]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zap_micro.c
Illumos 5056 - ZFS deadlock on db_mtx and dn_holds
[mirror_zfs.git] / module / zfs / zap_micro.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
25 */
26
27 #include <sys/zio.h>
28 #include <sys/spa.h>
29 #include <sys/dmu.h>
30 #include <sys/zfs_context.h>
31 #include <sys/zap.h>
32 #include <sys/refcount.h>
33 #include <sys/zap_impl.h>
34 #include <sys/zap_leaf.h>
35 #include <sys/avl.h>
36 #include <sys/arc.h>
37
38 #ifdef _KERNEL
39 #include <sys/sunddi.h>
40 #endif
41
42 extern inline mzap_phys_t *zap_m_phys(zap_t *zap);
43
44 static int mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags);
45
46 uint64_t
47 zap_getflags(zap_t *zap)
48 {
49 if (zap->zap_ismicro)
50 return (0);
51 return (zap_f_phys(zap)->zap_flags);
52 }
53
54 int
55 zap_hashbits(zap_t *zap)
56 {
57 if (zap_getflags(zap) & ZAP_FLAG_HASH64)
58 return (48);
59 else
60 return (28);
61 }
62
63 uint32_t
64 zap_maxcd(zap_t *zap)
65 {
66 if (zap_getflags(zap) & ZAP_FLAG_HASH64)
67 return ((1<<16)-1);
68 else
69 return (-1U);
70 }
71
72 static uint64_t
73 zap_hash(zap_name_t *zn)
74 {
75 zap_t *zap = zn->zn_zap;
76 uint64_t h = 0;
77
78 if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) {
79 ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY);
80 h = *(uint64_t *)zn->zn_key_orig;
81 } else {
82 h = zap->zap_salt;
83 ASSERT(h != 0);
84 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
85
86 if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
87 int i;
88 const uint64_t *wp = zn->zn_key_norm;
89
90 ASSERT(zn->zn_key_intlen == 8);
91 for (i = 0; i < zn->zn_key_norm_numints; wp++, i++) {
92 int j;
93 uint64_t word = *wp;
94
95 for (j = 0; j < zn->zn_key_intlen; j++) {
96 h = (h >> 8) ^
97 zfs_crc64_table[(h ^ word) & 0xFF];
98 word >>= NBBY;
99 }
100 }
101 } else {
102 int i, len;
103 const uint8_t *cp = zn->zn_key_norm;
104
105 /*
106 * We previously stored the terminating null on
107 * disk, but didn't hash it, so we need to
108 * continue to not hash it. (The
109 * zn_key_*_numints includes the terminating
110 * null for non-binary keys.)
111 */
112 len = zn->zn_key_norm_numints - 1;
113
114 ASSERT(zn->zn_key_intlen == 1);
115 for (i = 0; i < len; cp++, i++) {
116 h = (h >> 8) ^
117 zfs_crc64_table[(h ^ *cp) & 0xFF];
118 }
119 }
120 }
121 /*
122 * Don't use all 64 bits, since we need some in the cookie for
123 * the collision differentiator. We MUST use the high bits,
124 * since those are the ones that we first pay attention to when
125 * chosing the bucket.
126 */
127 h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1);
128
129 return (h);
130 }
131
132 static int
133 zap_normalize(zap_t *zap, const char *name, char *namenorm)
134 {
135 size_t inlen, outlen;
136 int err;
137
138 ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY));
139
140 inlen = strlen(name) + 1;
141 outlen = ZAP_MAXNAMELEN;
142
143 err = 0;
144 (void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen,
145 zap->zap_normflags | U8_TEXTPREP_IGNORE_NULL |
146 U8_TEXTPREP_IGNORE_INVALID, U8_UNICODE_LATEST, &err);
147
148 return (err);
149 }
150
151 boolean_t
152 zap_match(zap_name_t *zn, const char *matchname)
153 {
154 ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY));
155
156 if (zn->zn_matchtype == MT_FIRST) {
157 char norm[ZAP_MAXNAMELEN];
158
159 if (zap_normalize(zn->zn_zap, matchname, norm) != 0)
160 return (B_FALSE);
161
162 return (strcmp(zn->zn_key_norm, norm) == 0);
163 } else {
164 /* MT_BEST or MT_EXACT */
165 return (strcmp(zn->zn_key_orig, matchname) == 0);
166 }
167 }
168
169 void
170 zap_name_free(zap_name_t *zn)
171 {
172 kmem_free(zn, sizeof (zap_name_t));
173 }
174
175 zap_name_t *
176 zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt)
177 {
178 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
179
180 zn->zn_zap = zap;
181 zn->zn_key_intlen = sizeof (*key);
182 zn->zn_key_orig = key;
183 zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1;
184 zn->zn_matchtype = mt;
185 if (zap->zap_normflags) {
186 if (zap_normalize(zap, key, zn->zn_normbuf) != 0) {
187 zap_name_free(zn);
188 return (NULL);
189 }
190 zn->zn_key_norm = zn->zn_normbuf;
191 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
192 } else {
193 if (mt != MT_EXACT) {
194 zap_name_free(zn);
195 return (NULL);
196 }
197 zn->zn_key_norm = zn->zn_key_orig;
198 zn->zn_key_norm_numints = zn->zn_key_orig_numints;
199 }
200
201 zn->zn_hash = zap_hash(zn);
202 return (zn);
203 }
204
205 zap_name_t *
206 zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints)
207 {
208 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
209
210 ASSERT(zap->zap_normflags == 0);
211 zn->zn_zap = zap;
212 zn->zn_key_intlen = sizeof (*key);
213 zn->zn_key_orig = zn->zn_key_norm = key;
214 zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints;
215 zn->zn_matchtype = MT_EXACT;
216
217 zn->zn_hash = zap_hash(zn);
218 return (zn);
219 }
220
221 static void
222 mzap_byteswap(mzap_phys_t *buf, size_t size)
223 {
224 int i, max;
225 buf->mz_block_type = BSWAP_64(buf->mz_block_type);
226 buf->mz_salt = BSWAP_64(buf->mz_salt);
227 buf->mz_normflags = BSWAP_64(buf->mz_normflags);
228 max = (size / MZAP_ENT_LEN) - 1;
229 for (i = 0; i < max; i++) {
230 buf->mz_chunk[i].mze_value =
231 BSWAP_64(buf->mz_chunk[i].mze_value);
232 buf->mz_chunk[i].mze_cd =
233 BSWAP_32(buf->mz_chunk[i].mze_cd);
234 }
235 }
236
237 void
238 zap_byteswap(void *buf, size_t size)
239 {
240 uint64_t block_type;
241
242 block_type = *(uint64_t *)buf;
243
244 if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) {
245 /* ASSERT(magic == ZAP_LEAF_MAGIC); */
246 mzap_byteswap(buf, size);
247 } else {
248 fzap_byteswap(buf, size);
249 }
250 }
251
252 static int
253 mze_compare(const void *arg1, const void *arg2)
254 {
255 const mzap_ent_t *mze1 = arg1;
256 const mzap_ent_t *mze2 = arg2;
257
258 if (mze1->mze_hash > mze2->mze_hash)
259 return (+1);
260 if (mze1->mze_hash < mze2->mze_hash)
261 return (-1);
262 if (mze1->mze_cd > mze2->mze_cd)
263 return (+1);
264 if (mze1->mze_cd < mze2->mze_cd)
265 return (-1);
266 return (0);
267 }
268
269 static void
270 mze_insert(zap_t *zap, int chunkid, uint64_t hash)
271 {
272 mzap_ent_t *mze;
273
274 ASSERT(zap->zap_ismicro);
275 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
276
277 mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP);
278 mze->mze_chunkid = chunkid;
279 mze->mze_hash = hash;
280 mze->mze_cd = MZE_PHYS(zap, mze)->mze_cd;
281 ASSERT(MZE_PHYS(zap, mze)->mze_name[0] != 0);
282 avl_add(&zap->zap_m.zap_avl, mze);
283 }
284
285 static mzap_ent_t *
286 mze_find(zap_name_t *zn)
287 {
288 mzap_ent_t mze_tofind;
289 mzap_ent_t *mze;
290 avl_index_t idx;
291 avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl;
292
293 ASSERT(zn->zn_zap->zap_ismicro);
294 ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock));
295
296 mze_tofind.mze_hash = zn->zn_hash;
297 mze_tofind.mze_cd = 0;
298
299 again:
300 mze = avl_find(avl, &mze_tofind, &idx);
301 if (mze == NULL)
302 mze = avl_nearest(avl, idx, AVL_AFTER);
303 for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) {
304 ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd);
305 if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name))
306 return (mze);
307 }
308 if (zn->zn_matchtype == MT_BEST) {
309 zn->zn_matchtype = MT_FIRST;
310 goto again;
311 }
312 return (NULL);
313 }
314
315 static uint32_t
316 mze_find_unused_cd(zap_t *zap, uint64_t hash)
317 {
318 mzap_ent_t mze_tofind;
319 mzap_ent_t *mze;
320 avl_index_t idx;
321 avl_tree_t *avl = &zap->zap_m.zap_avl;
322 uint32_t cd;
323
324 ASSERT(zap->zap_ismicro);
325 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
326
327 mze_tofind.mze_hash = hash;
328 mze_tofind.mze_cd = 0;
329
330 cd = 0;
331 for (mze = avl_find(avl, &mze_tofind, &idx);
332 mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
333 if (mze->mze_cd != cd)
334 break;
335 cd++;
336 }
337
338 return (cd);
339 }
340
341 static void
342 mze_remove(zap_t *zap, mzap_ent_t *mze)
343 {
344 ASSERT(zap->zap_ismicro);
345 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
346
347 avl_remove(&zap->zap_m.zap_avl, mze);
348 kmem_free(mze, sizeof (mzap_ent_t));
349 }
350
351 static void
352 mze_destroy(zap_t *zap)
353 {
354 mzap_ent_t *mze;
355 void *avlcookie = NULL;
356
357 while ((mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie)))
358 kmem_free(mze, sizeof (mzap_ent_t));
359 avl_destroy(&zap->zap_m.zap_avl);
360 }
361
362 static zap_t *
363 mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db)
364 {
365 zap_t *winner;
366 zap_t *zap;
367 int i;
368
369 ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
370
371 zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
372 rw_init(&zap->zap_rwlock, NULL, RW_DEFAULT, NULL);
373 rw_enter(&zap->zap_rwlock, RW_WRITER);
374 zap->zap_objset = os;
375 zap->zap_object = obj;
376 zap->zap_dbuf = db;
377
378 if (*(uint64_t *)db->db_data != ZBT_MICRO) {
379 mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0);
380 zap->zap_f.zap_block_shift = highbit64(db->db_size) - 1;
381 } else {
382 zap->zap_ismicro = TRUE;
383 }
384
385 /*
386 * Make sure that zap_ismicro is set before we let others see
387 * it, because zap_lockdir() checks zap_ismicro without the lock
388 * held.
389 */
390 dmu_buf_init_user(&zap->zap_dbu, zap_evict, &zap->zap_dbuf);
391 winner = dmu_buf_set_user(db, &zap->zap_dbu);
392
393 if (winner != NULL) {
394 rw_exit(&zap->zap_rwlock);
395 rw_destroy(&zap->zap_rwlock);
396 if (!zap->zap_ismicro)
397 mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
398 kmem_free(zap, sizeof (zap_t));
399 return (winner);
400 }
401
402 if (zap->zap_ismicro) {
403 zap->zap_salt = zap_m_phys(zap)->mz_salt;
404 zap->zap_normflags = zap_m_phys(zap)->mz_normflags;
405 zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
406 avl_create(&zap->zap_m.zap_avl, mze_compare,
407 sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node));
408
409 for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
410 mzap_ent_phys_t *mze =
411 &zap_m_phys(zap)->mz_chunk[i];
412 if (mze->mze_name[0]) {
413 zap_name_t *zn;
414
415 zap->zap_m.zap_num_entries++;
416 zn = zap_name_alloc(zap, mze->mze_name,
417 MT_EXACT);
418 mze_insert(zap, i, zn->zn_hash);
419 zap_name_free(zn);
420 }
421 }
422 } else {
423 zap->zap_salt = zap_f_phys(zap)->zap_salt;
424 zap->zap_normflags = zap_f_phys(zap)->zap_normflags;
425
426 ASSERT3U(sizeof (struct zap_leaf_header), ==,
427 2*ZAP_LEAF_CHUNKSIZE);
428
429 /*
430 * The embedded pointer table should not overlap the
431 * other members.
432 */
433 ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >,
434 &zap_f_phys(zap)->zap_salt);
435
436 /*
437 * The embedded pointer table should end at the end of
438 * the block
439 */
440 ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap,
441 1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) -
442 (uintptr_t)zap_f_phys(zap), ==,
443 zap->zap_dbuf->db_size);
444 }
445 rw_exit(&zap->zap_rwlock);
446 return (zap);
447 }
448
449 int
450 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
451 krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp)
452 {
453 dmu_object_info_t doi;
454 zap_t *zap;
455 dmu_buf_t *db;
456 krw_t lt;
457 int err;
458
459 *zapp = NULL;
460
461 err = dmu_buf_hold(os, obj, 0, NULL, &db, DMU_READ_NO_PREFETCH);
462 if (err)
463 return (err);
464
465 dmu_object_info_from_db(db, &doi);
466 if (DMU_OT_BYTESWAP(doi.doi_type) != DMU_BSWAP_ZAP)
467 return (SET_ERROR(EINVAL));
468
469 zap = dmu_buf_get_user(db);
470 if (zap == NULL)
471 zap = mzap_open(os, obj, db);
472
473 /*
474 * We're checking zap_ismicro without the lock held, in order to
475 * tell what type of lock we want. Once we have some sort of
476 * lock, see if it really is the right type. In practice this
477 * can only be different if it was upgraded from micro to fat,
478 * and micro wanted WRITER but fat only needs READER.
479 */
480 lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
481 rw_enter(&zap->zap_rwlock, lt);
482 if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
483 /* it was upgraded, now we only need reader */
484 ASSERT(lt == RW_WRITER);
485 ASSERT(RW_READER ==
486 (!zap->zap_ismicro && fatreader) ? RW_READER : lti);
487 rw_downgrade(&zap->zap_rwlock);
488 lt = RW_READER;
489 }
490
491 zap->zap_objset = os;
492
493 if (lt == RW_WRITER)
494 dmu_buf_will_dirty(db, tx);
495
496 ASSERT3P(zap->zap_dbuf, ==, db);
497
498 ASSERT(!zap->zap_ismicro ||
499 zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
500 if (zap->zap_ismicro && tx && adding &&
501 zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
502 uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
503 if (newsz > MZAP_MAX_BLKSZ) {
504 dprintf("upgrading obj %llu: num_entries=%u\n",
505 obj, zap->zap_m.zap_num_entries);
506 *zapp = zap;
507 return (mzap_upgrade(zapp, tx, 0));
508 }
509 err = dmu_object_set_blocksize(os, obj, newsz, 0, tx);
510 ASSERT0(err);
511 zap->zap_m.zap_num_chunks =
512 db->db_size / MZAP_ENT_LEN - 1;
513 }
514
515 *zapp = zap;
516 return (0);
517 }
518
519 void
520 zap_unlockdir(zap_t *zap)
521 {
522 rw_exit(&zap->zap_rwlock);
523 dmu_buf_rele(zap->zap_dbuf, NULL);
524 }
525
526 static int
527 mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags)
528 {
529 mzap_phys_t *mzp;
530 int i, sz, nchunks;
531 int err = 0;
532 zap_t *zap = *zapp;
533
534 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
535
536 sz = zap->zap_dbuf->db_size;
537 mzp = zio_buf_alloc(sz);
538 bcopy(zap->zap_dbuf->db_data, mzp, sz);
539 nchunks = zap->zap_m.zap_num_chunks;
540
541 if (!flags) {
542 err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
543 1ULL << fzap_default_block_shift, 0, tx);
544 if (err) {
545 zio_buf_free(mzp, sz);
546 return (err);
547 }
548 }
549
550 dprintf("upgrading obj=%llu with %u chunks\n",
551 zap->zap_object, nchunks);
552 /* XXX destroy the avl later, so we can use the stored hash value */
553 mze_destroy(zap);
554
555 fzap_upgrade(zap, tx, flags);
556
557 for (i = 0; i < nchunks; i++) {
558 mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
559 zap_name_t *zn;
560 if (mze->mze_name[0] == 0)
561 continue;
562 dprintf("adding %s=%llu\n",
563 mze->mze_name, mze->mze_value);
564 zn = zap_name_alloc(zap, mze->mze_name, MT_EXACT);
565 err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd, tx);
566 zap = zn->zn_zap; /* fzap_add_cd() may change zap */
567 zap_name_free(zn);
568 if (err)
569 break;
570 }
571 zio_buf_free(mzp, sz);
572 *zapp = zap;
573 return (err);
574 }
575
576 void
577 mzap_create_impl(objset_t *os, uint64_t obj, int normflags, zap_flags_t flags,
578 dmu_tx_t *tx)
579 {
580 dmu_buf_t *db;
581 mzap_phys_t *zp;
582
583 VERIFY(0 == dmu_buf_hold(os, obj, 0, FTAG, &db, DMU_READ_NO_PREFETCH));
584
585 #ifdef ZFS_DEBUG
586 {
587 dmu_object_info_t doi;
588 dmu_object_info_from_db(db, &doi);
589 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
590 }
591 #endif
592
593 dmu_buf_will_dirty(db, tx);
594 zp = db->db_data;
595 zp->mz_block_type = ZBT_MICRO;
596 zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL;
597 zp->mz_normflags = normflags;
598 dmu_buf_rele(db, FTAG);
599
600 if (flags != 0) {
601 zap_t *zap;
602 /* Only fat zap supports flags; upgrade immediately. */
603 VERIFY(0 == zap_lockdir(os, obj, tx, RW_WRITER,
604 B_FALSE, B_FALSE, &zap));
605 VERIFY3U(0, ==, mzap_upgrade(&zap, tx, flags));
606 zap_unlockdir(zap);
607 }
608 }
609
610 int
611 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
612 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
613 {
614 return (zap_create_claim_norm(os, obj,
615 0, ot, bonustype, bonuslen, tx));
616 }
617
618 int
619 zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags,
620 dmu_object_type_t ot,
621 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
622 {
623 int err;
624
625 err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx);
626 if (err != 0)
627 return (err);
628 mzap_create_impl(os, obj, normflags, 0, tx);
629 return (0);
630 }
631
632 uint64_t
633 zap_create(objset_t *os, dmu_object_type_t ot,
634 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
635 {
636 return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx));
637 }
638
639 uint64_t
640 zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot,
641 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
642 {
643 uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
644
645 mzap_create_impl(os, obj, normflags, 0, tx);
646 return (obj);
647 }
648
649 uint64_t
650 zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
651 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
652 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
653 {
654 uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
655
656 ASSERT(leaf_blockshift >= SPA_MINBLOCKSHIFT &&
657 leaf_blockshift <= SPA_MAXBLOCKSHIFT &&
658 indirect_blockshift >= SPA_MINBLOCKSHIFT &&
659 indirect_blockshift <= SPA_MAXBLOCKSHIFT);
660
661 VERIFY(dmu_object_set_blocksize(os, obj,
662 1ULL << leaf_blockshift, indirect_blockshift, tx) == 0);
663
664 mzap_create_impl(os, obj, normflags, flags, tx);
665 return (obj);
666 }
667
668 int
669 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
670 {
671 /*
672 * dmu_object_free will free the object number and free the
673 * data. Freeing the data will cause our pageout function to be
674 * called, which will destroy our data (zap_leaf_t's and zap_t).
675 */
676
677 return (dmu_object_free(os, zapobj, tx));
678 }
679
680 void
681 zap_evict(void *dbu)
682 {
683 zap_t *zap = dbu;
684
685 rw_destroy(&zap->zap_rwlock);
686
687 if (zap->zap_ismicro)
688 mze_destroy(zap);
689 else
690 mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
691
692 kmem_free(zap, sizeof (zap_t));
693 }
694
695 int
696 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
697 {
698 zap_t *zap;
699 int err;
700
701 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
702 if (err)
703 return (err);
704 if (!zap->zap_ismicro) {
705 err = fzap_count(zap, count);
706 } else {
707 *count = zap->zap_m.zap_num_entries;
708 }
709 zap_unlockdir(zap);
710 return (err);
711 }
712
713 /*
714 * zn may be NULL; if not specified, it will be computed if needed.
715 * See also the comment above zap_entry_normalization_conflict().
716 */
717 static boolean_t
718 mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze)
719 {
720 mzap_ent_t *other;
721 int direction = AVL_BEFORE;
722 boolean_t allocdzn = B_FALSE;
723
724 if (zap->zap_normflags == 0)
725 return (B_FALSE);
726
727 again:
728 for (other = avl_walk(&zap->zap_m.zap_avl, mze, direction);
729 other && other->mze_hash == mze->mze_hash;
730 other = avl_walk(&zap->zap_m.zap_avl, other, direction)) {
731
732 if (zn == NULL) {
733 zn = zap_name_alloc(zap, MZE_PHYS(zap, mze)->mze_name,
734 MT_FIRST);
735 allocdzn = B_TRUE;
736 }
737 if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) {
738 if (allocdzn)
739 zap_name_free(zn);
740 return (B_TRUE);
741 }
742 }
743
744 if (direction == AVL_BEFORE) {
745 direction = AVL_AFTER;
746 goto again;
747 }
748
749 if (allocdzn)
750 zap_name_free(zn);
751 return (B_FALSE);
752 }
753
754 /*
755 * Routines for manipulating attributes.
756 */
757
758 int
759 zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
760 uint64_t integer_size, uint64_t num_integers, void *buf)
761 {
762 return (zap_lookup_norm(os, zapobj, name, integer_size,
763 num_integers, buf, MT_EXACT, NULL, 0, NULL));
764 }
765
766 int
767 zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name,
768 uint64_t integer_size, uint64_t num_integers, void *buf,
769 matchtype_t mt, char *realname, int rn_len,
770 boolean_t *ncp)
771 {
772 zap_t *zap;
773 int err;
774 mzap_ent_t *mze;
775 zap_name_t *zn;
776
777 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
778 if (err)
779 return (err);
780 zn = zap_name_alloc(zap, name, mt);
781 if (zn == NULL) {
782 zap_unlockdir(zap);
783 return (SET_ERROR(ENOTSUP));
784 }
785
786 if (!zap->zap_ismicro) {
787 err = fzap_lookup(zn, integer_size, num_integers, buf,
788 realname, rn_len, ncp);
789 } else {
790 mze = mze_find(zn);
791 if (mze == NULL) {
792 err = SET_ERROR(ENOENT);
793 } else {
794 if (num_integers < 1) {
795 err = SET_ERROR(EOVERFLOW);
796 } else if (integer_size != 8) {
797 err = SET_ERROR(EINVAL);
798 } else {
799 *(uint64_t *)buf =
800 MZE_PHYS(zap, mze)->mze_value;
801 (void) strlcpy(realname,
802 MZE_PHYS(zap, mze)->mze_name, rn_len);
803 if (ncp) {
804 *ncp = mzap_normalization_conflict(zap,
805 zn, mze);
806 }
807 }
808 }
809 }
810 zap_name_free(zn);
811 zap_unlockdir(zap);
812 return (err);
813 }
814
815 int
816 zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
817 int key_numints)
818 {
819 zap_t *zap;
820 int err;
821 zap_name_t *zn;
822
823 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
824 if (err)
825 return (err);
826 zn = zap_name_alloc_uint64(zap, key, key_numints);
827 if (zn == NULL) {
828 zap_unlockdir(zap);
829 return (SET_ERROR(ENOTSUP));
830 }
831
832 fzap_prefetch(zn);
833 zap_name_free(zn);
834 zap_unlockdir(zap);
835 return (err);
836 }
837
838 int
839 zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
840 int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
841 {
842 zap_t *zap;
843 int err;
844 zap_name_t *zn;
845
846 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
847 if (err)
848 return (err);
849 zn = zap_name_alloc_uint64(zap, key, key_numints);
850 if (zn == NULL) {
851 zap_unlockdir(zap);
852 return (SET_ERROR(ENOTSUP));
853 }
854
855 err = fzap_lookup(zn, integer_size, num_integers, buf,
856 NULL, 0, NULL);
857 zap_name_free(zn);
858 zap_unlockdir(zap);
859 return (err);
860 }
861
862 int
863 zap_contains(objset_t *os, uint64_t zapobj, const char *name)
864 {
865 int err = zap_lookup_norm(os, zapobj, name, 0,
866 0, NULL, MT_EXACT, NULL, 0, NULL);
867 if (err == EOVERFLOW || err == EINVAL)
868 err = 0; /* found, but skipped reading the value */
869 return (err);
870 }
871
872 int
873 zap_length(objset_t *os, uint64_t zapobj, const char *name,
874 uint64_t *integer_size, uint64_t *num_integers)
875 {
876 zap_t *zap;
877 int err;
878 mzap_ent_t *mze;
879 zap_name_t *zn;
880
881 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
882 if (err)
883 return (err);
884 zn = zap_name_alloc(zap, name, MT_EXACT);
885 if (zn == NULL) {
886 zap_unlockdir(zap);
887 return (SET_ERROR(ENOTSUP));
888 }
889 if (!zap->zap_ismicro) {
890 err = fzap_length(zn, integer_size, num_integers);
891 } else {
892 mze = mze_find(zn);
893 if (mze == NULL) {
894 err = SET_ERROR(ENOENT);
895 } else {
896 if (integer_size)
897 *integer_size = 8;
898 if (num_integers)
899 *num_integers = 1;
900 }
901 }
902 zap_name_free(zn);
903 zap_unlockdir(zap);
904 return (err);
905 }
906
907 int
908 zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
909 int key_numints, uint64_t *integer_size, uint64_t *num_integers)
910 {
911 zap_t *zap;
912 int err;
913 zap_name_t *zn;
914
915 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
916 if (err)
917 return (err);
918 zn = zap_name_alloc_uint64(zap, key, key_numints);
919 if (zn == NULL) {
920 zap_unlockdir(zap);
921 return (SET_ERROR(ENOTSUP));
922 }
923 err = fzap_length(zn, integer_size, num_integers);
924 zap_name_free(zn);
925 zap_unlockdir(zap);
926 return (err);
927 }
928
929 static void
930 mzap_addent(zap_name_t *zn, uint64_t value)
931 {
932 int i;
933 zap_t *zap = zn->zn_zap;
934 int start = zap->zap_m.zap_alloc_next;
935 uint32_t cd;
936
937 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
938
939 #ifdef ZFS_DEBUG
940 for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
941 ASSERTV(mzap_ent_phys_t *mze);
942 ASSERT(mze = &zap_m_phys(zap)->mz_chunk[i]);
943 ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0);
944 }
945 #endif
946
947 cd = mze_find_unused_cd(zap, zn->zn_hash);
948 /* given the limited size of the microzap, this can't happen */
949 ASSERT(cd < zap_maxcd(zap));
950
951 again:
952 for (i = start; i < zap->zap_m.zap_num_chunks; i++) {
953 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
954 if (mze->mze_name[0] == 0) {
955 mze->mze_value = value;
956 mze->mze_cd = cd;
957 (void) strcpy(mze->mze_name, zn->zn_key_orig);
958 zap->zap_m.zap_num_entries++;
959 zap->zap_m.zap_alloc_next = i+1;
960 if (zap->zap_m.zap_alloc_next ==
961 zap->zap_m.zap_num_chunks)
962 zap->zap_m.zap_alloc_next = 0;
963 mze_insert(zap, i, zn->zn_hash);
964 return;
965 }
966 }
967 if (start != 0) {
968 start = 0;
969 goto again;
970 }
971 cmn_err(CE_PANIC, "out of entries!");
972 }
973
974 int
975 zap_add(objset_t *os, uint64_t zapobj, const char *key,
976 int integer_size, uint64_t num_integers,
977 const void *val, dmu_tx_t *tx)
978 {
979 zap_t *zap;
980 int err;
981 mzap_ent_t *mze;
982 const uint64_t *intval = val;
983 zap_name_t *zn;
984
985 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
986 if (err)
987 return (err);
988 zn = zap_name_alloc(zap, key, MT_EXACT);
989 if (zn == NULL) {
990 zap_unlockdir(zap);
991 return (SET_ERROR(ENOTSUP));
992 }
993 if (!zap->zap_ismicro) {
994 err = fzap_add(zn, integer_size, num_integers, val, tx);
995 zap = zn->zn_zap; /* fzap_add() may change zap */
996 } else if (integer_size != 8 || num_integers != 1 ||
997 strlen(key) >= MZAP_NAME_LEN) {
998 err = mzap_upgrade(&zn->zn_zap, tx, 0);
999 if (err == 0)
1000 err = fzap_add(zn, integer_size, num_integers, val, tx);
1001 zap = zn->zn_zap; /* fzap_add() may change zap */
1002 } else {
1003 mze = mze_find(zn);
1004 if (mze != NULL) {
1005 err = SET_ERROR(EEXIST);
1006 } else {
1007 mzap_addent(zn, *intval);
1008 }
1009 }
1010 ASSERT(zap == zn->zn_zap);
1011 zap_name_free(zn);
1012 if (zap != NULL) /* may be NULL if fzap_add() failed */
1013 zap_unlockdir(zap);
1014 return (err);
1015 }
1016
1017 int
1018 zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1019 int key_numints, int integer_size, uint64_t num_integers,
1020 const void *val, dmu_tx_t *tx)
1021 {
1022 zap_t *zap;
1023 int err;
1024 zap_name_t *zn;
1025
1026 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1027 if (err)
1028 return (err);
1029 zn = zap_name_alloc_uint64(zap, key, key_numints);
1030 if (zn == NULL) {
1031 zap_unlockdir(zap);
1032 return (SET_ERROR(ENOTSUP));
1033 }
1034 err = fzap_add(zn, integer_size, num_integers, val, tx);
1035 zap = zn->zn_zap; /* fzap_add() may change zap */
1036 zap_name_free(zn);
1037 if (zap != NULL) /* may be NULL if fzap_add() failed */
1038 zap_unlockdir(zap);
1039 return (err);
1040 }
1041
1042 int
1043 zap_update(objset_t *os, uint64_t zapobj, const char *name,
1044 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1045 {
1046 zap_t *zap;
1047 mzap_ent_t *mze;
1048 const uint64_t *intval = val;
1049 zap_name_t *zn;
1050 int err;
1051
1052 #ifdef ZFS_DEBUG
1053 uint64_t oldval;
1054
1055 /*
1056 * If there is an old value, it shouldn't change across the
1057 * lockdir (eg, due to bprewrite's xlation).
1058 */
1059 if (integer_size == 8 && num_integers == 1)
1060 (void) zap_lookup(os, zapobj, name, 8, 1, &oldval);
1061 #endif
1062
1063 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1064 if (err)
1065 return (err);
1066 zn = zap_name_alloc(zap, name, MT_EXACT);
1067 if (zn == NULL) {
1068 zap_unlockdir(zap);
1069 return (SET_ERROR(ENOTSUP));
1070 }
1071 if (!zap->zap_ismicro) {
1072 err = fzap_update(zn, integer_size, num_integers, val, tx);
1073 zap = zn->zn_zap; /* fzap_update() may change zap */
1074 } else if (integer_size != 8 || num_integers != 1 ||
1075 strlen(name) >= MZAP_NAME_LEN) {
1076 dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
1077 zapobj, integer_size, num_integers, name);
1078 err = mzap_upgrade(&zn->zn_zap, tx, 0);
1079 if (err == 0)
1080 err = fzap_update(zn, integer_size, num_integers,
1081 val, tx);
1082 zap = zn->zn_zap; /* fzap_update() may change zap */
1083 } else {
1084 mze = mze_find(zn);
1085 if (mze != NULL) {
1086 ASSERT3U(MZE_PHYS(zap, mze)->mze_value, ==, oldval);
1087 MZE_PHYS(zap, mze)->mze_value = *intval;
1088 } else {
1089 mzap_addent(zn, *intval);
1090 }
1091 }
1092 ASSERT(zap == zn->zn_zap);
1093 zap_name_free(zn);
1094 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */
1095 zap_unlockdir(zap);
1096 return (err);
1097 }
1098
1099 int
1100 zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1101 int key_numints,
1102 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1103 {
1104 zap_t *zap;
1105 zap_name_t *zn;
1106 int err;
1107
1108 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1109 if (err)
1110 return (err);
1111 zn = zap_name_alloc_uint64(zap, key, key_numints);
1112 if (zn == NULL) {
1113 zap_unlockdir(zap);
1114 return (SET_ERROR(ENOTSUP));
1115 }
1116 err = fzap_update(zn, integer_size, num_integers, val, tx);
1117 zap = zn->zn_zap; /* fzap_update() may change zap */
1118 zap_name_free(zn);
1119 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */
1120 zap_unlockdir(zap);
1121 return (err);
1122 }
1123
1124 int
1125 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
1126 {
1127 return (zap_remove_norm(os, zapobj, name, MT_EXACT, tx));
1128 }
1129
1130 int
1131 zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name,
1132 matchtype_t mt, dmu_tx_t *tx)
1133 {
1134 zap_t *zap;
1135 int err;
1136 mzap_ent_t *mze;
1137 zap_name_t *zn;
1138
1139 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
1140 if (err)
1141 return (err);
1142 zn = zap_name_alloc(zap, name, mt);
1143 if (zn == NULL) {
1144 zap_unlockdir(zap);
1145 return (SET_ERROR(ENOTSUP));
1146 }
1147 if (!zap->zap_ismicro) {
1148 err = fzap_remove(zn, tx);
1149 } else {
1150 mze = mze_find(zn);
1151 if (mze == NULL) {
1152 err = SET_ERROR(ENOENT);
1153 } else {
1154 zap->zap_m.zap_num_entries--;
1155 bzero(&zap_m_phys(zap)->mz_chunk[mze->mze_chunkid],
1156 sizeof (mzap_ent_phys_t));
1157 mze_remove(zap, mze);
1158 }
1159 }
1160 zap_name_free(zn);
1161 zap_unlockdir(zap);
1162 return (err);
1163 }
1164
1165 int
1166 zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1167 int key_numints, dmu_tx_t *tx)
1168 {
1169 zap_t *zap;
1170 int err;
1171 zap_name_t *zn;
1172
1173 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
1174 if (err)
1175 return (err);
1176 zn = zap_name_alloc_uint64(zap, key, key_numints);
1177 if (zn == NULL) {
1178 zap_unlockdir(zap);
1179 return (SET_ERROR(ENOTSUP));
1180 }
1181 err = fzap_remove(zn, tx);
1182 zap_name_free(zn);
1183 zap_unlockdir(zap);
1184 return (err);
1185 }
1186
1187 /*
1188 * Routines for iterating over the attributes.
1189 */
1190
1191 void
1192 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1193 uint64_t serialized)
1194 {
1195 zc->zc_objset = os;
1196 zc->zc_zap = NULL;
1197 zc->zc_leaf = NULL;
1198 zc->zc_zapobj = zapobj;
1199 zc->zc_serialized = serialized;
1200 zc->zc_hash = 0;
1201 zc->zc_cd = 0;
1202 }
1203
1204 void
1205 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1206 {
1207 zap_cursor_init_serialized(zc, os, zapobj, 0);
1208 }
1209
1210 void
1211 zap_cursor_fini(zap_cursor_t *zc)
1212 {
1213 if (zc->zc_zap) {
1214 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1215 zap_unlockdir(zc->zc_zap);
1216 zc->zc_zap = NULL;
1217 }
1218 if (zc->zc_leaf) {
1219 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1220 zap_put_leaf(zc->zc_leaf);
1221 zc->zc_leaf = NULL;
1222 }
1223 zc->zc_objset = NULL;
1224 }
1225
1226 uint64_t
1227 zap_cursor_serialize(zap_cursor_t *zc)
1228 {
1229 if (zc->zc_hash == -1ULL)
1230 return (-1ULL);
1231 if (zc->zc_zap == NULL)
1232 return (zc->zc_serialized);
1233 ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0);
1234 ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap));
1235
1236 /*
1237 * We want to keep the high 32 bits of the cursor zero if we can, so
1238 * that 32-bit programs can access this. So usually use a small
1239 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits
1240 * of the cursor.
1241 *
1242 * [ collision differentiator | zap_hashbits()-bit hash value ]
1243 */
1244 return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) |
1245 ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap)));
1246 }
1247
1248 int
1249 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
1250 {
1251 int err;
1252 avl_index_t idx;
1253 mzap_ent_t mze_tofind;
1254 mzap_ent_t *mze;
1255
1256 if (zc->zc_hash == -1ULL)
1257 return (SET_ERROR(ENOENT));
1258
1259 if (zc->zc_zap == NULL) {
1260 int hb;
1261 err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1262 RW_READER, TRUE, FALSE, &zc->zc_zap);
1263 if (err)
1264 return (err);
1265
1266 /*
1267 * To support zap_cursor_init_serialized, advance, retrieve,
1268 * we must add to the existing zc_cd, which may already
1269 * be 1 due to the zap_cursor_advance.
1270 */
1271 ASSERT(zc->zc_hash == 0);
1272 hb = zap_hashbits(zc->zc_zap);
1273 zc->zc_hash = zc->zc_serialized << (64 - hb);
1274 zc->zc_cd += zc->zc_serialized >> hb;
1275 if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */
1276 zc->zc_cd = 0;
1277 } else {
1278 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1279 }
1280 if (!zc->zc_zap->zap_ismicro) {
1281 err = fzap_cursor_retrieve(zc->zc_zap, zc, za);
1282 } else {
1283 mze_tofind.mze_hash = zc->zc_hash;
1284 mze_tofind.mze_cd = zc->zc_cd;
1285
1286 mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx);
1287 if (mze == NULL) {
1288 mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl,
1289 idx, AVL_AFTER);
1290 }
1291 if (mze) {
1292 mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze);
1293 ASSERT3U(mze->mze_cd, ==, mzep->mze_cd);
1294 za->za_normalization_conflict =
1295 mzap_normalization_conflict(zc->zc_zap, NULL, mze);
1296 za->za_integer_length = 8;
1297 za->za_num_integers = 1;
1298 za->za_first_integer = mzep->mze_value;
1299 (void) strcpy(za->za_name, mzep->mze_name);
1300 zc->zc_hash = mze->mze_hash;
1301 zc->zc_cd = mze->mze_cd;
1302 err = 0;
1303 } else {
1304 zc->zc_hash = -1ULL;
1305 err = SET_ERROR(ENOENT);
1306 }
1307 }
1308 rw_exit(&zc->zc_zap->zap_rwlock);
1309 return (err);
1310 }
1311
1312 void
1313 zap_cursor_advance(zap_cursor_t *zc)
1314 {
1315 if (zc->zc_hash == -1ULL)
1316 return;
1317 zc->zc_cd++;
1318 }
1319
1320 int
1321 zap_cursor_move_to_key(zap_cursor_t *zc, const char *name, matchtype_t mt)
1322 {
1323 int err = 0;
1324 mzap_ent_t *mze;
1325 zap_name_t *zn;
1326
1327 if (zc->zc_zap == NULL) {
1328 err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1329 RW_READER, TRUE, FALSE, &zc->zc_zap);
1330 if (err)
1331 return (err);
1332 } else {
1333 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1334 }
1335
1336 zn = zap_name_alloc(zc->zc_zap, name, mt);
1337 if (zn == NULL) {
1338 rw_exit(&zc->zc_zap->zap_rwlock);
1339 return (SET_ERROR(ENOTSUP));
1340 }
1341
1342 if (!zc->zc_zap->zap_ismicro) {
1343 err = fzap_cursor_move_to_key(zc, zn);
1344 } else {
1345 mze = mze_find(zn);
1346 if (mze == NULL) {
1347 err = SET_ERROR(ENOENT);
1348 goto out;
1349 }
1350 zc->zc_hash = mze->mze_hash;
1351 zc->zc_cd = mze->mze_cd;
1352 }
1353
1354 out:
1355 zap_name_free(zn);
1356 rw_exit(&zc->zc_zap->zap_rwlock);
1357 return (err);
1358 }
1359
1360 int
1361 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
1362 {
1363 int err;
1364 zap_t *zap;
1365
1366 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
1367 if (err)
1368 return (err);
1369
1370 bzero(zs, sizeof (zap_stats_t));
1371
1372 if (zap->zap_ismicro) {
1373 zs->zs_blocksize = zap->zap_dbuf->db_size;
1374 zs->zs_num_entries = zap->zap_m.zap_num_entries;
1375 zs->zs_num_blocks = 1;
1376 } else {
1377 fzap_get_stats(zap, zs);
1378 }
1379 zap_unlockdir(zap);
1380 return (0);
1381 }
1382
1383 int
1384 zap_count_write(objset_t *os, uint64_t zapobj, const char *name, int add,
1385 uint64_t *towrite, uint64_t *tooverwrite)
1386 {
1387 zap_t *zap;
1388 int err = 0;
1389
1390
1391 /*
1392 * Since, we don't have a name, we cannot figure out which blocks will
1393 * be affected in this operation. So, account for the worst case :
1394 * - 3 blocks overwritten: target leaf, ptrtbl block, header block
1395 * - 4 new blocks written if adding:
1396 * - 2 blocks for possibly split leaves,
1397 * - 2 grown ptrtbl blocks
1398 *
1399 * This also accomodates the case where an add operation to a fairly
1400 * large microzap results in a promotion to fatzap.
1401 */
1402 if (name == NULL) {
1403 *towrite += (3 + (add ? 4 : 0)) * SPA_MAXBLOCKSIZE;
1404 return (err);
1405 }
1406
1407 /*
1408 * We lock the zap with adding == FALSE. Because, if we pass
1409 * the actual value of add, it could trigger a mzap_upgrade().
1410 * At present we are just evaluating the possibility of this operation
1411 * and hence we donot want to trigger an upgrade.
1412 */
1413 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
1414 if (err)
1415 return (err);
1416
1417 if (!zap->zap_ismicro) {
1418 zap_name_t *zn = zap_name_alloc(zap, name, MT_EXACT);
1419 if (zn) {
1420 err = fzap_count_write(zn, add, towrite,
1421 tooverwrite);
1422 zap_name_free(zn);
1423 } else {
1424 /*
1425 * We treat this case as similar to (name == NULL)
1426 */
1427 *towrite += (3 + (add ? 4 : 0)) * SPA_MAXBLOCKSIZE;
1428 }
1429 } else {
1430 /*
1431 * We are here if (name != NULL) and this is a micro-zap.
1432 * We account for the header block depending on whether it
1433 * is freeable.
1434 *
1435 * Incase of an add-operation it is hard to find out
1436 * if this add will promote this microzap to fatzap.
1437 * Hence, we consider the worst case and account for the
1438 * blocks assuming this microzap would be promoted to a
1439 * fatzap.
1440 *
1441 * 1 block overwritten : header block
1442 * 4 new blocks written : 2 new split leaf, 2 grown
1443 * ptrtbl blocks
1444 */
1445 if (dmu_buf_freeable(zap->zap_dbuf))
1446 *tooverwrite += SPA_MAXBLOCKSIZE;
1447 else
1448 *towrite += SPA_MAXBLOCKSIZE;
1449
1450 if (add) {
1451 *towrite += 4 * SPA_MAXBLOCKSIZE;
1452 }
1453 }
1454
1455 zap_unlockdir(zap);
1456 return (err);
1457 }
1458
1459 #if defined(_KERNEL) && defined(HAVE_SPL)
1460 EXPORT_SYMBOL(zap_create);
1461 EXPORT_SYMBOL(zap_create_norm);
1462 EXPORT_SYMBOL(zap_create_flags);
1463 EXPORT_SYMBOL(zap_create_claim);
1464 EXPORT_SYMBOL(zap_create_claim_norm);
1465 EXPORT_SYMBOL(zap_destroy);
1466 EXPORT_SYMBOL(zap_lookup);
1467 EXPORT_SYMBOL(zap_lookup_norm);
1468 EXPORT_SYMBOL(zap_lookup_uint64);
1469 EXPORT_SYMBOL(zap_contains);
1470 EXPORT_SYMBOL(zap_prefetch_uint64);
1471 EXPORT_SYMBOL(zap_count_write);
1472 EXPORT_SYMBOL(zap_add);
1473 EXPORT_SYMBOL(zap_add_uint64);
1474 EXPORT_SYMBOL(zap_update);
1475 EXPORT_SYMBOL(zap_update_uint64);
1476 EXPORT_SYMBOL(zap_length);
1477 EXPORT_SYMBOL(zap_length_uint64);
1478 EXPORT_SYMBOL(zap_remove);
1479 EXPORT_SYMBOL(zap_remove_norm);
1480 EXPORT_SYMBOL(zap_remove_uint64);
1481 EXPORT_SYMBOL(zap_count);
1482 EXPORT_SYMBOL(zap_value_search);
1483 EXPORT_SYMBOL(zap_join);
1484 EXPORT_SYMBOL(zap_join_increment);
1485 EXPORT_SYMBOL(zap_add_int);
1486 EXPORT_SYMBOL(zap_remove_int);
1487 EXPORT_SYMBOL(zap_lookup_int);
1488 EXPORT_SYMBOL(zap_increment_int);
1489 EXPORT_SYMBOL(zap_add_int_key);
1490 EXPORT_SYMBOL(zap_lookup_int_key);
1491 EXPORT_SYMBOL(zap_increment);
1492 EXPORT_SYMBOL(zap_cursor_init);
1493 EXPORT_SYMBOL(zap_cursor_fini);
1494 EXPORT_SYMBOL(zap_cursor_retrieve);
1495 EXPORT_SYMBOL(zap_cursor_advance);
1496 EXPORT_SYMBOL(zap_cursor_serialize);
1497 EXPORT_SYMBOL(zap_cursor_move_to_key);
1498 EXPORT_SYMBOL(zap_cursor_init_serialized);
1499 EXPORT_SYMBOL(zap_get_stats);
1500 #endif