]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zap_micro.c
Change ASSERT(!"...") to cmn_err(CE_PANIC, ...)
[mirror_zfs.git] / module / zfs / zap_micro.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 */
25
26 #include <sys/zio.h>
27 #include <sys/spa.h>
28 #include <sys/dmu.h>
29 #include <sys/zfs_context.h>
30 #include <sys/zap.h>
31 #include <sys/refcount.h>
32 #include <sys/zap_impl.h>
33 #include <sys/zap_leaf.h>
34 #include <sys/avl.h>
35 #include <sys/arc.h>
36
37 #ifdef _KERNEL
38 #include <sys/sunddi.h>
39 #endif
40
41 static int mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags);
42
43 uint64_t
44 zap_getflags(zap_t *zap)
45 {
46 if (zap->zap_ismicro)
47 return (0);
48 return (zap->zap_u.zap_fat.zap_phys->zap_flags);
49 }
50
51 int
52 zap_hashbits(zap_t *zap)
53 {
54 if (zap_getflags(zap) & ZAP_FLAG_HASH64)
55 return (48);
56 else
57 return (28);
58 }
59
60 uint32_t
61 zap_maxcd(zap_t *zap)
62 {
63 if (zap_getflags(zap) & ZAP_FLAG_HASH64)
64 return ((1<<16)-1);
65 else
66 return (-1U);
67 }
68
69 static uint64_t
70 zap_hash(zap_name_t *zn)
71 {
72 zap_t *zap = zn->zn_zap;
73 uint64_t h = 0;
74
75 if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) {
76 ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY);
77 h = *(uint64_t *)zn->zn_key_orig;
78 } else {
79 h = zap->zap_salt;
80 ASSERT(h != 0);
81 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
82
83 if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
84 int i;
85 const uint64_t *wp = zn->zn_key_norm;
86
87 ASSERT(zn->zn_key_intlen == 8);
88 for (i = 0; i < zn->zn_key_norm_numints; wp++, i++) {
89 int j;
90 uint64_t word = *wp;
91
92 for (j = 0; j < zn->zn_key_intlen; j++) {
93 h = (h >> 8) ^
94 zfs_crc64_table[(h ^ word) & 0xFF];
95 word >>= NBBY;
96 }
97 }
98 } else {
99 int i, len;
100 const uint8_t *cp = zn->zn_key_norm;
101
102 /*
103 * We previously stored the terminating null on
104 * disk, but didn't hash it, so we need to
105 * continue to not hash it. (The
106 * zn_key_*_numints includes the terminating
107 * null for non-binary keys.)
108 */
109 len = zn->zn_key_norm_numints - 1;
110
111 ASSERT(zn->zn_key_intlen == 1);
112 for (i = 0; i < len; cp++, i++) {
113 h = (h >> 8) ^
114 zfs_crc64_table[(h ^ *cp) & 0xFF];
115 }
116 }
117 }
118 /*
119 * Don't use all 64 bits, since we need some in the cookie for
120 * the collision differentiator. We MUST use the high bits,
121 * since those are the ones that we first pay attention to when
122 * chosing the bucket.
123 */
124 h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1);
125
126 return (h);
127 }
128
129 static int
130 zap_normalize(zap_t *zap, const char *name, char *namenorm)
131 {
132 size_t inlen, outlen;
133 int err;
134
135 ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY));
136
137 inlen = strlen(name) + 1;
138 outlen = ZAP_MAXNAMELEN;
139
140 err = 0;
141 (void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen,
142 zap->zap_normflags | U8_TEXTPREP_IGNORE_NULL |
143 U8_TEXTPREP_IGNORE_INVALID, U8_UNICODE_LATEST, &err);
144
145 return (err);
146 }
147
148 boolean_t
149 zap_match(zap_name_t *zn, const char *matchname)
150 {
151 ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY));
152
153 if (zn->zn_matchtype == MT_FIRST) {
154 char norm[ZAP_MAXNAMELEN];
155
156 if (zap_normalize(zn->zn_zap, matchname, norm) != 0)
157 return (B_FALSE);
158
159 return (strcmp(zn->zn_key_norm, norm) == 0);
160 } else {
161 /* MT_BEST or MT_EXACT */
162 return (strcmp(zn->zn_key_orig, matchname) == 0);
163 }
164 }
165
166 void
167 zap_name_free(zap_name_t *zn)
168 {
169 kmem_free(zn, sizeof (zap_name_t));
170 }
171
172 zap_name_t *
173 zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt)
174 {
175 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
176
177 zn->zn_zap = zap;
178 zn->zn_key_intlen = sizeof (*key);
179 zn->zn_key_orig = key;
180 zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1;
181 zn->zn_matchtype = mt;
182 if (zap->zap_normflags) {
183 if (zap_normalize(zap, key, zn->zn_normbuf) != 0) {
184 zap_name_free(zn);
185 return (NULL);
186 }
187 zn->zn_key_norm = zn->zn_normbuf;
188 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
189 } else {
190 if (mt != MT_EXACT) {
191 zap_name_free(zn);
192 return (NULL);
193 }
194 zn->zn_key_norm = zn->zn_key_orig;
195 zn->zn_key_norm_numints = zn->zn_key_orig_numints;
196 }
197
198 zn->zn_hash = zap_hash(zn);
199 return (zn);
200 }
201
202 zap_name_t *
203 zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints)
204 {
205 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
206
207 ASSERT(zap->zap_normflags == 0);
208 zn->zn_zap = zap;
209 zn->zn_key_intlen = sizeof (*key);
210 zn->zn_key_orig = zn->zn_key_norm = key;
211 zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints;
212 zn->zn_matchtype = MT_EXACT;
213
214 zn->zn_hash = zap_hash(zn);
215 return (zn);
216 }
217
218 static void
219 mzap_byteswap(mzap_phys_t *buf, size_t size)
220 {
221 int i, max;
222 buf->mz_block_type = BSWAP_64(buf->mz_block_type);
223 buf->mz_salt = BSWAP_64(buf->mz_salt);
224 buf->mz_normflags = BSWAP_64(buf->mz_normflags);
225 max = (size / MZAP_ENT_LEN) - 1;
226 for (i = 0; i < max; i++) {
227 buf->mz_chunk[i].mze_value =
228 BSWAP_64(buf->mz_chunk[i].mze_value);
229 buf->mz_chunk[i].mze_cd =
230 BSWAP_32(buf->mz_chunk[i].mze_cd);
231 }
232 }
233
234 void
235 zap_byteswap(void *buf, size_t size)
236 {
237 uint64_t block_type;
238
239 block_type = *(uint64_t *)buf;
240
241 if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) {
242 /* ASSERT(magic == ZAP_LEAF_MAGIC); */
243 mzap_byteswap(buf, size);
244 } else {
245 fzap_byteswap(buf, size);
246 }
247 }
248
249 static int
250 mze_compare(const void *arg1, const void *arg2)
251 {
252 const mzap_ent_t *mze1 = arg1;
253 const mzap_ent_t *mze2 = arg2;
254
255 if (mze1->mze_hash > mze2->mze_hash)
256 return (+1);
257 if (mze1->mze_hash < mze2->mze_hash)
258 return (-1);
259 if (mze1->mze_cd > mze2->mze_cd)
260 return (+1);
261 if (mze1->mze_cd < mze2->mze_cd)
262 return (-1);
263 return (0);
264 }
265
266 static void
267 mze_insert(zap_t *zap, int chunkid, uint64_t hash)
268 {
269 mzap_ent_t *mze;
270
271 ASSERT(zap->zap_ismicro);
272 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
273
274 mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP);
275 mze->mze_chunkid = chunkid;
276 mze->mze_hash = hash;
277 mze->mze_cd = MZE_PHYS(zap, mze)->mze_cd;
278 ASSERT(MZE_PHYS(zap, mze)->mze_name[0] != 0);
279 avl_add(&zap->zap_m.zap_avl, mze);
280 }
281
282 static mzap_ent_t *
283 mze_find(zap_name_t *zn)
284 {
285 mzap_ent_t mze_tofind;
286 mzap_ent_t *mze;
287 avl_index_t idx;
288 avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl;
289
290 ASSERT(zn->zn_zap->zap_ismicro);
291 ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock));
292
293 mze_tofind.mze_hash = zn->zn_hash;
294 mze_tofind.mze_cd = 0;
295
296 again:
297 mze = avl_find(avl, &mze_tofind, &idx);
298 if (mze == NULL)
299 mze = avl_nearest(avl, idx, AVL_AFTER);
300 for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) {
301 ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd);
302 if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name))
303 return (mze);
304 }
305 if (zn->zn_matchtype == MT_BEST) {
306 zn->zn_matchtype = MT_FIRST;
307 goto again;
308 }
309 return (NULL);
310 }
311
312 static uint32_t
313 mze_find_unused_cd(zap_t *zap, uint64_t hash)
314 {
315 mzap_ent_t mze_tofind;
316 mzap_ent_t *mze;
317 avl_index_t idx;
318 avl_tree_t *avl = &zap->zap_m.zap_avl;
319 uint32_t cd;
320
321 ASSERT(zap->zap_ismicro);
322 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
323
324 mze_tofind.mze_hash = hash;
325 mze_tofind.mze_cd = 0;
326
327 cd = 0;
328 for (mze = avl_find(avl, &mze_tofind, &idx);
329 mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
330 if (mze->mze_cd != cd)
331 break;
332 cd++;
333 }
334
335 return (cd);
336 }
337
338 static void
339 mze_remove(zap_t *zap, mzap_ent_t *mze)
340 {
341 ASSERT(zap->zap_ismicro);
342 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
343
344 avl_remove(&zap->zap_m.zap_avl, mze);
345 kmem_free(mze, sizeof (mzap_ent_t));
346 }
347
348 static void
349 mze_destroy(zap_t *zap)
350 {
351 mzap_ent_t *mze;
352 void *avlcookie = NULL;
353
354 while ((mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie)))
355 kmem_free(mze, sizeof (mzap_ent_t));
356 avl_destroy(&zap->zap_m.zap_avl);
357 }
358
359 static zap_t *
360 mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db)
361 {
362 zap_t *winner;
363 zap_t *zap;
364 int i;
365
366 ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
367
368 zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
369 rw_init(&zap->zap_rwlock, NULL, RW_DEFAULT, NULL);
370 rw_enter(&zap->zap_rwlock, RW_WRITER);
371 zap->zap_objset = os;
372 zap->zap_object = obj;
373 zap->zap_dbuf = db;
374
375 if (*(uint64_t *)db->db_data != ZBT_MICRO) {
376 mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0);
377 zap->zap_f.zap_block_shift = highbit64(db->db_size) - 1;
378 } else {
379 zap->zap_ismicro = TRUE;
380 }
381
382 /*
383 * Make sure that zap_ismicro is set before we let others see
384 * it, because zap_lockdir() checks zap_ismicro without the lock
385 * held.
386 */
387 winner = dmu_buf_set_user(db, zap, &zap->zap_m.zap_phys, zap_evict);
388
389 if (winner != NULL) {
390 rw_exit(&zap->zap_rwlock);
391 rw_destroy(&zap->zap_rwlock);
392 if (!zap->zap_ismicro)
393 mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
394 kmem_free(zap, sizeof (zap_t));
395 return (winner);
396 }
397
398 if (zap->zap_ismicro) {
399 zap->zap_salt = zap->zap_m.zap_phys->mz_salt;
400 zap->zap_normflags = zap->zap_m.zap_phys->mz_normflags;
401 zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
402 avl_create(&zap->zap_m.zap_avl, mze_compare,
403 sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node));
404
405 for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
406 mzap_ent_phys_t *mze =
407 &zap->zap_m.zap_phys->mz_chunk[i];
408 if (mze->mze_name[0]) {
409 zap_name_t *zn;
410
411 zap->zap_m.zap_num_entries++;
412 zn = zap_name_alloc(zap, mze->mze_name,
413 MT_EXACT);
414 mze_insert(zap, i, zn->zn_hash);
415 zap_name_free(zn);
416 }
417 }
418 } else {
419 zap->zap_salt = zap->zap_f.zap_phys->zap_salt;
420 zap->zap_normflags = zap->zap_f.zap_phys->zap_normflags;
421
422 ASSERT3U(sizeof (struct zap_leaf_header), ==,
423 2*ZAP_LEAF_CHUNKSIZE);
424
425 /*
426 * The embedded pointer table should not overlap the
427 * other members.
428 */
429 ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >,
430 &zap->zap_f.zap_phys->zap_salt);
431
432 /*
433 * The embedded pointer table should end at the end of
434 * the block
435 */
436 ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap,
437 1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) -
438 (uintptr_t)zap->zap_f.zap_phys, ==,
439 zap->zap_dbuf->db_size);
440 }
441 rw_exit(&zap->zap_rwlock);
442 return (zap);
443 }
444
445 int
446 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
447 krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp)
448 {
449 dmu_object_info_t doi;
450 zap_t *zap;
451 dmu_buf_t *db;
452 krw_t lt;
453 int err;
454
455 *zapp = NULL;
456
457 err = dmu_buf_hold(os, obj, 0, NULL, &db, DMU_READ_NO_PREFETCH);
458 if (err)
459 return (err);
460
461 dmu_object_info_from_db(db, &doi);
462 if (DMU_OT_BYTESWAP(doi.doi_type) != DMU_BSWAP_ZAP)
463 return (SET_ERROR(EINVAL));
464
465 zap = dmu_buf_get_user(db);
466 if (zap == NULL)
467 zap = mzap_open(os, obj, db);
468
469 /*
470 * We're checking zap_ismicro without the lock held, in order to
471 * tell what type of lock we want. Once we have some sort of
472 * lock, see if it really is the right type. In practice this
473 * can only be different if it was upgraded from micro to fat,
474 * and micro wanted WRITER but fat only needs READER.
475 */
476 lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
477 rw_enter(&zap->zap_rwlock, lt);
478 if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
479 /* it was upgraded, now we only need reader */
480 ASSERT(lt == RW_WRITER);
481 ASSERT(RW_READER ==
482 (!zap->zap_ismicro && fatreader) ? RW_READER : lti);
483 rw_downgrade(&zap->zap_rwlock);
484 lt = RW_READER;
485 }
486
487 zap->zap_objset = os;
488
489 if (lt == RW_WRITER)
490 dmu_buf_will_dirty(db, tx);
491
492 ASSERT3P(zap->zap_dbuf, ==, db);
493
494 ASSERT(!zap->zap_ismicro ||
495 zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
496 if (zap->zap_ismicro && tx && adding &&
497 zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
498 uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
499 if (newsz > MZAP_MAX_BLKSZ) {
500 dprintf("upgrading obj %llu: num_entries=%u\n",
501 obj, zap->zap_m.zap_num_entries);
502 *zapp = zap;
503 return (mzap_upgrade(zapp, tx, 0));
504 }
505 err = dmu_object_set_blocksize(os, obj, newsz, 0, tx);
506 ASSERT0(err);
507 zap->zap_m.zap_num_chunks =
508 db->db_size / MZAP_ENT_LEN - 1;
509 }
510
511 *zapp = zap;
512 return (0);
513 }
514
515 void
516 zap_unlockdir(zap_t *zap)
517 {
518 rw_exit(&zap->zap_rwlock);
519 dmu_buf_rele(zap->zap_dbuf, NULL);
520 }
521
522 static int
523 mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags)
524 {
525 mzap_phys_t *mzp;
526 int i, sz, nchunks;
527 int err = 0;
528 zap_t *zap = *zapp;
529
530 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
531
532 sz = zap->zap_dbuf->db_size;
533 mzp = zio_buf_alloc(sz);
534 bcopy(zap->zap_dbuf->db_data, mzp, sz);
535 nchunks = zap->zap_m.zap_num_chunks;
536
537 if (!flags) {
538 err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
539 1ULL << fzap_default_block_shift, 0, tx);
540 if (err) {
541 zio_buf_free(mzp, sz);
542 return (err);
543 }
544 }
545
546 dprintf("upgrading obj=%llu with %u chunks\n",
547 zap->zap_object, nchunks);
548 /* XXX destroy the avl later, so we can use the stored hash value */
549 mze_destroy(zap);
550
551 fzap_upgrade(zap, tx, flags);
552
553 for (i = 0; i < nchunks; i++) {
554 mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
555 zap_name_t *zn;
556 if (mze->mze_name[0] == 0)
557 continue;
558 dprintf("adding %s=%llu\n",
559 mze->mze_name, mze->mze_value);
560 zn = zap_name_alloc(zap, mze->mze_name, MT_EXACT);
561 err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd, tx);
562 zap = zn->zn_zap; /* fzap_add_cd() may change zap */
563 zap_name_free(zn);
564 if (err)
565 break;
566 }
567 zio_buf_free(mzp, sz);
568 *zapp = zap;
569 return (err);
570 }
571
572 void
573 mzap_create_impl(objset_t *os, uint64_t obj, int normflags, zap_flags_t flags,
574 dmu_tx_t *tx)
575 {
576 dmu_buf_t *db;
577 mzap_phys_t *zp;
578
579 VERIFY(0 == dmu_buf_hold(os, obj, 0, FTAG, &db, DMU_READ_NO_PREFETCH));
580
581 #ifdef ZFS_DEBUG
582 {
583 dmu_object_info_t doi;
584 dmu_object_info_from_db(db, &doi);
585 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
586 }
587 #endif
588
589 dmu_buf_will_dirty(db, tx);
590 zp = db->db_data;
591 zp->mz_block_type = ZBT_MICRO;
592 zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL;
593 zp->mz_normflags = normflags;
594 dmu_buf_rele(db, FTAG);
595
596 if (flags != 0) {
597 zap_t *zap;
598 /* Only fat zap supports flags; upgrade immediately. */
599 VERIFY(0 == zap_lockdir(os, obj, tx, RW_WRITER,
600 B_FALSE, B_FALSE, &zap));
601 VERIFY3U(0, ==, mzap_upgrade(&zap, tx, flags));
602 zap_unlockdir(zap);
603 }
604 }
605
606 int
607 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
608 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
609 {
610 return (zap_create_claim_norm(os, obj,
611 0, ot, bonustype, bonuslen, tx));
612 }
613
614 int
615 zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags,
616 dmu_object_type_t ot,
617 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
618 {
619 int err;
620
621 err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx);
622 if (err != 0)
623 return (err);
624 mzap_create_impl(os, obj, normflags, 0, tx);
625 return (0);
626 }
627
628 uint64_t
629 zap_create(objset_t *os, dmu_object_type_t ot,
630 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
631 {
632 return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx));
633 }
634
635 uint64_t
636 zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot,
637 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
638 {
639 uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
640
641 mzap_create_impl(os, obj, normflags, 0, tx);
642 return (obj);
643 }
644
645 uint64_t
646 zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
647 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
648 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
649 {
650 uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
651
652 ASSERT(leaf_blockshift >= SPA_MINBLOCKSHIFT &&
653 leaf_blockshift <= SPA_MAXBLOCKSHIFT &&
654 indirect_blockshift >= SPA_MINBLOCKSHIFT &&
655 indirect_blockshift <= SPA_MAXBLOCKSHIFT);
656
657 VERIFY(dmu_object_set_blocksize(os, obj,
658 1ULL << leaf_blockshift, indirect_blockshift, tx) == 0);
659
660 mzap_create_impl(os, obj, normflags, flags, tx);
661 return (obj);
662 }
663
664 int
665 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
666 {
667 /*
668 * dmu_object_free will free the object number and free the
669 * data. Freeing the data will cause our pageout function to be
670 * called, which will destroy our data (zap_leaf_t's and zap_t).
671 */
672
673 return (dmu_object_free(os, zapobj, tx));
674 }
675
676 _NOTE(ARGSUSED(0))
677 void
678 zap_evict(dmu_buf_t *db, void *vzap)
679 {
680 zap_t *zap = vzap;
681
682 rw_destroy(&zap->zap_rwlock);
683
684 if (zap->zap_ismicro)
685 mze_destroy(zap);
686 else
687 mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
688
689 kmem_free(zap, sizeof (zap_t));
690 }
691
692 int
693 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
694 {
695 zap_t *zap;
696 int err;
697
698 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
699 if (err)
700 return (err);
701 if (!zap->zap_ismicro) {
702 err = fzap_count(zap, count);
703 } else {
704 *count = zap->zap_m.zap_num_entries;
705 }
706 zap_unlockdir(zap);
707 return (err);
708 }
709
710 /*
711 * zn may be NULL; if not specified, it will be computed if needed.
712 * See also the comment above zap_entry_normalization_conflict().
713 */
714 static boolean_t
715 mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze)
716 {
717 mzap_ent_t *other;
718 int direction = AVL_BEFORE;
719 boolean_t allocdzn = B_FALSE;
720
721 if (zap->zap_normflags == 0)
722 return (B_FALSE);
723
724 again:
725 for (other = avl_walk(&zap->zap_m.zap_avl, mze, direction);
726 other && other->mze_hash == mze->mze_hash;
727 other = avl_walk(&zap->zap_m.zap_avl, other, direction)) {
728
729 if (zn == NULL) {
730 zn = zap_name_alloc(zap, MZE_PHYS(zap, mze)->mze_name,
731 MT_FIRST);
732 allocdzn = B_TRUE;
733 }
734 if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) {
735 if (allocdzn)
736 zap_name_free(zn);
737 return (B_TRUE);
738 }
739 }
740
741 if (direction == AVL_BEFORE) {
742 direction = AVL_AFTER;
743 goto again;
744 }
745
746 if (allocdzn)
747 zap_name_free(zn);
748 return (B_FALSE);
749 }
750
751 /*
752 * Routines for manipulating attributes.
753 */
754
755 int
756 zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
757 uint64_t integer_size, uint64_t num_integers, void *buf)
758 {
759 return (zap_lookup_norm(os, zapobj, name, integer_size,
760 num_integers, buf, MT_EXACT, NULL, 0, NULL));
761 }
762
763 int
764 zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name,
765 uint64_t integer_size, uint64_t num_integers, void *buf,
766 matchtype_t mt, char *realname, int rn_len,
767 boolean_t *ncp)
768 {
769 zap_t *zap;
770 int err;
771 mzap_ent_t *mze;
772 zap_name_t *zn;
773
774 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
775 if (err)
776 return (err);
777 zn = zap_name_alloc(zap, name, mt);
778 if (zn == NULL) {
779 zap_unlockdir(zap);
780 return (SET_ERROR(ENOTSUP));
781 }
782
783 if (!zap->zap_ismicro) {
784 err = fzap_lookup(zn, integer_size, num_integers, buf,
785 realname, rn_len, ncp);
786 } else {
787 mze = mze_find(zn);
788 if (mze == NULL) {
789 err = SET_ERROR(ENOENT);
790 } else {
791 if (num_integers < 1) {
792 err = SET_ERROR(EOVERFLOW);
793 } else if (integer_size != 8) {
794 err = SET_ERROR(EINVAL);
795 } else {
796 *(uint64_t *)buf =
797 MZE_PHYS(zap, mze)->mze_value;
798 (void) strlcpy(realname,
799 MZE_PHYS(zap, mze)->mze_name, rn_len);
800 if (ncp) {
801 *ncp = mzap_normalization_conflict(zap,
802 zn, mze);
803 }
804 }
805 }
806 }
807 zap_name_free(zn);
808 zap_unlockdir(zap);
809 return (err);
810 }
811
812 int
813 zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
814 int key_numints)
815 {
816 zap_t *zap;
817 int err;
818 zap_name_t *zn;
819
820 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
821 if (err)
822 return (err);
823 zn = zap_name_alloc_uint64(zap, key, key_numints);
824 if (zn == NULL) {
825 zap_unlockdir(zap);
826 return (SET_ERROR(ENOTSUP));
827 }
828
829 fzap_prefetch(zn);
830 zap_name_free(zn);
831 zap_unlockdir(zap);
832 return (err);
833 }
834
835 int
836 zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
837 int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
838 {
839 zap_t *zap;
840 int err;
841 zap_name_t *zn;
842
843 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
844 if (err)
845 return (err);
846 zn = zap_name_alloc_uint64(zap, key, key_numints);
847 if (zn == NULL) {
848 zap_unlockdir(zap);
849 return (SET_ERROR(ENOTSUP));
850 }
851
852 err = fzap_lookup(zn, integer_size, num_integers, buf,
853 NULL, 0, NULL);
854 zap_name_free(zn);
855 zap_unlockdir(zap);
856 return (err);
857 }
858
859 int
860 zap_contains(objset_t *os, uint64_t zapobj, const char *name)
861 {
862 int err = zap_lookup_norm(os, zapobj, name, 0,
863 0, NULL, MT_EXACT, NULL, 0, NULL);
864 if (err == EOVERFLOW || err == EINVAL)
865 err = 0; /* found, but skipped reading the value */
866 return (err);
867 }
868
869 int
870 zap_length(objset_t *os, uint64_t zapobj, const char *name,
871 uint64_t *integer_size, uint64_t *num_integers)
872 {
873 zap_t *zap;
874 int err;
875 mzap_ent_t *mze;
876 zap_name_t *zn;
877
878 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
879 if (err)
880 return (err);
881 zn = zap_name_alloc(zap, name, MT_EXACT);
882 if (zn == NULL) {
883 zap_unlockdir(zap);
884 return (SET_ERROR(ENOTSUP));
885 }
886 if (!zap->zap_ismicro) {
887 err = fzap_length(zn, integer_size, num_integers);
888 } else {
889 mze = mze_find(zn);
890 if (mze == NULL) {
891 err = SET_ERROR(ENOENT);
892 } else {
893 if (integer_size)
894 *integer_size = 8;
895 if (num_integers)
896 *num_integers = 1;
897 }
898 }
899 zap_name_free(zn);
900 zap_unlockdir(zap);
901 return (err);
902 }
903
904 int
905 zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
906 int key_numints, uint64_t *integer_size, uint64_t *num_integers)
907 {
908 zap_t *zap;
909 int err;
910 zap_name_t *zn;
911
912 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
913 if (err)
914 return (err);
915 zn = zap_name_alloc_uint64(zap, key, key_numints);
916 if (zn == NULL) {
917 zap_unlockdir(zap);
918 return (SET_ERROR(ENOTSUP));
919 }
920 err = fzap_length(zn, integer_size, num_integers);
921 zap_name_free(zn);
922 zap_unlockdir(zap);
923 return (err);
924 }
925
926 static void
927 mzap_addent(zap_name_t *zn, uint64_t value)
928 {
929 int i;
930 zap_t *zap = zn->zn_zap;
931 int start = zap->zap_m.zap_alloc_next;
932 uint32_t cd;
933
934 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
935
936 #ifdef ZFS_DEBUG
937 for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
938 ASSERTV(mzap_ent_phys_t *mze);
939 ASSERT(mze = &zap->zap_m.zap_phys->mz_chunk[i]);
940 ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0);
941 }
942 #endif
943
944 cd = mze_find_unused_cd(zap, zn->zn_hash);
945 /* given the limited size of the microzap, this can't happen */
946 ASSERT(cd < zap_maxcd(zap));
947
948 again:
949 for (i = start; i < zap->zap_m.zap_num_chunks; i++) {
950 mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i];
951 if (mze->mze_name[0] == 0) {
952 mze->mze_value = value;
953 mze->mze_cd = cd;
954 (void) strcpy(mze->mze_name, zn->zn_key_orig);
955 zap->zap_m.zap_num_entries++;
956 zap->zap_m.zap_alloc_next = i+1;
957 if (zap->zap_m.zap_alloc_next ==
958 zap->zap_m.zap_num_chunks)
959 zap->zap_m.zap_alloc_next = 0;
960 mze_insert(zap, i, zn->zn_hash);
961 return;
962 }
963 }
964 if (start != 0) {
965 start = 0;
966 goto again;
967 }
968 cmn_err(CE_PANIC, "out of entries!");
969 }
970
971 int
972 zap_add(objset_t *os, uint64_t zapobj, const char *key,
973 int integer_size, uint64_t num_integers,
974 const void *val, dmu_tx_t *tx)
975 {
976 zap_t *zap;
977 int err;
978 mzap_ent_t *mze;
979 const uint64_t *intval = val;
980 zap_name_t *zn;
981
982 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
983 if (err)
984 return (err);
985 zn = zap_name_alloc(zap, key, MT_EXACT);
986 if (zn == NULL) {
987 zap_unlockdir(zap);
988 return (SET_ERROR(ENOTSUP));
989 }
990 if (!zap->zap_ismicro) {
991 err = fzap_add(zn, integer_size, num_integers, val, tx);
992 zap = zn->zn_zap; /* fzap_add() may change zap */
993 } else if (integer_size != 8 || num_integers != 1 ||
994 strlen(key) >= MZAP_NAME_LEN) {
995 err = mzap_upgrade(&zn->zn_zap, tx, 0);
996 if (err == 0)
997 err = fzap_add(zn, integer_size, num_integers, val, tx);
998 zap = zn->zn_zap; /* fzap_add() may change zap */
999 } else {
1000 mze = mze_find(zn);
1001 if (mze != NULL) {
1002 err = SET_ERROR(EEXIST);
1003 } else {
1004 mzap_addent(zn, *intval);
1005 }
1006 }
1007 ASSERT(zap == zn->zn_zap);
1008 zap_name_free(zn);
1009 if (zap != NULL) /* may be NULL if fzap_add() failed */
1010 zap_unlockdir(zap);
1011 return (err);
1012 }
1013
1014 int
1015 zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1016 int key_numints, int integer_size, uint64_t num_integers,
1017 const void *val, dmu_tx_t *tx)
1018 {
1019 zap_t *zap;
1020 int err;
1021 zap_name_t *zn;
1022
1023 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1024 if (err)
1025 return (err);
1026 zn = zap_name_alloc_uint64(zap, key, key_numints);
1027 if (zn == NULL) {
1028 zap_unlockdir(zap);
1029 return (SET_ERROR(ENOTSUP));
1030 }
1031 err = fzap_add(zn, integer_size, num_integers, val, tx);
1032 zap = zn->zn_zap; /* fzap_add() may change zap */
1033 zap_name_free(zn);
1034 if (zap != NULL) /* may be NULL if fzap_add() failed */
1035 zap_unlockdir(zap);
1036 return (err);
1037 }
1038
1039 int
1040 zap_update(objset_t *os, uint64_t zapobj, const char *name,
1041 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1042 {
1043 zap_t *zap;
1044 mzap_ent_t *mze;
1045 const uint64_t *intval = val;
1046 zap_name_t *zn;
1047 int err;
1048
1049 #ifdef ZFS_DEBUG
1050 uint64_t oldval;
1051
1052 /*
1053 * If there is an old value, it shouldn't change across the
1054 * lockdir (eg, due to bprewrite's xlation).
1055 */
1056 if (integer_size == 8 && num_integers == 1)
1057 (void) zap_lookup(os, zapobj, name, 8, 1, &oldval);
1058 #endif
1059
1060 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1061 if (err)
1062 return (err);
1063 zn = zap_name_alloc(zap, name, MT_EXACT);
1064 if (zn == NULL) {
1065 zap_unlockdir(zap);
1066 return (SET_ERROR(ENOTSUP));
1067 }
1068 if (!zap->zap_ismicro) {
1069 err = fzap_update(zn, integer_size, num_integers, val, tx);
1070 zap = zn->zn_zap; /* fzap_update() may change zap */
1071 } else if (integer_size != 8 || num_integers != 1 ||
1072 strlen(name) >= MZAP_NAME_LEN) {
1073 dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
1074 zapobj, integer_size, num_integers, name);
1075 err = mzap_upgrade(&zn->zn_zap, tx, 0);
1076 if (err == 0)
1077 err = fzap_update(zn, integer_size, num_integers,
1078 val, tx);
1079 zap = zn->zn_zap; /* fzap_update() may change zap */
1080 } else {
1081 mze = mze_find(zn);
1082 if (mze != NULL) {
1083 ASSERT3U(MZE_PHYS(zap, mze)->mze_value, ==, oldval);
1084 MZE_PHYS(zap, mze)->mze_value = *intval;
1085 } else {
1086 mzap_addent(zn, *intval);
1087 }
1088 }
1089 ASSERT(zap == zn->zn_zap);
1090 zap_name_free(zn);
1091 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */
1092 zap_unlockdir(zap);
1093 return (err);
1094 }
1095
1096 int
1097 zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1098 int key_numints,
1099 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1100 {
1101 zap_t *zap;
1102 zap_name_t *zn;
1103 int err;
1104
1105 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1106 if (err)
1107 return (err);
1108 zn = zap_name_alloc_uint64(zap, key, key_numints);
1109 if (zn == NULL) {
1110 zap_unlockdir(zap);
1111 return (SET_ERROR(ENOTSUP));
1112 }
1113 err = fzap_update(zn, integer_size, num_integers, val, tx);
1114 zap = zn->zn_zap; /* fzap_update() may change zap */
1115 zap_name_free(zn);
1116 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */
1117 zap_unlockdir(zap);
1118 return (err);
1119 }
1120
1121 int
1122 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
1123 {
1124 return (zap_remove_norm(os, zapobj, name, MT_EXACT, tx));
1125 }
1126
1127 int
1128 zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name,
1129 matchtype_t mt, dmu_tx_t *tx)
1130 {
1131 zap_t *zap;
1132 int err;
1133 mzap_ent_t *mze;
1134 zap_name_t *zn;
1135
1136 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
1137 if (err)
1138 return (err);
1139 zn = zap_name_alloc(zap, name, mt);
1140 if (zn == NULL) {
1141 zap_unlockdir(zap);
1142 return (SET_ERROR(ENOTSUP));
1143 }
1144 if (!zap->zap_ismicro) {
1145 err = fzap_remove(zn, tx);
1146 } else {
1147 mze = mze_find(zn);
1148 if (mze == NULL) {
1149 err = SET_ERROR(ENOENT);
1150 } else {
1151 zap->zap_m.zap_num_entries--;
1152 bzero(&zap->zap_m.zap_phys->mz_chunk[mze->mze_chunkid],
1153 sizeof (mzap_ent_phys_t));
1154 mze_remove(zap, mze);
1155 }
1156 }
1157 zap_name_free(zn);
1158 zap_unlockdir(zap);
1159 return (err);
1160 }
1161
1162 int
1163 zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1164 int key_numints, dmu_tx_t *tx)
1165 {
1166 zap_t *zap;
1167 int err;
1168 zap_name_t *zn;
1169
1170 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
1171 if (err)
1172 return (err);
1173 zn = zap_name_alloc_uint64(zap, key, key_numints);
1174 if (zn == NULL) {
1175 zap_unlockdir(zap);
1176 return (SET_ERROR(ENOTSUP));
1177 }
1178 err = fzap_remove(zn, tx);
1179 zap_name_free(zn);
1180 zap_unlockdir(zap);
1181 return (err);
1182 }
1183
1184 /*
1185 * Routines for iterating over the attributes.
1186 */
1187
1188 void
1189 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1190 uint64_t serialized)
1191 {
1192 zc->zc_objset = os;
1193 zc->zc_zap = NULL;
1194 zc->zc_leaf = NULL;
1195 zc->zc_zapobj = zapobj;
1196 zc->zc_serialized = serialized;
1197 zc->zc_hash = 0;
1198 zc->zc_cd = 0;
1199 }
1200
1201 void
1202 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1203 {
1204 zap_cursor_init_serialized(zc, os, zapobj, 0);
1205 }
1206
1207 void
1208 zap_cursor_fini(zap_cursor_t *zc)
1209 {
1210 if (zc->zc_zap) {
1211 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1212 zap_unlockdir(zc->zc_zap);
1213 zc->zc_zap = NULL;
1214 }
1215 if (zc->zc_leaf) {
1216 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1217 zap_put_leaf(zc->zc_leaf);
1218 zc->zc_leaf = NULL;
1219 }
1220 zc->zc_objset = NULL;
1221 }
1222
1223 uint64_t
1224 zap_cursor_serialize(zap_cursor_t *zc)
1225 {
1226 if (zc->zc_hash == -1ULL)
1227 return (-1ULL);
1228 if (zc->zc_zap == NULL)
1229 return (zc->zc_serialized);
1230 ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0);
1231 ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap));
1232
1233 /*
1234 * We want to keep the high 32 bits of the cursor zero if we can, so
1235 * that 32-bit programs can access this. So usually use a small
1236 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits
1237 * of the cursor.
1238 *
1239 * [ collision differentiator | zap_hashbits()-bit hash value ]
1240 */
1241 return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) |
1242 ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap)));
1243 }
1244
1245 int
1246 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
1247 {
1248 int err;
1249 avl_index_t idx;
1250 mzap_ent_t mze_tofind;
1251 mzap_ent_t *mze;
1252
1253 if (zc->zc_hash == -1ULL)
1254 return (SET_ERROR(ENOENT));
1255
1256 if (zc->zc_zap == NULL) {
1257 int hb;
1258 err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1259 RW_READER, TRUE, FALSE, &zc->zc_zap);
1260 if (err)
1261 return (err);
1262
1263 /*
1264 * To support zap_cursor_init_serialized, advance, retrieve,
1265 * we must add to the existing zc_cd, which may already
1266 * be 1 due to the zap_cursor_advance.
1267 */
1268 ASSERT(zc->zc_hash == 0);
1269 hb = zap_hashbits(zc->zc_zap);
1270 zc->zc_hash = zc->zc_serialized << (64 - hb);
1271 zc->zc_cd += zc->zc_serialized >> hb;
1272 if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */
1273 zc->zc_cd = 0;
1274 } else {
1275 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1276 }
1277 if (!zc->zc_zap->zap_ismicro) {
1278 err = fzap_cursor_retrieve(zc->zc_zap, zc, za);
1279 } else {
1280 mze_tofind.mze_hash = zc->zc_hash;
1281 mze_tofind.mze_cd = zc->zc_cd;
1282
1283 mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx);
1284 if (mze == NULL) {
1285 mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl,
1286 idx, AVL_AFTER);
1287 }
1288 if (mze) {
1289 mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze);
1290 ASSERT3U(mze->mze_cd, ==, mzep->mze_cd);
1291 za->za_normalization_conflict =
1292 mzap_normalization_conflict(zc->zc_zap, NULL, mze);
1293 za->za_integer_length = 8;
1294 za->za_num_integers = 1;
1295 za->za_first_integer = mzep->mze_value;
1296 (void) strcpy(za->za_name, mzep->mze_name);
1297 zc->zc_hash = mze->mze_hash;
1298 zc->zc_cd = mze->mze_cd;
1299 err = 0;
1300 } else {
1301 zc->zc_hash = -1ULL;
1302 err = SET_ERROR(ENOENT);
1303 }
1304 }
1305 rw_exit(&zc->zc_zap->zap_rwlock);
1306 return (err);
1307 }
1308
1309 void
1310 zap_cursor_advance(zap_cursor_t *zc)
1311 {
1312 if (zc->zc_hash == -1ULL)
1313 return;
1314 zc->zc_cd++;
1315 }
1316
1317 int
1318 zap_cursor_move_to_key(zap_cursor_t *zc, const char *name, matchtype_t mt)
1319 {
1320 int err = 0;
1321 mzap_ent_t *mze;
1322 zap_name_t *zn;
1323
1324 if (zc->zc_zap == NULL) {
1325 err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1326 RW_READER, TRUE, FALSE, &zc->zc_zap);
1327 if (err)
1328 return (err);
1329 } else {
1330 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1331 }
1332
1333 zn = zap_name_alloc(zc->zc_zap, name, mt);
1334 if (zn == NULL) {
1335 rw_exit(&zc->zc_zap->zap_rwlock);
1336 return (SET_ERROR(ENOTSUP));
1337 }
1338
1339 if (!zc->zc_zap->zap_ismicro) {
1340 err = fzap_cursor_move_to_key(zc, zn);
1341 } else {
1342 mze = mze_find(zn);
1343 if (mze == NULL) {
1344 err = SET_ERROR(ENOENT);
1345 goto out;
1346 }
1347 zc->zc_hash = mze->mze_hash;
1348 zc->zc_cd = mze->mze_cd;
1349 }
1350
1351 out:
1352 zap_name_free(zn);
1353 rw_exit(&zc->zc_zap->zap_rwlock);
1354 return (err);
1355 }
1356
1357 int
1358 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
1359 {
1360 int err;
1361 zap_t *zap;
1362
1363 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
1364 if (err)
1365 return (err);
1366
1367 bzero(zs, sizeof (zap_stats_t));
1368
1369 if (zap->zap_ismicro) {
1370 zs->zs_blocksize = zap->zap_dbuf->db_size;
1371 zs->zs_num_entries = zap->zap_m.zap_num_entries;
1372 zs->zs_num_blocks = 1;
1373 } else {
1374 fzap_get_stats(zap, zs);
1375 }
1376 zap_unlockdir(zap);
1377 return (0);
1378 }
1379
1380 int
1381 zap_count_write(objset_t *os, uint64_t zapobj, const char *name, int add,
1382 uint64_t *towrite, uint64_t *tooverwrite)
1383 {
1384 zap_t *zap;
1385 int err = 0;
1386
1387
1388 /*
1389 * Since, we don't have a name, we cannot figure out which blocks will
1390 * be affected in this operation. So, account for the worst case :
1391 * - 3 blocks overwritten: target leaf, ptrtbl block, header block
1392 * - 4 new blocks written if adding:
1393 * - 2 blocks for possibly split leaves,
1394 * - 2 grown ptrtbl blocks
1395 *
1396 * This also accomodates the case where an add operation to a fairly
1397 * large microzap results in a promotion to fatzap.
1398 */
1399 if (name == NULL) {
1400 *towrite += (3 + (add ? 4 : 0)) * SPA_MAXBLOCKSIZE;
1401 return (err);
1402 }
1403
1404 /*
1405 * We lock the zap with adding == FALSE. Because, if we pass
1406 * the actual value of add, it could trigger a mzap_upgrade().
1407 * At present we are just evaluating the possibility of this operation
1408 * and hence we donot want to trigger an upgrade.
1409 */
1410 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
1411 if (err)
1412 return (err);
1413
1414 if (!zap->zap_ismicro) {
1415 zap_name_t *zn = zap_name_alloc(zap, name, MT_EXACT);
1416 if (zn) {
1417 err = fzap_count_write(zn, add, towrite,
1418 tooverwrite);
1419 zap_name_free(zn);
1420 } else {
1421 /*
1422 * We treat this case as similar to (name == NULL)
1423 */
1424 *towrite += (3 + (add ? 4 : 0)) * SPA_MAXBLOCKSIZE;
1425 }
1426 } else {
1427 /*
1428 * We are here if (name != NULL) and this is a micro-zap.
1429 * We account for the header block depending on whether it
1430 * is freeable.
1431 *
1432 * Incase of an add-operation it is hard to find out
1433 * if this add will promote this microzap to fatzap.
1434 * Hence, we consider the worst case and account for the
1435 * blocks assuming this microzap would be promoted to a
1436 * fatzap.
1437 *
1438 * 1 block overwritten : header block
1439 * 4 new blocks written : 2 new split leaf, 2 grown
1440 * ptrtbl blocks
1441 */
1442 if (dmu_buf_freeable(zap->zap_dbuf))
1443 *tooverwrite += SPA_MAXBLOCKSIZE;
1444 else
1445 *towrite += SPA_MAXBLOCKSIZE;
1446
1447 if (add) {
1448 *towrite += 4 * SPA_MAXBLOCKSIZE;
1449 }
1450 }
1451
1452 zap_unlockdir(zap);
1453 return (err);
1454 }
1455
1456 #if defined(_KERNEL) && defined(HAVE_SPL)
1457 EXPORT_SYMBOL(zap_create);
1458 EXPORT_SYMBOL(zap_create_norm);
1459 EXPORT_SYMBOL(zap_create_flags);
1460 EXPORT_SYMBOL(zap_create_claim);
1461 EXPORT_SYMBOL(zap_create_claim_norm);
1462 EXPORT_SYMBOL(zap_destroy);
1463 EXPORT_SYMBOL(zap_lookup);
1464 EXPORT_SYMBOL(zap_lookup_norm);
1465 EXPORT_SYMBOL(zap_lookup_uint64);
1466 EXPORT_SYMBOL(zap_contains);
1467 EXPORT_SYMBOL(zap_prefetch_uint64);
1468 EXPORT_SYMBOL(zap_count_write);
1469 EXPORT_SYMBOL(zap_add);
1470 EXPORT_SYMBOL(zap_add_uint64);
1471 EXPORT_SYMBOL(zap_update);
1472 EXPORT_SYMBOL(zap_update_uint64);
1473 EXPORT_SYMBOL(zap_length);
1474 EXPORT_SYMBOL(zap_length_uint64);
1475 EXPORT_SYMBOL(zap_remove);
1476 EXPORT_SYMBOL(zap_remove_norm);
1477 EXPORT_SYMBOL(zap_remove_uint64);
1478 EXPORT_SYMBOL(zap_count);
1479 EXPORT_SYMBOL(zap_value_search);
1480 EXPORT_SYMBOL(zap_join);
1481 EXPORT_SYMBOL(zap_join_increment);
1482 EXPORT_SYMBOL(zap_add_int);
1483 EXPORT_SYMBOL(zap_remove_int);
1484 EXPORT_SYMBOL(zap_lookup_int);
1485 EXPORT_SYMBOL(zap_increment_int);
1486 EXPORT_SYMBOL(zap_add_int_key);
1487 EXPORT_SYMBOL(zap_lookup_int_key);
1488 EXPORT_SYMBOL(zap_increment);
1489 EXPORT_SYMBOL(zap_cursor_init);
1490 EXPORT_SYMBOL(zap_cursor_fini);
1491 EXPORT_SYMBOL(zap_cursor_retrieve);
1492 EXPORT_SYMBOL(zap_cursor_advance);
1493 EXPORT_SYMBOL(zap_cursor_serialize);
1494 EXPORT_SYMBOL(zap_cursor_move_to_key);
1495 EXPORT_SYMBOL(zap_cursor_init_serialized);
1496 EXPORT_SYMBOL(zap_get_stats);
1497 #endif