]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zap_micro.c
Undo c89 workarounds to match with upstream
[mirror_zfs.git] / module / zfs / zap_micro.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.
27 */
28
29 #include <sys/zio.h>
30 #include <sys/spa.h>
31 #include <sys/dmu.h>
32 #include <sys/zfs_context.h>
33 #include <sys/zap.h>
34 #include <sys/refcount.h>
35 #include <sys/zap_impl.h>
36 #include <sys/zap_leaf.h>
37 #include <sys/avl.h>
38 #include <sys/arc.h>
39 #include <sys/dmu_objset.h>
40
41 #ifdef _KERNEL
42 #include <sys/sunddi.h>
43 #endif
44
45 extern inline mzap_phys_t *zap_m_phys(zap_t *zap);
46
47 static int mzap_upgrade(zap_t **zapp,
48 void *tag, dmu_tx_t *tx, zap_flags_t flags);
49
50 uint64_t
51 zap_getflags(zap_t *zap)
52 {
53 if (zap->zap_ismicro)
54 return (0);
55 return (zap_f_phys(zap)->zap_flags);
56 }
57
58 int
59 zap_hashbits(zap_t *zap)
60 {
61 if (zap_getflags(zap) & ZAP_FLAG_HASH64)
62 return (48);
63 else
64 return (28);
65 }
66
67 uint32_t
68 zap_maxcd(zap_t *zap)
69 {
70 if (zap_getflags(zap) & ZAP_FLAG_HASH64)
71 return ((1<<16)-1);
72 else
73 return (-1U);
74 }
75
76 static uint64_t
77 zap_hash(zap_name_t *zn)
78 {
79 zap_t *zap = zn->zn_zap;
80 uint64_t h = 0;
81
82 if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) {
83 ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY);
84 h = *(uint64_t *)zn->zn_key_orig;
85 } else {
86 h = zap->zap_salt;
87 ASSERT(h != 0);
88 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
89
90 if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
91 int i;
92 const uint64_t *wp = zn->zn_key_norm;
93
94 ASSERT(zn->zn_key_intlen == 8);
95 for (i = 0; i < zn->zn_key_norm_numints; wp++, i++) {
96 int j;
97 uint64_t word = *wp;
98
99 for (j = 0; j < zn->zn_key_intlen; j++) {
100 h = (h >> 8) ^
101 zfs_crc64_table[(h ^ word) & 0xFF];
102 word >>= NBBY;
103 }
104 }
105 } else {
106 int i, len;
107 const uint8_t *cp = zn->zn_key_norm;
108
109 /*
110 * We previously stored the terminating null on
111 * disk, but didn't hash it, so we need to
112 * continue to not hash it. (The
113 * zn_key_*_numints includes the terminating
114 * null for non-binary keys.)
115 */
116 len = zn->zn_key_norm_numints - 1;
117
118 ASSERT(zn->zn_key_intlen == 1);
119 for (i = 0; i < len; cp++, i++) {
120 h = (h >> 8) ^
121 zfs_crc64_table[(h ^ *cp) & 0xFF];
122 }
123 }
124 }
125 /*
126 * Don't use all 64 bits, since we need some in the cookie for
127 * the collision differentiator. We MUST use the high bits,
128 * since those are the ones that we first pay attention to when
129 * choosing the bucket.
130 */
131 h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1);
132
133 return (h);
134 }
135
136 static int
137 zap_normalize(zap_t *zap, const char *name, char *namenorm, int normflags)
138 {
139 size_t inlen, outlen;
140 int err;
141
142 ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY));
143
144 inlen = strlen(name) + 1;
145 outlen = ZAP_MAXNAMELEN;
146
147 err = 0;
148 (void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen,
149 normflags | U8_TEXTPREP_IGNORE_NULL | U8_TEXTPREP_IGNORE_INVALID,
150 U8_UNICODE_LATEST, &err);
151
152 return (err);
153 }
154
155 boolean_t
156 zap_match(zap_name_t *zn, const char *matchname)
157 {
158 ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY));
159
160 if (zn->zn_matchtype & MT_NORMALIZE) {
161 char norm[ZAP_MAXNAMELEN];
162
163 if (zap_normalize(zn->zn_zap, matchname, norm,
164 zn->zn_normflags) != 0)
165 return (B_FALSE);
166
167 return (strcmp(zn->zn_key_norm, norm) == 0);
168 } else {
169 return (strcmp(zn->zn_key_orig, matchname) == 0);
170 }
171 }
172
173 void
174 zap_name_free(zap_name_t *zn)
175 {
176 kmem_free(zn, sizeof (zap_name_t));
177 }
178
179 zap_name_t *
180 zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt)
181 {
182 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
183
184 zn->zn_zap = zap;
185 zn->zn_key_intlen = sizeof (*key);
186 zn->zn_key_orig = key;
187 zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1;
188 zn->zn_matchtype = mt;
189 zn->zn_normflags = zap->zap_normflags;
190
191 /*
192 * If we're dealing with a case sensitive lookup on a mixed or
193 * insensitive fs, remove U8_TEXTPREP_TOUPPER or the lookup
194 * will fold case to all caps overriding the lookup request.
195 */
196 if (mt & MT_MATCH_CASE)
197 zn->zn_normflags &= ~U8_TEXTPREP_TOUPPER;
198
199 if (zap->zap_normflags) {
200 /*
201 * We *must* use zap_normflags because this normalization is
202 * what the hash is computed from.
203 */
204 if (zap_normalize(zap, key, zn->zn_normbuf,
205 zap->zap_normflags) != 0) {
206 zap_name_free(zn);
207 return (NULL);
208 }
209 zn->zn_key_norm = zn->zn_normbuf;
210 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
211 } else {
212 if (mt != 0) {
213 zap_name_free(zn);
214 return (NULL);
215 }
216 zn->zn_key_norm = zn->zn_key_orig;
217 zn->zn_key_norm_numints = zn->zn_key_orig_numints;
218 }
219
220 zn->zn_hash = zap_hash(zn);
221
222 if (zap->zap_normflags != zn->zn_normflags) {
223 /*
224 * We *must* use zn_normflags because this normalization is
225 * what the matching is based on. (Not the hash!)
226 */
227 if (zap_normalize(zap, key, zn->zn_normbuf,
228 zn->zn_normflags) != 0) {
229 zap_name_free(zn);
230 return (NULL);
231 }
232 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
233 }
234
235 return (zn);
236 }
237
238 zap_name_t *
239 zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints)
240 {
241 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
242
243 ASSERT(zap->zap_normflags == 0);
244 zn->zn_zap = zap;
245 zn->zn_key_intlen = sizeof (*key);
246 zn->zn_key_orig = zn->zn_key_norm = key;
247 zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints;
248 zn->zn_matchtype = 0;
249
250 zn->zn_hash = zap_hash(zn);
251 return (zn);
252 }
253
254 static void
255 mzap_byteswap(mzap_phys_t *buf, size_t size)
256 {
257 int i, max;
258 buf->mz_block_type = BSWAP_64(buf->mz_block_type);
259 buf->mz_salt = BSWAP_64(buf->mz_salt);
260 buf->mz_normflags = BSWAP_64(buf->mz_normflags);
261 max = (size / MZAP_ENT_LEN) - 1;
262 for (i = 0; i < max; i++) {
263 buf->mz_chunk[i].mze_value =
264 BSWAP_64(buf->mz_chunk[i].mze_value);
265 buf->mz_chunk[i].mze_cd =
266 BSWAP_32(buf->mz_chunk[i].mze_cd);
267 }
268 }
269
270 void
271 zap_byteswap(void *buf, size_t size)
272 {
273 uint64_t block_type;
274
275 block_type = *(uint64_t *)buf;
276
277 if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) {
278 /* ASSERT(magic == ZAP_LEAF_MAGIC); */
279 mzap_byteswap(buf, size);
280 } else {
281 fzap_byteswap(buf, size);
282 }
283 }
284
285 static int
286 mze_compare(const void *arg1, const void *arg2)
287 {
288 const mzap_ent_t *mze1 = arg1;
289 const mzap_ent_t *mze2 = arg2;
290
291 int cmp = AVL_CMP(mze1->mze_hash, mze2->mze_hash);
292 if (likely(cmp))
293 return (cmp);
294
295 return (AVL_CMP(mze1->mze_cd, mze2->mze_cd));
296 }
297
298 static void
299 mze_insert(zap_t *zap, int chunkid, uint64_t hash)
300 {
301 mzap_ent_t *mze;
302
303 ASSERT(zap->zap_ismicro);
304 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
305
306 mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP);
307 mze->mze_chunkid = chunkid;
308 mze->mze_hash = hash;
309 mze->mze_cd = MZE_PHYS(zap, mze)->mze_cd;
310 ASSERT(MZE_PHYS(zap, mze)->mze_name[0] != 0);
311 avl_add(&zap->zap_m.zap_avl, mze);
312 }
313
314 static mzap_ent_t *
315 mze_find(zap_name_t *zn)
316 {
317 mzap_ent_t mze_tofind;
318 mzap_ent_t *mze;
319 avl_index_t idx;
320 avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl;
321
322 ASSERT(zn->zn_zap->zap_ismicro);
323 ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock));
324
325 mze_tofind.mze_hash = zn->zn_hash;
326 mze_tofind.mze_cd = 0;
327
328 mze = avl_find(avl, &mze_tofind, &idx);
329 if (mze == NULL)
330 mze = avl_nearest(avl, idx, AVL_AFTER);
331 for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) {
332 ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd);
333 if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name))
334 return (mze);
335 }
336
337 return (NULL);
338 }
339
340 static uint32_t
341 mze_find_unused_cd(zap_t *zap, uint64_t hash)
342 {
343 mzap_ent_t mze_tofind;
344 mzap_ent_t *mze;
345 avl_index_t idx;
346 avl_tree_t *avl = &zap->zap_m.zap_avl;
347 uint32_t cd;
348
349 ASSERT(zap->zap_ismicro);
350 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
351
352 mze_tofind.mze_hash = hash;
353 mze_tofind.mze_cd = 0;
354
355 cd = 0;
356 for (mze = avl_find(avl, &mze_tofind, &idx);
357 mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
358 if (mze->mze_cd != cd)
359 break;
360 cd++;
361 }
362
363 return (cd);
364 }
365
366 static void
367 mze_remove(zap_t *zap, mzap_ent_t *mze)
368 {
369 ASSERT(zap->zap_ismicro);
370 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
371
372 avl_remove(&zap->zap_m.zap_avl, mze);
373 kmem_free(mze, sizeof (mzap_ent_t));
374 }
375
376 static void
377 mze_destroy(zap_t *zap)
378 {
379 mzap_ent_t *mze;
380 void *avlcookie = NULL;
381
382 while ((mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie)))
383 kmem_free(mze, sizeof (mzap_ent_t));
384 avl_destroy(&zap->zap_m.zap_avl);
385 }
386
387 static zap_t *
388 mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db)
389 {
390 zap_t *winner;
391 zap_t *zap;
392 int i;
393 uint64_t *zap_hdr = (uint64_t *)db->db_data;
394 uint64_t zap_block_type = zap_hdr[0];
395 uint64_t zap_magic = zap_hdr[1];
396
397 ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
398
399 zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
400 rw_init(&zap->zap_rwlock, NULL, RW_DEFAULT, NULL);
401 rw_enter(&zap->zap_rwlock, RW_WRITER);
402 zap->zap_objset = os;
403 zap->zap_object = obj;
404 zap->zap_dbuf = db;
405
406 if (zap_block_type != ZBT_MICRO) {
407 mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, MUTEX_DEFAULT,
408 0);
409 zap->zap_f.zap_block_shift = highbit64(db->db_size) - 1;
410 if (zap_block_type != ZBT_HEADER || zap_magic != ZAP_MAGIC) {
411 winner = NULL; /* No actual winner here... */
412 goto handle_winner;
413 }
414 } else {
415 zap->zap_ismicro = TRUE;
416 }
417
418 /*
419 * Make sure that zap_ismicro is set before we let others see
420 * it, because zap_lockdir() checks zap_ismicro without the lock
421 * held.
422 */
423 dmu_buf_init_user(&zap->zap_dbu, zap_evict_sync, NULL, &zap->zap_dbuf);
424 winner = dmu_buf_set_user(db, &zap->zap_dbu);
425
426 if (winner != NULL)
427 goto handle_winner;
428
429 if (zap->zap_ismicro) {
430 zap->zap_salt = zap_m_phys(zap)->mz_salt;
431 zap->zap_normflags = zap_m_phys(zap)->mz_normflags;
432 zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
433 avl_create(&zap->zap_m.zap_avl, mze_compare,
434 sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node));
435
436 for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
437 mzap_ent_phys_t *mze =
438 &zap_m_phys(zap)->mz_chunk[i];
439 if (mze->mze_name[0]) {
440 zap_name_t *zn;
441
442 zap->zap_m.zap_num_entries++;
443 zn = zap_name_alloc(zap, mze->mze_name, 0);
444 mze_insert(zap, i, zn->zn_hash);
445 zap_name_free(zn);
446 }
447 }
448 } else {
449 zap->zap_salt = zap_f_phys(zap)->zap_salt;
450 zap->zap_normflags = zap_f_phys(zap)->zap_normflags;
451
452 ASSERT3U(sizeof (struct zap_leaf_header), ==,
453 2*ZAP_LEAF_CHUNKSIZE);
454
455 /*
456 * The embedded pointer table should not overlap the
457 * other members.
458 */
459 ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >,
460 &zap_f_phys(zap)->zap_salt);
461
462 /*
463 * The embedded pointer table should end at the end of
464 * the block
465 */
466 ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap,
467 1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) -
468 (uintptr_t)zap_f_phys(zap), ==,
469 zap->zap_dbuf->db_size);
470 }
471 rw_exit(&zap->zap_rwlock);
472 return (zap);
473
474 handle_winner:
475 rw_exit(&zap->zap_rwlock);
476 rw_destroy(&zap->zap_rwlock);
477 if (!zap->zap_ismicro)
478 mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
479 kmem_free(zap, sizeof (zap_t));
480 return (winner);
481 }
482
483 static int
484 zap_lockdir_impl(dmu_buf_t *db, void *tag, dmu_tx_t *tx,
485 krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp)
486 {
487 dmu_object_info_t doi;
488 zap_t *zap;
489 krw_t lt;
490
491 objset_t *os = dmu_buf_get_objset(db);
492 uint64_t obj = db->db_object;
493
494 ASSERT0(db->db_offset);
495 *zapp = NULL;
496
497 dmu_object_info_from_db(db, &doi);
498 if (DMU_OT_BYTESWAP(doi.doi_type) != DMU_BSWAP_ZAP)
499 return (SET_ERROR(EINVAL));
500
501 zap = dmu_buf_get_user(db);
502 if (zap == NULL) {
503 zap = mzap_open(os, obj, db);
504 if (zap == NULL) {
505 /*
506 * mzap_open() didn't like what it saw on-disk.
507 * Check for corruption!
508 */
509 return (SET_ERROR(EIO));
510 }
511 }
512
513 /*
514 * We're checking zap_ismicro without the lock held, in order to
515 * tell what type of lock we want. Once we have some sort of
516 * lock, see if it really is the right type. In practice this
517 * can only be different if it was upgraded from micro to fat,
518 * and micro wanted WRITER but fat only needs READER.
519 */
520 lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
521 rw_enter(&zap->zap_rwlock, lt);
522 if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
523 /* it was upgraded, now we only need reader */
524 ASSERT(lt == RW_WRITER);
525 ASSERT(RW_READER ==
526 ((!zap->zap_ismicro && fatreader) ? RW_READER : lti));
527 rw_downgrade(&zap->zap_rwlock);
528 lt = RW_READER;
529 }
530
531 zap->zap_objset = os;
532
533 if (lt == RW_WRITER)
534 dmu_buf_will_dirty(db, tx);
535
536 ASSERT3P(zap->zap_dbuf, ==, db);
537
538 ASSERT(!zap->zap_ismicro ||
539 zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
540 if (zap->zap_ismicro && tx && adding &&
541 zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
542 uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
543 if (newsz > MZAP_MAX_BLKSZ) {
544 dprintf("upgrading obj %llu: num_entries=%u\n",
545 obj, zap->zap_m.zap_num_entries);
546 *zapp = zap;
547 int err = mzap_upgrade(zapp, tag, tx, 0);
548 if (err != 0)
549 rw_exit(&zap->zap_rwlock);
550 return (err);
551 }
552 VERIFY0(dmu_object_set_blocksize(os, obj, newsz, 0, tx));
553 zap->zap_m.zap_num_chunks =
554 db->db_size / MZAP_ENT_LEN - 1;
555 }
556
557 *zapp = zap;
558 return (0);
559 }
560
561 static int
562 zap_lockdir_by_dnode(dnode_t *dn, dmu_tx_t *tx,
563 krw_t lti, boolean_t fatreader, boolean_t adding, void *tag, zap_t **zapp)
564 {
565 dmu_buf_t *db;
566 int err;
567
568 err = dmu_buf_hold_by_dnode(dn, 0, tag, &db, DMU_READ_NO_PREFETCH);
569 if (err != 0) {
570 return (err);
571 }
572 err = zap_lockdir_impl(db, tag, tx, lti, fatreader, adding, zapp);
573 if (err != 0) {
574 dmu_buf_rele(db, tag);
575 }
576 return (err);
577 }
578
579 int
580 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
581 krw_t lti, boolean_t fatreader, boolean_t adding, void *tag, zap_t **zapp)
582 {
583 dmu_buf_t *db;
584 int err;
585
586 err = dmu_buf_hold(os, obj, 0, tag, &db, DMU_READ_NO_PREFETCH);
587 if (err != 0)
588 return (err);
589 err = zap_lockdir_impl(db, tag, tx, lti, fatreader, adding, zapp);
590 if (err != 0)
591 dmu_buf_rele(db, tag);
592 return (err);
593 }
594
595 void
596 zap_unlockdir(zap_t *zap, void *tag)
597 {
598 rw_exit(&zap->zap_rwlock);
599 dmu_buf_rele(zap->zap_dbuf, tag);
600 }
601
602 static int
603 mzap_upgrade(zap_t **zapp, void *tag, dmu_tx_t *tx, zap_flags_t flags)
604 {
605 mzap_phys_t *mzp;
606 int i, sz, nchunks;
607 int err = 0;
608 zap_t *zap = *zapp;
609
610 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
611
612 sz = zap->zap_dbuf->db_size;
613 mzp = vmem_alloc(sz, KM_SLEEP);
614 bcopy(zap->zap_dbuf->db_data, mzp, sz);
615 nchunks = zap->zap_m.zap_num_chunks;
616
617 if (!flags) {
618 err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
619 1ULL << fzap_default_block_shift, 0, tx);
620 if (err) {
621 vmem_free(mzp, sz);
622 return (err);
623 }
624 }
625
626 dprintf("upgrading obj=%llu with %u chunks\n",
627 zap->zap_object, nchunks);
628 /* XXX destroy the avl later, so we can use the stored hash value */
629 mze_destroy(zap);
630
631 fzap_upgrade(zap, tx, flags);
632
633 for (i = 0; i < nchunks; i++) {
634 mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
635 zap_name_t *zn;
636 if (mze->mze_name[0] == 0)
637 continue;
638 dprintf("adding %s=%llu\n",
639 mze->mze_name, mze->mze_value);
640 zn = zap_name_alloc(zap, mze->mze_name, 0);
641 err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd,
642 tag, tx);
643 zap = zn->zn_zap; /* fzap_add_cd() may change zap */
644 zap_name_free(zn);
645 if (err)
646 break;
647 }
648 vmem_free(mzp, sz);
649 *zapp = zap;
650 return (err);
651 }
652
653 /*
654 * The "normflags" determine the behavior of the matchtype_t which is
655 * passed to zap_lookup_norm(). Names which have the same normalized
656 * version will be stored with the same hash value, and therefore we can
657 * perform normalization-insensitive lookups. We can be Unicode form-
658 * insensitive and/or case-insensitive. The following flags are valid for
659 * "normflags":
660 *
661 * U8_TEXTPREP_NFC
662 * U8_TEXTPREP_NFD
663 * U8_TEXTPREP_NFKC
664 * U8_TEXTPREP_NFKD
665 * U8_TEXTPREP_TOUPPER
666 *
667 * The *_NF* (Normalization Form) flags are mutually exclusive; at most one
668 * of them may be supplied.
669 */
670 void
671 mzap_create_impl(objset_t *os, uint64_t obj, int normflags, zap_flags_t flags,
672 dmu_tx_t *tx)
673 {
674 dmu_buf_t *db;
675 mzap_phys_t *zp;
676
677 VERIFY0(dmu_buf_hold(os, obj, 0, FTAG, &db, DMU_READ_NO_PREFETCH));
678
679 #ifdef ZFS_DEBUG
680 {
681 dmu_object_info_t doi;
682 dmu_object_info_from_db(db, &doi);
683 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
684 }
685 #endif
686
687 dmu_buf_will_dirty(db, tx);
688 zp = db->db_data;
689 zp->mz_block_type = ZBT_MICRO;
690 zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL;
691 zp->mz_normflags = normflags;
692 dmu_buf_rele(db, FTAG);
693
694 if (flags != 0) {
695 zap_t *zap;
696 /* Only fat zap supports flags; upgrade immediately. */
697 VERIFY(0 == zap_lockdir(os, obj, tx, RW_WRITER,
698 B_FALSE, B_FALSE, FTAG, &zap));
699 VERIFY3U(0, ==, mzap_upgrade(&zap, FTAG, tx, flags));
700 zap_unlockdir(zap, FTAG);
701 }
702 }
703
704 int
705 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
706 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
707 {
708 return (zap_create_claim_dnsize(os, obj, ot, bonustype, bonuslen,
709 0, tx));
710 }
711
712 int
713 zap_create_claim_dnsize(objset_t *os, uint64_t obj, dmu_object_type_t ot,
714 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
715 {
716 return (zap_create_claim_norm_dnsize(os, obj,
717 0, ot, bonustype, bonuslen, dnodesize, tx));
718 }
719
720 int
721 zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags,
722 dmu_object_type_t ot,
723 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
724 {
725 return (zap_create_claim_norm_dnsize(os, obj, normflags, ot, bonustype,
726 bonuslen, 0, tx));
727 }
728
729 int
730 zap_create_claim_norm_dnsize(objset_t *os, uint64_t obj, int normflags,
731 dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen,
732 int dnodesize, dmu_tx_t *tx)
733 {
734 int err;
735
736 err = dmu_object_claim_dnsize(os, obj, ot, 0, bonustype, bonuslen,
737 dnodesize, tx);
738 if (err != 0)
739 return (err);
740 mzap_create_impl(os, obj, normflags, 0, tx);
741 return (0);
742 }
743
744 uint64_t
745 zap_create(objset_t *os, dmu_object_type_t ot,
746 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
747 {
748 return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx));
749 }
750
751 uint64_t
752 zap_create_dnsize(objset_t *os, dmu_object_type_t ot,
753 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
754 {
755 return (zap_create_norm_dnsize(os, 0, ot, bonustype, bonuslen,
756 dnodesize, tx));
757 }
758
759 uint64_t
760 zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot,
761 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
762 {
763 return (zap_create_norm_dnsize(os, normflags, ot, bonustype, bonuslen,
764 0, tx));
765 }
766
767 uint64_t
768 zap_create_norm_dnsize(objset_t *os, int normflags, dmu_object_type_t ot,
769 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
770 {
771 uint64_t obj = dmu_object_alloc_dnsize(os, ot, 0, bonustype, bonuslen,
772 dnodesize, tx);
773
774 mzap_create_impl(os, obj, normflags, 0, tx);
775 return (obj);
776 }
777
778 uint64_t
779 zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
780 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
781 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
782 {
783 return (zap_create_flags_dnsize(os, normflags, flags, ot,
784 leaf_blockshift, indirect_blockshift, bonustype, bonuslen, 0, tx));
785 }
786
787 uint64_t
788 zap_create_flags_dnsize(objset_t *os, int normflags, zap_flags_t flags,
789 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
790 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
791 {
792 uint64_t obj = dmu_object_alloc_dnsize(os, ot, 0, bonustype, bonuslen,
793 dnodesize, tx);
794
795 ASSERT(leaf_blockshift >= SPA_MINBLOCKSHIFT &&
796 leaf_blockshift <= SPA_OLD_MAXBLOCKSHIFT &&
797 indirect_blockshift >= SPA_MINBLOCKSHIFT &&
798 indirect_blockshift <= SPA_OLD_MAXBLOCKSHIFT);
799
800 VERIFY(dmu_object_set_blocksize(os, obj,
801 1ULL << leaf_blockshift, indirect_blockshift, tx) == 0);
802
803 mzap_create_impl(os, obj, normflags, flags, tx);
804 return (obj);
805 }
806
807 int
808 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
809 {
810 /*
811 * dmu_object_free will free the object number and free the
812 * data. Freeing the data will cause our pageout function to be
813 * called, which will destroy our data (zap_leaf_t's and zap_t).
814 */
815
816 return (dmu_object_free(os, zapobj, tx));
817 }
818
819 void
820 zap_evict_sync(void *dbu)
821 {
822 zap_t *zap = dbu;
823
824 rw_destroy(&zap->zap_rwlock);
825
826 if (zap->zap_ismicro)
827 mze_destroy(zap);
828 else
829 mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
830
831 kmem_free(zap, sizeof (zap_t));
832 }
833
834 int
835 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
836 {
837 zap_t *zap;
838 int err;
839
840 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
841 if (err)
842 return (err);
843 if (!zap->zap_ismicro) {
844 err = fzap_count(zap, count);
845 } else {
846 *count = zap->zap_m.zap_num_entries;
847 }
848 zap_unlockdir(zap, FTAG);
849 return (err);
850 }
851
852 /*
853 * zn may be NULL; if not specified, it will be computed if needed.
854 * See also the comment above zap_entry_normalization_conflict().
855 */
856 static boolean_t
857 mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze)
858 {
859 mzap_ent_t *other;
860 int direction = AVL_BEFORE;
861 boolean_t allocdzn = B_FALSE;
862
863 if (zap->zap_normflags == 0)
864 return (B_FALSE);
865
866 again:
867 for (other = avl_walk(&zap->zap_m.zap_avl, mze, direction);
868 other && other->mze_hash == mze->mze_hash;
869 other = avl_walk(&zap->zap_m.zap_avl, other, direction)) {
870
871 if (zn == NULL) {
872 zn = zap_name_alloc(zap, MZE_PHYS(zap, mze)->mze_name,
873 MT_NORMALIZE);
874 allocdzn = B_TRUE;
875 }
876 if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) {
877 if (allocdzn)
878 zap_name_free(zn);
879 return (B_TRUE);
880 }
881 }
882
883 if (direction == AVL_BEFORE) {
884 direction = AVL_AFTER;
885 goto again;
886 }
887
888 if (allocdzn)
889 zap_name_free(zn);
890 return (B_FALSE);
891 }
892
893 /*
894 * Routines for manipulating attributes.
895 */
896
897 int
898 zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
899 uint64_t integer_size, uint64_t num_integers, void *buf)
900 {
901 return (zap_lookup_norm(os, zapobj, name, integer_size,
902 num_integers, buf, 0, NULL, 0, NULL));
903 }
904
905 static int
906 zap_lookup_impl(zap_t *zap, const char *name,
907 uint64_t integer_size, uint64_t num_integers, void *buf,
908 matchtype_t mt, char *realname, int rn_len,
909 boolean_t *ncp)
910 {
911 int err = 0;
912 mzap_ent_t *mze;
913 zap_name_t *zn;
914
915 zn = zap_name_alloc(zap, name, mt);
916 if (zn == NULL)
917 return (SET_ERROR(ENOTSUP));
918
919 if (!zap->zap_ismicro) {
920 err = fzap_lookup(zn, integer_size, num_integers, buf,
921 realname, rn_len, ncp);
922 } else {
923 mze = mze_find(zn);
924 if (mze == NULL) {
925 err = SET_ERROR(ENOENT);
926 } else {
927 if (num_integers < 1) {
928 err = SET_ERROR(EOVERFLOW);
929 } else if (integer_size != 8) {
930 err = SET_ERROR(EINVAL);
931 } else {
932 *(uint64_t *)buf =
933 MZE_PHYS(zap, mze)->mze_value;
934 (void) strlcpy(realname,
935 MZE_PHYS(zap, mze)->mze_name, rn_len);
936 if (ncp) {
937 *ncp = mzap_normalization_conflict(zap,
938 zn, mze);
939 }
940 }
941 }
942 }
943 zap_name_free(zn);
944 return (err);
945 }
946
947 int
948 zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name,
949 uint64_t integer_size, uint64_t num_integers, void *buf,
950 matchtype_t mt, char *realname, int rn_len,
951 boolean_t *ncp)
952 {
953 zap_t *zap;
954 int err;
955
956 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
957 if (err != 0)
958 return (err);
959 err = zap_lookup_impl(zap, name, integer_size,
960 num_integers, buf, mt, realname, rn_len, ncp);
961 zap_unlockdir(zap, FTAG);
962 return (err);
963 }
964
965 int
966 zap_prefetch(objset_t *os, uint64_t zapobj, const char *name)
967 {
968 zap_t *zap;
969 int err;
970 zap_name_t *zn;
971
972 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
973 if (err)
974 return (err);
975 zn = zap_name_alloc(zap, name, 0);
976 if (zn == NULL) {
977 zap_unlockdir(zap, FTAG);
978 return (SET_ERROR(ENOTSUP));
979 }
980
981 fzap_prefetch(zn);
982 zap_name_free(zn);
983 zap_unlockdir(zap, FTAG);
984 return (err);
985 }
986
987 int
988 zap_lookup_by_dnode(dnode_t *dn, const char *name,
989 uint64_t integer_size, uint64_t num_integers, void *buf)
990 {
991 return (zap_lookup_norm_by_dnode(dn, name, integer_size,
992 num_integers, buf, 0, NULL, 0, NULL));
993 }
994
995 int
996 zap_lookup_norm_by_dnode(dnode_t *dn, const char *name,
997 uint64_t integer_size, uint64_t num_integers, void *buf,
998 matchtype_t mt, char *realname, int rn_len,
999 boolean_t *ncp)
1000 {
1001 zap_t *zap;
1002 int err;
1003
1004 err = zap_lockdir_by_dnode(dn, NULL, RW_READER, TRUE, FALSE,
1005 FTAG, &zap);
1006 if (err != 0)
1007 return (err);
1008 err = zap_lookup_impl(zap, name, integer_size,
1009 num_integers, buf, mt, realname, rn_len, ncp);
1010 zap_unlockdir(zap, FTAG);
1011 return (err);
1012 }
1013
1014 int
1015 zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1016 int key_numints)
1017 {
1018 zap_t *zap;
1019 int err;
1020 zap_name_t *zn;
1021
1022 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1023 if (err)
1024 return (err);
1025 zn = zap_name_alloc_uint64(zap, key, key_numints);
1026 if (zn == NULL) {
1027 zap_unlockdir(zap, FTAG);
1028 return (SET_ERROR(ENOTSUP));
1029 }
1030
1031 fzap_prefetch(zn);
1032 zap_name_free(zn);
1033 zap_unlockdir(zap, FTAG);
1034 return (err);
1035 }
1036
1037 int
1038 zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1039 int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
1040 {
1041 zap_t *zap;
1042 int err;
1043 zap_name_t *zn;
1044
1045 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1046 if (err)
1047 return (err);
1048 zn = zap_name_alloc_uint64(zap, key, key_numints);
1049 if (zn == NULL) {
1050 zap_unlockdir(zap, FTAG);
1051 return (SET_ERROR(ENOTSUP));
1052 }
1053
1054 err = fzap_lookup(zn, integer_size, num_integers, buf,
1055 NULL, 0, NULL);
1056 zap_name_free(zn);
1057 zap_unlockdir(zap, FTAG);
1058 return (err);
1059 }
1060
1061 int
1062 zap_contains(objset_t *os, uint64_t zapobj, const char *name)
1063 {
1064 int err = zap_lookup_norm(os, zapobj, name, 0,
1065 0, NULL, 0, NULL, 0, NULL);
1066 if (err == EOVERFLOW || err == EINVAL)
1067 err = 0; /* found, but skipped reading the value */
1068 return (err);
1069 }
1070
1071 int
1072 zap_length(objset_t *os, uint64_t zapobj, const char *name,
1073 uint64_t *integer_size, uint64_t *num_integers)
1074 {
1075 zap_t *zap;
1076 int err;
1077 mzap_ent_t *mze;
1078 zap_name_t *zn;
1079
1080 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1081 if (err)
1082 return (err);
1083 zn = zap_name_alloc(zap, name, 0);
1084 if (zn == NULL) {
1085 zap_unlockdir(zap, FTAG);
1086 return (SET_ERROR(ENOTSUP));
1087 }
1088 if (!zap->zap_ismicro) {
1089 err = fzap_length(zn, integer_size, num_integers);
1090 } else {
1091 mze = mze_find(zn);
1092 if (mze == NULL) {
1093 err = SET_ERROR(ENOENT);
1094 } else {
1095 if (integer_size)
1096 *integer_size = 8;
1097 if (num_integers)
1098 *num_integers = 1;
1099 }
1100 }
1101 zap_name_free(zn);
1102 zap_unlockdir(zap, FTAG);
1103 return (err);
1104 }
1105
1106 int
1107 zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1108 int key_numints, uint64_t *integer_size, uint64_t *num_integers)
1109 {
1110 zap_t *zap;
1111 int err;
1112 zap_name_t *zn;
1113
1114 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1115 if (err)
1116 return (err);
1117 zn = zap_name_alloc_uint64(zap, key, key_numints);
1118 if (zn == NULL) {
1119 zap_unlockdir(zap, FTAG);
1120 return (SET_ERROR(ENOTSUP));
1121 }
1122 err = fzap_length(zn, integer_size, num_integers);
1123 zap_name_free(zn);
1124 zap_unlockdir(zap, FTAG);
1125 return (err);
1126 }
1127
1128 static void
1129 mzap_addent(zap_name_t *zn, uint64_t value)
1130 {
1131 int i;
1132 zap_t *zap = zn->zn_zap;
1133 int start = zap->zap_m.zap_alloc_next;
1134 uint32_t cd;
1135
1136 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
1137
1138 #ifdef ZFS_DEBUG
1139 for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
1140 ASSERTV(mzap_ent_phys_t *mze);
1141 ASSERT(mze = &zap_m_phys(zap)->mz_chunk[i]);
1142 ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0);
1143 }
1144 #endif
1145
1146 cd = mze_find_unused_cd(zap, zn->zn_hash);
1147 /* given the limited size of the microzap, this can't happen */
1148 ASSERT(cd < zap_maxcd(zap));
1149
1150 again:
1151 for (i = start; i < zap->zap_m.zap_num_chunks; i++) {
1152 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
1153 if (mze->mze_name[0] == 0) {
1154 mze->mze_value = value;
1155 mze->mze_cd = cd;
1156 (void) strlcpy(mze->mze_name, zn->zn_key_orig,
1157 sizeof (mze->mze_name));
1158 zap->zap_m.zap_num_entries++;
1159 zap->zap_m.zap_alloc_next = i+1;
1160 if (zap->zap_m.zap_alloc_next ==
1161 zap->zap_m.zap_num_chunks)
1162 zap->zap_m.zap_alloc_next = 0;
1163 mze_insert(zap, i, zn->zn_hash);
1164 return;
1165 }
1166 }
1167 if (start != 0) {
1168 start = 0;
1169 goto again;
1170 }
1171 cmn_err(CE_PANIC, "out of entries!");
1172 }
1173
1174 static int
1175 zap_add_impl(zap_t *zap, const char *key,
1176 int integer_size, uint64_t num_integers,
1177 const void *val, dmu_tx_t *tx, void *tag)
1178 {
1179 int err = 0;
1180 mzap_ent_t *mze;
1181 const uint64_t *intval = val;
1182 zap_name_t *zn;
1183
1184 zn = zap_name_alloc(zap, key, 0);
1185 if (zn == NULL) {
1186 zap_unlockdir(zap, tag);
1187 return (SET_ERROR(ENOTSUP));
1188 }
1189 if (!zap->zap_ismicro) {
1190 err = fzap_add(zn, integer_size, num_integers, val, tag, tx);
1191 zap = zn->zn_zap; /* fzap_add() may change zap */
1192 } else if (integer_size != 8 || num_integers != 1 ||
1193 strlen(key) >= MZAP_NAME_LEN) {
1194 err = mzap_upgrade(&zn->zn_zap, tag, tx, 0);
1195 if (err == 0) {
1196 err = fzap_add(zn, integer_size, num_integers, val,
1197 tag, tx);
1198 }
1199 zap = zn->zn_zap; /* fzap_add() may change zap */
1200 } else {
1201 mze = mze_find(zn);
1202 if (mze != NULL) {
1203 err = SET_ERROR(EEXIST);
1204 } else {
1205 mzap_addent(zn, *intval);
1206 }
1207 }
1208 ASSERT(zap == zn->zn_zap);
1209 zap_name_free(zn);
1210 if (zap != NULL) /* may be NULL if fzap_add() failed */
1211 zap_unlockdir(zap, tag);
1212 return (err);
1213 }
1214
1215 int
1216 zap_add(objset_t *os, uint64_t zapobj, const char *key,
1217 int integer_size, uint64_t num_integers,
1218 const void *val, dmu_tx_t *tx)
1219 {
1220 zap_t *zap;
1221 int err;
1222
1223 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1224 if (err != 0)
1225 return (err);
1226 err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG);
1227 /* zap_add_impl() calls zap_unlockdir() */
1228 return (err);
1229 }
1230
1231 int
1232 zap_add_by_dnode(dnode_t *dn, const char *key,
1233 int integer_size, uint64_t num_integers,
1234 const void *val, dmu_tx_t *tx)
1235 {
1236 zap_t *zap;
1237 int err;
1238
1239 err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1240 if (err != 0)
1241 return (err);
1242 err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG);
1243 /* zap_add_impl() calls zap_unlockdir() */
1244 return (err);
1245 }
1246
1247 int
1248 zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1249 int key_numints, int integer_size, uint64_t num_integers,
1250 const void *val, dmu_tx_t *tx)
1251 {
1252 zap_t *zap;
1253 int err;
1254 zap_name_t *zn;
1255
1256 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1257 if (err)
1258 return (err);
1259 zn = zap_name_alloc_uint64(zap, key, key_numints);
1260 if (zn == NULL) {
1261 zap_unlockdir(zap, FTAG);
1262 return (SET_ERROR(ENOTSUP));
1263 }
1264 err = fzap_add(zn, integer_size, num_integers, val, FTAG, tx);
1265 zap = zn->zn_zap; /* fzap_add() may change zap */
1266 zap_name_free(zn);
1267 if (zap != NULL) /* may be NULL if fzap_add() failed */
1268 zap_unlockdir(zap, FTAG);
1269 return (err);
1270 }
1271
1272 int
1273 zap_update(objset_t *os, uint64_t zapobj, const char *name,
1274 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1275 {
1276 zap_t *zap;
1277 mzap_ent_t *mze;
1278 const uint64_t *intval = val;
1279 zap_name_t *zn;
1280 int err;
1281
1282 #ifdef ZFS_DEBUG
1283 uint64_t oldval;
1284
1285 /*
1286 * If there is an old value, it shouldn't change across the
1287 * lockdir (eg, due to bprewrite's xlation).
1288 */
1289 if (integer_size == 8 && num_integers == 1)
1290 (void) zap_lookup(os, zapobj, name, 8, 1, &oldval);
1291 #endif
1292
1293 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1294 if (err)
1295 return (err);
1296 zn = zap_name_alloc(zap, name, 0);
1297 if (zn == NULL) {
1298 zap_unlockdir(zap, FTAG);
1299 return (SET_ERROR(ENOTSUP));
1300 }
1301 if (!zap->zap_ismicro) {
1302 err = fzap_update(zn, integer_size, num_integers, val,
1303 FTAG, tx);
1304 zap = zn->zn_zap; /* fzap_update() may change zap */
1305 } else if (integer_size != 8 || num_integers != 1 ||
1306 strlen(name) >= MZAP_NAME_LEN) {
1307 dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
1308 zapobj, integer_size, num_integers, name);
1309 err = mzap_upgrade(&zn->zn_zap, FTAG, tx, 0);
1310 if (err == 0) {
1311 err = fzap_update(zn, integer_size, num_integers,
1312 val, FTAG, tx);
1313 }
1314 zap = zn->zn_zap; /* fzap_update() may change zap */
1315 } else {
1316 mze = mze_find(zn);
1317 if (mze != NULL) {
1318 ASSERT3U(MZE_PHYS(zap, mze)->mze_value, ==, oldval);
1319 MZE_PHYS(zap, mze)->mze_value = *intval;
1320 } else {
1321 mzap_addent(zn, *intval);
1322 }
1323 }
1324 ASSERT(zap == zn->zn_zap);
1325 zap_name_free(zn);
1326 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */
1327 zap_unlockdir(zap, FTAG);
1328 return (err);
1329 }
1330
1331 int
1332 zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1333 int key_numints,
1334 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1335 {
1336 zap_t *zap;
1337 zap_name_t *zn;
1338 int err;
1339
1340 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1341 if (err)
1342 return (err);
1343 zn = zap_name_alloc_uint64(zap, key, key_numints);
1344 if (zn == NULL) {
1345 zap_unlockdir(zap, FTAG);
1346 return (SET_ERROR(ENOTSUP));
1347 }
1348 err = fzap_update(zn, integer_size, num_integers, val, FTAG, tx);
1349 zap = zn->zn_zap; /* fzap_update() may change zap */
1350 zap_name_free(zn);
1351 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */
1352 zap_unlockdir(zap, FTAG);
1353 return (err);
1354 }
1355
1356 int
1357 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
1358 {
1359 return (zap_remove_norm(os, zapobj, name, 0, tx));
1360 }
1361
1362 static int
1363 zap_remove_impl(zap_t *zap, const char *name,
1364 matchtype_t mt, dmu_tx_t *tx)
1365 {
1366 mzap_ent_t *mze;
1367 zap_name_t *zn;
1368 int err = 0;
1369
1370 zn = zap_name_alloc(zap, name, mt);
1371 if (zn == NULL)
1372 return (SET_ERROR(ENOTSUP));
1373 if (!zap->zap_ismicro) {
1374 err = fzap_remove(zn, tx);
1375 } else {
1376 mze = mze_find(zn);
1377 if (mze == NULL) {
1378 err = SET_ERROR(ENOENT);
1379 } else {
1380 zap->zap_m.zap_num_entries--;
1381 bzero(&zap_m_phys(zap)->mz_chunk[mze->mze_chunkid],
1382 sizeof (mzap_ent_phys_t));
1383 mze_remove(zap, mze);
1384 }
1385 }
1386 zap_name_free(zn);
1387 return (err);
1388 }
1389
1390 int
1391 zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name,
1392 matchtype_t mt, dmu_tx_t *tx)
1393 {
1394 zap_t *zap;
1395 int err;
1396
1397 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1398 if (err)
1399 return (err);
1400 err = zap_remove_impl(zap, name, mt, tx);
1401 zap_unlockdir(zap, FTAG);
1402 return (err);
1403 }
1404
1405 int
1406 zap_remove_by_dnode(dnode_t *dn, const char *name, dmu_tx_t *tx)
1407 {
1408 zap_t *zap;
1409 int err;
1410
1411 err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1412 if (err)
1413 return (err);
1414 err = zap_remove_impl(zap, name, 0, tx);
1415 zap_unlockdir(zap, FTAG);
1416 return (err);
1417 }
1418
1419 int
1420 zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1421 int key_numints, dmu_tx_t *tx)
1422 {
1423 zap_t *zap;
1424 int err;
1425 zap_name_t *zn;
1426
1427 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1428 if (err)
1429 return (err);
1430 zn = zap_name_alloc_uint64(zap, key, key_numints);
1431 if (zn == NULL) {
1432 zap_unlockdir(zap, FTAG);
1433 return (SET_ERROR(ENOTSUP));
1434 }
1435 err = fzap_remove(zn, tx);
1436 zap_name_free(zn);
1437 zap_unlockdir(zap, FTAG);
1438 return (err);
1439 }
1440
1441 /*
1442 * Routines for iterating over the attributes.
1443 */
1444
1445 void
1446 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1447 uint64_t serialized)
1448 {
1449 zc->zc_objset = os;
1450 zc->zc_zap = NULL;
1451 zc->zc_leaf = NULL;
1452 zc->zc_zapobj = zapobj;
1453 zc->zc_serialized = serialized;
1454 zc->zc_hash = 0;
1455 zc->zc_cd = 0;
1456 }
1457
1458 void
1459 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1460 {
1461 zap_cursor_init_serialized(zc, os, zapobj, 0);
1462 }
1463
1464 void
1465 zap_cursor_fini(zap_cursor_t *zc)
1466 {
1467 if (zc->zc_zap) {
1468 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1469 zap_unlockdir(zc->zc_zap, NULL);
1470 zc->zc_zap = NULL;
1471 }
1472 if (zc->zc_leaf) {
1473 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1474 zap_put_leaf(zc->zc_leaf);
1475 zc->zc_leaf = NULL;
1476 }
1477 zc->zc_objset = NULL;
1478 }
1479
1480 uint64_t
1481 zap_cursor_serialize(zap_cursor_t *zc)
1482 {
1483 if (zc->zc_hash == -1ULL)
1484 return (-1ULL);
1485 if (zc->zc_zap == NULL)
1486 return (zc->zc_serialized);
1487 ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0);
1488 ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap));
1489
1490 /*
1491 * We want to keep the high 32 bits of the cursor zero if we can, so
1492 * that 32-bit programs can access this. So usually use a small
1493 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits
1494 * of the cursor.
1495 *
1496 * [ collision differentiator | zap_hashbits()-bit hash value ]
1497 */
1498 return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) |
1499 ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap)));
1500 }
1501
1502 int
1503 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
1504 {
1505 int err;
1506 avl_index_t idx;
1507 mzap_ent_t mze_tofind;
1508 mzap_ent_t *mze;
1509
1510 if (zc->zc_hash == -1ULL)
1511 return (SET_ERROR(ENOENT));
1512
1513 if (zc->zc_zap == NULL) {
1514 int hb;
1515 err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1516 RW_READER, TRUE, FALSE, NULL, &zc->zc_zap);
1517 if (err)
1518 return (err);
1519
1520 /*
1521 * To support zap_cursor_init_serialized, advance, retrieve,
1522 * we must add to the existing zc_cd, which may already
1523 * be 1 due to the zap_cursor_advance.
1524 */
1525 ASSERT(zc->zc_hash == 0);
1526 hb = zap_hashbits(zc->zc_zap);
1527 zc->zc_hash = zc->zc_serialized << (64 - hb);
1528 zc->zc_cd += zc->zc_serialized >> hb;
1529 if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */
1530 zc->zc_cd = 0;
1531 } else {
1532 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1533 }
1534 if (!zc->zc_zap->zap_ismicro) {
1535 err = fzap_cursor_retrieve(zc->zc_zap, zc, za);
1536 } else {
1537 mze_tofind.mze_hash = zc->zc_hash;
1538 mze_tofind.mze_cd = zc->zc_cd;
1539
1540 mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx);
1541 if (mze == NULL) {
1542 mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl,
1543 idx, AVL_AFTER);
1544 }
1545 if (mze) {
1546 mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze);
1547 ASSERT3U(mze->mze_cd, ==, mzep->mze_cd);
1548 za->za_normalization_conflict =
1549 mzap_normalization_conflict(zc->zc_zap, NULL, mze);
1550 za->za_integer_length = 8;
1551 za->za_num_integers = 1;
1552 za->za_first_integer = mzep->mze_value;
1553 (void) strcpy(za->za_name, mzep->mze_name);
1554 zc->zc_hash = mze->mze_hash;
1555 zc->zc_cd = mze->mze_cd;
1556 err = 0;
1557 } else {
1558 zc->zc_hash = -1ULL;
1559 err = SET_ERROR(ENOENT);
1560 }
1561 }
1562 rw_exit(&zc->zc_zap->zap_rwlock);
1563 return (err);
1564 }
1565
1566 void
1567 zap_cursor_advance(zap_cursor_t *zc)
1568 {
1569 if (zc->zc_hash == -1ULL)
1570 return;
1571 zc->zc_cd++;
1572 }
1573
1574 int
1575 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
1576 {
1577 int err;
1578 zap_t *zap;
1579
1580 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1581 if (err)
1582 return (err);
1583
1584 bzero(zs, sizeof (zap_stats_t));
1585
1586 if (zap->zap_ismicro) {
1587 zs->zs_blocksize = zap->zap_dbuf->db_size;
1588 zs->zs_num_entries = zap->zap_m.zap_num_entries;
1589 zs->zs_num_blocks = 1;
1590 } else {
1591 fzap_get_stats(zap, zs);
1592 }
1593 zap_unlockdir(zap, FTAG);
1594 return (0);
1595 }
1596
1597 #if defined(_KERNEL) && defined(HAVE_SPL)
1598 EXPORT_SYMBOL(zap_create);
1599 EXPORT_SYMBOL(zap_create_dnsize);
1600 EXPORT_SYMBOL(zap_create_norm);
1601 EXPORT_SYMBOL(zap_create_norm_dnsize);
1602 EXPORT_SYMBOL(zap_create_flags);
1603 EXPORT_SYMBOL(zap_create_flags_dnsize);
1604 EXPORT_SYMBOL(zap_create_claim);
1605 EXPORT_SYMBOL(zap_create_claim_norm);
1606 EXPORT_SYMBOL(zap_create_claim_norm_dnsize);
1607 EXPORT_SYMBOL(zap_destroy);
1608 EXPORT_SYMBOL(zap_lookup);
1609 EXPORT_SYMBOL(zap_lookup_by_dnode);
1610 EXPORT_SYMBOL(zap_lookup_norm);
1611 EXPORT_SYMBOL(zap_lookup_uint64);
1612 EXPORT_SYMBOL(zap_contains);
1613 EXPORT_SYMBOL(zap_prefetch);
1614 EXPORT_SYMBOL(zap_prefetch_uint64);
1615 EXPORT_SYMBOL(zap_add);
1616 EXPORT_SYMBOL(zap_add_by_dnode);
1617 EXPORT_SYMBOL(zap_add_uint64);
1618 EXPORT_SYMBOL(zap_update);
1619 EXPORT_SYMBOL(zap_update_uint64);
1620 EXPORT_SYMBOL(zap_length);
1621 EXPORT_SYMBOL(zap_length_uint64);
1622 EXPORT_SYMBOL(zap_remove);
1623 EXPORT_SYMBOL(zap_remove_by_dnode);
1624 EXPORT_SYMBOL(zap_remove_norm);
1625 EXPORT_SYMBOL(zap_remove_uint64);
1626 EXPORT_SYMBOL(zap_count);
1627 EXPORT_SYMBOL(zap_value_search);
1628 EXPORT_SYMBOL(zap_join);
1629 EXPORT_SYMBOL(zap_join_increment);
1630 EXPORT_SYMBOL(zap_add_int);
1631 EXPORT_SYMBOL(zap_remove_int);
1632 EXPORT_SYMBOL(zap_lookup_int);
1633 EXPORT_SYMBOL(zap_increment_int);
1634 EXPORT_SYMBOL(zap_add_int_key);
1635 EXPORT_SYMBOL(zap_lookup_int_key);
1636 EXPORT_SYMBOL(zap_increment);
1637 EXPORT_SYMBOL(zap_cursor_init);
1638 EXPORT_SYMBOL(zap_cursor_fini);
1639 EXPORT_SYMBOL(zap_cursor_retrieve);
1640 EXPORT_SYMBOL(zap_cursor_advance);
1641 EXPORT_SYMBOL(zap_cursor_serialize);
1642 EXPORT_SYMBOL(zap_cursor_init_serialized);
1643 EXPORT_SYMBOL(zap_get_stats);
1644 #endif