]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zfs_ctldir.c
Fix typos in module/zfs/
[mirror_zfs.git] / module / zfs / zfs_ctldir.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 *
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (C) 2011 Lawrence Livermore National Security, LLC.
25 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
26 * LLNL-CODE-403049.
27 * Rewritten for Linux by:
28 * Rohan Puri <rohan.puri15@gmail.com>
29 * Brian Behlendorf <behlendorf1@llnl.gov>
30 * Copyright (c) 2013 by Delphix. All rights reserved.
31 * Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved.
32 * Copyright (c) 2018 George Melikov. All Rights Reserved.
33 * Copyright (c) 2019 Datto, Inc. All rights reserved.
34 */
35
36 /*
37 * ZFS control directory (a.k.a. ".zfs")
38 *
39 * This directory provides a common location for all ZFS meta-objects.
40 * Currently, this is only the 'snapshot' and 'shares' directory, but this may
41 * expand in the future. The elements are built dynamically, as the hierarchy
42 * does not actually exist on disk.
43 *
44 * For 'snapshot', we don't want to have all snapshots always mounted, because
45 * this would take up a huge amount of space in /etc/mnttab. We have three
46 * types of objects:
47 *
48 * ctldir ------> snapshotdir -------> snapshot
49 * |
50 * |
51 * V
52 * mounted fs
53 *
54 * The 'snapshot' node contains just enough information to lookup '..' and act
55 * as a mountpoint for the snapshot. Whenever we lookup a specific snapshot, we
56 * perform an automount of the underlying filesystem and return the
57 * corresponding inode.
58 *
59 * All mounts are handled automatically by an user mode helper which invokes
60 * the mount procedure. Unmounts are handled by allowing the mount
61 * point to expire so the kernel may automatically unmount it.
62 *
63 * The '.zfs', '.zfs/snapshot', and all directories created under
64 * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') all share the same
65 * zfsvfs_t as the head filesystem (what '.zfs' lives under).
66 *
67 * File systems mounted on top of the '.zfs/snapshot/<snapname>' paths
68 * (ie: snapshots) are complete ZFS filesystems and have their own unique
69 * zfsvfs_t. However, the fsid reported by these mounts will be the same
70 * as that used by the parent zfsvfs_t to make NFS happy.
71 */
72
73 #include <sys/types.h>
74 #include <sys/param.h>
75 #include <sys/time.h>
76 #include <sys/sysmacros.h>
77 #include <sys/pathname.h>
78 #include <sys/vfs.h>
79 #include <sys/zfs_ctldir.h>
80 #include <sys/zfs_ioctl.h>
81 #include <sys/zfs_vfsops.h>
82 #include <sys/zfs_vnops.h>
83 #include <sys/stat.h>
84 #include <sys/dmu.h>
85 #include <sys/dmu_objset.h>
86 #include <sys/dsl_destroy.h>
87 #include <sys/dsl_deleg.h>
88 #include <sys/zpl.h>
89 #include <sys/mntent.h>
90 #include "zfs_namecheck.h"
91
92 /*
93 * Two AVL trees are maintained which contain all currently automounted
94 * snapshots. Every automounted snapshots maps to a single zfs_snapentry_t
95 * entry which MUST:
96 *
97 * - be attached to both trees, and
98 * - be unique, no duplicate entries are allowed.
99 *
100 * The zfs_snapshots_by_name tree is indexed by the full dataset name
101 * while the zfs_snapshots_by_objsetid tree is indexed by the unique
102 * objsetid. This allows for fast lookups either by name or objsetid.
103 */
104 static avl_tree_t zfs_snapshots_by_name;
105 static avl_tree_t zfs_snapshots_by_objsetid;
106 static krwlock_t zfs_snapshot_lock;
107
108 /*
109 * Control Directory Tunables (.zfs)
110 */
111 int zfs_expire_snapshot = ZFSCTL_EXPIRE_SNAPSHOT;
112 int zfs_admin_snapshot = 0;
113
114 typedef struct {
115 char *se_name; /* full snapshot name */
116 char *se_path; /* full mount path */
117 spa_t *se_spa; /* pool spa */
118 uint64_t se_objsetid; /* snapshot objset id */
119 struct dentry *se_root_dentry; /* snapshot root dentry */
120 taskqid_t se_taskqid; /* scheduled unmount taskqid */
121 avl_node_t se_node_name; /* zfs_snapshots_by_name link */
122 avl_node_t se_node_objsetid; /* zfs_snapshots_by_objsetid link */
123 zfs_refcount_t se_refcount; /* reference count */
124 } zfs_snapentry_t;
125
126 static void zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay);
127
128 /*
129 * Allocate a new zfs_snapentry_t being careful to make a copy of the
130 * the snapshot name and provided mount point. No reference is taken.
131 */
132 static zfs_snapentry_t *
133 zfsctl_snapshot_alloc(char *full_name, char *full_path, spa_t *spa,
134 uint64_t objsetid, struct dentry *root_dentry)
135 {
136 zfs_snapentry_t *se;
137
138 se = kmem_zalloc(sizeof (zfs_snapentry_t), KM_SLEEP);
139
140 se->se_name = strdup(full_name);
141 se->se_path = strdup(full_path);
142 se->se_spa = spa;
143 se->se_objsetid = objsetid;
144 se->se_root_dentry = root_dentry;
145 se->se_taskqid = TASKQID_INVALID;
146
147 zfs_refcount_create(&se->se_refcount);
148
149 return (se);
150 }
151
152 /*
153 * Free a zfs_snapentry_t the caller must ensure there are no active
154 * references.
155 */
156 static void
157 zfsctl_snapshot_free(zfs_snapentry_t *se)
158 {
159 zfs_refcount_destroy(&se->se_refcount);
160 strfree(se->se_name);
161 strfree(se->se_path);
162
163 kmem_free(se, sizeof (zfs_snapentry_t));
164 }
165
166 /*
167 * Hold a reference on the zfs_snapentry_t.
168 */
169 static void
170 zfsctl_snapshot_hold(zfs_snapentry_t *se)
171 {
172 zfs_refcount_add(&se->se_refcount, NULL);
173 }
174
175 /*
176 * Release a reference on the zfs_snapentry_t. When the number of
177 * references drops to zero the structure will be freed.
178 */
179 static void
180 zfsctl_snapshot_rele(zfs_snapentry_t *se)
181 {
182 if (zfs_refcount_remove(&se->se_refcount, NULL) == 0)
183 zfsctl_snapshot_free(se);
184 }
185
186 /*
187 * Add a zfs_snapentry_t to both the zfs_snapshots_by_name and
188 * zfs_snapshots_by_objsetid trees. While the zfs_snapentry_t is part
189 * of the trees a reference is held.
190 */
191 static void
192 zfsctl_snapshot_add(zfs_snapentry_t *se)
193 {
194 ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
195 zfsctl_snapshot_hold(se);
196 avl_add(&zfs_snapshots_by_name, se);
197 avl_add(&zfs_snapshots_by_objsetid, se);
198 }
199
200 /*
201 * Remove a zfs_snapentry_t from both the zfs_snapshots_by_name and
202 * zfs_snapshots_by_objsetid trees. Upon removal a reference is dropped,
203 * this can result in the structure being freed if that was the last
204 * remaining reference.
205 */
206 static void
207 zfsctl_snapshot_remove(zfs_snapentry_t *se)
208 {
209 ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
210 avl_remove(&zfs_snapshots_by_name, se);
211 avl_remove(&zfs_snapshots_by_objsetid, se);
212 zfsctl_snapshot_rele(se);
213 }
214
215 /*
216 * Snapshot name comparison function for the zfs_snapshots_by_name.
217 */
218 static int
219 snapentry_compare_by_name(const void *a, const void *b)
220 {
221 const zfs_snapentry_t *se_a = a;
222 const zfs_snapentry_t *se_b = b;
223 int ret;
224
225 ret = strcmp(se_a->se_name, se_b->se_name);
226
227 if (ret < 0)
228 return (-1);
229 else if (ret > 0)
230 return (1);
231 else
232 return (0);
233 }
234
235 /*
236 * Snapshot name comparison function for the zfs_snapshots_by_objsetid.
237 */
238 static int
239 snapentry_compare_by_objsetid(const void *a, const void *b)
240 {
241 const zfs_snapentry_t *se_a = a;
242 const zfs_snapentry_t *se_b = b;
243
244 if (se_a->se_spa != se_b->se_spa)
245 return ((ulong_t)se_a->se_spa < (ulong_t)se_b->se_spa ? -1 : 1);
246
247 if (se_a->se_objsetid < se_b->se_objsetid)
248 return (-1);
249 else if (se_a->se_objsetid > se_b->se_objsetid)
250 return (1);
251 else
252 return (0);
253 }
254
255 /*
256 * Find a zfs_snapentry_t in zfs_snapshots_by_name. If the snapname
257 * is found a pointer to the zfs_snapentry_t is returned and a reference
258 * taken on the structure. The caller is responsible for dropping the
259 * reference with zfsctl_snapshot_rele(). If the snapname is not found
260 * NULL will be returned.
261 */
262 static zfs_snapentry_t *
263 zfsctl_snapshot_find_by_name(char *snapname)
264 {
265 zfs_snapentry_t *se, search;
266
267 ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
268
269 search.se_name = snapname;
270 se = avl_find(&zfs_snapshots_by_name, &search, NULL);
271 if (se)
272 zfsctl_snapshot_hold(se);
273
274 return (se);
275 }
276
277 /*
278 * Find a zfs_snapentry_t in zfs_snapshots_by_objsetid given the objset id
279 * rather than the snapname. In all other respects it behaves the same
280 * as zfsctl_snapshot_find_by_name().
281 */
282 static zfs_snapentry_t *
283 zfsctl_snapshot_find_by_objsetid(spa_t *spa, uint64_t objsetid)
284 {
285 zfs_snapentry_t *se, search;
286
287 ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
288
289 search.se_spa = spa;
290 search.se_objsetid = objsetid;
291 se = avl_find(&zfs_snapshots_by_objsetid, &search, NULL);
292 if (se)
293 zfsctl_snapshot_hold(se);
294
295 return (se);
296 }
297
298 /*
299 * Rename a zfs_snapentry_t in the zfs_snapshots_by_name. The structure is
300 * removed, renamed, and added back to the new correct location in the tree.
301 */
302 static int
303 zfsctl_snapshot_rename(char *old_snapname, char *new_snapname)
304 {
305 zfs_snapentry_t *se;
306
307 ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
308
309 se = zfsctl_snapshot_find_by_name(old_snapname);
310 if (se == NULL)
311 return (SET_ERROR(ENOENT));
312
313 zfsctl_snapshot_remove(se);
314 strfree(se->se_name);
315 se->se_name = strdup(new_snapname);
316 zfsctl_snapshot_add(se);
317 zfsctl_snapshot_rele(se);
318
319 return (0);
320 }
321
322 /*
323 * Delayed task responsible for unmounting an expired automounted snapshot.
324 */
325 static void
326 snapentry_expire(void *data)
327 {
328 zfs_snapentry_t *se = (zfs_snapentry_t *)data;
329 spa_t *spa = se->se_spa;
330 uint64_t objsetid = se->se_objsetid;
331
332 if (zfs_expire_snapshot <= 0) {
333 zfsctl_snapshot_rele(se);
334 return;
335 }
336
337 se->se_taskqid = TASKQID_INVALID;
338 (void) zfsctl_snapshot_unmount(se->se_name, MNT_EXPIRE);
339 zfsctl_snapshot_rele(se);
340
341 /*
342 * Reschedule the unmount if the zfs_snapentry_t wasn't removed.
343 * This can occur when the snapshot is busy.
344 */
345 rw_enter(&zfs_snapshot_lock, RW_READER);
346 if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
347 zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot);
348 zfsctl_snapshot_rele(se);
349 }
350 rw_exit(&zfs_snapshot_lock);
351 }
352
353 /*
354 * Cancel an automatic unmount of a snapname. This callback is responsible
355 * for dropping the reference on the zfs_snapentry_t which was taken when
356 * during dispatch.
357 */
358 static void
359 zfsctl_snapshot_unmount_cancel(zfs_snapentry_t *se)
360 {
361 if (taskq_cancel_id(system_delay_taskq, se->se_taskqid) == 0) {
362 se->se_taskqid = TASKQID_INVALID;
363 zfsctl_snapshot_rele(se);
364 }
365 }
366
367 /*
368 * Dispatch the unmount task for delayed handling with a hold protecting it.
369 */
370 static void
371 zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay)
372 {
373 ASSERT3S(se->se_taskqid, ==, TASKQID_INVALID);
374
375 if (delay <= 0)
376 return;
377
378 zfsctl_snapshot_hold(se);
379 se->se_taskqid = taskq_dispatch_delay(system_delay_taskq,
380 snapentry_expire, se, TQ_SLEEP, ddi_get_lbolt() + delay * HZ);
381 }
382
383 /*
384 * Schedule an automatic unmount of objset id to occur in delay seconds from
385 * now. Any previous delayed unmount will be cancelled in favor of the
386 * updated deadline. A reference is taken by zfsctl_snapshot_find_by_name()
387 * and held until the outstanding task is handled or cancelled.
388 */
389 int
390 zfsctl_snapshot_unmount_delay(spa_t *spa, uint64_t objsetid, int delay)
391 {
392 zfs_snapentry_t *se;
393 int error = ENOENT;
394
395 rw_enter(&zfs_snapshot_lock, RW_READER);
396 if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
397 zfsctl_snapshot_unmount_cancel(se);
398 zfsctl_snapshot_unmount_delay_impl(se, delay);
399 zfsctl_snapshot_rele(se);
400 error = 0;
401 }
402 rw_exit(&zfs_snapshot_lock);
403
404 return (error);
405 }
406
407 /*
408 * Check if snapname is currently mounted. Returned non-zero when mounted
409 * and zero when unmounted.
410 */
411 static boolean_t
412 zfsctl_snapshot_ismounted(char *snapname)
413 {
414 zfs_snapentry_t *se;
415 boolean_t ismounted = B_FALSE;
416
417 rw_enter(&zfs_snapshot_lock, RW_READER);
418 if ((se = zfsctl_snapshot_find_by_name(snapname)) != NULL) {
419 zfsctl_snapshot_rele(se);
420 ismounted = B_TRUE;
421 }
422 rw_exit(&zfs_snapshot_lock);
423
424 return (ismounted);
425 }
426
427 /*
428 * Check if the given inode is a part of the virtual .zfs directory.
429 */
430 boolean_t
431 zfsctl_is_node(struct inode *ip)
432 {
433 return (ITOZ(ip)->z_is_ctldir);
434 }
435
436 /*
437 * Check if the given inode is a .zfs/snapshots/snapname directory.
438 */
439 boolean_t
440 zfsctl_is_snapdir(struct inode *ip)
441 {
442 return (zfsctl_is_node(ip) && (ip->i_ino <= ZFSCTL_INO_SNAPDIRS));
443 }
444
445 /*
446 * Allocate a new inode with the passed id and ops.
447 */
448 static struct inode *
449 zfsctl_inode_alloc(zfsvfs_t *zfsvfs, uint64_t id,
450 const struct file_operations *fops, const struct inode_operations *ops)
451 {
452 inode_timespec_t now;
453 struct inode *ip;
454 znode_t *zp;
455
456 ip = new_inode(zfsvfs->z_sb);
457 if (ip == NULL)
458 return (NULL);
459
460 now = current_time(ip);
461 zp = ITOZ(ip);
462 ASSERT3P(zp->z_dirlocks, ==, NULL);
463 ASSERT3P(zp->z_acl_cached, ==, NULL);
464 ASSERT3P(zp->z_xattr_cached, ==, NULL);
465 zp->z_id = id;
466 zp->z_unlinked = B_FALSE;
467 zp->z_atime_dirty = B_FALSE;
468 zp->z_zn_prefetch = B_FALSE;
469 zp->z_moved = B_FALSE;
470 zp->z_is_sa = B_FALSE;
471 zp->z_is_mapped = B_FALSE;
472 zp->z_is_ctldir = B_TRUE;
473 zp->z_is_stale = B_FALSE;
474 zp->z_sa_hdl = NULL;
475 zp->z_blksz = 0;
476 zp->z_seq = 0;
477 zp->z_mapcnt = 0;
478 zp->z_size = 0;
479 zp->z_pflags = 0;
480 zp->z_mode = 0;
481 zp->z_sync_cnt = 0;
482 ip->i_generation = 0;
483 ip->i_ino = id;
484 ip->i_mode = (S_IFDIR | S_IRWXUGO);
485 ip->i_uid = SUID_TO_KUID(0);
486 ip->i_gid = SGID_TO_KGID(0);
487 ip->i_blkbits = SPA_MINBLOCKSHIFT;
488 ip->i_atime = now;
489 ip->i_mtime = now;
490 ip->i_ctime = now;
491 ip->i_fop = fops;
492 ip->i_op = ops;
493 #if defined(IOP_XATTR)
494 ip->i_opflags &= ~IOP_XATTR;
495 #endif
496
497 if (insert_inode_locked(ip)) {
498 unlock_new_inode(ip);
499 iput(ip);
500 return (NULL);
501 }
502
503 mutex_enter(&zfsvfs->z_znodes_lock);
504 list_insert_tail(&zfsvfs->z_all_znodes, zp);
505 zfsvfs->z_nr_znodes++;
506 membar_producer();
507 mutex_exit(&zfsvfs->z_znodes_lock);
508
509 unlock_new_inode(ip);
510
511 return (ip);
512 }
513
514 /*
515 * Lookup the inode with given id, it will be allocated if needed.
516 */
517 static struct inode *
518 zfsctl_inode_lookup(zfsvfs_t *zfsvfs, uint64_t id,
519 const struct file_operations *fops, const struct inode_operations *ops)
520 {
521 struct inode *ip = NULL;
522
523 while (ip == NULL) {
524 ip = ilookup(zfsvfs->z_sb, (unsigned long)id);
525 if (ip)
526 break;
527
528 /* May fail due to concurrent zfsctl_inode_alloc() */
529 ip = zfsctl_inode_alloc(zfsvfs, id, fops, ops);
530 }
531
532 return (ip);
533 }
534
535 /*
536 * Create the '.zfs' directory. This directory is cached as part of the VFS
537 * structure. This results in a hold on the zfsvfs_t. The code in zfs_umount()
538 * therefore checks against a vfs_count of 2 instead of 1. This reference
539 * is removed when the ctldir is destroyed in the unmount. All other entities
540 * under the '.zfs' directory are created dynamically as needed.
541 *
542 * Because the dynamically created '.zfs' directory entries assume the use
543 * of 64-bit inode numbers this support must be disabled on 32-bit systems.
544 */
545 int
546 zfsctl_create(zfsvfs_t *zfsvfs)
547 {
548 ASSERT(zfsvfs->z_ctldir == NULL);
549
550 zfsvfs->z_ctldir = zfsctl_inode_alloc(zfsvfs, ZFSCTL_INO_ROOT,
551 &zpl_fops_root, &zpl_ops_root);
552 if (zfsvfs->z_ctldir == NULL)
553 return (SET_ERROR(ENOENT));
554
555 return (0);
556 }
557
558 /*
559 * Destroy the '.zfs' directory or remove a snapshot from zfs_snapshots_by_name.
560 * Only called when the filesystem is unmounted.
561 */
562 void
563 zfsctl_destroy(zfsvfs_t *zfsvfs)
564 {
565 if (zfsvfs->z_issnap) {
566 zfs_snapentry_t *se;
567 spa_t *spa = zfsvfs->z_os->os_spa;
568 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os);
569
570 rw_enter(&zfs_snapshot_lock, RW_WRITER);
571 se = zfsctl_snapshot_find_by_objsetid(spa, objsetid);
572 if (se != NULL)
573 zfsctl_snapshot_remove(se);
574 rw_exit(&zfs_snapshot_lock);
575 if (se != NULL) {
576 zfsctl_snapshot_unmount_cancel(se);
577 zfsctl_snapshot_rele(se);
578 }
579 } else if (zfsvfs->z_ctldir) {
580 iput(zfsvfs->z_ctldir);
581 zfsvfs->z_ctldir = NULL;
582 }
583 }
584
585 /*
586 * Given a root znode, retrieve the associated .zfs directory.
587 * Add a hold to the vnode and return it.
588 */
589 struct inode *
590 zfsctl_root(znode_t *zp)
591 {
592 ASSERT(zfs_has_ctldir(zp));
593 igrab(ZTOZSB(zp)->z_ctldir);
594 return (ZTOZSB(zp)->z_ctldir);
595 }
596
597 /*
598 * Generate a long fid to indicate a snapdir. We encode whether snapdir is
599 * already mounted in gen field. We do this because nfsd lookup will not
600 * trigger automount. Next time the nfsd does fh_to_dentry, we will notice
601 * this and do automount and return ESTALE to force nfsd revalidate and follow
602 * mount.
603 */
604 static int
605 zfsctl_snapdir_fid(struct inode *ip, fid_t *fidp)
606 {
607 zfid_short_t *zfid = (zfid_short_t *)fidp;
608 zfid_long_t *zlfid = (zfid_long_t *)fidp;
609 uint32_t gen = 0;
610 uint64_t object;
611 uint64_t objsetid;
612 int i;
613 struct dentry *dentry;
614
615 if (fidp->fid_len < LONG_FID_LEN) {
616 fidp->fid_len = LONG_FID_LEN;
617 return (SET_ERROR(ENOSPC));
618 }
619
620 object = ip->i_ino;
621 objsetid = ZFSCTL_INO_SNAPDIRS - ip->i_ino;
622 zfid->zf_len = LONG_FID_LEN;
623
624 dentry = d_obtain_alias(igrab(ip));
625 if (!IS_ERR(dentry)) {
626 gen = !!d_mountpoint(dentry);
627 dput(dentry);
628 }
629
630 for (i = 0; i < sizeof (zfid->zf_object); i++)
631 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
632
633 for (i = 0; i < sizeof (zfid->zf_gen); i++)
634 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
635
636 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
637 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
638
639 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
640 zlfid->zf_setgen[i] = 0;
641
642 return (0);
643 }
644
645 /*
646 * Generate an appropriate fid for an entry in the .zfs directory.
647 */
648 int
649 zfsctl_fid(struct inode *ip, fid_t *fidp)
650 {
651 znode_t *zp = ITOZ(ip);
652 zfsvfs_t *zfsvfs = ITOZSB(ip);
653 uint64_t object = zp->z_id;
654 zfid_short_t *zfid;
655 int i;
656
657 ZFS_ENTER(zfsvfs);
658
659 if (zfsctl_is_snapdir(ip)) {
660 ZFS_EXIT(zfsvfs);
661 return (zfsctl_snapdir_fid(ip, fidp));
662 }
663
664 if (fidp->fid_len < SHORT_FID_LEN) {
665 fidp->fid_len = SHORT_FID_LEN;
666 ZFS_EXIT(zfsvfs);
667 return (SET_ERROR(ENOSPC));
668 }
669
670 zfid = (zfid_short_t *)fidp;
671
672 zfid->zf_len = SHORT_FID_LEN;
673
674 for (i = 0; i < sizeof (zfid->zf_object); i++)
675 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
676
677 /* .zfs znodes always have a generation number of 0 */
678 for (i = 0; i < sizeof (zfid->zf_gen); i++)
679 zfid->zf_gen[i] = 0;
680
681 ZFS_EXIT(zfsvfs);
682 return (0);
683 }
684
685 /*
686 * Construct a full dataset name in full_name: "pool/dataset@snap_name"
687 */
688 static int
689 zfsctl_snapshot_name(zfsvfs_t *zfsvfs, const char *snap_name, int len,
690 char *full_name)
691 {
692 objset_t *os = zfsvfs->z_os;
693
694 if (zfs_component_namecheck(snap_name, NULL, NULL) != 0)
695 return (SET_ERROR(EILSEQ));
696
697 dmu_objset_name(os, full_name);
698 if ((strlen(full_name) + 1 + strlen(snap_name)) >= len)
699 return (SET_ERROR(ENAMETOOLONG));
700
701 (void) strcat(full_name, "@");
702 (void) strcat(full_name, snap_name);
703
704 return (0);
705 }
706
707 /*
708 * Returns full path in full_path: "/pool/dataset/.zfs/snapshot/snap_name/"
709 */
710 static int
711 zfsctl_snapshot_path_objset(zfsvfs_t *zfsvfs, uint64_t objsetid,
712 int path_len, char *full_path)
713 {
714 objset_t *os = zfsvfs->z_os;
715 fstrans_cookie_t cookie;
716 char *snapname;
717 boolean_t case_conflict;
718 uint64_t id, pos = 0;
719 int error = 0;
720
721 if (zfsvfs->z_vfs->vfs_mntpoint == NULL)
722 return (SET_ERROR(ENOENT));
723
724 cookie = spl_fstrans_mark();
725 snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
726
727 while (error == 0) {
728 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
729 error = dmu_snapshot_list_next(zfsvfs->z_os,
730 ZFS_MAX_DATASET_NAME_LEN, snapname, &id, &pos,
731 &case_conflict);
732 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
733 if (error)
734 goto out;
735
736 if (id == objsetid)
737 break;
738 }
739
740 snprintf(full_path, path_len, "%s/.zfs/snapshot/%s",
741 zfsvfs->z_vfs->vfs_mntpoint, snapname);
742 out:
743 kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN);
744 spl_fstrans_unmark(cookie);
745
746 return (error);
747 }
748
749 /*
750 * Special case the handling of "..".
751 */
752 int
753 zfsctl_root_lookup(struct inode *dip, char *name, struct inode **ipp,
754 int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
755 {
756 zfsvfs_t *zfsvfs = ITOZSB(dip);
757 int error = 0;
758
759 ZFS_ENTER(zfsvfs);
760
761 if (strcmp(name, "..") == 0) {
762 *ipp = dip->i_sb->s_root->d_inode;
763 } else if (strcmp(name, ZFS_SNAPDIR_NAME) == 0) {
764 *ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SNAPDIR,
765 &zpl_fops_snapdir, &zpl_ops_snapdir);
766 } else if (strcmp(name, ZFS_SHAREDIR_NAME) == 0) {
767 *ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SHARES,
768 &zpl_fops_shares, &zpl_ops_shares);
769 } else {
770 *ipp = NULL;
771 }
772
773 if (*ipp == NULL)
774 error = SET_ERROR(ENOENT);
775
776 ZFS_EXIT(zfsvfs);
777
778 return (error);
779 }
780
781 /*
782 * Lookup entry point for the 'snapshot' directory. Try to open the
783 * snapshot if it exist, creating the pseudo filesystem inode as necessary.
784 */
785 int
786 zfsctl_snapdir_lookup(struct inode *dip, char *name, struct inode **ipp,
787 int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
788 {
789 zfsvfs_t *zfsvfs = ITOZSB(dip);
790 uint64_t id;
791 int error;
792
793 ZFS_ENTER(zfsvfs);
794
795 error = dmu_snapshot_lookup(zfsvfs->z_os, name, &id);
796 if (error) {
797 ZFS_EXIT(zfsvfs);
798 return (error);
799 }
800
801 *ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SNAPDIRS - id,
802 &simple_dir_operations, &simple_dir_inode_operations);
803 if (*ipp == NULL)
804 error = SET_ERROR(ENOENT);
805
806 ZFS_EXIT(zfsvfs);
807
808 return (error);
809 }
810
811 /*
812 * Renaming a directory under '.zfs/snapshot' will automatically trigger
813 * a rename of the snapshot to the new given name. The rename is confined
814 * to the '.zfs/snapshot' directory snapshots cannot be moved elsewhere.
815 */
816 int
817 zfsctl_snapdir_rename(struct inode *sdip, char *snm,
818 struct inode *tdip, char *tnm, cred_t *cr, int flags)
819 {
820 zfsvfs_t *zfsvfs = ITOZSB(sdip);
821 char *to, *from, *real, *fsname;
822 int error;
823
824 if (!zfs_admin_snapshot)
825 return (SET_ERROR(EACCES));
826
827 ZFS_ENTER(zfsvfs);
828
829 to = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
830 from = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
831 real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
832 fsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
833
834 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
835 error = dmu_snapshot_realname(zfsvfs->z_os, snm, real,
836 ZFS_MAX_DATASET_NAME_LEN, NULL);
837 if (error == 0) {
838 snm = real;
839 } else if (error != ENOTSUP) {
840 goto out;
841 }
842 }
843
844 dmu_objset_name(zfsvfs->z_os, fsname);
845
846 error = zfsctl_snapshot_name(ITOZSB(sdip), snm,
847 ZFS_MAX_DATASET_NAME_LEN, from);
848 if (error == 0)
849 error = zfsctl_snapshot_name(ITOZSB(tdip), tnm,
850 ZFS_MAX_DATASET_NAME_LEN, to);
851 if (error == 0)
852 error = zfs_secpolicy_rename_perms(from, to, cr);
853 if (error != 0)
854 goto out;
855
856 /*
857 * Cannot move snapshots out of the snapdir.
858 */
859 if (sdip != tdip) {
860 error = SET_ERROR(EINVAL);
861 goto out;
862 }
863
864 /*
865 * No-op when names are identical.
866 */
867 if (strcmp(snm, tnm) == 0) {
868 error = 0;
869 goto out;
870 }
871
872 rw_enter(&zfs_snapshot_lock, RW_WRITER);
873
874 error = dsl_dataset_rename_snapshot(fsname, snm, tnm, B_FALSE);
875 if (error == 0)
876 (void) zfsctl_snapshot_rename(snm, tnm);
877
878 rw_exit(&zfs_snapshot_lock);
879 out:
880 kmem_free(from, ZFS_MAX_DATASET_NAME_LEN);
881 kmem_free(to, ZFS_MAX_DATASET_NAME_LEN);
882 kmem_free(real, ZFS_MAX_DATASET_NAME_LEN);
883 kmem_free(fsname, ZFS_MAX_DATASET_NAME_LEN);
884
885 ZFS_EXIT(zfsvfs);
886
887 return (error);
888 }
889
890 /*
891 * Removing a directory under '.zfs/snapshot' will automatically trigger
892 * the removal of the snapshot with the given name.
893 */
894 int
895 zfsctl_snapdir_remove(struct inode *dip, char *name, cred_t *cr, int flags)
896 {
897 zfsvfs_t *zfsvfs = ITOZSB(dip);
898 char *snapname, *real;
899 int error;
900
901 if (!zfs_admin_snapshot)
902 return (SET_ERROR(EACCES));
903
904 ZFS_ENTER(zfsvfs);
905
906 snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
907 real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
908
909 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
910 error = dmu_snapshot_realname(zfsvfs->z_os, name, real,
911 ZFS_MAX_DATASET_NAME_LEN, NULL);
912 if (error == 0) {
913 name = real;
914 } else if (error != ENOTSUP) {
915 goto out;
916 }
917 }
918
919 error = zfsctl_snapshot_name(ITOZSB(dip), name,
920 ZFS_MAX_DATASET_NAME_LEN, snapname);
921 if (error == 0)
922 error = zfs_secpolicy_destroy_perms(snapname, cr);
923 if (error != 0)
924 goto out;
925
926 error = zfsctl_snapshot_unmount(snapname, MNT_FORCE);
927 if ((error == 0) || (error == ENOENT))
928 error = dsl_destroy_snapshot(snapname, B_FALSE);
929 out:
930 kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN);
931 kmem_free(real, ZFS_MAX_DATASET_NAME_LEN);
932
933 ZFS_EXIT(zfsvfs);
934
935 return (error);
936 }
937
938 /*
939 * Creating a directory under '.zfs/snapshot' will automatically trigger
940 * the creation of a new snapshot with the given name.
941 */
942 int
943 zfsctl_snapdir_mkdir(struct inode *dip, char *dirname, vattr_t *vap,
944 struct inode **ipp, cred_t *cr, int flags)
945 {
946 zfsvfs_t *zfsvfs = ITOZSB(dip);
947 char *dsname;
948 int error;
949
950 if (!zfs_admin_snapshot)
951 return (SET_ERROR(EACCES));
952
953 dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
954
955 if (zfs_component_namecheck(dirname, NULL, NULL) != 0) {
956 error = SET_ERROR(EILSEQ);
957 goto out;
958 }
959
960 dmu_objset_name(zfsvfs->z_os, dsname);
961
962 error = zfs_secpolicy_snapshot_perms(dsname, cr);
963 if (error != 0)
964 goto out;
965
966 if (error == 0) {
967 error = dmu_objset_snapshot_one(dsname, dirname);
968 if (error != 0)
969 goto out;
970
971 error = zfsctl_snapdir_lookup(dip, dirname, ipp,
972 0, cr, NULL, NULL);
973 }
974 out:
975 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
976
977 return (error);
978 }
979
980 /*
981 * Attempt to unmount a snapshot by making a call to user space.
982 * There is no assurance that this can or will succeed, is just a
983 * best effort. In the case where it does fail, perhaps because
984 * it's in use, the unmount will fail harmlessly.
985 */
986 int
987 zfsctl_snapshot_unmount(char *snapname, int flags)
988 {
989 char *argv[] = { "/usr/bin/env", "umount", "-t", "zfs", "-n", NULL,
990 NULL };
991 char *envp[] = { NULL };
992 zfs_snapentry_t *se;
993 int error;
994
995 rw_enter(&zfs_snapshot_lock, RW_READER);
996 if ((se = zfsctl_snapshot_find_by_name(snapname)) == NULL) {
997 rw_exit(&zfs_snapshot_lock);
998 return (SET_ERROR(ENOENT));
999 }
1000 rw_exit(&zfs_snapshot_lock);
1001
1002 if (flags & MNT_FORCE)
1003 argv[4] = "-fn";
1004 argv[5] = se->se_path;
1005 dprintf("unmount; path=%s\n", se->se_path);
1006 error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
1007 zfsctl_snapshot_rele(se);
1008
1009
1010 /*
1011 * The umount system utility will return 256 on error. We must
1012 * assume this error is because the file system is busy so it is
1013 * converted to the more sensible EBUSY.
1014 */
1015 if (error)
1016 error = SET_ERROR(EBUSY);
1017
1018 return (error);
1019 }
1020
1021 int
1022 zfsctl_snapshot_mount(struct path *path, int flags)
1023 {
1024 struct dentry *dentry = path->dentry;
1025 struct inode *ip = dentry->d_inode;
1026 zfsvfs_t *zfsvfs;
1027 zfsvfs_t *snap_zfsvfs;
1028 zfs_snapentry_t *se;
1029 char *full_name, *full_path;
1030 char *argv[] = { "/usr/bin/env", "mount", "-t", "zfs", "-n", NULL, NULL,
1031 NULL };
1032 char *envp[] = { NULL };
1033 int error;
1034 struct path spath;
1035
1036 if (ip == NULL)
1037 return (SET_ERROR(EISDIR));
1038
1039 zfsvfs = ITOZSB(ip);
1040 ZFS_ENTER(zfsvfs);
1041
1042 full_name = kmem_zalloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
1043 full_path = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1044
1045 error = zfsctl_snapshot_name(zfsvfs, dname(dentry),
1046 ZFS_MAX_DATASET_NAME_LEN, full_name);
1047 if (error)
1048 goto error;
1049
1050 /*
1051 * Construct a mount point path from sb of the ctldir inode and dirent
1052 * name, instead of from d_path(), so that chroot'd process doesn't fail
1053 * on mount.zfs(8).
1054 */
1055 snprintf(full_path, MAXPATHLEN, "%s/.zfs/snapshot/%s",
1056 zfsvfs->z_vfs->vfs_mntpoint, dname(dentry));
1057
1058 /*
1059 * Multiple concurrent automounts of a snapshot are never allowed.
1060 * The snapshot may be manually mounted as many times as desired.
1061 */
1062 if (zfsctl_snapshot_ismounted(full_name)) {
1063 error = 0;
1064 goto error;
1065 }
1066
1067 /*
1068 * Attempt to mount the snapshot from user space. Normally this
1069 * would be done using the vfs_kern_mount() function, however that
1070 * function is marked GPL-only and cannot be used. On error we
1071 * careful to log the real error to the console and return EISDIR
1072 * to safely abort the automount. This should be very rare.
1073 *
1074 * If the user mode helper happens to return EBUSY, a concurrent
1075 * mount is already in progress in which case the error is ignored.
1076 * Take note that if the program was executed successfully the return
1077 * value from call_usermodehelper() will be (exitcode << 8 + signal).
1078 */
1079 dprintf("mount; name=%s path=%s\n", full_name, full_path);
1080 argv[5] = full_name;
1081 argv[6] = full_path;
1082 error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
1083 if (error) {
1084 if (!(error & MOUNT_BUSY << 8)) {
1085 zfs_dbgmsg("Unable to automount %s error=%d",
1086 full_path, error);
1087 error = SET_ERROR(EISDIR);
1088 } else {
1089 /*
1090 * EBUSY, this could mean a concurrent mount, or the
1091 * snapshot has already been mounted at completely
1092 * different place. We return 0 so VFS will retry. For
1093 * the latter case the VFS will retry several times
1094 * and return ELOOP, which is probably not a very good
1095 * behavior.
1096 */
1097 error = 0;
1098 }
1099 goto error;
1100 }
1101
1102 /*
1103 * Follow down in to the mounted snapshot and set MNT_SHRINKABLE
1104 * to identify this as an automounted filesystem.
1105 */
1106 spath = *path;
1107 path_get(&spath);
1108 if (zpl_follow_down_one(&spath)) {
1109 snap_zfsvfs = ITOZSB(spath.dentry->d_inode);
1110 snap_zfsvfs->z_parent = zfsvfs;
1111 dentry = spath.dentry;
1112 spath.mnt->mnt_flags |= MNT_SHRINKABLE;
1113
1114 rw_enter(&zfs_snapshot_lock, RW_WRITER);
1115 se = zfsctl_snapshot_alloc(full_name, full_path,
1116 snap_zfsvfs->z_os->os_spa, dmu_objset_id(snap_zfsvfs->z_os),
1117 dentry);
1118 zfsctl_snapshot_add(se);
1119 zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot);
1120 rw_exit(&zfs_snapshot_lock);
1121 }
1122 path_put(&spath);
1123 error:
1124 kmem_free(full_name, ZFS_MAX_DATASET_NAME_LEN);
1125 kmem_free(full_path, MAXPATHLEN);
1126
1127 ZFS_EXIT(zfsvfs);
1128
1129 return (error);
1130 }
1131
1132 /*
1133 * Get the snapdir inode from fid
1134 */
1135 int
1136 zfsctl_snapdir_vget(struct super_block *sb, uint64_t objsetid, int gen,
1137 struct inode **ipp)
1138 {
1139 int error;
1140 struct path path;
1141 char *mnt;
1142 struct dentry *dentry;
1143
1144 mnt = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1145
1146 error = zfsctl_snapshot_path_objset(sb->s_fs_info, objsetid,
1147 MAXPATHLEN, mnt);
1148 if (error)
1149 goto out;
1150
1151 /* Trigger automount */
1152 error = -kern_path(mnt, LOOKUP_FOLLOW|LOOKUP_DIRECTORY, &path);
1153 if (error)
1154 goto out;
1155
1156 path_put(&path);
1157 /*
1158 * Get the snapdir inode. Note, we don't want to use the above
1159 * path because it contains the root of the snapshot rather
1160 * than the snapdir.
1161 */
1162 *ipp = ilookup(sb, ZFSCTL_INO_SNAPDIRS - objsetid);
1163 if (*ipp == NULL) {
1164 error = SET_ERROR(ENOENT);
1165 goto out;
1166 }
1167
1168 /* check gen, see zfsctl_snapdir_fid */
1169 dentry = d_obtain_alias(igrab(*ipp));
1170 if (gen != (!IS_ERR(dentry) && d_mountpoint(dentry))) {
1171 iput(*ipp);
1172 *ipp = NULL;
1173 error = SET_ERROR(ENOENT);
1174 }
1175 if (!IS_ERR(dentry))
1176 dput(dentry);
1177 out:
1178 kmem_free(mnt, MAXPATHLEN);
1179 return (error);
1180 }
1181
1182 int
1183 zfsctl_shares_lookup(struct inode *dip, char *name, struct inode **ipp,
1184 int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
1185 {
1186 zfsvfs_t *zfsvfs = ITOZSB(dip);
1187 struct inode *ip;
1188 znode_t *dzp;
1189 int error;
1190
1191 ZFS_ENTER(zfsvfs);
1192
1193 if (zfsvfs->z_shares_dir == 0) {
1194 ZFS_EXIT(zfsvfs);
1195 return (SET_ERROR(ENOTSUP));
1196 }
1197
1198 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) {
1199 error = zfs_lookup(ZTOI(dzp), name, &ip, 0, cr, NULL, NULL);
1200 iput(ZTOI(dzp));
1201 }
1202
1203 ZFS_EXIT(zfsvfs);
1204
1205 return (error);
1206 }
1207
1208 /*
1209 * Initialize the various pieces we'll need to create and manipulate .zfs
1210 * directories. Currently this is unused but available.
1211 */
1212 void
1213 zfsctl_init(void)
1214 {
1215 avl_create(&zfs_snapshots_by_name, snapentry_compare_by_name,
1216 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t,
1217 se_node_name));
1218 avl_create(&zfs_snapshots_by_objsetid, snapentry_compare_by_objsetid,
1219 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t,
1220 se_node_objsetid));
1221 rw_init(&zfs_snapshot_lock, NULL, RW_DEFAULT, NULL);
1222 }
1223
1224 /*
1225 * Cleanup the various pieces we needed for .zfs directories. In particular
1226 * ensure the expiry timer is canceled safely.
1227 */
1228 void
1229 zfsctl_fini(void)
1230 {
1231 avl_destroy(&zfs_snapshots_by_name);
1232 avl_destroy(&zfs_snapshots_by_objsetid);
1233 rw_destroy(&zfs_snapshot_lock);
1234 }
1235
1236 module_param(zfs_admin_snapshot, int, 0644);
1237 MODULE_PARM_DESC(zfs_admin_snapshot, "Enable mkdir/rmdir/mv in .zfs/snapshot");
1238
1239 module_param(zfs_expire_snapshot, int, 0644);
1240 MODULE_PARM_DESC(zfs_expire_snapshot, "Seconds to expire .zfs/snapshot");