdev_trim_exit_wanted) {
935 if (vdev_writeable(vd)) {
936 vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE,
937 vd->vdev_trim_rate, vd->vdev_trim_partial,
938 vd->vdev_trim_secure);
939 } else if (vd->vdev_faulted) {
940 vdev_trim_change_state(vd, VDEV_TRIM_CANCELED,
941 vd->vdev_trim_rate, vd->vdev_trim_partial,
942 vd->vdev_trim_secure);
943 }
944 }
945 ASSERT(vd->vdev_trim_thread != NULL || vd->vdev_trim_inflight[0] == 0);
946
947 /*
948 * Drop the vdev_trim_lock while we sync out the txg since it's
949 * possible that a device might be trying to come online and must
950 * check to see if it needs to restart a trim. That thread will be
951 * holding the spa_config_lock which would prevent the txg_wait_synced
952 * from completing.
953 */
954 mutex_exit(&vd->vdev_trim_lock);
955 txg_wait_synced(spa_get_dsl(spa), 0);
956 mutex_enter(&vd->vdev_trim_lock);
957
958 vd->vdev_trim_thread = NULL;
959 cv_broadcast(&vd->vdev_trim_cv);
960 mutex_exit(&vd->vdev_trim_lock);
961
962 thread_exit();
963 }
964
965 /*
966 * Initiates a manual TRIM for the vdev_t. Callers must hold vdev_trim_lock,
967 * the vdev_t must be a leaf and cannot already be manually trimming.
968 */
969 void
970 vdev_trim(vdev_t *vd, uint64_t rate, boolean_t partial, boolean_t secure)
971 {
972 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
973 ASSERT(vd->vdev_ops->vdev_op_leaf);
974 ASSERT(vdev_is_concrete(vd));
975 ASSERT3P(vd->vdev_trim_thread, ==, NULL);
976 ASSERT(!vd->vdev_detached);
977 ASSERT(!vd->vdev_trim_exit_wanted);
978 ASSERT(!vd->vdev_top->vdev_removing);
979
980 vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, rate, partial, secure);
981 vd->vdev_trim_thread = thread_create(NULL, 0,
982 vdev_trim_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
983 }
984
985 /*
986 * Wait for the trimming thread to be terminated (canceled or stopped).
987 */
988 static void
989 vdev_trim_stop_wait_impl(vdev_t *vd)
990 {
991 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
992
993 while (vd->vdev_trim_thread != NULL)
994 cv_wait(&vd->vdev_trim_cv, &vd->vdev_trim_lock);
995
996 ASSERT3P(vd->vdev_trim_thread, ==, NULL);
997 vd->vdev_trim_exit_wanted = B_FALSE;
998 }
999
1000 /*
1001 * Wait for vdev trim threads which were listed to cleanly exit.
1002 */
1003 void
1004 vdev_trim_stop_wait(spa_t *spa, list_t *vd_list)
1005 {
1006 (void) spa;
1007 vdev_t *vd;
1008
1009 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1010
1011 while ((vd = list_remove_head(vd_list)) != NULL) {
1012 mutex_enter(&vd->vdev_trim_lock);
1013 vdev_trim_stop_wait_impl(vd);
1014 mutex_exit(&vd->vdev_trim_lock);
1015 }
1016 }
1017
1018 /*
1019 * Stop trimming a device, with the resultant trimming state being tgt_state.
1020 * For blocking behavior pass NULL for vd_list. Otherwise, when a list_t is
1021 * provided the stopping vdev is inserted in to the list. Callers are then
1022 * required to call vdev_trim_stop_wait() to block for all the trim threads
1023 * to exit. The caller must hold vdev_trim_lock and must not be writing to
1024 * the spa config, as the trimming thread may try to enter the config as a
1025 * reader before exiting.
1026 */
1027 void
1028 vdev_trim_stop(vdev_t *vd, vdev_trim_state_t tgt_state, list_t *vd_list)
1029 {
1030 ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER));
1031 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
1032 ASSERT(vd->vdev_ops->vdev_op_leaf);
1033 ASSERT(vdev_is_concrete(vd));
1034
1035 /*
1036 * Allow cancel requests to proceed even if the trim thread has
1037 * stopped.
1038 */
1039 if (vd->vdev_trim_thread == NULL && tgt_state != VDEV_TRIM_CANCELED)
1040 return;
1041
1042 vdev_trim_change_state(vd, tgt_state, 0, 0, 0);
1043 vd->vdev_trim_exit_wanted = B_TRUE;
1044
1045 if (vd_list == NULL) {
1046 vdev_trim_stop_wait_impl(vd);
1047 } else {
1048 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1049 list_insert_tail(vd_list, vd);
1050 }
1051 }
1052
1053 /*
1054 * Requests that all listed vdevs stop trimming.
1055 */
1056 static void
1057 vdev_trim_stop_all_impl(vdev_t *vd, vdev_trim_state_t tgt_state,
1058 list_t *vd_list)
1059 {
1060 if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
1061 mutex_enter(&vd->vdev_trim_lock);
1062 vdev_trim_stop(vd, tgt_state, vd_list);
1063 mutex_exit(&vd->vdev_trim_lock);
1064 return;
1065 }
1066
1067 for (uint64_t i = 0; i < vd->vdev_children; i++) {
1068 vdev_trim_stop_all_impl(vd->vdev_child[i], tgt_state,
1069 vd_list);
1070 }
1071 }
1072
1073 /*
1074 * Convenience function to stop trimming of a vdev tree and set all trim
1075 * thread pointers to NULL.
1076 */
1077 void
1078 vdev_trim_stop_all(vdev_t *vd, vdev_trim_state_t tgt_state)
1079 {
1080 spa_t *spa = vd->vdev_spa;
1081 list_t vd_list;
1082 vdev_t *vd_l2cache;
1083
1084 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1085
1086 list_create(&vd_list, sizeof (vdev_t),
1087 offsetof(vdev_t, vdev_trim_node));
1088
1089 vdev_trim_stop_all_impl(vd, tgt_state, &vd_list);
1090
1091 /*
1092 * Iterate over cache devices and request stop trimming the
1093 * whole device in case we export the pool or remove the cache
1094 * device prematurely.
1095 */
1096 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1097 vd_l2cache = spa->spa_l2cache.sav_vdevs[i];
1098 vdev_trim_stop_all_impl(vd_l2cache, tgt_state, &vd_list);
1099 }
1100
1101 vdev_trim_stop_wait(spa, &vd_list);
1102
1103 if (vd->vdev_spa->spa_sync_on) {
1104 /* Make sure that our state has been synced to disk */
1105 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
1106 }
1107
1108 list_destroy(&vd_list);
1109 }
1110
1111 /*
1112 * Conditionally restarts a manual TRIM given its on-disk state.
1113 */
1114 void
1115 vdev_trim_restart(vdev_t *vd)
1116 {
1117 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1118 ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
1119
1120 if (vd->vdev_leaf_zap != 0) {
1121 mutex_enter(&vd->vdev_trim_lock);
1122 uint64_t trim_state = VDEV_TRIM_NONE;
1123 int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
1124 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE,
1125 sizeof (trim_state), 1, &trim_state);
1126 ASSERT(err == 0 || err == ENOENT);
1127 vd->vdev_trim_state = trim_state;
1128
1129 uint64_t timestamp = 0;
1130 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
1131 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_ACTION_TIME,
1132 sizeof (timestamp), 1, &timestamp);
1133 ASSERT(err == 0 || err == ENOENT);
1134 vd->vdev_trim_action_time = timestamp;
1135
1136 if (vd->vdev_trim_state == VDEV_TRIM_SUSPENDED ||
1137 vd->vdev_offline) {
1138 /* load progress for reporting, but don't resume */
1139 VERIFY0(vdev_trim_load(vd));
1140 } else if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE &&
1141 vdev_writeable(vd) && !vd->vdev_top->vdev_removing &&
1142 vd->vdev_trim_thread == NULL) {
1143 VERIFY0(vdev_trim_load(vd));
1144 vdev_trim(vd, vd->vdev_trim_rate,
1145 vd->vdev_trim_partial, vd->vdev_trim_secure);
1146 }
1147
1148 mutex_exit(&vd->vdev_trim_lock);
1149 }
1150
1151 for (uint64_t i = 0; i < vd->vdev_children; i++) {
1152 vdev_trim_restart(vd->vdev_child[i]);
1153 }
1154 }
1155
1156 /*
1157 * Used by the automatic TRIM when ZFS_DEBUG_TRIM is set to verify that
1158 * every TRIM range is contained within ms_allocatable.
1159 */
1160 static void
1161 vdev_trim_range_verify(void *arg, uint64_t start, uint64_t size)
1162 {
1163 trim_args_t *ta = arg;
1164 metaslab_t *msp = ta->trim_msp;
1165
1166 VERIFY3B(msp->ms_loaded, ==, B_TRUE);
1167 VERIFY3U(msp->ms_disabled, >, 0);
1168 VERIFY(range_tree_contains(msp->ms_allocatable, start, size));
1169 }
1170
1171 /*
1172 * Each automatic TRIM thread is responsible for managing the trimming of a
1173 * top-level vdev in the pool. No automatic TRIM state is maintained on-disk.
1174 *
1175 * N.B. This behavior is different from a manual TRIM where a thread
1176 * is created for each leaf vdev, instead of each top-level vdev.
1177 */
1178 static __attribute__((noreturn)) void
1179 vdev_autotrim_thread(void *arg)
1180 {
1181 vdev_t *vd = arg;
1182 spa_t *spa = vd->vdev_spa;
1183 int shift = 0;
1184
1185 mutex_enter(&vd->vdev_autotrim_lock);
1186 ASSERT3P(vd->vdev_top, ==, vd);
1187 ASSERT3P(vd->vdev_autotrim_thread, !=, NULL);
1188 mutex_exit(&vd->vdev_autotrim_lock);
1189 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1190
1191 uint64_t extent_bytes_max = zfs_trim_extent_bytes_max;
1192 uint64_t extent_bytes_min = zfs_trim_extent_bytes_min;
1193
1194 while (!vdev_autotrim_should_stop(vd)) {
1195 int txgs_per_trim = MAX(zfs_trim_txg_batch, 1);
1196 boolean_t issued_trim = B_FALSE;
1197
1198 /*
1199 * All of the metaslabs are divided in to groups of size
1200 * num_metaslabs / zfs_trim_txg_batch. Each of these groups
1201 * is composed of metaslabs which are spread evenly over the
1202 * device.
1203 *
1204 * For example, when zfs_trim_txg_batch = 32 (default) then
1205 * group 0 will contain metaslabs 0, 32, 64, ...;
1206 * group 1 will contain metaslabs 1, 33, 65, ...;
1207 * group 2 will contain metaslabs 2, 34, 66, ...; and so on.
1208 *
1209 * On each pass through the while() loop one of these groups
1210 * is selected. This is accomplished by using a shift value
1211 * to select the starting metaslab, then striding over the
1212 * metaslabs using the zfs_trim_txg_batch size. This is
1213 * done to accomplish two things.
1214 *
1215 * 1) By dividing the metaslabs in to groups, and making sure
1216 * that each group takes a minimum of one txg to process.
1217 * Then zfs_trim_txg_batch controls the minimum number of
1218 * txgs which must occur before a metaslab is revisited.
1219 *
1220 * 2) Selecting non-consecutive metaslabs distributes the
1221 * TRIM commands for a group evenly over the entire device.
1222 * This can be advantageous for certain types of devices.
1223 */
1224 for (uint64_t i = shift % txgs_per_trim; i < vd->vdev_ms_count;
1225 i += txgs_per_trim) {
1226 metaslab_t *msp = vd->vdev_ms[i];
1227 range_tree_t *trim_tree;
1228
1229 spa_config_exit(spa, SCL_CONFIG, FTAG);
1230 metaslab_disable(msp);
1231 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1232
1233 mutex_enter(&msp->ms_lock);
1234
1235 /*
1236 * Skip the metaslab when it has never been allocated
1237 * or when there are no recent frees to trim.
1238 */
1239 if (msp->ms_sm == NULL ||
1240 range_tree_is_empty(msp->ms_trim)) {
1241 mutex_exit(&msp->ms_lock);
1242 metaslab_enable(msp, B_FALSE, B_FALSE);
1243 continue;
1244 }
1245
1246 /*
1247 * Skip the metaslab when it has already been disabled.
1248 * This may happen when a manual TRIM or initialize
1249 * operation is running concurrently. In the case
1250 * of a manual TRIM, the ms_trim tree will have been
1251 * vacated. Only ranges added after the manual TRIM
1252 * disabled the metaslab will be included in the tree.
1253 * These will be processed when the automatic TRIM
1254 * next revisits this metaslab.
1255 */
1256 if (msp->ms_disabled > 1) {
1257 mutex_exit(&msp->ms_lock);
1258 metaslab_enable(msp, B_FALSE, B_FALSE);
1259 continue;
1260 }
1261
1262 /*
1263 * Allocate an empty range tree which is swapped in
1264 * for the existing ms_trim tree while it is processed.
1265 */
1266 trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL,
1267 0, 0);
1268 range_tree_swap(&msp->ms_trim, &trim_tree);
1269 ASSERT(range_tree_is_empty(msp->ms_trim));
1270
1271 /*
1272 * There are two cases when constructing the per-vdev
1273 * trim trees for a metaslab. If the top-level vdev
1274 * has no children then it is also a leaf and should
1275 * be trimmed. Otherwise our children are the leaves
1276 * and a trim tree should be constructed for each.
1277 */
1278 trim_args_t *tap;
1279 uint64_t children = vd->vdev_children;
1280 if (children == 0) {
1281 children = 1;
1282 tap = kmem_zalloc(sizeof (trim_args_t) *
1283 children, KM_SLEEP);
1284 tap[0].trim_vdev = vd;
1285 } else {
1286 tap = kmem_zalloc(sizeof (trim_args_t) *
1287 children, KM_SLEEP);
1288
1289 for (uint64_t c = 0; c < children; c++) {
1290 tap[c].trim_vdev = vd->vdev_child[c];
1291 }
1292 }
1293
1294 for (uint64_t c = 0; c < children; c++) {
1295 trim_args_t *ta = &tap[c];
1296 vdev_t *cvd = ta->trim_vdev;
1297
1298 ta->trim_msp = msp;
1299 ta->trim_extent_bytes_max = extent_bytes_max;
1300 ta->trim_extent_bytes_min = extent_bytes_min;
1301 ta->trim_type = TRIM_TYPE_AUTO;
1302 ta->trim_flags = 0;
1303
1304 if (cvd->vdev_detached ||
1305 !vdev_writeable(cvd) ||
1306 !cvd->vdev_has_trim ||
1307 cvd->vdev_trim_thread != NULL) {
1308 continue;
1309 }
1310
1311 /*
1312 * When a device has an attached hot spare, or
1313 * is being replaced it will not be trimmed.
1314 * This is done to avoid adding additional
1315 * stress to a potentially unhealthy device,
1316 * and to minimize the required rebuild time.
1317 */
1318 if (!cvd->vdev_ops->vdev_op_leaf)
1319 continue;
1320
1321 ta->trim_tree = range_tree_create(NULL,
1322 RANGE_SEG64, NULL, 0, 0);
1323 range_tree_walk(trim_tree,
1324 vdev_trim_range_add, ta);
1325 }
1326
1327 mutex_exit(&msp->ms_lock);
1328 spa_config_exit(spa, SCL_CONFIG, FTAG);
1329
1330 /*
1331 * Issue the TRIM I/Os for all ranges covered by the
1332 * TRIM trees. These ranges are safe to TRIM because
1333 * no new allocations will be performed until the call
1334 * to metaslab_enabled() below.
1335 */
1336 for (uint64_t c = 0; c < children; c++) {
1337 trim_args_t *ta = &tap[c];
1338
1339 /*
1340 * Always yield to a manual TRIM if one has
1341 * been started for the child vdev.
1342 */
1343 if (ta->trim_tree == NULL ||
1344 ta->trim_vdev->vdev_trim_thread != NULL) {
1345 continue;
1346 }
1347
1348 /*
1349 * After this point metaslab_enable() must be
1350 * called with the sync flag set. This is done
1351 * here because vdev_trim_ranges() is allowed
1352 * to be interrupted (EINTR) before issuing all
1353 * of the required TRIM I/Os.
1354 */
1355 issued_trim = B_TRUE;
1356
1357 int error = vdev_trim_ranges(ta);
1358 if (error)
1359 break;
1360 }
1361
1362 /*
1363 * Verify every range which was trimmed is still
1364 * contained within the ms_allocatable tree.
1365 */
1366 if (zfs_flags & ZFS_DEBUG_TRIM) {
1367 mutex_enter(&msp->ms_lock);
1368 VERIFY0(metaslab_load(msp));
1369 VERIFY3P(tap[0].trim_msp, ==, msp);
1370 range_tree_walk(trim_tree,
1371 vdev_trim_range_verify, &tap[0]);
1372 mutex_exit(&msp->ms_lock);
1373 }
1374
1375 range_tree_vacate(trim_tree, NULL, NULL);
1376 range_tree_destroy(trim_tree);
1377
1378 metaslab_enable(msp, issued_trim, B_FALSE);
1379 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1380
1381 for (uint64_t c = 0; c < children; c++) {
1382 trim_args_t *ta = &tap[c];
1383
1384 if (ta->trim_tree == NULL)
1385 continue;
1386
1387 range_tree_vacate(ta->trim_tree, NULL, NULL);
1388 range_tree_destroy(ta->trim_tree);
1389 }
1390
1391 kmem_free(tap, sizeof (trim_args_t) * children);
1392 }
1393
1394 spa_config_exit(spa, SCL_CONFIG, FTAG);
1395
1396 /*
1397 * After completing the group of metaslabs wait for the next
1398 * open txg. This is done to make sure that a minimum of
1399 * zfs_trim_txg_batch txgs will occur before these metaslabs
1400 * are trimmed again.
1401 */
1402 txg_wait_open(spa_get_dsl(spa), 0, issued_trim);
1403
1404 shift++;
1405 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1406 }
1407
1408 for (uint64_t c = 0; c < vd->vdev_children; c++) {
1409 vdev_t *cvd = vd->vdev_child[c];
1410 mutex_enter(&cvd->vdev_trim_io_lock);
1411
1412 while (cvd->vdev_trim_inflight[1] > 0) {
1413 cv_wait(&cvd->vdev_trim_io_cv,
1414 &cvd->vdev_trim_io_lock);
1415 }
1416 mutex_exit(&cvd->vdev_trim_io_lock);
1417 }
1418
1419 spa_config_exit(spa, SCL_CONFIG, FTAG);
1420
1421 /*
1422 * When exiting because the autotrim property was set to off, then
1423 * abandon any unprocessed ms_trim ranges to reclaim the memory.
1424 */
1425 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_OFF) {
1426 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
1427 metaslab_t *msp = vd->vdev_ms[i];
1428
1429 mutex_enter(&msp->ms_lock);
1430 range_tree_vacate(msp->ms_trim, NULL, NULL);
1431 mutex_exit(&msp->ms_lock);
1432 }
1433 }
1434
1435 mutex_enter(&vd->vdev_autotrim_lock);
1436 ASSERT(vd->vdev_autotrim_thread != NULL);
1437 vd->vdev_autotrim_thread = NULL;
1438 cv_broadcast(&vd->vdev_autotrim_cv);
1439 mutex_exit(&vd->vdev_autotrim_lock);
1440
1441 thread_exit();
1442 }
1443
1444 /*
1445 * Starts an autotrim thread, if needed, for each top-level vdev which can be
1446 * trimmed. A top-level vdev which has been evacuated will never be trimmed.
1447 */
1448 void
1449 vdev_autotrim(spa_t *spa)
1450 {
1451 vdev_t *root_vd = spa->spa_root_vdev;
1452
1453 for (uint64_t i = 0; i < root_vd->vdev_children; i++) {
1454 vdev_t *tvd = root_vd->vdev_child[i];
1455
1456 mutex_enter(&tvd->vdev_autotrim_lock);
1457 if (vdev_writeable(tvd) && !tvd->vdev_removing &&
1458 tvd->vdev_autotrim_thread == NULL) {
1459 ASSERT3P(tvd->vdev_top, ==, tvd);
1460
1461 tvd->vdev_autotrim_thread = thread_create(NULL, 0,
1462 vdev_autotrim_thread, tvd, 0, &p0, TS_RUN,
1463 maxclsyspri);
1464 ASSERT(tvd->vdev_autotrim_thread != NULL);
1465 }
1466 mutex_exit(&tvd->vdev_autotrim_lock);
1467 }
1468 }
1469
1470 /*
1471 * Wait for the vdev_autotrim_thread associated with the passed top-level
1472 * vdev to be terminated (canceled or stopped).
1473 */
1474 void
1475 vdev_autotrim_stop_wait(vdev_t *tvd)
1476 {
1477 mutex_enter(&tvd->vdev_autotrim_lock);
1478 if (tvd->vdev_autotrim_thread != NULL) {
1479 tvd->vdev_autotrim_exit_wanted = B_TRUE;
1480
1481 while (tvd->vdev_autotrim_thread != NULL) {
1482 cv_wait(&tvd->vdev_autotrim_cv,
1483 &tvd->vdev_autotrim_lock);
1484 }
1485
1486 ASSERT3P(tvd->vdev_autotrim_thread, ==, NULL);
1487 tvd->vdev_autotrim_exit_wanted = B_FALSE;
1488 }
1489 mutex_exit(&tvd->vdev_autotrim_lock);
1490 }
1491
1492 /*
1493 * Wait for all of the vdev_autotrim_thread associated with the pool to
1494 * be terminated (canceled or stopped).
1495 */
1496 void
1497 vdev_autotrim_stop_all(spa_t *spa)
1498 {
1499 vdev_t *root_vd = spa->spa_root_vdev;
1500
1501 for (uint64_t i = 0; i < root_vd->vdev_children; i++)
1502 vdev_autotrim_stop_wait(root_vd->vdev_child[i]);
1503 }
1504
1505 /*
1506 * Conditionally restart all of the vdev_autotrim_thread's for the pool.
1507 */
1508 void
1509 vdev_autotrim_restart(spa_t *spa)
1510 {
1511 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1512
1513 if (spa->spa_autotrim)
1514 vdev_autotrim(spa);
1515 }
1516
1517 static __attribute__((noreturn)) void
1518 vdev_trim_l2arc_thread(void *arg)
1519 {
1520 vdev_t *vd = arg;
1521 spa_t *spa = vd->vdev_spa;
1522 l2arc_dev_t *dev = l2arc_vdev_get(vd);
1523 trim_args_t ta = {0};
1524 range_seg64_t physical_rs;
1525
1526 ASSERT(vdev_is_concrete(vd));
1527 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1528
1529 vd->vdev_trim_last_offset = 0;
1530 vd->vdev_trim_rate = 0;
1531 vd->vdev_trim_partial = 0;
1532 vd->vdev_trim_secure = 0;
1533
1534 ta.trim_vdev = vd;
1535 ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1536 ta.trim_type = TRIM_TYPE_MANUAL;
1537 ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
1538 ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
1539 ta.trim_flags = 0;
1540
1541 physical_rs.rs_start = vd->vdev_trim_bytes_done = 0;
1542 physical_rs.rs_end = vd->vdev_trim_bytes_est =
1543 vdev_get_min_asize(vd);
1544
1545 range_tree_add(ta.trim_tree, physical_rs.rs_start,
1546 physical_rs.rs_end - physical_rs.rs_start);
1547
1548 mutex_enter(&vd->vdev_trim_lock);
1549 vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0);
1550 mutex_exit(&vd->vdev_trim_lock);
1551
1552 (void) vdev_trim_ranges(&ta);
1553
1554 spa_config_exit(spa, SCL_CONFIG, FTAG);
1555 mutex_enter(&vd->vdev_trim_io_lock);
1556 while (vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] > 0) {
1557 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
1558 }
1559 mutex_exit(&vd->vdev_trim_io_lock);
1560
1561 range_tree_vacate(ta.trim_tree, NULL, NULL);
1562 range_tree_destroy(ta.trim_tree);
1563
1564 mutex_enter(&vd->vdev_trim_lock);
1565 if (!vd->vdev_trim_exit_wanted && vdev_writeable(vd)) {
1566 vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE,
1567 vd->vdev_trim_rate, vd->vdev_trim_partial,
1568 vd->vdev_trim_secure);
1569 }
1570 ASSERT(vd->vdev_trim_thread != NULL ||
1571 vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] == 0);
1572
1573 /*
1574 * Drop the vdev_trim_lock while we sync out the txg since it's
1575 * possible that a device might be trying to come online and
1576 * must check to see if it needs to restart a trim. That thread
1577 * will be holding the spa_config_lock which would prevent the
1578 * txg_wait_synced from completing. Same strategy as in
1579 * vdev_trim_thread().
1580 */
1581 mutex_exit(&vd->vdev_trim_lock);
1582 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
1583 mutex_enter(&vd->vdev_trim_lock);
1584
1585 /*
1586 * Update the header of the cache device here, before
1587 * broadcasting vdev_trim_cv which may lead to the removal
1588 * of the device. The same applies for setting l2ad_trim_all to
1589 * false.
1590 */
1591 spa_config_enter(vd->vdev_spa, SCL_L2ARC, vd,
1592 RW_READER);
1593 memset(dev->l2ad_dev_hdr, 0, dev->l2ad_dev_hdr_asize);
1594 l2arc_dev_hdr_update(dev);
1595 spa_config_exit(vd->vdev_spa, SCL_L2ARC, vd);
1596
1597 vd->vdev_trim_thread = NULL;
1598 if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE)
1599 dev->l2ad_trim_all = B_FALSE;
1600
1601 cv_broadcast(&vd->vdev_trim_cv);
1602 mutex_exit(&vd->vdev_trim_lock);
1603
1604 thread_exit();
1605 }
1606
1607 /*
1608 * Punches out TRIM threads for the L2ARC devices in a spa and assigns them
1609 * to vd->vdev_trim_thread variable. This facilitates the management of
1610 * trimming the whole cache device using TRIM_TYPE_MANUAL upon addition
1611 * to a pool or pool creation or when the header of the device is invalid.
1612 */
1613 void
1614 vdev_trim_l2arc(spa_t *spa)
1615 {
1616 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1617
1618 /*
1619 * Locate the spa's l2arc devices and kick off TRIM threads.
1620 */
1621 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1622 vdev_t *vd = spa->spa_l2cache.sav_vdevs[i];
1623 l2arc_dev_t *dev = l2arc_vdev_get(vd);
1624
1625 if (dev == NULL || !dev->l2ad_trim_all) {
1626 /*
1627 * Don't attempt TRIM if the vdev is UNAVAIL or if the
1628 * cache device was not marked for whole device TRIM
1629 * (ie l2arc_trim_ahead = 0, or the L2ARC device header
1630 * is valid with trim_state = VDEV_TRIM_COMPLETE and
1631 * l2ad_log_entries > 0).
1632 */
1633 continue;
1634 }
1635
1636 mutex_enter(&vd->vdev_trim_lock);
1637 ASSERT(vd->vdev_ops->vdev_op_leaf);
1638 ASSERT(vdev_is_concrete(vd));
1639 ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1640 ASSERT(!vd->vdev_detached);
1641 ASSERT(!vd->vdev_trim_exit_wanted);
1642 ASSERT(!vd->vdev_top->vdev_removing);
1643 vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0);
1644 vd->vdev_trim_thread = thread_create(NULL, 0,
1645 vdev_trim_l2arc_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
1646 mutex_exit(&vd->vdev_trim_lock);
1647 }
1648 }
1649
1650 /*
1651 * A wrapper which calls vdev_trim_ranges(). It is intended to be called
1652 * on leaf vdevs.
1653 */
1654 int
1655 vdev_trim_simple(vdev_t *vd, uint64_t start, uint64_t size)
1656 {
1657 trim_args_t ta = {0};
1658 range_seg64_t physical_rs;
1659 int error;
1660 physical_rs.rs_start = start;
1661 physical_rs.rs_end = start + size;
1662
1663 ASSERT(vdev_is_concrete(vd));
1664 ASSERT(vd->vdev_ops->vdev_op_leaf);
1665 ASSERT(!vd->vdev_detached);
1666 ASSERT(!vd->vdev_top->vdev_removing);
1667
1668 ta.trim_vdev = vd;
1669 ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1670 ta.trim_type = TRIM_TYPE_SIMPLE;
1671 ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
1672 ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
1673 ta.trim_flags = 0;
1674
1675 ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);
1676
1677 if (physical_rs.rs_end > physical_rs.rs_start) {
1678 range_tree_add(ta.trim_tree, physical_rs.rs_start,
1679 physical_rs.rs_end - physical_rs.rs_start);
1680 } else {
1681 ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
1682 }
1683
1684 error = vdev_trim_ranges(&ta);
1685
1686 mutex_enter(&vd->vdev_trim_io_lock);
1687 while (vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE] > 0) {
1688 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
1689 }
1690 mutex_exit(&vd->vdev_trim_io_lock);
1691
1692 range_tree_vacate(ta.trim_tree, NULL, NULL);
1693 range_tree_destroy(ta.trim_tree);
1694
1695 return (error);
1696 }
1697
1698 EXPORT_SYMBOL(vdev_trim);
1699 EXPORT_SYMBOL(vdev_trim_stop);
1700 EXPORT_SYMBOL(vdev_trim_stop_all);
1701 EXPORT_SYMBOL(vdev_trim_stop_wait);
1702 EXPORT_SYMBOL(vdev_trim_restart);
1703 EXPORT_SYMBOL(vdev_autotrim);
1704 EXPORT_SYMBOL(vdev_autotrim_stop_all);
1705 EXPORT_SYMBOL(vdev_autotrim_stop_wait);
1706 EXPORT_SYMBOL(vdev_autotrim_restart);
1707 EXPORT_SYMBOL(vdev_trim_l2arc);
1708 EXPORT_SYMBOL(vdev_trim_simple);
1709
1710 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_max, UINT, ZMOD_RW,
1711 "Max size of TRIM commands, larger will be split");
1712
1713 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_min, UINT, ZMOD_RW,
1714 "Min size of TRIM commands, smaller will be skipped");
1715
1716 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, metaslab_skip, UINT, ZMOD_RW,
1717 "Skip metaslabs which have never been initialized");
1718
1719 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, txg_batch, UINT, ZMOD_RW,
1720 "Min number of txgs to aggregate frees before issuing TRIM");
1721
1722 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, queue_limit, UINT, ZMOD_RW,
1723 "Max queued TRIMs outstanding per leaf vdev");