]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zap.c
ddt: modernise assertions
[mirror_zfs.git] / module / zfs / zap.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
25 */
26
27 /*
28 * This file contains the top half of the zfs directory structure
29 * implementation. The bottom half is in zap_leaf.c.
30 *
31 * The zdir is an extendable hash data structure. There is a table of
32 * pointers to buckets (zap_t->zd_data->zd_leafs). The buckets are
33 * each a constant size and hold a variable number of directory entries.
34 * The buckets (aka "leaf nodes") are implemented in zap_leaf.c.
35 *
36 * The pointer table holds a power of 2 number of pointers.
37 * (1<<zap_t->zd_data->zd_phys->zd_prefix_len). The bucket pointed to
38 * by the pointer at index i in the table holds entries whose hash value
39 * has a zd_prefix_len - bit prefix
40 */
41
42 #include <sys/spa.h>
43 #include <sys/dmu.h>
44 #include <sys/zfs_context.h>
45 #include <sys/zfs_znode.h>
46 #include <sys/fs/zfs.h>
47 #include <sys/zap.h>
48 #include <sys/zap_impl.h>
49 #include <sys/zap_leaf.h>
50
51 /*
52 * If zap_iterate_prefetch is set, we will prefetch the entire ZAP object
53 * (all leaf blocks) when we start iterating over it.
54 *
55 * For zap_cursor_init(), the callers all intend to iterate through all the
56 * entries. There are a few cases where an error (typically i/o error) could
57 * cause it to bail out early.
58 *
59 * For zap_cursor_init_serialized(), there are callers that do the iteration
60 * outside of ZFS. Typically they would iterate over everything, but we
61 * don't have control of that. E.g. zfs_ioc_snapshot_list_next(),
62 * zcp_snapshots_iter(), and other iterators over things in the MOS - these
63 * are called by /sbin/zfs and channel programs. The other example is
64 * zfs_readdir() which iterates over directory entries for the getdents()
65 * syscall. /sbin/ls iterates to the end (unless it receives a signal), but
66 * userland doesn't have to.
67 *
68 * Given that the ZAP entries aren't returned in a specific order, the only
69 * legitimate use cases for partial iteration would be:
70 *
71 * 1. Pagination: e.g. you only want to display 100 entries at a time, so you
72 * get the first 100 and then wait for the user to hit "next page", which
73 * they may never do).
74 *
75 * 2. You want to know if there are more than X entries, without relying on
76 * the zfs-specific implementation of the directory's st_size (which is
77 * the number of entries).
78 */
79 static int zap_iterate_prefetch = B_TRUE;
80
81 int fzap_default_block_shift = 14; /* 16k blocksize */
82
83 static uint64_t zap_allocate_blocks(zap_t *zap, int nblocks);
84
85 void
86 fzap_byteswap(void *vbuf, size_t size)
87 {
88 uint64_t block_type = *(uint64_t *)vbuf;
89
90 if (block_type == ZBT_LEAF || block_type == BSWAP_64(ZBT_LEAF))
91 zap_leaf_byteswap(vbuf, size);
92 else {
93 /* it's a ptrtbl block */
94 byteswap_uint64_array(vbuf, size);
95 }
96 }
97
98 void
99 fzap_upgrade(zap_t *zap, dmu_tx_t *tx, zap_flags_t flags)
100 {
101 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
102 zap->zap_ismicro = FALSE;
103
104 zap->zap_dbu.dbu_evict_func_sync = zap_evict_sync;
105 zap->zap_dbu.dbu_evict_func_async = NULL;
106
107 mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, MUTEX_DEFAULT, 0);
108 zap->zap_f.zap_block_shift = highbit64(zap->zap_dbuf->db_size) - 1;
109
110 zap_phys_t *zp = zap_f_phys(zap);
111 /*
112 * explicitly zero it since it might be coming from an
113 * initialized microzap
114 */
115 memset(zap->zap_dbuf->db_data, 0, zap->zap_dbuf->db_size);
116 zp->zap_block_type = ZBT_HEADER;
117 zp->zap_magic = ZAP_MAGIC;
118
119 zp->zap_ptrtbl.zt_shift = ZAP_EMBEDDED_PTRTBL_SHIFT(zap);
120
121 zp->zap_freeblk = 2; /* block 1 will be the first leaf */
122 zp->zap_num_leafs = 1;
123 zp->zap_num_entries = 0;
124 zp->zap_salt = zap->zap_salt;
125 zp->zap_normflags = zap->zap_normflags;
126 zp->zap_flags = flags;
127
128 /* block 1 will be the first leaf */
129 for (int i = 0; i < (1<<zp->zap_ptrtbl.zt_shift); i++)
130 ZAP_EMBEDDED_PTRTBL_ENT(zap, i) = 1;
131
132 /*
133 * set up block 1 - the first leaf
134 */
135 dmu_buf_t *db;
136 VERIFY0(dmu_buf_hold(zap->zap_objset, zap->zap_object,
137 1<<FZAP_BLOCK_SHIFT(zap), FTAG, &db, DMU_READ_NO_PREFETCH));
138 dmu_buf_will_dirty(db, tx);
139
140 zap_leaf_t *l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP);
141 l->l_dbuf = db;
142
143 zap_leaf_init(l, zp->zap_normflags != 0);
144
145 kmem_free(l, sizeof (zap_leaf_t));
146 dmu_buf_rele(db, FTAG);
147 }
148
149 static int
150 zap_tryupgradedir(zap_t *zap, dmu_tx_t *tx)
151 {
152 if (RW_WRITE_HELD(&zap->zap_rwlock))
153 return (1);
154 if (rw_tryupgrade(&zap->zap_rwlock)) {
155 dmu_buf_will_dirty(zap->zap_dbuf, tx);
156 return (1);
157 }
158 return (0);
159 }
160
161 /*
162 * Generic routines for dealing with the pointer & cookie tables.
163 */
164
165 static int
166 zap_table_grow(zap_t *zap, zap_table_phys_t *tbl,
167 void (*transfer_func)(const uint64_t *src, uint64_t *dst, int n),
168 dmu_tx_t *tx)
169 {
170 uint64_t newblk;
171 int bs = FZAP_BLOCK_SHIFT(zap);
172 int hepb = 1<<(bs-4);
173 /* hepb = half the number of entries in a block */
174
175 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
176 ASSERT(tbl->zt_blk != 0);
177 ASSERT(tbl->zt_numblks > 0);
178
179 if (tbl->zt_nextblk != 0) {
180 newblk = tbl->zt_nextblk;
181 } else {
182 newblk = zap_allocate_blocks(zap, tbl->zt_numblks * 2);
183 tbl->zt_nextblk = newblk;
184 ASSERT0(tbl->zt_blks_copied);
185 dmu_prefetch(zap->zap_objset, zap->zap_object, 0,
186 tbl->zt_blk << bs, tbl->zt_numblks << bs,
187 ZIO_PRIORITY_SYNC_READ);
188 }
189
190 /*
191 * Copy the ptrtbl from the old to new location.
192 */
193
194 uint64_t b = tbl->zt_blks_copied;
195 dmu_buf_t *db_old;
196 int err = dmu_buf_hold(zap->zap_objset, zap->zap_object,
197 (tbl->zt_blk + b) << bs, FTAG, &db_old, DMU_READ_NO_PREFETCH);
198 if (err != 0)
199 return (err);
200
201 /* first half of entries in old[b] go to new[2*b+0] */
202 dmu_buf_t *db_new;
203 VERIFY0(dmu_buf_hold(zap->zap_objset, zap->zap_object,
204 (newblk + 2*b+0) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH));
205 dmu_buf_will_dirty(db_new, tx);
206 transfer_func(db_old->db_data, db_new->db_data, hepb);
207 dmu_buf_rele(db_new, FTAG);
208
209 /* second half of entries in old[b] go to new[2*b+1] */
210 VERIFY0(dmu_buf_hold(zap->zap_objset, zap->zap_object,
211 (newblk + 2*b+1) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH));
212 dmu_buf_will_dirty(db_new, tx);
213 transfer_func((uint64_t *)db_old->db_data + hepb,
214 db_new->db_data, hepb);
215 dmu_buf_rele(db_new, FTAG);
216
217 dmu_buf_rele(db_old, FTAG);
218
219 tbl->zt_blks_copied++;
220
221 dprintf("copied block %llu of %llu\n",
222 (u_longlong_t)tbl->zt_blks_copied,
223 (u_longlong_t)tbl->zt_numblks);
224
225 if (tbl->zt_blks_copied == tbl->zt_numblks) {
226 (void) dmu_free_range(zap->zap_objset, zap->zap_object,
227 tbl->zt_blk << bs, tbl->zt_numblks << bs, tx);
228
229 tbl->zt_blk = newblk;
230 tbl->zt_numblks *= 2;
231 tbl->zt_shift++;
232 tbl->zt_nextblk = 0;
233 tbl->zt_blks_copied = 0;
234
235 dprintf("finished; numblocks now %llu (%uk entries)\n",
236 (u_longlong_t)tbl->zt_numblks, 1<<(tbl->zt_shift-10));
237 }
238
239 return (0);
240 }
241
242 static int
243 zap_table_store(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t val,
244 dmu_tx_t *tx)
245 {
246 int bs = FZAP_BLOCK_SHIFT(zap);
247
248 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
249 ASSERT(tbl->zt_blk != 0);
250
251 dprintf("storing %llx at index %llx\n", (u_longlong_t)val,
252 (u_longlong_t)idx);
253
254 uint64_t blk = idx >> (bs-3);
255 uint64_t off = idx & ((1<<(bs-3))-1);
256
257 dmu_buf_t *db;
258 int err = dmu_buf_hold(zap->zap_objset, zap->zap_object,
259 (tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH);
260 if (err != 0)
261 return (err);
262 dmu_buf_will_dirty(db, tx);
263
264 if (tbl->zt_nextblk != 0) {
265 uint64_t idx2 = idx * 2;
266 uint64_t blk2 = idx2 >> (bs-3);
267 uint64_t off2 = idx2 & ((1<<(bs-3))-1);
268 dmu_buf_t *db2;
269
270 err = dmu_buf_hold(zap->zap_objset, zap->zap_object,
271 (tbl->zt_nextblk + blk2) << bs, FTAG, &db2,
272 DMU_READ_NO_PREFETCH);
273 if (err != 0) {
274 dmu_buf_rele(db, FTAG);
275 return (err);
276 }
277 dmu_buf_will_dirty(db2, tx);
278 ((uint64_t *)db2->db_data)[off2] = val;
279 ((uint64_t *)db2->db_data)[off2+1] = val;
280 dmu_buf_rele(db2, FTAG);
281 }
282
283 ((uint64_t *)db->db_data)[off] = val;
284 dmu_buf_rele(db, FTAG);
285
286 return (0);
287 }
288
289 static int
290 zap_table_load(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t *valp)
291 {
292 int bs = FZAP_BLOCK_SHIFT(zap);
293
294 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
295
296 uint64_t blk = idx >> (bs-3);
297 uint64_t off = idx & ((1<<(bs-3))-1);
298
299 /*
300 * Note: this is equivalent to dmu_buf_hold(), but we use
301 * _dnode_enter / _by_dnode because it's faster because we don't
302 * have to hold the dnode.
303 */
304 dnode_t *dn = dmu_buf_dnode_enter(zap->zap_dbuf);
305 dmu_buf_t *db;
306 int err = dmu_buf_hold_by_dnode(dn,
307 (tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH);
308 dmu_buf_dnode_exit(zap->zap_dbuf);
309 if (err != 0)
310 return (err);
311 *valp = ((uint64_t *)db->db_data)[off];
312 dmu_buf_rele(db, FTAG);
313
314 if (tbl->zt_nextblk != 0) {
315 /*
316 * read the nextblk for the sake of i/o error checking,
317 * so that zap_table_load() will catch errors for
318 * zap_table_store.
319 */
320 blk = (idx*2) >> (bs-3);
321
322 dn = dmu_buf_dnode_enter(zap->zap_dbuf);
323 err = dmu_buf_hold_by_dnode(dn,
324 (tbl->zt_nextblk + blk) << bs, FTAG, &db,
325 DMU_READ_NO_PREFETCH);
326 dmu_buf_dnode_exit(zap->zap_dbuf);
327 if (err == 0)
328 dmu_buf_rele(db, FTAG);
329 }
330 return (err);
331 }
332
333 /*
334 * Routines for growing the ptrtbl.
335 */
336
337 static void
338 zap_ptrtbl_transfer(const uint64_t *src, uint64_t *dst, int n)
339 {
340 for (int i = 0; i < n; i++) {
341 uint64_t lb = src[i];
342 dst[2 * i + 0] = lb;
343 dst[2 * i + 1] = lb;
344 }
345 }
346
347 static int
348 zap_grow_ptrtbl(zap_t *zap, dmu_tx_t *tx)
349 {
350 /*
351 * The pointer table should never use more hash bits than we
352 * have (otherwise we'd be using useless zero bits to index it).
353 * If we are within 2 bits of running out, stop growing, since
354 * this is already an aberrant condition.
355 */
356 if (zap_f_phys(zap)->zap_ptrtbl.zt_shift >= zap_hashbits(zap) - 2)
357 return (SET_ERROR(ENOSPC));
358
359 if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) {
360 /*
361 * We are outgrowing the "embedded" ptrtbl (the one
362 * stored in the header block). Give it its own entire
363 * block, which will double the size of the ptrtbl.
364 */
365 ASSERT3U(zap_f_phys(zap)->zap_ptrtbl.zt_shift, ==,
366 ZAP_EMBEDDED_PTRTBL_SHIFT(zap));
367 ASSERT0(zap_f_phys(zap)->zap_ptrtbl.zt_blk);
368
369 uint64_t newblk = zap_allocate_blocks(zap, 1);
370 dmu_buf_t *db_new;
371 int err = dmu_buf_hold(zap->zap_objset, zap->zap_object,
372 newblk << FZAP_BLOCK_SHIFT(zap), FTAG, &db_new,
373 DMU_READ_NO_PREFETCH);
374 if (err != 0)
375 return (err);
376 dmu_buf_will_dirty(db_new, tx);
377 zap_ptrtbl_transfer(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0),
378 db_new->db_data, 1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap));
379 dmu_buf_rele(db_new, FTAG);
380
381 zap_f_phys(zap)->zap_ptrtbl.zt_blk = newblk;
382 zap_f_phys(zap)->zap_ptrtbl.zt_numblks = 1;
383 zap_f_phys(zap)->zap_ptrtbl.zt_shift++;
384
385 ASSERT3U(1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift, ==,
386 zap_f_phys(zap)->zap_ptrtbl.zt_numblks <<
387 (FZAP_BLOCK_SHIFT(zap)-3));
388
389 return (0);
390 } else {
391 return (zap_table_grow(zap, &zap_f_phys(zap)->zap_ptrtbl,
392 zap_ptrtbl_transfer, tx));
393 }
394 }
395
396 static void
397 zap_increment_num_entries(zap_t *zap, int delta, dmu_tx_t *tx)
398 {
399 dmu_buf_will_dirty(zap->zap_dbuf, tx);
400 mutex_enter(&zap->zap_f.zap_num_entries_mtx);
401 ASSERT(delta > 0 || zap_f_phys(zap)->zap_num_entries >= -delta);
402 zap_f_phys(zap)->zap_num_entries += delta;
403 mutex_exit(&zap->zap_f.zap_num_entries_mtx);
404 }
405
406 static uint64_t
407 zap_allocate_blocks(zap_t *zap, int nblocks)
408 {
409 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
410 uint64_t newblk = zap_f_phys(zap)->zap_freeblk;
411 zap_f_phys(zap)->zap_freeblk += nblocks;
412 return (newblk);
413 }
414
415 static void
416 zap_leaf_evict_sync(void *dbu)
417 {
418 zap_leaf_t *l = dbu;
419
420 rw_destroy(&l->l_rwlock);
421 kmem_free(l, sizeof (zap_leaf_t));
422 }
423
424 static zap_leaf_t *
425 zap_create_leaf(zap_t *zap, dmu_tx_t *tx)
426 {
427 zap_leaf_t *l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP);
428
429 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
430
431 rw_init(&l->l_rwlock, NULL, RW_NOLOCKDEP, NULL);
432 rw_enter(&l->l_rwlock, RW_WRITER);
433 l->l_blkid = zap_allocate_blocks(zap, 1);
434 l->l_dbuf = NULL;
435
436 VERIFY0(dmu_buf_hold(zap->zap_objset, zap->zap_object,
437 l->l_blkid << FZAP_BLOCK_SHIFT(zap), NULL, &l->l_dbuf,
438 DMU_READ_NO_PREFETCH));
439 dmu_buf_init_user(&l->l_dbu, zap_leaf_evict_sync, NULL, &l->l_dbuf);
440 VERIFY3P(NULL, ==, dmu_buf_set_user(l->l_dbuf, &l->l_dbu));
441 dmu_buf_will_dirty(l->l_dbuf, tx);
442
443 zap_leaf_init(l, zap->zap_normflags != 0);
444
445 zap_f_phys(zap)->zap_num_leafs++;
446
447 return (l);
448 }
449
450 int
451 fzap_count(zap_t *zap, uint64_t *count)
452 {
453 ASSERT(!zap->zap_ismicro);
454 mutex_enter(&zap->zap_f.zap_num_entries_mtx); /* unnecessary */
455 *count = zap_f_phys(zap)->zap_num_entries;
456 mutex_exit(&zap->zap_f.zap_num_entries_mtx);
457 return (0);
458 }
459
460 /*
461 * Routines for obtaining zap_leaf_t's
462 */
463
464 void
465 zap_put_leaf(zap_leaf_t *l)
466 {
467 rw_exit(&l->l_rwlock);
468 dmu_buf_rele(l->l_dbuf, NULL);
469 }
470
471 static zap_leaf_t *
472 zap_open_leaf(uint64_t blkid, dmu_buf_t *db)
473 {
474 ASSERT(blkid != 0);
475
476 zap_leaf_t *l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP);
477 rw_init(&l->l_rwlock, NULL, RW_DEFAULT, NULL);
478 rw_enter(&l->l_rwlock, RW_WRITER);
479 l->l_blkid = blkid;
480 l->l_bs = highbit64(db->db_size) - 1;
481 l->l_dbuf = db;
482
483 dmu_buf_init_user(&l->l_dbu, zap_leaf_evict_sync, NULL, &l->l_dbuf);
484 zap_leaf_t *winner = dmu_buf_set_user(db, &l->l_dbu);
485
486 rw_exit(&l->l_rwlock);
487 if (winner != NULL) {
488 /* someone else set it first */
489 zap_leaf_evict_sync(&l->l_dbu);
490 l = winner;
491 }
492
493 /*
494 * lhr_pad was previously used for the next leaf in the leaf
495 * chain. There should be no chained leafs (as we have removed
496 * support for them).
497 */
498 ASSERT0(zap_leaf_phys(l)->l_hdr.lh_pad1);
499
500 /*
501 * There should be more hash entries than there can be
502 * chunks to put in the hash table
503 */
504 ASSERT3U(ZAP_LEAF_HASH_NUMENTRIES(l), >, ZAP_LEAF_NUMCHUNKS(l) / 3);
505
506 /* The chunks should begin at the end of the hash table */
507 ASSERT3P(&ZAP_LEAF_CHUNK(l, 0), ==, (zap_leaf_chunk_t *)
508 &zap_leaf_phys(l)->l_hash[ZAP_LEAF_HASH_NUMENTRIES(l)]);
509
510 /* The chunks should end at the end of the block */
511 ASSERT3U((uintptr_t)&ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)) -
512 (uintptr_t)zap_leaf_phys(l), ==, l->l_dbuf->db_size);
513
514 return (l);
515 }
516
517 static int
518 zap_get_leaf_byblk(zap_t *zap, uint64_t blkid, dmu_tx_t *tx, krw_t lt,
519 zap_leaf_t **lp)
520 {
521 dmu_buf_t *db;
522
523 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
524
525 /*
526 * If system crashed just after dmu_free_long_range in zfs_rmnode, we
527 * would be left with an empty xattr dir in delete queue. blkid=0
528 * would be passed in when doing zfs_purgedir. If that's the case we
529 * should just return immediately. The underlying objects should
530 * already be freed, so this should be perfectly fine.
531 */
532 if (blkid == 0)
533 return (SET_ERROR(ENOENT));
534
535 int bs = FZAP_BLOCK_SHIFT(zap);
536 dnode_t *dn = dmu_buf_dnode_enter(zap->zap_dbuf);
537 int err = dmu_buf_hold_by_dnode(dn,
538 blkid << bs, NULL, &db, DMU_READ_NO_PREFETCH);
539 dmu_buf_dnode_exit(zap->zap_dbuf);
540 if (err != 0)
541 return (err);
542
543 ASSERT3U(db->db_object, ==, zap->zap_object);
544 ASSERT3U(db->db_offset, ==, blkid << bs);
545 ASSERT3U(db->db_size, ==, 1 << bs);
546 ASSERT(blkid != 0);
547
548 zap_leaf_t *l = dmu_buf_get_user(db);
549
550 if (l == NULL)
551 l = zap_open_leaf(blkid, db);
552
553 rw_enter(&l->l_rwlock, lt);
554 /*
555 * Must lock before dirtying, otherwise zap_leaf_phys(l) could change,
556 * causing ASSERT below to fail.
557 */
558 if (lt == RW_WRITER)
559 dmu_buf_will_dirty(db, tx);
560 ASSERT3U(l->l_blkid, ==, blkid);
561 ASSERT3P(l->l_dbuf, ==, db);
562 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_block_type, ==, ZBT_LEAF);
563 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
564
565 *lp = l;
566 return (0);
567 }
568
569 static int
570 zap_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t *valp)
571 {
572 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
573
574 if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) {
575 ASSERT3U(idx, <,
576 (1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift));
577 *valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx);
578 return (0);
579 } else {
580 return (zap_table_load(zap, &zap_f_phys(zap)->zap_ptrtbl,
581 idx, valp));
582 }
583 }
584
585 static int
586 zap_set_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t blk, dmu_tx_t *tx)
587 {
588 ASSERT(tx != NULL);
589 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
590
591 if (zap_f_phys(zap)->zap_ptrtbl.zt_blk == 0) {
592 ZAP_EMBEDDED_PTRTBL_ENT(zap, idx) = blk;
593 return (0);
594 } else {
595 return (zap_table_store(zap, &zap_f_phys(zap)->zap_ptrtbl,
596 idx, blk, tx));
597 }
598 }
599
600 static int
601 zap_deref_leaf(zap_t *zap, uint64_t h, dmu_tx_t *tx, krw_t lt, zap_leaf_t **lp)
602 {
603 uint64_t blk;
604
605 ASSERT(zap->zap_dbuf == NULL ||
606 zap_f_phys(zap) == zap->zap_dbuf->db_data);
607
608 /* Reality check for corrupt zap objects (leaf or header). */
609 if ((zap_f_phys(zap)->zap_block_type != ZBT_LEAF &&
610 zap_f_phys(zap)->zap_block_type != ZBT_HEADER) ||
611 zap_f_phys(zap)->zap_magic != ZAP_MAGIC) {
612 return (SET_ERROR(EIO));
613 }
614
615 uint64_t idx = ZAP_HASH_IDX(h, zap_f_phys(zap)->zap_ptrtbl.zt_shift);
616 int err = zap_idx_to_blk(zap, idx, &blk);
617 if (err != 0)
618 return (err);
619 err = zap_get_leaf_byblk(zap, blk, tx, lt, lp);
620
621 ASSERT(err ||
622 ZAP_HASH_IDX(h, zap_leaf_phys(*lp)->l_hdr.lh_prefix_len) ==
623 zap_leaf_phys(*lp)->l_hdr.lh_prefix);
624 return (err);
625 }
626
627 static int
628 zap_expand_leaf(zap_name_t *zn, zap_leaf_t *l,
629 const void *tag, dmu_tx_t *tx, zap_leaf_t **lp)
630 {
631 zap_t *zap = zn->zn_zap;
632 uint64_t hash = zn->zn_hash;
633 int err;
634 int old_prefix_len = zap_leaf_phys(l)->l_hdr.lh_prefix_len;
635
636 ASSERT3U(old_prefix_len, <=, zap_f_phys(zap)->zap_ptrtbl.zt_shift);
637 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
638
639 ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==,
640 zap_leaf_phys(l)->l_hdr.lh_prefix);
641
642 if (zap_tryupgradedir(zap, tx) == 0 ||
643 old_prefix_len == zap_f_phys(zap)->zap_ptrtbl.zt_shift) {
644 /* We failed to upgrade, or need to grow the pointer table */
645 objset_t *os = zap->zap_objset;
646 uint64_t object = zap->zap_object;
647
648 zap_put_leaf(l);
649 zap_unlockdir(zap, tag);
650 err = zap_lockdir(os, object, tx, RW_WRITER,
651 FALSE, FALSE, tag, &zn->zn_zap);
652 zap = zn->zn_zap;
653 if (err != 0)
654 return (err);
655 ASSERT(!zap->zap_ismicro);
656
657 while (old_prefix_len ==
658 zap_f_phys(zap)->zap_ptrtbl.zt_shift) {
659 err = zap_grow_ptrtbl(zap, tx);
660 if (err != 0)
661 return (err);
662 }
663
664 err = zap_deref_leaf(zap, hash, tx, RW_WRITER, &l);
665 if (err != 0)
666 return (err);
667
668 if (zap_leaf_phys(l)->l_hdr.lh_prefix_len != old_prefix_len) {
669 /* it split while our locks were down */
670 *lp = l;
671 return (0);
672 }
673 }
674 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
675 ASSERT3U(old_prefix_len, <, zap_f_phys(zap)->zap_ptrtbl.zt_shift);
676 ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==,
677 zap_leaf_phys(l)->l_hdr.lh_prefix);
678
679 int prefix_diff = zap_f_phys(zap)->zap_ptrtbl.zt_shift -
680 (old_prefix_len + 1);
681 uint64_t sibling =
682 (ZAP_HASH_IDX(hash, old_prefix_len + 1) | 1) << prefix_diff;
683
684 /* check for i/o errors before doing zap_leaf_split */
685 for (int i = 0; i < (1ULL << prefix_diff); i++) {
686 uint64_t blk;
687 err = zap_idx_to_blk(zap, sibling + i, &blk);
688 if (err != 0)
689 return (err);
690 ASSERT3U(blk, ==, l->l_blkid);
691 }
692
693 zap_leaf_t *nl = zap_create_leaf(zap, tx);
694 zap_leaf_split(l, nl, zap->zap_normflags != 0);
695
696 /* set sibling pointers */
697 for (int i = 0; i < (1ULL << prefix_diff); i++) {
698 err = zap_set_idx_to_blk(zap, sibling + i, nl->l_blkid, tx);
699 ASSERT0(err); /* we checked for i/o errors above */
700 }
701
702 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_prefix_len, >, 0);
703
704 if (hash & (1ULL << (64 - zap_leaf_phys(l)->l_hdr.lh_prefix_len))) {
705 /* we want the sibling */
706 zap_put_leaf(l);
707 *lp = nl;
708 } else {
709 zap_put_leaf(nl);
710 *lp = l;
711 }
712
713 return (0);
714 }
715
716 static void
717 zap_put_leaf_maybe_grow_ptrtbl(zap_name_t *zn, zap_leaf_t *l,
718 const void *tag, dmu_tx_t *tx)
719 {
720 zap_t *zap = zn->zn_zap;
721 int shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift;
722 int leaffull = (zap_leaf_phys(l)->l_hdr.lh_prefix_len == shift &&
723 zap_leaf_phys(l)->l_hdr.lh_nfree < ZAP_LEAF_LOW_WATER);
724
725 zap_put_leaf(l);
726
727 if (leaffull || zap_f_phys(zap)->zap_ptrtbl.zt_nextblk) {
728 /*
729 * We are in the middle of growing the pointer table, or
730 * this leaf will soon make us grow it.
731 */
732 if (zap_tryupgradedir(zap, tx) == 0) {
733 objset_t *os = zap->zap_objset;
734 uint64_t zapobj = zap->zap_object;
735
736 zap_unlockdir(zap, tag);
737 int err = zap_lockdir(os, zapobj, tx,
738 RW_WRITER, FALSE, FALSE, tag, &zn->zn_zap);
739 zap = zn->zn_zap;
740 if (err != 0)
741 return;
742 }
743
744 /* could have finished growing while our locks were down */
745 if (zap_f_phys(zap)->zap_ptrtbl.zt_shift == shift)
746 (void) zap_grow_ptrtbl(zap, tx);
747 }
748 }
749
750 static int
751 fzap_checkname(zap_name_t *zn)
752 {
753 if (zn->zn_key_orig_numints * zn->zn_key_intlen > ZAP_MAXNAMELEN)
754 return (SET_ERROR(ENAMETOOLONG));
755 return (0);
756 }
757
758 static int
759 fzap_checksize(uint64_t integer_size, uint64_t num_integers)
760 {
761 /* Only integer sizes supported by C */
762 switch (integer_size) {
763 case 1:
764 case 2:
765 case 4:
766 case 8:
767 break;
768 default:
769 return (SET_ERROR(EINVAL));
770 }
771
772 if (integer_size * num_integers > ZAP_MAXVALUELEN)
773 return (SET_ERROR(E2BIG));
774
775 return (0);
776 }
777
778 static int
779 fzap_check(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers)
780 {
781 int err = fzap_checkname(zn);
782 if (err != 0)
783 return (err);
784 return (fzap_checksize(integer_size, num_integers));
785 }
786
787 /*
788 * Routines for manipulating attributes.
789 */
790 int
791 fzap_lookup(zap_name_t *zn,
792 uint64_t integer_size, uint64_t num_integers, void *buf,
793 char *realname, int rn_len, boolean_t *ncp)
794 {
795 zap_leaf_t *l;
796 zap_entry_handle_t zeh;
797
798 int err = fzap_checkname(zn);
799 if (err != 0)
800 return (err);
801
802 err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l);
803 if (err != 0)
804 return (err);
805 err = zap_leaf_lookup(l, zn, &zeh);
806 if (err == 0) {
807 if ((err = fzap_checksize(integer_size, num_integers)) != 0) {
808 zap_put_leaf(l);
809 return (err);
810 }
811
812 err = zap_entry_read(&zeh, integer_size, num_integers, buf);
813 (void) zap_entry_read_name(zn->zn_zap, &zeh, rn_len, realname);
814 if (ncp) {
815 *ncp = zap_entry_normalization_conflict(&zeh,
816 zn, NULL, zn->zn_zap);
817 }
818 }
819
820 zap_put_leaf(l);
821 return (err);
822 }
823
824 int
825 fzap_add_cd(zap_name_t *zn,
826 uint64_t integer_size, uint64_t num_integers,
827 const void *val, uint32_t cd, const void *tag, dmu_tx_t *tx)
828 {
829 zap_leaf_t *l;
830 int err;
831 zap_entry_handle_t zeh;
832 zap_t *zap = zn->zn_zap;
833
834 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
835 ASSERT(!zap->zap_ismicro);
836 ASSERT(fzap_check(zn, integer_size, num_integers) == 0);
837
838 err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l);
839 if (err != 0)
840 return (err);
841 retry:
842 err = zap_leaf_lookup(l, zn, &zeh);
843 if (err == 0) {
844 err = SET_ERROR(EEXIST);
845 goto out;
846 }
847 if (err != ENOENT)
848 goto out;
849
850 err = zap_entry_create(l, zn, cd,
851 integer_size, num_integers, val, &zeh);
852
853 if (err == 0) {
854 zap_increment_num_entries(zap, 1, tx);
855 } else if (err == EAGAIN) {
856 err = zap_expand_leaf(zn, l, tag, tx, &l);
857 zap = zn->zn_zap; /* zap_expand_leaf() may change zap */
858 if (err == 0) {
859 goto retry;
860 } else if (err == ENOSPC) {
861 /*
862 * If we failed to expand the leaf, then bailout
863 * as there is no point trying
864 * zap_put_leaf_maybe_grow_ptrtbl().
865 */
866 return (err);
867 }
868 }
869
870 out:
871 if (zap != NULL)
872 zap_put_leaf_maybe_grow_ptrtbl(zn, l, tag, tx);
873 return (err);
874 }
875
876 int
877 fzap_add(zap_name_t *zn,
878 uint64_t integer_size, uint64_t num_integers,
879 const void *val, const void *tag, dmu_tx_t *tx)
880 {
881 int err = fzap_check(zn, integer_size, num_integers);
882 if (err != 0)
883 return (err);
884
885 return (fzap_add_cd(zn, integer_size, num_integers,
886 val, ZAP_NEED_CD, tag, tx));
887 }
888
889 int
890 fzap_update(zap_name_t *zn,
891 int integer_size, uint64_t num_integers, const void *val,
892 const void *tag, dmu_tx_t *tx)
893 {
894 zap_leaf_t *l;
895 int err;
896 boolean_t create;
897 zap_entry_handle_t zeh;
898 zap_t *zap = zn->zn_zap;
899
900 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
901 err = fzap_check(zn, integer_size, num_integers);
902 if (err != 0)
903 return (err);
904
905 err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l);
906 if (err != 0)
907 return (err);
908 retry:
909 err = zap_leaf_lookup(l, zn, &zeh);
910 create = (err == ENOENT);
911 ASSERT(err == 0 || err == ENOENT);
912
913 if (create) {
914 err = zap_entry_create(l, zn, ZAP_NEED_CD,
915 integer_size, num_integers, val, &zeh);
916 if (err == 0)
917 zap_increment_num_entries(zap, 1, tx);
918 } else {
919 err = zap_entry_update(&zeh, integer_size, num_integers, val);
920 }
921
922 if (err == EAGAIN) {
923 err = zap_expand_leaf(zn, l, tag, tx, &l);
924 zap = zn->zn_zap; /* zap_expand_leaf() may change zap */
925 if (err == 0)
926 goto retry;
927 }
928
929 if (zap != NULL)
930 zap_put_leaf_maybe_grow_ptrtbl(zn, l, tag, tx);
931 return (err);
932 }
933
934 int
935 fzap_length(zap_name_t *zn,
936 uint64_t *integer_size, uint64_t *num_integers)
937 {
938 zap_leaf_t *l;
939 int err;
940 zap_entry_handle_t zeh;
941
942 err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l);
943 if (err != 0)
944 return (err);
945 err = zap_leaf_lookup(l, zn, &zeh);
946 if (err != 0)
947 goto out;
948
949 if (integer_size != NULL)
950 *integer_size = zeh.zeh_integer_size;
951 if (num_integers != NULL)
952 *num_integers = zeh.zeh_num_integers;
953 out:
954 zap_put_leaf(l);
955 return (err);
956 }
957
958 int
959 fzap_remove(zap_name_t *zn, dmu_tx_t *tx)
960 {
961 zap_leaf_t *l;
962 int err;
963 zap_entry_handle_t zeh;
964
965 err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, tx, RW_WRITER, &l);
966 if (err != 0)
967 return (err);
968 err = zap_leaf_lookup(l, zn, &zeh);
969 if (err == 0) {
970 zap_entry_remove(&zeh);
971 zap_increment_num_entries(zn->zn_zap, -1, tx);
972 }
973 zap_put_leaf(l);
974 return (err);
975 }
976
977 void
978 fzap_prefetch(zap_name_t *zn)
979 {
980 uint64_t blk;
981 zap_t *zap = zn->zn_zap;
982
983 uint64_t idx = ZAP_HASH_IDX(zn->zn_hash,
984 zap_f_phys(zap)->zap_ptrtbl.zt_shift);
985 if (zap_idx_to_blk(zap, idx, &blk) != 0)
986 return;
987 int bs = FZAP_BLOCK_SHIFT(zap);
988 dmu_prefetch(zap->zap_objset, zap->zap_object, 0, blk << bs, 1 << bs,
989 ZIO_PRIORITY_SYNC_READ);
990 }
991
992 /*
993 * Helper functions for consumers.
994 */
995
996 uint64_t
997 zap_create_link(objset_t *os, dmu_object_type_t ot, uint64_t parent_obj,
998 const char *name, dmu_tx_t *tx)
999 {
1000 return (zap_create_link_dnsize(os, ot, parent_obj, name, 0, tx));
1001 }
1002
1003 uint64_t
1004 zap_create_link_dnsize(objset_t *os, dmu_object_type_t ot, uint64_t parent_obj,
1005 const char *name, int dnodesize, dmu_tx_t *tx)
1006 {
1007 uint64_t new_obj;
1008
1009 new_obj = zap_create_dnsize(os, ot, DMU_OT_NONE, 0, dnodesize, tx);
1010 VERIFY(new_obj != 0);
1011 VERIFY0(zap_add(os, parent_obj, name, sizeof (uint64_t), 1, &new_obj,
1012 tx));
1013
1014 return (new_obj);
1015 }
1016
1017 int
1018 zap_value_search(objset_t *os, uint64_t zapobj, uint64_t value, uint64_t mask,
1019 char *name)
1020 {
1021 zap_cursor_t zc;
1022 int err;
1023
1024 if (mask == 0)
1025 mask = -1ULL;
1026
1027 zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP);
1028 for (zap_cursor_init(&zc, os, zapobj);
1029 (err = zap_cursor_retrieve(&zc, za)) == 0;
1030 zap_cursor_advance(&zc)) {
1031 if ((za->za_first_integer & mask) == (value & mask)) {
1032 (void) strlcpy(name, za->za_name, MAXNAMELEN);
1033 break;
1034 }
1035 }
1036 zap_cursor_fini(&zc);
1037 kmem_free(za, sizeof (*za));
1038 return (err);
1039 }
1040
1041 int
1042 zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx)
1043 {
1044 zap_cursor_t zc;
1045 int err = 0;
1046
1047 zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP);
1048 for (zap_cursor_init(&zc, os, fromobj);
1049 zap_cursor_retrieve(&zc, za) == 0;
1050 (void) zap_cursor_advance(&zc)) {
1051 if (za->za_integer_length != 8 || za->za_num_integers != 1) {
1052 err = SET_ERROR(EINVAL);
1053 break;
1054 }
1055 err = zap_add(os, intoobj, za->za_name,
1056 8, 1, &za->za_first_integer, tx);
1057 if (err != 0)
1058 break;
1059 }
1060 zap_cursor_fini(&zc);
1061 kmem_free(za, sizeof (*za));
1062 return (err);
1063 }
1064
1065 int
1066 zap_join_key(objset_t *os, uint64_t fromobj, uint64_t intoobj,
1067 uint64_t value, dmu_tx_t *tx)
1068 {
1069 zap_cursor_t zc;
1070 int err = 0;
1071
1072 zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP);
1073 for (zap_cursor_init(&zc, os, fromobj);
1074 zap_cursor_retrieve(&zc, za) == 0;
1075 (void) zap_cursor_advance(&zc)) {
1076 if (za->za_integer_length != 8 || za->za_num_integers != 1) {
1077 err = SET_ERROR(EINVAL);
1078 break;
1079 }
1080 err = zap_add(os, intoobj, za->za_name,
1081 8, 1, &value, tx);
1082 if (err != 0)
1083 break;
1084 }
1085 zap_cursor_fini(&zc);
1086 kmem_free(za, sizeof (*za));
1087 return (err);
1088 }
1089
1090 int
1091 zap_join_increment(objset_t *os, uint64_t fromobj, uint64_t intoobj,
1092 dmu_tx_t *tx)
1093 {
1094 zap_cursor_t zc;
1095 int err = 0;
1096
1097 zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP);
1098 for (zap_cursor_init(&zc, os, fromobj);
1099 zap_cursor_retrieve(&zc, za) == 0;
1100 (void) zap_cursor_advance(&zc)) {
1101 uint64_t delta = 0;
1102
1103 if (za->za_integer_length != 8 || za->za_num_integers != 1) {
1104 err = SET_ERROR(EINVAL);
1105 break;
1106 }
1107
1108 err = zap_lookup(os, intoobj, za->za_name, 8, 1, &delta);
1109 if (err != 0 && err != ENOENT)
1110 break;
1111 delta += za->za_first_integer;
1112 err = zap_update(os, intoobj, za->za_name, 8, 1, &delta, tx);
1113 if (err != 0)
1114 break;
1115 }
1116 zap_cursor_fini(&zc);
1117 kmem_free(za, sizeof (*za));
1118 return (err);
1119 }
1120
1121 int
1122 zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx)
1123 {
1124 char name[20];
1125
1126 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value);
1127 return (zap_add(os, obj, name, 8, 1, &value, tx));
1128 }
1129
1130 int
1131 zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx)
1132 {
1133 char name[20];
1134
1135 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value);
1136 return (zap_remove(os, obj, name, tx));
1137 }
1138
1139 int
1140 zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value)
1141 {
1142 char name[20];
1143
1144 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value);
1145 return (zap_lookup(os, obj, name, 8, 1, &value));
1146 }
1147
1148 int
1149 zap_add_int_key(objset_t *os, uint64_t obj,
1150 uint64_t key, uint64_t value, dmu_tx_t *tx)
1151 {
1152 char name[20];
1153
1154 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
1155 return (zap_add(os, obj, name, 8, 1, &value, tx));
1156 }
1157
1158 int
1159 zap_update_int_key(objset_t *os, uint64_t obj,
1160 uint64_t key, uint64_t value, dmu_tx_t *tx)
1161 {
1162 char name[20];
1163
1164 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
1165 return (zap_update(os, obj, name, 8, 1, &value, tx));
1166 }
1167
1168 int
1169 zap_lookup_int_key(objset_t *os, uint64_t obj, uint64_t key, uint64_t *valuep)
1170 {
1171 char name[20];
1172
1173 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
1174 return (zap_lookup(os, obj, name, 8, 1, valuep));
1175 }
1176
1177 int
1178 zap_increment(objset_t *os, uint64_t obj, const char *name, int64_t delta,
1179 dmu_tx_t *tx)
1180 {
1181 uint64_t value = 0;
1182
1183 if (delta == 0)
1184 return (0);
1185
1186 int err = zap_lookup(os, obj, name, 8, 1, &value);
1187 if (err != 0 && err != ENOENT)
1188 return (err);
1189 value += delta;
1190 if (value == 0)
1191 err = zap_remove(os, obj, name, tx);
1192 else
1193 err = zap_update(os, obj, name, 8, 1, &value, tx);
1194 return (err);
1195 }
1196
1197 int
1198 zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta,
1199 dmu_tx_t *tx)
1200 {
1201 char name[20];
1202
1203 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
1204 return (zap_increment(os, obj, name, delta, tx));
1205 }
1206
1207 /*
1208 * Routines for iterating over the attributes.
1209 */
1210
1211 int
1212 fzap_cursor_retrieve(zap_t *zap, zap_cursor_t *zc, zap_attribute_t *za)
1213 {
1214 int err = ENOENT;
1215 zap_entry_handle_t zeh;
1216 zap_leaf_t *l;
1217
1218 /* retrieve the next entry at or after zc_hash/zc_cd */
1219 /* if no entry, return ENOENT */
1220
1221 /*
1222 * If we are reading from the beginning, we're almost certain to
1223 * iterate over the entire ZAP object. If there are multiple leaf
1224 * blocks (freeblk > 2), prefetch the whole object (up to
1225 * dmu_prefetch_max bytes), so that we read the leaf blocks
1226 * concurrently. (Unless noprefetch was requested via
1227 * zap_cursor_init_noprefetch()).
1228 */
1229 if (zc->zc_hash == 0 && zap_iterate_prefetch &&
1230 zc->zc_prefetch && zap_f_phys(zap)->zap_freeblk > 2) {
1231 dmu_prefetch(zc->zc_objset, zc->zc_zapobj, 0, 0,
1232 zap_f_phys(zap)->zap_freeblk << FZAP_BLOCK_SHIFT(zap),
1233 ZIO_PRIORITY_ASYNC_READ);
1234 }
1235
1236 if (zc->zc_leaf &&
1237 (ZAP_HASH_IDX(zc->zc_hash,
1238 zap_leaf_phys(zc->zc_leaf)->l_hdr.lh_prefix_len) !=
1239 zap_leaf_phys(zc->zc_leaf)->l_hdr.lh_prefix)) {
1240 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1241 zap_put_leaf(zc->zc_leaf);
1242 zc->zc_leaf = NULL;
1243 }
1244
1245 again:
1246 if (zc->zc_leaf == NULL) {
1247 err = zap_deref_leaf(zap, zc->zc_hash, NULL, RW_READER,
1248 &zc->zc_leaf);
1249 if (err != 0)
1250 return (err);
1251 } else {
1252 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1253 }
1254 l = zc->zc_leaf;
1255
1256 err = zap_leaf_lookup_closest(l, zc->zc_hash, zc->zc_cd, &zeh);
1257
1258 if (err == ENOENT) {
1259 if (zap_leaf_phys(l)->l_hdr.lh_prefix_len == 0) {
1260 zc->zc_hash = -1ULL;
1261 zc->zc_cd = 0;
1262 } else {
1263 uint64_t nocare = (1ULL <<
1264 (64 - zap_leaf_phys(l)->l_hdr.lh_prefix_len)) - 1;
1265
1266 zc->zc_hash = (zc->zc_hash & ~nocare) + nocare + 1;
1267 zc->zc_cd = 0;
1268
1269 if (zc->zc_hash == 0) {
1270 zc->zc_hash = -1ULL;
1271 } else {
1272 zap_put_leaf(zc->zc_leaf);
1273 zc->zc_leaf = NULL;
1274 goto again;
1275 }
1276 }
1277 }
1278
1279 if (err == 0) {
1280 zc->zc_hash = zeh.zeh_hash;
1281 zc->zc_cd = zeh.zeh_cd;
1282 za->za_integer_length = zeh.zeh_integer_size;
1283 za->za_num_integers = zeh.zeh_num_integers;
1284 if (zeh.zeh_num_integers == 0) {
1285 za->za_first_integer = 0;
1286 } else {
1287 err = zap_entry_read(&zeh, 8, 1, &za->za_first_integer);
1288 ASSERT(err == 0 || err == EOVERFLOW);
1289 }
1290 err = zap_entry_read_name(zap, &zeh,
1291 sizeof (za->za_name), za->za_name);
1292 ASSERT(err == 0);
1293
1294 za->za_normalization_conflict =
1295 zap_entry_normalization_conflict(&zeh,
1296 NULL, za->za_name, zap);
1297 }
1298 rw_exit(&zc->zc_leaf->l_rwlock);
1299 return (err);
1300 }
1301
1302 static void
1303 zap_stats_ptrtbl(zap_t *zap, uint64_t *tbl, int len, zap_stats_t *zs)
1304 {
1305 uint64_t lastblk = 0;
1306
1307 /*
1308 * NB: if a leaf has more pointers than an entire ptrtbl block
1309 * can hold, then it'll be accounted for more than once, since
1310 * we won't have lastblk.
1311 */
1312 for (int i = 0; i < len; i++) {
1313 zap_leaf_t *l;
1314
1315 if (tbl[i] == lastblk)
1316 continue;
1317 lastblk = tbl[i];
1318
1319 int err = zap_get_leaf_byblk(zap, tbl[i], NULL, RW_READER, &l);
1320 if (err == 0) {
1321 zap_leaf_stats(zap, l, zs);
1322 zap_put_leaf(l);
1323 }
1324 }
1325 }
1326
1327 void
1328 fzap_get_stats(zap_t *zap, zap_stats_t *zs)
1329 {
1330 int bs = FZAP_BLOCK_SHIFT(zap);
1331 zs->zs_blocksize = 1ULL << bs;
1332
1333 /*
1334 * Set zap_phys_t fields
1335 */
1336 zs->zs_num_leafs = zap_f_phys(zap)->zap_num_leafs;
1337 zs->zs_num_entries = zap_f_phys(zap)->zap_num_entries;
1338 zs->zs_num_blocks = zap_f_phys(zap)->zap_freeblk;
1339 zs->zs_block_type = zap_f_phys(zap)->zap_block_type;
1340 zs->zs_magic = zap_f_phys(zap)->zap_magic;
1341 zs->zs_salt = zap_f_phys(zap)->zap_salt;
1342
1343 /*
1344 * Set zap_ptrtbl fields
1345 */
1346 zs->zs_ptrtbl_len = 1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift;
1347 zs->zs_ptrtbl_nextblk = zap_f_phys(zap)->zap_ptrtbl.zt_nextblk;
1348 zs->zs_ptrtbl_blks_copied =
1349 zap_f_phys(zap)->zap_ptrtbl.zt_blks_copied;
1350 zs->zs_ptrtbl_zt_blk = zap_f_phys(zap)->zap_ptrtbl.zt_blk;
1351 zs->zs_ptrtbl_zt_numblks = zap_f_phys(zap)->zap_ptrtbl.zt_numblks;
1352 zs->zs_ptrtbl_zt_shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift;
1353
1354 if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) {
1355 /* the ptrtbl is entirely in the header block. */
1356 zap_stats_ptrtbl(zap, &ZAP_EMBEDDED_PTRTBL_ENT(zap, 0),
1357 1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap), zs);
1358 } else {
1359 dmu_prefetch(zap->zap_objset, zap->zap_object, 0,
1360 zap_f_phys(zap)->zap_ptrtbl.zt_blk << bs,
1361 zap_f_phys(zap)->zap_ptrtbl.zt_numblks << bs,
1362 ZIO_PRIORITY_SYNC_READ);
1363
1364 for (int b = 0; b < zap_f_phys(zap)->zap_ptrtbl.zt_numblks;
1365 b++) {
1366 dmu_buf_t *db;
1367 int err;
1368
1369 err = dmu_buf_hold(zap->zap_objset, zap->zap_object,
1370 (zap_f_phys(zap)->zap_ptrtbl.zt_blk + b) << bs,
1371 FTAG, &db, DMU_READ_NO_PREFETCH);
1372 if (err == 0) {
1373 zap_stats_ptrtbl(zap, db->db_data,
1374 1<<(bs-3), zs);
1375 dmu_buf_rele(db, FTAG);
1376 }
1377 }
1378 }
1379 }
1380
1381 /* CSTYLED */
1382 ZFS_MODULE_PARAM(zfs, , zap_iterate_prefetch, INT, ZMOD_RW,
1383 "When iterating ZAP object, prefetch it");