]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zap_micro.c
Revert "Handle zap_add() failures in mixed ... "
[mirror_zfs.git] / module / zfs / zap_micro.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.
27 */
28
29 #include <sys/zio.h>
30 #include <sys/spa.h>
31 #include <sys/dmu.h>
32 #include <sys/zfs_context.h>
33 #include <sys/zap.h>
34 #include <sys/refcount.h>
35 #include <sys/zap_impl.h>
36 #include <sys/zap_leaf.h>
37 #include <sys/avl.h>
38 #include <sys/arc.h>
39 #include <sys/dmu_objset.h>
40
41 #ifdef _KERNEL
42 #include <sys/sunddi.h>
43 #endif
44
45 extern inline mzap_phys_t *zap_m_phys(zap_t *zap);
46
47 static int mzap_upgrade(zap_t **zapp,
48 void *tag, dmu_tx_t *tx, zap_flags_t flags);
49
50 uint64_t
51 zap_getflags(zap_t *zap)
52 {
53 if (zap->zap_ismicro)
54 return (0);
55 return (zap_f_phys(zap)->zap_flags);
56 }
57
58 int
59 zap_hashbits(zap_t *zap)
60 {
61 if (zap_getflags(zap) & ZAP_FLAG_HASH64)
62 return (48);
63 else
64 return (28);
65 }
66
67 uint32_t
68 zap_maxcd(zap_t *zap)
69 {
70 if (zap_getflags(zap) & ZAP_FLAG_HASH64)
71 return ((1<<16)-1);
72 else
73 return (-1U);
74 }
75
76 static uint64_t
77 zap_hash(zap_name_t *zn)
78 {
79 zap_t *zap = zn->zn_zap;
80 uint64_t h = 0;
81
82 if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) {
83 ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY);
84 h = *(uint64_t *)zn->zn_key_orig;
85 } else {
86 h = zap->zap_salt;
87 ASSERT(h != 0);
88 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
89
90 if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
91 int i;
92 const uint64_t *wp = zn->zn_key_norm;
93
94 ASSERT(zn->zn_key_intlen == 8);
95 for (i = 0; i < zn->zn_key_norm_numints; wp++, i++) {
96 int j;
97 uint64_t word = *wp;
98
99 for (j = 0; j < zn->zn_key_intlen; j++) {
100 h = (h >> 8) ^
101 zfs_crc64_table[(h ^ word) & 0xFF];
102 word >>= NBBY;
103 }
104 }
105 } else {
106 int i, len;
107 const uint8_t *cp = zn->zn_key_norm;
108
109 /*
110 * We previously stored the terminating null on
111 * disk, but didn't hash it, so we need to
112 * continue to not hash it. (The
113 * zn_key_*_numints includes the terminating
114 * null for non-binary keys.)
115 */
116 len = zn->zn_key_norm_numints - 1;
117
118 ASSERT(zn->zn_key_intlen == 1);
119 for (i = 0; i < len; cp++, i++) {
120 h = (h >> 8) ^
121 zfs_crc64_table[(h ^ *cp) & 0xFF];
122 }
123 }
124 }
125 /*
126 * Don't use all 64 bits, since we need some in the cookie for
127 * the collision differentiator. We MUST use the high bits,
128 * since those are the ones that we first pay attention to when
129 * choosing the bucket.
130 */
131 h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1);
132
133 return (h);
134 }
135
136 static int
137 zap_normalize(zap_t *zap, const char *name, char *namenorm, int normflags)
138 {
139 size_t inlen, outlen;
140 int err;
141
142 ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY));
143
144 inlen = strlen(name) + 1;
145 outlen = ZAP_MAXNAMELEN;
146
147 err = 0;
148 (void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen,
149 normflags | U8_TEXTPREP_IGNORE_NULL | U8_TEXTPREP_IGNORE_INVALID,
150 U8_UNICODE_LATEST, &err);
151
152 return (err);
153 }
154
155 boolean_t
156 zap_match(zap_name_t *zn, const char *matchname)
157 {
158 ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY));
159
160 if (zn->zn_matchtype & MT_NORMALIZE) {
161 char norm[ZAP_MAXNAMELEN];
162
163 if (zap_normalize(zn->zn_zap, matchname, norm,
164 zn->zn_normflags) != 0)
165 return (B_FALSE);
166
167 return (strcmp(zn->zn_key_norm, norm) == 0);
168 } else {
169 return (strcmp(zn->zn_key_orig, matchname) == 0);
170 }
171 }
172
173 void
174 zap_name_free(zap_name_t *zn)
175 {
176 kmem_free(zn, sizeof (zap_name_t));
177 }
178
179 zap_name_t *
180 zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt)
181 {
182 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
183
184 zn->zn_zap = zap;
185 zn->zn_key_intlen = sizeof (*key);
186 zn->zn_key_orig = key;
187 zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1;
188 zn->zn_matchtype = mt;
189 zn->zn_normflags = zap->zap_normflags;
190
191 /*
192 * If we're dealing with a case sensitive lookup on a mixed or
193 * insensitive fs, remove U8_TEXTPREP_TOUPPER or the lookup
194 * will fold case to all caps overriding the lookup request.
195 */
196 if (mt & MT_MATCH_CASE)
197 zn->zn_normflags &= ~U8_TEXTPREP_TOUPPER;
198
199 if (zap->zap_normflags) {
200 /*
201 * We *must* use zap_normflags because this normalization is
202 * what the hash is computed from.
203 */
204 if (zap_normalize(zap, key, zn->zn_normbuf,
205 zap->zap_normflags) != 0) {
206 zap_name_free(zn);
207 return (NULL);
208 }
209 zn->zn_key_norm = zn->zn_normbuf;
210 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
211 } else {
212 if (mt != 0) {
213 zap_name_free(zn);
214 return (NULL);
215 }
216 zn->zn_key_norm = zn->zn_key_orig;
217 zn->zn_key_norm_numints = zn->zn_key_orig_numints;
218 }
219
220 zn->zn_hash = zap_hash(zn);
221
222 if (zap->zap_normflags != zn->zn_normflags) {
223 /*
224 * We *must* use zn_normflags because this normalization is
225 * what the matching is based on. (Not the hash!)
226 */
227 if (zap_normalize(zap, key, zn->zn_normbuf,
228 zn->zn_normflags) != 0) {
229 zap_name_free(zn);
230 return (NULL);
231 }
232 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
233 }
234
235 return (zn);
236 }
237
238 zap_name_t *
239 zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints)
240 {
241 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
242
243 ASSERT(zap->zap_normflags == 0);
244 zn->zn_zap = zap;
245 zn->zn_key_intlen = sizeof (*key);
246 zn->zn_key_orig = zn->zn_key_norm = key;
247 zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints;
248 zn->zn_matchtype = 0;
249
250 zn->zn_hash = zap_hash(zn);
251 return (zn);
252 }
253
254 static void
255 mzap_byteswap(mzap_phys_t *buf, size_t size)
256 {
257 int i, max;
258 buf->mz_block_type = BSWAP_64(buf->mz_block_type);
259 buf->mz_salt = BSWAP_64(buf->mz_salt);
260 buf->mz_normflags = BSWAP_64(buf->mz_normflags);
261 max = (size / MZAP_ENT_LEN) - 1;
262 for (i = 0; i < max; i++) {
263 buf->mz_chunk[i].mze_value =
264 BSWAP_64(buf->mz_chunk[i].mze_value);
265 buf->mz_chunk[i].mze_cd =
266 BSWAP_32(buf->mz_chunk[i].mze_cd);
267 }
268 }
269
270 void
271 zap_byteswap(void *buf, size_t size)
272 {
273 uint64_t block_type;
274
275 block_type = *(uint64_t *)buf;
276
277 if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) {
278 /* ASSERT(magic == ZAP_LEAF_MAGIC); */
279 mzap_byteswap(buf, size);
280 } else {
281 fzap_byteswap(buf, size);
282 }
283 }
284
285 static int
286 mze_compare(const void *arg1, const void *arg2)
287 {
288 const mzap_ent_t *mze1 = arg1;
289 const mzap_ent_t *mze2 = arg2;
290
291 int cmp = AVL_CMP(mze1->mze_hash, mze2->mze_hash);
292 if (likely(cmp))
293 return (cmp);
294
295 return (AVL_CMP(mze1->mze_cd, mze2->mze_cd));
296 }
297
298 static void
299 mze_insert(zap_t *zap, int chunkid, uint64_t hash)
300 {
301 mzap_ent_t *mze;
302
303 ASSERT(zap->zap_ismicro);
304 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
305
306 mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP);
307 mze->mze_chunkid = chunkid;
308 mze->mze_hash = hash;
309 mze->mze_cd = MZE_PHYS(zap, mze)->mze_cd;
310 ASSERT(MZE_PHYS(zap, mze)->mze_name[0] != 0);
311 avl_add(&zap->zap_m.zap_avl, mze);
312 }
313
314 static mzap_ent_t *
315 mze_find(zap_name_t *zn)
316 {
317 mzap_ent_t mze_tofind;
318 mzap_ent_t *mze;
319 avl_index_t idx;
320 avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl;
321
322 ASSERT(zn->zn_zap->zap_ismicro);
323 ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock));
324
325 mze_tofind.mze_hash = zn->zn_hash;
326 mze_tofind.mze_cd = 0;
327
328 mze = avl_find(avl, &mze_tofind, &idx);
329 if (mze == NULL)
330 mze = avl_nearest(avl, idx, AVL_AFTER);
331 for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) {
332 ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd);
333 if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name))
334 return (mze);
335 }
336
337 return (NULL);
338 }
339
340 static uint32_t
341 mze_find_unused_cd(zap_t *zap, uint64_t hash)
342 {
343 mzap_ent_t mze_tofind;
344 mzap_ent_t *mze;
345 avl_index_t idx;
346 avl_tree_t *avl = &zap->zap_m.zap_avl;
347 uint32_t cd;
348
349 ASSERT(zap->zap_ismicro);
350 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
351
352 mze_tofind.mze_hash = hash;
353 mze_tofind.mze_cd = 0;
354
355 cd = 0;
356 for (mze = avl_find(avl, &mze_tofind, &idx);
357 mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
358 if (mze->mze_cd != cd)
359 break;
360 cd++;
361 }
362
363 return (cd);
364 }
365
366 static void
367 mze_remove(zap_t *zap, mzap_ent_t *mze)
368 {
369 ASSERT(zap->zap_ismicro);
370 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
371
372 avl_remove(&zap->zap_m.zap_avl, mze);
373 kmem_free(mze, sizeof (mzap_ent_t));
374 }
375
376 static void
377 mze_destroy(zap_t *zap)
378 {
379 mzap_ent_t *mze;
380 void *avlcookie = NULL;
381
382 while ((mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie)))
383 kmem_free(mze, sizeof (mzap_ent_t));
384 avl_destroy(&zap->zap_m.zap_avl);
385 }
386
387 static zap_t *
388 mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db)
389 {
390 zap_t *winner;
391 zap_t *zap;
392 int i;
393 uint64_t *zap_hdr = (uint64_t *)db->db_data;
394 uint64_t zap_block_type = zap_hdr[0];
395 uint64_t zap_magic = zap_hdr[1];
396
397 ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
398
399 zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
400 rw_init(&zap->zap_rwlock, NULL, RW_DEFAULT, NULL);
401 rw_enter(&zap->zap_rwlock, RW_WRITER);
402 zap->zap_objset = os;
403 zap->zap_object = obj;
404 zap->zap_dbuf = db;
405
406 if (zap_block_type != ZBT_MICRO) {
407 mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, MUTEX_DEFAULT,
408 0);
409 zap->zap_f.zap_block_shift = highbit64(db->db_size) - 1;
410 if (zap_block_type != ZBT_HEADER || zap_magic != ZAP_MAGIC) {
411 winner = NULL; /* No actual winner here... */
412 goto handle_winner;
413 }
414 } else {
415 zap->zap_ismicro = TRUE;
416 }
417
418 /*
419 * Make sure that zap_ismicro is set before we let others see
420 * it, because zap_lockdir() checks zap_ismicro without the lock
421 * held.
422 */
423 dmu_buf_init_user(&zap->zap_dbu, zap_evict_sync, NULL, &zap->zap_dbuf);
424 winner = dmu_buf_set_user(db, &zap->zap_dbu);
425
426 if (winner != NULL)
427 goto handle_winner;
428
429 if (zap->zap_ismicro) {
430 zap->zap_salt = zap_m_phys(zap)->mz_salt;
431 zap->zap_normflags = zap_m_phys(zap)->mz_normflags;
432 zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
433 avl_create(&zap->zap_m.zap_avl, mze_compare,
434 sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node));
435
436 for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
437 mzap_ent_phys_t *mze =
438 &zap_m_phys(zap)->mz_chunk[i];
439 if (mze->mze_name[0]) {
440 zap_name_t *zn;
441
442 zap->zap_m.zap_num_entries++;
443 zn = zap_name_alloc(zap, mze->mze_name, 0);
444 mze_insert(zap, i, zn->zn_hash);
445 zap_name_free(zn);
446 }
447 }
448 } else {
449 zap->zap_salt = zap_f_phys(zap)->zap_salt;
450 zap->zap_normflags = zap_f_phys(zap)->zap_normflags;
451
452 ASSERT3U(sizeof (struct zap_leaf_header), ==,
453 2*ZAP_LEAF_CHUNKSIZE);
454
455 /*
456 * The embedded pointer table should not overlap the
457 * other members.
458 */
459 ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >,
460 &zap_f_phys(zap)->zap_salt);
461
462 /*
463 * The embedded pointer table should end at the end of
464 * the block
465 */
466 ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap,
467 1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) -
468 (uintptr_t)zap_f_phys(zap), ==,
469 zap->zap_dbuf->db_size);
470 }
471 rw_exit(&zap->zap_rwlock);
472 return (zap);
473
474 handle_winner:
475 rw_exit(&zap->zap_rwlock);
476 rw_destroy(&zap->zap_rwlock);
477 if (!zap->zap_ismicro)
478 mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
479 kmem_free(zap, sizeof (zap_t));
480 return (winner);
481 }
482
483 static int
484 zap_lockdir_impl(dmu_buf_t *db, void *tag, dmu_tx_t *tx,
485 krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp)
486 {
487 dmu_object_info_t doi;
488 zap_t *zap;
489 krw_t lt;
490
491 objset_t *os = dmu_buf_get_objset(db);
492 uint64_t obj = db->db_object;
493
494 ASSERT0(db->db_offset);
495 *zapp = NULL;
496
497 dmu_object_info_from_db(db, &doi);
498 if (DMU_OT_BYTESWAP(doi.doi_type) != DMU_BSWAP_ZAP)
499 return (SET_ERROR(EINVAL));
500
501 zap = dmu_buf_get_user(db);
502 if (zap == NULL) {
503 zap = mzap_open(os, obj, db);
504 if (zap == NULL) {
505 /*
506 * mzap_open() didn't like what it saw on-disk.
507 * Check for corruption!
508 */
509 return (SET_ERROR(EIO));
510 }
511 }
512
513 /*
514 * We're checking zap_ismicro without the lock held, in order to
515 * tell what type of lock we want. Once we have some sort of
516 * lock, see if it really is the right type. In practice this
517 * can only be different if it was upgraded from micro to fat,
518 * and micro wanted WRITER but fat only needs READER.
519 */
520 lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
521 rw_enter(&zap->zap_rwlock, lt);
522 if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
523 /* it was upgraded, now we only need reader */
524 ASSERT(lt == RW_WRITER);
525 ASSERT(RW_READER ==
526 ((!zap->zap_ismicro && fatreader) ? RW_READER : lti));
527 rw_downgrade(&zap->zap_rwlock);
528 lt = RW_READER;
529 }
530
531 zap->zap_objset = os;
532
533 if (lt == RW_WRITER)
534 dmu_buf_will_dirty(db, tx);
535
536 ASSERT3P(zap->zap_dbuf, ==, db);
537
538 ASSERT(!zap->zap_ismicro ||
539 zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
540 if (zap->zap_ismicro && tx && adding &&
541 zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
542 uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
543 if (newsz > MZAP_MAX_BLKSZ) {
544 int err;
545 dprintf("upgrading obj %llu: num_entries=%u\n",
546 obj, zap->zap_m.zap_num_entries);
547 *zapp = zap;
548 err = mzap_upgrade(zapp, tag, tx, 0);
549 if (err != 0)
550 rw_exit(&zap->zap_rwlock);
551 return (err);
552 }
553 VERIFY0(dmu_object_set_blocksize(os, obj, newsz, 0, tx));
554 zap->zap_m.zap_num_chunks =
555 db->db_size / MZAP_ENT_LEN - 1;
556 }
557
558 *zapp = zap;
559 return (0);
560 }
561
562 static int
563 zap_lockdir_by_dnode(dnode_t *dn, dmu_tx_t *tx,
564 krw_t lti, boolean_t fatreader, boolean_t adding, void *tag, zap_t **zapp)
565 {
566 dmu_buf_t *db;
567 int err;
568
569 err = dmu_buf_hold_by_dnode(dn, 0, tag, &db, DMU_READ_NO_PREFETCH);
570 if (err != 0) {
571 return (err);
572 }
573 err = zap_lockdir_impl(db, tag, tx, lti, fatreader, adding, zapp);
574 if (err != 0) {
575 dmu_buf_rele(db, tag);
576 }
577 return (err);
578 }
579
580 int
581 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
582 krw_t lti, boolean_t fatreader, boolean_t adding, void *tag, zap_t **zapp)
583 {
584 dmu_buf_t *db;
585 int err;
586
587 err = dmu_buf_hold(os, obj, 0, tag, &db, DMU_READ_NO_PREFETCH);
588 if (err != 0)
589 return (err);
590 err = zap_lockdir_impl(db, tag, tx, lti, fatreader, adding, zapp);
591 if (err != 0)
592 dmu_buf_rele(db, tag);
593 return (err);
594 }
595
596 void
597 zap_unlockdir(zap_t *zap, void *tag)
598 {
599 rw_exit(&zap->zap_rwlock);
600 dmu_buf_rele(zap->zap_dbuf, tag);
601 }
602
603 static int
604 mzap_upgrade(zap_t **zapp, void *tag, dmu_tx_t *tx, zap_flags_t flags)
605 {
606 mzap_phys_t *mzp;
607 int i, sz, nchunks;
608 int err = 0;
609 zap_t *zap = *zapp;
610
611 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
612
613 sz = zap->zap_dbuf->db_size;
614 mzp = vmem_alloc(sz, KM_SLEEP);
615 bcopy(zap->zap_dbuf->db_data, mzp, sz);
616 nchunks = zap->zap_m.zap_num_chunks;
617
618 if (!flags) {
619 err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
620 1ULL << fzap_default_block_shift, 0, tx);
621 if (err) {
622 vmem_free(mzp, sz);
623 return (err);
624 }
625 }
626
627 dprintf("upgrading obj=%llu with %u chunks\n",
628 zap->zap_object, nchunks);
629 /* XXX destroy the avl later, so we can use the stored hash value */
630 mze_destroy(zap);
631
632 fzap_upgrade(zap, tx, flags);
633
634 for (i = 0; i < nchunks; i++) {
635 mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
636 zap_name_t *zn;
637 if (mze->mze_name[0] == 0)
638 continue;
639 dprintf("adding %s=%llu\n",
640 mze->mze_name, mze->mze_value);
641 zn = zap_name_alloc(zap, mze->mze_name, 0);
642 err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd,
643 tag, tx);
644 zap = zn->zn_zap; /* fzap_add_cd() may change zap */
645 zap_name_free(zn);
646 if (err)
647 break;
648 }
649 vmem_free(mzp, sz);
650 *zapp = zap;
651 return (err);
652 }
653
654 /*
655 * The "normflags" determine the behavior of the matchtype_t which is
656 * passed to zap_lookup_norm(). Names which have the same normalized
657 * version will be stored with the same hash value, and therefore we can
658 * perform normalization-insensitive lookups. We can be Unicode form-
659 * insensitive and/or case-insensitive. The following flags are valid for
660 * "normflags":
661 *
662 * U8_TEXTPREP_NFC
663 * U8_TEXTPREP_NFD
664 * U8_TEXTPREP_NFKC
665 * U8_TEXTPREP_NFKD
666 * U8_TEXTPREP_TOUPPER
667 *
668 * The *_NF* (Normalization Form) flags are mutually exclusive; at most one
669 * of them may be supplied.
670 */
671 void
672 mzap_create_impl(objset_t *os, uint64_t obj, int normflags, zap_flags_t flags,
673 dmu_tx_t *tx)
674 {
675 dmu_buf_t *db;
676 mzap_phys_t *zp;
677
678 VERIFY0(dmu_buf_hold(os, obj, 0, FTAG, &db, DMU_READ_NO_PREFETCH));
679
680 #ifdef ZFS_DEBUG
681 {
682 dmu_object_info_t doi;
683 dmu_object_info_from_db(db, &doi);
684 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
685 }
686 #endif
687
688 dmu_buf_will_dirty(db, tx);
689 zp = db->db_data;
690 zp->mz_block_type = ZBT_MICRO;
691 zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL;
692 zp->mz_normflags = normflags;
693 dmu_buf_rele(db, FTAG);
694
695 if (flags != 0) {
696 zap_t *zap;
697 /* Only fat zap supports flags; upgrade immediately. */
698 VERIFY(0 == zap_lockdir(os, obj, tx, RW_WRITER,
699 B_FALSE, B_FALSE, FTAG, &zap));
700 VERIFY3U(0, ==, mzap_upgrade(&zap, FTAG, tx, flags));
701 zap_unlockdir(zap, FTAG);
702 }
703 }
704
705 int
706 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
707 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
708 {
709 return (zap_create_claim_dnsize(os, obj, ot, bonustype, bonuslen,
710 0, tx));
711 }
712
713 int
714 zap_create_claim_dnsize(objset_t *os, uint64_t obj, dmu_object_type_t ot,
715 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
716 {
717 return (zap_create_claim_norm_dnsize(os, obj,
718 0, ot, bonustype, bonuslen, dnodesize, tx));
719 }
720
721 int
722 zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags,
723 dmu_object_type_t ot,
724 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
725 {
726 return (zap_create_claim_norm_dnsize(os, obj, normflags, ot, bonustype,
727 bonuslen, 0, tx));
728 }
729
730 int
731 zap_create_claim_norm_dnsize(objset_t *os, uint64_t obj, int normflags,
732 dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen,
733 int dnodesize, dmu_tx_t *tx)
734 {
735 int err;
736
737 err = dmu_object_claim_dnsize(os, obj, ot, 0, bonustype, bonuslen,
738 dnodesize, tx);
739 if (err != 0)
740 return (err);
741 mzap_create_impl(os, obj, normflags, 0, tx);
742 return (0);
743 }
744
745 uint64_t
746 zap_create(objset_t *os, dmu_object_type_t ot,
747 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
748 {
749 return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx));
750 }
751
752 uint64_t
753 zap_create_dnsize(objset_t *os, dmu_object_type_t ot,
754 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
755 {
756 return (zap_create_norm_dnsize(os, 0, ot, bonustype, bonuslen,
757 dnodesize, tx));
758 }
759
760 uint64_t
761 zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot,
762 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
763 {
764 return (zap_create_norm_dnsize(os, normflags, ot, bonustype, bonuslen,
765 0, tx));
766 }
767
768 uint64_t
769 zap_create_norm_dnsize(objset_t *os, int normflags, dmu_object_type_t ot,
770 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
771 {
772 uint64_t obj = dmu_object_alloc_dnsize(os, ot, 0, bonustype, bonuslen,
773 dnodesize, tx);
774
775 mzap_create_impl(os, obj, normflags, 0, tx);
776 return (obj);
777 }
778
779 uint64_t
780 zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
781 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
782 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
783 {
784 return (zap_create_flags_dnsize(os, normflags, flags, ot,
785 leaf_blockshift, indirect_blockshift, bonustype, bonuslen, 0, tx));
786 }
787
788 uint64_t
789 zap_create_flags_dnsize(objset_t *os, int normflags, zap_flags_t flags,
790 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
791 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
792 {
793 uint64_t obj = dmu_object_alloc_dnsize(os, ot, 0, bonustype, bonuslen,
794 dnodesize, tx);
795
796 ASSERT(leaf_blockshift >= SPA_MINBLOCKSHIFT &&
797 leaf_blockshift <= SPA_OLD_MAXBLOCKSHIFT &&
798 indirect_blockshift >= SPA_MINBLOCKSHIFT &&
799 indirect_blockshift <= SPA_OLD_MAXBLOCKSHIFT);
800
801 VERIFY(dmu_object_set_blocksize(os, obj,
802 1ULL << leaf_blockshift, indirect_blockshift, tx) == 0);
803
804 mzap_create_impl(os, obj, normflags, flags, tx);
805 return (obj);
806 }
807
808 int
809 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
810 {
811 /*
812 * dmu_object_free will free the object number and free the
813 * data. Freeing the data will cause our pageout function to be
814 * called, which will destroy our data (zap_leaf_t's and zap_t).
815 */
816
817 return (dmu_object_free(os, zapobj, tx));
818 }
819
820 void
821 zap_evict_sync(void *dbu)
822 {
823 zap_t *zap = dbu;
824
825 rw_destroy(&zap->zap_rwlock);
826
827 if (zap->zap_ismicro)
828 mze_destroy(zap);
829 else
830 mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
831
832 kmem_free(zap, sizeof (zap_t));
833 }
834
835 int
836 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
837 {
838 zap_t *zap;
839 int err;
840
841 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
842 if (err)
843 return (err);
844 if (!zap->zap_ismicro) {
845 err = fzap_count(zap, count);
846 } else {
847 *count = zap->zap_m.zap_num_entries;
848 }
849 zap_unlockdir(zap, FTAG);
850 return (err);
851 }
852
853 /*
854 * zn may be NULL; if not specified, it will be computed if needed.
855 * See also the comment above zap_entry_normalization_conflict().
856 */
857 static boolean_t
858 mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze)
859 {
860 mzap_ent_t *other;
861 int direction = AVL_BEFORE;
862 boolean_t allocdzn = B_FALSE;
863
864 if (zap->zap_normflags == 0)
865 return (B_FALSE);
866
867 again:
868 for (other = avl_walk(&zap->zap_m.zap_avl, mze, direction);
869 other && other->mze_hash == mze->mze_hash;
870 other = avl_walk(&zap->zap_m.zap_avl, other, direction)) {
871
872 if (zn == NULL) {
873 zn = zap_name_alloc(zap, MZE_PHYS(zap, mze)->mze_name,
874 MT_NORMALIZE);
875 allocdzn = B_TRUE;
876 }
877 if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) {
878 if (allocdzn)
879 zap_name_free(zn);
880 return (B_TRUE);
881 }
882 }
883
884 if (direction == AVL_BEFORE) {
885 direction = AVL_AFTER;
886 goto again;
887 }
888
889 if (allocdzn)
890 zap_name_free(zn);
891 return (B_FALSE);
892 }
893
894 /*
895 * Routines for manipulating attributes.
896 */
897
898 int
899 zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
900 uint64_t integer_size, uint64_t num_integers, void *buf)
901 {
902 return (zap_lookup_norm(os, zapobj, name, integer_size,
903 num_integers, buf, 0, NULL, 0, NULL));
904 }
905
906 static int
907 zap_lookup_impl(zap_t *zap, const char *name,
908 uint64_t integer_size, uint64_t num_integers, void *buf,
909 matchtype_t mt, char *realname, int rn_len,
910 boolean_t *ncp)
911 {
912 int err = 0;
913 mzap_ent_t *mze;
914 zap_name_t *zn;
915
916 zn = zap_name_alloc(zap, name, mt);
917 if (zn == NULL)
918 return (SET_ERROR(ENOTSUP));
919
920 if (!zap->zap_ismicro) {
921 err = fzap_lookup(zn, integer_size, num_integers, buf,
922 realname, rn_len, ncp);
923 } else {
924 mze = mze_find(zn);
925 if (mze == NULL) {
926 err = SET_ERROR(ENOENT);
927 } else {
928 if (num_integers < 1) {
929 err = SET_ERROR(EOVERFLOW);
930 } else if (integer_size != 8) {
931 err = SET_ERROR(EINVAL);
932 } else {
933 *(uint64_t *)buf =
934 MZE_PHYS(zap, mze)->mze_value;
935 (void) strlcpy(realname,
936 MZE_PHYS(zap, mze)->mze_name, rn_len);
937 if (ncp) {
938 *ncp = mzap_normalization_conflict(zap,
939 zn, mze);
940 }
941 }
942 }
943 }
944 zap_name_free(zn);
945 return (err);
946 }
947
948 int
949 zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name,
950 uint64_t integer_size, uint64_t num_integers, void *buf,
951 matchtype_t mt, char *realname, int rn_len,
952 boolean_t *ncp)
953 {
954 zap_t *zap;
955 int err;
956
957 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
958 if (err != 0)
959 return (err);
960 err = zap_lookup_impl(zap, name, integer_size,
961 num_integers, buf, mt, realname, rn_len, ncp);
962 zap_unlockdir(zap, FTAG);
963 return (err);
964 }
965
966 int
967 zap_prefetch(objset_t *os, uint64_t zapobj, const char *name)
968 {
969 zap_t *zap;
970 int err;
971 zap_name_t *zn;
972
973 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
974 if (err)
975 return (err);
976 zn = zap_name_alloc(zap, name, 0);
977 if (zn == NULL) {
978 zap_unlockdir(zap, FTAG);
979 return (SET_ERROR(ENOTSUP));
980 }
981
982 fzap_prefetch(zn);
983 zap_name_free(zn);
984 zap_unlockdir(zap, FTAG);
985 return (err);
986 }
987
988 int
989 zap_lookup_by_dnode(dnode_t *dn, const char *name,
990 uint64_t integer_size, uint64_t num_integers, void *buf)
991 {
992 return (zap_lookup_norm_by_dnode(dn, name, integer_size,
993 num_integers, buf, 0, NULL, 0, NULL));
994 }
995
996 int
997 zap_lookup_norm_by_dnode(dnode_t *dn, const char *name,
998 uint64_t integer_size, uint64_t num_integers, void *buf,
999 matchtype_t mt, char *realname, int rn_len,
1000 boolean_t *ncp)
1001 {
1002 zap_t *zap;
1003 int err;
1004
1005 err = zap_lockdir_by_dnode(dn, NULL, RW_READER, TRUE, FALSE,
1006 FTAG, &zap);
1007 if (err != 0)
1008 return (err);
1009 err = zap_lookup_impl(zap, name, integer_size,
1010 num_integers, buf, mt, realname, rn_len, ncp);
1011 zap_unlockdir(zap, FTAG);
1012 return (err);
1013 }
1014
1015 int
1016 zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1017 int key_numints)
1018 {
1019 zap_t *zap;
1020 int err;
1021 zap_name_t *zn;
1022
1023 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1024 if (err)
1025 return (err);
1026 zn = zap_name_alloc_uint64(zap, key, key_numints);
1027 if (zn == NULL) {
1028 zap_unlockdir(zap, FTAG);
1029 return (SET_ERROR(ENOTSUP));
1030 }
1031
1032 fzap_prefetch(zn);
1033 zap_name_free(zn);
1034 zap_unlockdir(zap, FTAG);
1035 return (err);
1036 }
1037
1038 int
1039 zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1040 int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
1041 {
1042 zap_t *zap;
1043 int err;
1044 zap_name_t *zn;
1045
1046 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1047 if (err)
1048 return (err);
1049 zn = zap_name_alloc_uint64(zap, key, key_numints);
1050 if (zn == NULL) {
1051 zap_unlockdir(zap, FTAG);
1052 return (SET_ERROR(ENOTSUP));
1053 }
1054
1055 err = fzap_lookup(zn, integer_size, num_integers, buf,
1056 NULL, 0, NULL);
1057 zap_name_free(zn);
1058 zap_unlockdir(zap, FTAG);
1059 return (err);
1060 }
1061
1062 int
1063 zap_contains(objset_t *os, uint64_t zapobj, const char *name)
1064 {
1065 int err = zap_lookup_norm(os, zapobj, name, 0,
1066 0, NULL, 0, NULL, 0, NULL);
1067 if (err == EOVERFLOW || err == EINVAL)
1068 err = 0; /* found, but skipped reading the value */
1069 return (err);
1070 }
1071
1072 int
1073 zap_length(objset_t *os, uint64_t zapobj, const char *name,
1074 uint64_t *integer_size, uint64_t *num_integers)
1075 {
1076 zap_t *zap;
1077 int err;
1078 mzap_ent_t *mze;
1079 zap_name_t *zn;
1080
1081 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1082 if (err)
1083 return (err);
1084 zn = zap_name_alloc(zap, name, 0);
1085 if (zn == NULL) {
1086 zap_unlockdir(zap, FTAG);
1087 return (SET_ERROR(ENOTSUP));
1088 }
1089 if (!zap->zap_ismicro) {
1090 err = fzap_length(zn, integer_size, num_integers);
1091 } else {
1092 mze = mze_find(zn);
1093 if (mze == NULL) {
1094 err = SET_ERROR(ENOENT);
1095 } else {
1096 if (integer_size)
1097 *integer_size = 8;
1098 if (num_integers)
1099 *num_integers = 1;
1100 }
1101 }
1102 zap_name_free(zn);
1103 zap_unlockdir(zap, FTAG);
1104 return (err);
1105 }
1106
1107 int
1108 zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1109 int key_numints, uint64_t *integer_size, uint64_t *num_integers)
1110 {
1111 zap_t *zap;
1112 int err;
1113 zap_name_t *zn;
1114
1115 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1116 if (err)
1117 return (err);
1118 zn = zap_name_alloc_uint64(zap, key, key_numints);
1119 if (zn == NULL) {
1120 zap_unlockdir(zap, FTAG);
1121 return (SET_ERROR(ENOTSUP));
1122 }
1123 err = fzap_length(zn, integer_size, num_integers);
1124 zap_name_free(zn);
1125 zap_unlockdir(zap, FTAG);
1126 return (err);
1127 }
1128
1129 static void
1130 mzap_addent(zap_name_t *zn, uint64_t value)
1131 {
1132 int i;
1133 zap_t *zap = zn->zn_zap;
1134 int start = zap->zap_m.zap_alloc_next;
1135 uint32_t cd;
1136
1137 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
1138
1139 #ifdef ZFS_DEBUG
1140 for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
1141 ASSERTV(mzap_ent_phys_t *mze);
1142 ASSERT(mze = &zap_m_phys(zap)->mz_chunk[i]);
1143 ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0);
1144 }
1145 #endif
1146
1147 cd = mze_find_unused_cd(zap, zn->zn_hash);
1148 /* given the limited size of the microzap, this can't happen */
1149 ASSERT(cd < zap_maxcd(zap));
1150
1151 again:
1152 for (i = start; i < zap->zap_m.zap_num_chunks; i++) {
1153 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
1154 if (mze->mze_name[0] == 0) {
1155 mze->mze_value = value;
1156 mze->mze_cd = cd;
1157 (void) strlcpy(mze->mze_name, zn->zn_key_orig,
1158 sizeof (mze->mze_name));
1159 zap->zap_m.zap_num_entries++;
1160 zap->zap_m.zap_alloc_next = i+1;
1161 if (zap->zap_m.zap_alloc_next ==
1162 zap->zap_m.zap_num_chunks)
1163 zap->zap_m.zap_alloc_next = 0;
1164 mze_insert(zap, i, zn->zn_hash);
1165 return;
1166 }
1167 }
1168 if (start != 0) {
1169 start = 0;
1170 goto again;
1171 }
1172 cmn_err(CE_PANIC, "out of entries!");
1173 }
1174
1175 static int
1176 zap_add_impl(zap_t *zap, const char *key,
1177 int integer_size, uint64_t num_integers,
1178 const void *val, dmu_tx_t *tx, void *tag)
1179 {
1180 int err = 0;
1181 mzap_ent_t *mze;
1182 const uint64_t *intval = val;
1183 zap_name_t *zn;
1184
1185 zn = zap_name_alloc(zap, key, 0);
1186 if (zn == NULL) {
1187 zap_unlockdir(zap, tag);
1188 return (SET_ERROR(ENOTSUP));
1189 }
1190 if (!zap->zap_ismicro) {
1191 err = fzap_add(zn, integer_size, num_integers, val, tag, tx);
1192 zap = zn->zn_zap; /* fzap_add() may change zap */
1193 } else if (integer_size != 8 || num_integers != 1 ||
1194 strlen(key) >= MZAP_NAME_LEN) {
1195 err = mzap_upgrade(&zn->zn_zap, tag, tx, 0);
1196 if (err == 0) {
1197 err = fzap_add(zn, integer_size, num_integers, val,
1198 tag, tx);
1199 }
1200 zap = zn->zn_zap; /* fzap_add() may change zap */
1201 } else {
1202 mze = mze_find(zn);
1203 if (mze != NULL) {
1204 err = SET_ERROR(EEXIST);
1205 } else {
1206 mzap_addent(zn, *intval);
1207 }
1208 }
1209 ASSERT(zap == zn->zn_zap);
1210 zap_name_free(zn);
1211 if (zap != NULL) /* may be NULL if fzap_add() failed */
1212 zap_unlockdir(zap, tag);
1213 return (err);
1214 }
1215
1216 int
1217 zap_add(objset_t *os, uint64_t zapobj, const char *key,
1218 int integer_size, uint64_t num_integers,
1219 const void *val, dmu_tx_t *tx)
1220 {
1221 zap_t *zap;
1222 int err;
1223
1224 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1225 if (err != 0)
1226 return (err);
1227 err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG);
1228 /* zap_add_impl() calls zap_unlockdir() */
1229 return (err);
1230 }
1231
1232 int
1233 zap_add_by_dnode(dnode_t *dn, const char *key,
1234 int integer_size, uint64_t num_integers,
1235 const void *val, dmu_tx_t *tx)
1236 {
1237 zap_t *zap;
1238 int err;
1239
1240 err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1241 if (err != 0)
1242 return (err);
1243 err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG);
1244 /* zap_add_impl() calls zap_unlockdir() */
1245 return (err);
1246 }
1247
1248 int
1249 zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1250 int key_numints, int integer_size, uint64_t num_integers,
1251 const void *val, dmu_tx_t *tx)
1252 {
1253 zap_t *zap;
1254 int err;
1255 zap_name_t *zn;
1256
1257 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1258 if (err)
1259 return (err);
1260 zn = zap_name_alloc_uint64(zap, key, key_numints);
1261 if (zn == NULL) {
1262 zap_unlockdir(zap, FTAG);
1263 return (SET_ERROR(ENOTSUP));
1264 }
1265 err = fzap_add(zn, integer_size, num_integers, val, FTAG, tx);
1266 zap = zn->zn_zap; /* fzap_add() may change zap */
1267 zap_name_free(zn);
1268 if (zap != NULL) /* may be NULL if fzap_add() failed */
1269 zap_unlockdir(zap, FTAG);
1270 return (err);
1271 }
1272
1273 int
1274 zap_update(objset_t *os, uint64_t zapobj, const char *name,
1275 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1276 {
1277 zap_t *zap;
1278 mzap_ent_t *mze;
1279 const uint64_t *intval = val;
1280 zap_name_t *zn;
1281 int err;
1282
1283 #ifdef ZFS_DEBUG
1284 uint64_t oldval;
1285
1286 /*
1287 * If there is an old value, it shouldn't change across the
1288 * lockdir (eg, due to bprewrite's xlation).
1289 */
1290 if (integer_size == 8 && num_integers == 1)
1291 (void) zap_lookup(os, zapobj, name, 8, 1, &oldval);
1292 #endif
1293
1294 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1295 if (err)
1296 return (err);
1297 zn = zap_name_alloc(zap, name, 0);
1298 if (zn == NULL) {
1299 zap_unlockdir(zap, FTAG);
1300 return (SET_ERROR(ENOTSUP));
1301 }
1302 if (!zap->zap_ismicro) {
1303 err = fzap_update(zn, integer_size, num_integers, val,
1304 FTAG, tx);
1305 zap = zn->zn_zap; /* fzap_update() may change zap */
1306 } else if (integer_size != 8 || num_integers != 1 ||
1307 strlen(name) >= MZAP_NAME_LEN) {
1308 dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
1309 zapobj, integer_size, num_integers, name);
1310 err = mzap_upgrade(&zn->zn_zap, FTAG, tx, 0);
1311 if (err == 0) {
1312 err = fzap_update(zn, integer_size, num_integers,
1313 val, FTAG, tx);
1314 }
1315 zap = zn->zn_zap; /* fzap_update() may change zap */
1316 } else {
1317 mze = mze_find(zn);
1318 if (mze != NULL) {
1319 ASSERT3U(MZE_PHYS(zap, mze)->mze_value, ==, oldval);
1320 MZE_PHYS(zap, mze)->mze_value = *intval;
1321 } else {
1322 mzap_addent(zn, *intval);
1323 }
1324 }
1325 ASSERT(zap == zn->zn_zap);
1326 zap_name_free(zn);
1327 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */
1328 zap_unlockdir(zap, FTAG);
1329 return (err);
1330 }
1331
1332 int
1333 zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1334 int key_numints,
1335 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1336 {
1337 zap_t *zap;
1338 zap_name_t *zn;
1339 int err;
1340
1341 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1342 if (err)
1343 return (err);
1344 zn = zap_name_alloc_uint64(zap, key, key_numints);
1345 if (zn == NULL) {
1346 zap_unlockdir(zap, FTAG);
1347 return (SET_ERROR(ENOTSUP));
1348 }
1349 err = fzap_update(zn, integer_size, num_integers, val, FTAG, tx);
1350 zap = zn->zn_zap; /* fzap_update() may change zap */
1351 zap_name_free(zn);
1352 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */
1353 zap_unlockdir(zap, FTAG);
1354 return (err);
1355 }
1356
1357 int
1358 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
1359 {
1360 return (zap_remove_norm(os, zapobj, name, 0, tx));
1361 }
1362
1363 static int
1364 zap_remove_impl(zap_t *zap, const char *name,
1365 matchtype_t mt, dmu_tx_t *tx)
1366 {
1367 mzap_ent_t *mze;
1368 zap_name_t *zn;
1369 int err = 0;
1370
1371 zn = zap_name_alloc(zap, name, mt);
1372 if (zn == NULL)
1373 return (SET_ERROR(ENOTSUP));
1374 if (!zap->zap_ismicro) {
1375 err = fzap_remove(zn, tx);
1376 } else {
1377 mze = mze_find(zn);
1378 if (mze == NULL) {
1379 err = SET_ERROR(ENOENT);
1380 } else {
1381 zap->zap_m.zap_num_entries--;
1382 bzero(&zap_m_phys(zap)->mz_chunk[mze->mze_chunkid],
1383 sizeof (mzap_ent_phys_t));
1384 mze_remove(zap, mze);
1385 }
1386 }
1387 zap_name_free(zn);
1388 return (err);
1389 }
1390
1391 int
1392 zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name,
1393 matchtype_t mt, dmu_tx_t *tx)
1394 {
1395 zap_t *zap;
1396 int err;
1397
1398 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1399 if (err)
1400 return (err);
1401 err = zap_remove_impl(zap, name, mt, tx);
1402 zap_unlockdir(zap, FTAG);
1403 return (err);
1404 }
1405
1406 int
1407 zap_remove_by_dnode(dnode_t *dn, const char *name, dmu_tx_t *tx)
1408 {
1409 zap_t *zap;
1410 int err;
1411
1412 err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1413 if (err)
1414 return (err);
1415 err = zap_remove_impl(zap, name, 0, tx);
1416 zap_unlockdir(zap, FTAG);
1417 return (err);
1418 }
1419
1420 int
1421 zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1422 int key_numints, dmu_tx_t *tx)
1423 {
1424 zap_t *zap;
1425 int err;
1426 zap_name_t *zn;
1427
1428 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1429 if (err)
1430 return (err);
1431 zn = zap_name_alloc_uint64(zap, key, key_numints);
1432 if (zn == NULL) {
1433 zap_unlockdir(zap, FTAG);
1434 return (SET_ERROR(ENOTSUP));
1435 }
1436 err = fzap_remove(zn, tx);
1437 zap_name_free(zn);
1438 zap_unlockdir(zap, FTAG);
1439 return (err);
1440 }
1441
1442 /*
1443 * Routines for iterating over the attributes.
1444 */
1445
1446 void
1447 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1448 uint64_t serialized)
1449 {
1450 zc->zc_objset = os;
1451 zc->zc_zap = NULL;
1452 zc->zc_leaf = NULL;
1453 zc->zc_zapobj = zapobj;
1454 zc->zc_serialized = serialized;
1455 zc->zc_hash = 0;
1456 zc->zc_cd = 0;
1457 }
1458
1459 void
1460 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1461 {
1462 zap_cursor_init_serialized(zc, os, zapobj, 0);
1463 }
1464
1465 void
1466 zap_cursor_fini(zap_cursor_t *zc)
1467 {
1468 if (zc->zc_zap) {
1469 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1470 zap_unlockdir(zc->zc_zap, NULL);
1471 zc->zc_zap = NULL;
1472 }
1473 if (zc->zc_leaf) {
1474 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1475 zap_put_leaf(zc->zc_leaf);
1476 zc->zc_leaf = NULL;
1477 }
1478 zc->zc_objset = NULL;
1479 }
1480
1481 uint64_t
1482 zap_cursor_serialize(zap_cursor_t *zc)
1483 {
1484 if (zc->zc_hash == -1ULL)
1485 return (-1ULL);
1486 if (zc->zc_zap == NULL)
1487 return (zc->zc_serialized);
1488 ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0);
1489 ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap));
1490
1491 /*
1492 * We want to keep the high 32 bits of the cursor zero if we can, so
1493 * that 32-bit programs can access this. So usually use a small
1494 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits
1495 * of the cursor.
1496 *
1497 * [ collision differentiator | zap_hashbits()-bit hash value ]
1498 */
1499 return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) |
1500 ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap)));
1501 }
1502
1503 int
1504 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
1505 {
1506 int err;
1507 avl_index_t idx;
1508 mzap_ent_t mze_tofind;
1509 mzap_ent_t *mze;
1510
1511 if (zc->zc_hash == -1ULL)
1512 return (SET_ERROR(ENOENT));
1513
1514 if (zc->zc_zap == NULL) {
1515 int hb;
1516 err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1517 RW_READER, TRUE, FALSE, NULL, &zc->zc_zap);
1518 if (err)
1519 return (err);
1520
1521 /*
1522 * To support zap_cursor_init_serialized, advance, retrieve,
1523 * we must add to the existing zc_cd, which may already
1524 * be 1 due to the zap_cursor_advance.
1525 */
1526 ASSERT(zc->zc_hash == 0);
1527 hb = zap_hashbits(zc->zc_zap);
1528 zc->zc_hash = zc->zc_serialized << (64 - hb);
1529 zc->zc_cd += zc->zc_serialized >> hb;
1530 if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */
1531 zc->zc_cd = 0;
1532 } else {
1533 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1534 }
1535 if (!zc->zc_zap->zap_ismicro) {
1536 err = fzap_cursor_retrieve(zc->zc_zap, zc, za);
1537 } else {
1538 mze_tofind.mze_hash = zc->zc_hash;
1539 mze_tofind.mze_cd = zc->zc_cd;
1540
1541 mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx);
1542 if (mze == NULL) {
1543 mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl,
1544 idx, AVL_AFTER);
1545 }
1546 if (mze) {
1547 mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze);
1548 ASSERT3U(mze->mze_cd, ==, mzep->mze_cd);
1549 za->za_normalization_conflict =
1550 mzap_normalization_conflict(zc->zc_zap, NULL, mze);
1551 za->za_integer_length = 8;
1552 za->za_num_integers = 1;
1553 za->za_first_integer = mzep->mze_value;
1554 (void) strcpy(za->za_name, mzep->mze_name);
1555 zc->zc_hash = mze->mze_hash;
1556 zc->zc_cd = mze->mze_cd;
1557 err = 0;
1558 } else {
1559 zc->zc_hash = -1ULL;
1560 err = SET_ERROR(ENOENT);
1561 }
1562 }
1563 rw_exit(&zc->zc_zap->zap_rwlock);
1564 return (err);
1565 }
1566
1567 void
1568 zap_cursor_advance(zap_cursor_t *zc)
1569 {
1570 if (zc->zc_hash == -1ULL)
1571 return;
1572 zc->zc_cd++;
1573 }
1574
1575 int
1576 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
1577 {
1578 int err;
1579 zap_t *zap;
1580
1581 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1582 if (err)
1583 return (err);
1584
1585 bzero(zs, sizeof (zap_stats_t));
1586
1587 if (zap->zap_ismicro) {
1588 zs->zs_blocksize = zap->zap_dbuf->db_size;
1589 zs->zs_num_entries = zap->zap_m.zap_num_entries;
1590 zs->zs_num_blocks = 1;
1591 } else {
1592 fzap_get_stats(zap, zs);
1593 }
1594 zap_unlockdir(zap, FTAG);
1595 return (0);
1596 }
1597
1598 #if defined(_KERNEL) && defined(HAVE_SPL)
1599 EXPORT_SYMBOL(zap_create);
1600 EXPORT_SYMBOL(zap_create_dnsize);
1601 EXPORT_SYMBOL(zap_create_norm);
1602 EXPORT_SYMBOL(zap_create_norm_dnsize);
1603 EXPORT_SYMBOL(zap_create_flags);
1604 EXPORT_SYMBOL(zap_create_flags_dnsize);
1605 EXPORT_SYMBOL(zap_create_claim);
1606 EXPORT_SYMBOL(zap_create_claim_norm);
1607 EXPORT_SYMBOL(zap_create_claim_norm_dnsize);
1608 EXPORT_SYMBOL(zap_destroy);
1609 EXPORT_SYMBOL(zap_lookup);
1610 EXPORT_SYMBOL(zap_lookup_by_dnode);
1611 EXPORT_SYMBOL(zap_lookup_norm);
1612 EXPORT_SYMBOL(zap_lookup_uint64);
1613 EXPORT_SYMBOL(zap_contains);
1614 EXPORT_SYMBOL(zap_prefetch);
1615 EXPORT_SYMBOL(zap_prefetch_uint64);
1616 EXPORT_SYMBOL(zap_add);
1617 EXPORT_SYMBOL(zap_add_by_dnode);
1618 EXPORT_SYMBOL(zap_add_uint64);
1619 EXPORT_SYMBOL(zap_update);
1620 EXPORT_SYMBOL(zap_update_uint64);
1621 EXPORT_SYMBOL(zap_length);
1622 EXPORT_SYMBOL(zap_length_uint64);
1623 EXPORT_SYMBOL(zap_remove);
1624 EXPORT_SYMBOL(zap_remove_by_dnode);
1625 EXPORT_SYMBOL(zap_remove_norm);
1626 EXPORT_SYMBOL(zap_remove_uint64);
1627 EXPORT_SYMBOL(zap_count);
1628 EXPORT_SYMBOL(zap_value_search);
1629 EXPORT_SYMBOL(zap_join);
1630 EXPORT_SYMBOL(zap_join_increment);
1631 EXPORT_SYMBOL(zap_add_int);
1632 EXPORT_SYMBOL(zap_remove_int);
1633 EXPORT_SYMBOL(zap_lookup_int);
1634 EXPORT_SYMBOL(zap_increment_int);
1635 EXPORT_SYMBOL(zap_add_int_key);
1636 EXPORT_SYMBOL(zap_lookup_int_key);
1637 EXPORT_SYMBOL(zap_increment);
1638 EXPORT_SYMBOL(zap_cursor_init);
1639 EXPORT_SYMBOL(zap_cursor_fini);
1640 EXPORT_SYMBOL(zap_cursor_retrieve);
1641 EXPORT_SYMBOL(zap_cursor_advance);
1642 EXPORT_SYMBOL(zap_cursor_serialize);
1643 EXPORT_SYMBOL(zap_cursor_init_serialized);
1644 EXPORT_SYMBOL(zap_get_stats);
1645 #endif