]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zfs_ctldir.c
Prefix all refcount functions with zfs_
[mirror_zfs.git] / module / zfs / zfs_ctldir.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 *
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (C) 2011 Lawrence Livermore National Security, LLC.
25 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
26 * LLNL-CODE-403049.
27 * Rewritten for Linux by:
28 * Rohan Puri <rohan.puri15@gmail.com>
29 * Brian Behlendorf <behlendorf1@llnl.gov>
30 * Copyright (c) 2013 by Delphix. All rights reserved.
31 * Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved.
32 */
33
34 /*
35 * ZFS control directory (a.k.a. ".zfs")
36 *
37 * This directory provides a common location for all ZFS meta-objects.
38 * Currently, this is only the 'snapshot' and 'shares' directory, but this may
39 * expand in the future. The elements are built dynamically, as the hierarchy
40 * does not actually exist on disk.
41 *
42 * For 'snapshot', we don't want to have all snapshots always mounted, because
43 * this would take up a huge amount of space in /etc/mnttab. We have three
44 * types of objects:
45 *
46 * ctldir ------> snapshotdir -------> snapshot
47 * |
48 * |
49 * V
50 * mounted fs
51 *
52 * The 'snapshot' node contains just enough information to lookup '..' and act
53 * as a mountpoint for the snapshot. Whenever we lookup a specific snapshot, we
54 * perform an automount of the underlying filesystem and return the
55 * corresponding inode.
56 *
57 * All mounts are handled automatically by an user mode helper which invokes
58 * the mount mount procedure. Unmounts are handled by allowing the mount
59 * point to expire so the kernel may automatically unmount it.
60 *
61 * The '.zfs', '.zfs/snapshot', and all directories created under
62 * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') all share the same
63 * share the same zfsvfs_t as the head filesystem (what '.zfs' lives under).
64 *
65 * File systems mounted on top of the '.zfs/snapshot/<snapname>' paths
66 * (ie: snapshots) are complete ZFS filesystems and have their own unique
67 * zfsvfs_t. However, the fsid reported by these mounts will be the same
68 * as that used by the parent zfsvfs_t to make NFS happy.
69 */
70
71 #include <sys/types.h>
72 #include <sys/param.h>
73 #include <sys/time.h>
74 #include <sys/sysmacros.h>
75 #include <sys/pathname.h>
76 #include <sys/vfs.h>
77 #include <sys/zfs_ctldir.h>
78 #include <sys/zfs_ioctl.h>
79 #include <sys/zfs_vfsops.h>
80 #include <sys/zfs_vnops.h>
81 #include <sys/stat.h>
82 #include <sys/dmu.h>
83 #include <sys/dmu_objset.h>
84 #include <sys/dsl_destroy.h>
85 #include <sys/dsl_deleg.h>
86 #include <sys/zpl.h>
87 #include "zfs_namecheck.h"
88
89 /*
90 * Two AVL trees are maintained which contain all currently automounted
91 * snapshots. Every automounted snapshots maps to a single zfs_snapentry_t
92 * entry which MUST:
93 *
94 * - be attached to both trees, and
95 * - be unique, no duplicate entries are allowed.
96 *
97 * The zfs_snapshots_by_name tree is indexed by the full dataset name
98 * while the zfs_snapshots_by_objsetid tree is indexed by the unique
99 * objsetid. This allows for fast lookups either by name or objsetid.
100 */
101 static avl_tree_t zfs_snapshots_by_name;
102 static avl_tree_t zfs_snapshots_by_objsetid;
103 static krwlock_t zfs_snapshot_lock;
104
105 /*
106 * Control Directory Tunables (.zfs)
107 */
108 int zfs_expire_snapshot = ZFSCTL_EXPIRE_SNAPSHOT;
109 int zfs_admin_snapshot = 1;
110
111 typedef struct {
112 char *se_name; /* full snapshot name */
113 char *se_path; /* full mount path */
114 spa_t *se_spa; /* pool spa */
115 uint64_t se_objsetid; /* snapshot objset id */
116 struct dentry *se_root_dentry; /* snapshot root dentry */
117 taskqid_t se_taskqid; /* scheduled unmount taskqid */
118 avl_node_t se_node_name; /* zfs_snapshots_by_name link */
119 avl_node_t se_node_objsetid; /* zfs_snapshots_by_objsetid link */
120 zfs_refcount_t se_refcount; /* reference count */
121 } zfs_snapentry_t;
122
123 static void zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay);
124
125 /*
126 * Allocate a new zfs_snapentry_t being careful to make a copy of the
127 * the snapshot name and provided mount point. No reference is taken.
128 */
129 static zfs_snapentry_t *
130 zfsctl_snapshot_alloc(char *full_name, char *full_path, spa_t *spa,
131 uint64_t objsetid, struct dentry *root_dentry)
132 {
133 zfs_snapentry_t *se;
134
135 se = kmem_zalloc(sizeof (zfs_snapentry_t), KM_SLEEP);
136
137 se->se_name = strdup(full_name);
138 se->se_path = strdup(full_path);
139 se->se_spa = spa;
140 se->se_objsetid = objsetid;
141 se->se_root_dentry = root_dentry;
142 se->se_taskqid = TASKQID_INVALID;
143
144 zfs_refcount_create(&se->se_refcount);
145
146 return (se);
147 }
148
149 /*
150 * Free a zfs_snapentry_t the called must ensure there are no active
151 * references.
152 */
153 static void
154 zfsctl_snapshot_free(zfs_snapentry_t *se)
155 {
156 zfs_refcount_destroy(&se->se_refcount);
157 strfree(se->se_name);
158 strfree(se->se_path);
159
160 kmem_free(se, sizeof (zfs_snapentry_t));
161 }
162
163 /*
164 * Hold a reference on the zfs_snapentry_t.
165 */
166 static void
167 zfsctl_snapshot_hold(zfs_snapentry_t *se)
168 {
169 zfs_refcount_add(&se->se_refcount, NULL);
170 }
171
172 /*
173 * Release a reference on the zfs_snapentry_t. When the number of
174 * references drops to zero the structure will be freed.
175 */
176 static void
177 zfsctl_snapshot_rele(zfs_snapentry_t *se)
178 {
179 if (zfs_refcount_remove(&se->se_refcount, NULL) == 0)
180 zfsctl_snapshot_free(se);
181 }
182
183 /*
184 * Add a zfs_snapentry_t to both the zfs_snapshots_by_name and
185 * zfs_snapshots_by_objsetid trees. While the zfs_snapentry_t is part
186 * of the trees a reference is held.
187 */
188 static void
189 zfsctl_snapshot_add(zfs_snapentry_t *se)
190 {
191 ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
192 zfs_refcount_add(&se->se_refcount, NULL);
193 avl_add(&zfs_snapshots_by_name, se);
194 avl_add(&zfs_snapshots_by_objsetid, se);
195 }
196
197 /*
198 * Remove a zfs_snapentry_t from both the zfs_snapshots_by_name and
199 * zfs_snapshots_by_objsetid trees. Upon removal a reference is dropped,
200 * this can result in the structure being freed if that was the last
201 * remaining reference.
202 */
203 static void
204 zfsctl_snapshot_remove(zfs_snapentry_t *se)
205 {
206 ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
207 avl_remove(&zfs_snapshots_by_name, se);
208 avl_remove(&zfs_snapshots_by_objsetid, se);
209 zfsctl_snapshot_rele(se);
210 }
211
212 /*
213 * Snapshot name comparison function for the zfs_snapshots_by_name.
214 */
215 static int
216 snapentry_compare_by_name(const void *a, const void *b)
217 {
218 const zfs_snapentry_t *se_a = a;
219 const zfs_snapentry_t *se_b = b;
220 int ret;
221
222 ret = strcmp(se_a->se_name, se_b->se_name);
223
224 if (ret < 0)
225 return (-1);
226 else if (ret > 0)
227 return (1);
228 else
229 return (0);
230 }
231
232 /*
233 * Snapshot name comparison function for the zfs_snapshots_by_objsetid.
234 */
235 static int
236 snapentry_compare_by_objsetid(const void *a, const void *b)
237 {
238 const zfs_snapentry_t *se_a = a;
239 const zfs_snapentry_t *se_b = b;
240
241 if (se_a->se_spa != se_b->se_spa)
242 return ((ulong_t)se_a->se_spa < (ulong_t)se_b->se_spa ? -1 : 1);
243
244 if (se_a->se_objsetid < se_b->se_objsetid)
245 return (-1);
246 else if (se_a->se_objsetid > se_b->se_objsetid)
247 return (1);
248 else
249 return (0);
250 }
251
252 /*
253 * Find a zfs_snapentry_t in zfs_snapshots_by_name. If the snapname
254 * is found a pointer to the zfs_snapentry_t is returned and a reference
255 * taken on the structure. The caller is responsible for dropping the
256 * reference with zfsctl_snapshot_rele(). If the snapname is not found
257 * NULL will be returned.
258 */
259 static zfs_snapentry_t *
260 zfsctl_snapshot_find_by_name(char *snapname)
261 {
262 zfs_snapentry_t *se, search;
263
264 ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
265
266 search.se_name = snapname;
267 se = avl_find(&zfs_snapshots_by_name, &search, NULL);
268 if (se)
269 zfs_refcount_add(&se->se_refcount, NULL);
270
271 return (se);
272 }
273
274 /*
275 * Find a zfs_snapentry_t in zfs_snapshots_by_objsetid given the objset id
276 * rather than the snapname. In all other respects it behaves the same
277 * as zfsctl_snapshot_find_by_name().
278 */
279 static zfs_snapentry_t *
280 zfsctl_snapshot_find_by_objsetid(spa_t *spa, uint64_t objsetid)
281 {
282 zfs_snapentry_t *se, search;
283
284 ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
285
286 search.se_spa = spa;
287 search.se_objsetid = objsetid;
288 se = avl_find(&zfs_snapshots_by_objsetid, &search, NULL);
289 if (se)
290 zfs_refcount_add(&se->se_refcount, NULL);
291
292 return (se);
293 }
294
295 /*
296 * Rename a zfs_snapentry_t in the zfs_snapshots_by_name. The structure is
297 * removed, renamed, and added back to the new correct location in the tree.
298 */
299 static int
300 zfsctl_snapshot_rename(char *old_snapname, char *new_snapname)
301 {
302 zfs_snapentry_t *se;
303
304 ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
305
306 se = zfsctl_snapshot_find_by_name(old_snapname);
307 if (se == NULL)
308 return (SET_ERROR(ENOENT));
309
310 zfsctl_snapshot_remove(se);
311 strfree(se->se_name);
312 se->se_name = strdup(new_snapname);
313 zfsctl_snapshot_add(se);
314 zfsctl_snapshot_rele(se);
315
316 return (0);
317 }
318
319 /*
320 * Delayed task responsible for unmounting an expired automounted snapshot.
321 */
322 static void
323 snapentry_expire(void *data)
324 {
325 zfs_snapentry_t *se = (zfs_snapentry_t *)data;
326 spa_t *spa = se->se_spa;
327 uint64_t objsetid = se->se_objsetid;
328
329 if (zfs_expire_snapshot <= 0) {
330 zfsctl_snapshot_rele(se);
331 return;
332 }
333
334 se->se_taskqid = TASKQID_INVALID;
335 (void) zfsctl_snapshot_unmount(se->se_name, MNT_EXPIRE);
336 zfsctl_snapshot_rele(se);
337
338 /*
339 * Reschedule the unmount if the zfs_snapentry_t wasn't removed.
340 * This can occur when the snapshot is busy.
341 */
342 rw_enter(&zfs_snapshot_lock, RW_READER);
343 if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
344 zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot);
345 zfsctl_snapshot_rele(se);
346 }
347 rw_exit(&zfs_snapshot_lock);
348 }
349
350 /*
351 * Cancel an automatic unmount of a snapname. This callback is responsible
352 * for dropping the reference on the zfs_snapentry_t which was taken when
353 * during dispatch.
354 */
355 static void
356 zfsctl_snapshot_unmount_cancel(zfs_snapentry_t *se)
357 {
358 if (taskq_cancel_id(system_delay_taskq, se->se_taskqid) == 0) {
359 se->se_taskqid = TASKQID_INVALID;
360 zfsctl_snapshot_rele(se);
361 }
362 }
363
364 /*
365 * Dispatch the unmount task for delayed handling with a hold protecting it.
366 */
367 static void
368 zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay)
369 {
370 ASSERT3S(se->se_taskqid, ==, TASKQID_INVALID);
371
372 if (delay <= 0)
373 return;
374
375 zfsctl_snapshot_hold(se);
376 se->se_taskqid = taskq_dispatch_delay(system_delay_taskq,
377 snapentry_expire, se, TQ_SLEEP, ddi_get_lbolt() + delay * HZ);
378 }
379
380 /*
381 * Schedule an automatic unmount of objset id to occur in delay seconds from
382 * now. Any previous delayed unmount will be cancelled in favor of the
383 * updated deadline. A reference is taken by zfsctl_snapshot_find_by_name()
384 * and held until the outstanding task is handled or cancelled.
385 */
386 int
387 zfsctl_snapshot_unmount_delay(spa_t *spa, uint64_t objsetid, int delay)
388 {
389 zfs_snapentry_t *se;
390 int error = ENOENT;
391
392 rw_enter(&zfs_snapshot_lock, RW_READER);
393 if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
394 zfsctl_snapshot_unmount_cancel(se);
395 zfsctl_snapshot_unmount_delay_impl(se, delay);
396 zfsctl_snapshot_rele(se);
397 error = 0;
398 }
399 rw_exit(&zfs_snapshot_lock);
400
401 return (error);
402 }
403
404 /*
405 * Check if snapname is currently mounted. Returned non-zero when mounted
406 * and zero when unmounted.
407 */
408 static boolean_t
409 zfsctl_snapshot_ismounted(char *snapname)
410 {
411 zfs_snapentry_t *se;
412 boolean_t ismounted = B_FALSE;
413
414 rw_enter(&zfs_snapshot_lock, RW_READER);
415 if ((se = zfsctl_snapshot_find_by_name(snapname)) != NULL) {
416 zfsctl_snapshot_rele(se);
417 ismounted = B_TRUE;
418 }
419 rw_exit(&zfs_snapshot_lock);
420
421 return (ismounted);
422 }
423
424 /*
425 * Check if the given inode is a part of the virtual .zfs directory.
426 */
427 boolean_t
428 zfsctl_is_node(struct inode *ip)
429 {
430 return (ITOZ(ip)->z_is_ctldir);
431 }
432
433 /*
434 * Check if the given inode is a .zfs/snapshots/snapname directory.
435 */
436 boolean_t
437 zfsctl_is_snapdir(struct inode *ip)
438 {
439 return (zfsctl_is_node(ip) && (ip->i_ino <= ZFSCTL_INO_SNAPDIRS));
440 }
441
442 /*
443 * Allocate a new inode with the passed id and ops.
444 */
445 static struct inode *
446 zfsctl_inode_alloc(zfsvfs_t *zfsvfs, uint64_t id,
447 const struct file_operations *fops, const struct inode_operations *ops)
448 {
449 inode_timespec_t now;
450 struct inode *ip;
451 znode_t *zp;
452
453 ip = new_inode(zfsvfs->z_sb);
454 if (ip == NULL)
455 return (NULL);
456
457 now = current_time(ip);
458 zp = ITOZ(ip);
459 ASSERT3P(zp->z_dirlocks, ==, NULL);
460 ASSERT3P(zp->z_acl_cached, ==, NULL);
461 ASSERT3P(zp->z_xattr_cached, ==, NULL);
462 zp->z_id = id;
463 zp->z_unlinked = 0;
464 zp->z_atime_dirty = 0;
465 zp->z_zn_prefetch = 0;
466 zp->z_moved = 0;
467 zp->z_sa_hdl = NULL;
468 zp->z_blksz = 0;
469 zp->z_seq = 0;
470 zp->z_mapcnt = 0;
471 zp->z_size = 0;
472 zp->z_pflags = 0;
473 zp->z_mode = 0;
474 zp->z_sync_cnt = 0;
475 zp->z_is_mapped = B_FALSE;
476 zp->z_is_ctldir = B_TRUE;
477 zp->z_is_sa = B_FALSE;
478 zp->z_is_stale = B_FALSE;
479 ip->i_generation = 0;
480 ip->i_ino = id;
481 ip->i_mode = (S_IFDIR | S_IRWXUGO);
482 ip->i_uid = SUID_TO_KUID(0);
483 ip->i_gid = SGID_TO_KGID(0);
484 ip->i_blkbits = SPA_MINBLOCKSHIFT;
485 ip->i_atime = now;
486 ip->i_mtime = now;
487 ip->i_ctime = now;
488 ip->i_fop = fops;
489 ip->i_op = ops;
490 #if defined(IOP_XATTR)
491 ip->i_opflags &= ~IOP_XATTR;
492 #endif
493
494 if (insert_inode_locked(ip)) {
495 unlock_new_inode(ip);
496 iput(ip);
497 return (NULL);
498 }
499
500 mutex_enter(&zfsvfs->z_znodes_lock);
501 list_insert_tail(&zfsvfs->z_all_znodes, zp);
502 zfsvfs->z_nr_znodes++;
503 membar_producer();
504 mutex_exit(&zfsvfs->z_znodes_lock);
505
506 unlock_new_inode(ip);
507
508 return (ip);
509 }
510
511 /*
512 * Lookup the inode with given id, it will be allocated if needed.
513 */
514 static struct inode *
515 zfsctl_inode_lookup(zfsvfs_t *zfsvfs, uint64_t id,
516 const struct file_operations *fops, const struct inode_operations *ops)
517 {
518 struct inode *ip = NULL;
519
520 while (ip == NULL) {
521 ip = ilookup(zfsvfs->z_sb, (unsigned long)id);
522 if (ip)
523 break;
524
525 /* May fail due to concurrent zfsctl_inode_alloc() */
526 ip = zfsctl_inode_alloc(zfsvfs, id, fops, ops);
527 }
528
529 return (ip);
530 }
531
532 /*
533 * Create the '.zfs' directory. This directory is cached as part of the VFS
534 * structure. This results in a hold on the zfsvfs_t. The code in zfs_umount()
535 * therefore checks against a vfs_count of 2 instead of 1. This reference
536 * is removed when the ctldir is destroyed in the unmount. All other entities
537 * under the '.zfs' directory are created dynamically as needed.
538 *
539 * Because the dynamically created '.zfs' directory entries assume the use
540 * of 64-bit inode numbers this support must be disabled on 32-bit systems.
541 */
542 int
543 zfsctl_create(zfsvfs_t *zfsvfs)
544 {
545 ASSERT(zfsvfs->z_ctldir == NULL);
546
547 zfsvfs->z_ctldir = zfsctl_inode_alloc(zfsvfs, ZFSCTL_INO_ROOT,
548 &zpl_fops_root, &zpl_ops_root);
549 if (zfsvfs->z_ctldir == NULL)
550 return (SET_ERROR(ENOENT));
551
552 return (0);
553 }
554
555 /*
556 * Destroy the '.zfs' directory or remove a snapshot from zfs_snapshots_by_name.
557 * Only called when the filesystem is unmounted.
558 */
559 void
560 zfsctl_destroy(zfsvfs_t *zfsvfs)
561 {
562 if (zfsvfs->z_issnap) {
563 zfs_snapentry_t *se;
564 spa_t *spa = zfsvfs->z_os->os_spa;
565 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os);
566
567 rw_enter(&zfs_snapshot_lock, RW_WRITER);
568 se = zfsctl_snapshot_find_by_objsetid(spa, objsetid);
569 if (se != NULL)
570 zfsctl_snapshot_remove(se);
571 rw_exit(&zfs_snapshot_lock);
572 if (se != NULL) {
573 zfsctl_snapshot_unmount_cancel(se);
574 zfsctl_snapshot_rele(se);
575 }
576 } else if (zfsvfs->z_ctldir) {
577 iput(zfsvfs->z_ctldir);
578 zfsvfs->z_ctldir = NULL;
579 }
580 }
581
582 /*
583 * Given a root znode, retrieve the associated .zfs directory.
584 * Add a hold to the vnode and return it.
585 */
586 struct inode *
587 zfsctl_root(znode_t *zp)
588 {
589 ASSERT(zfs_has_ctldir(zp));
590 igrab(ZTOZSB(zp)->z_ctldir);
591 return (ZTOZSB(zp)->z_ctldir);
592 }
593
594 /*
595 * Generate a long fid to indicate a snapdir. We encode whether snapdir is
596 * already monunted in gen field. We do this because nfsd lookup will not
597 * trigger automount. Next time the nfsd does fh_to_dentry, we will notice
598 * this and do automount and return ESTALE to force nfsd revalidate and follow
599 * mount.
600 */
601 static int
602 zfsctl_snapdir_fid(struct inode *ip, fid_t *fidp)
603 {
604 zfid_short_t *zfid = (zfid_short_t *)fidp;
605 zfid_long_t *zlfid = (zfid_long_t *)fidp;
606 uint32_t gen = 0;
607 uint64_t object;
608 uint64_t objsetid;
609 int i;
610 struct dentry *dentry;
611
612 if (fidp->fid_len < LONG_FID_LEN) {
613 fidp->fid_len = LONG_FID_LEN;
614 return (SET_ERROR(ENOSPC));
615 }
616
617 object = ip->i_ino;
618 objsetid = ZFSCTL_INO_SNAPDIRS - ip->i_ino;
619 zfid->zf_len = LONG_FID_LEN;
620
621 dentry = d_obtain_alias(igrab(ip));
622 if (!IS_ERR(dentry)) {
623 gen = !!d_mountpoint(dentry);
624 dput(dentry);
625 }
626
627 for (i = 0; i < sizeof (zfid->zf_object); i++)
628 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
629
630 for (i = 0; i < sizeof (zfid->zf_gen); i++)
631 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
632
633 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
634 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
635
636 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
637 zlfid->zf_setgen[i] = 0;
638
639 return (0);
640 }
641
642 /*
643 * Generate an appropriate fid for an entry in the .zfs directory.
644 */
645 int
646 zfsctl_fid(struct inode *ip, fid_t *fidp)
647 {
648 znode_t *zp = ITOZ(ip);
649 zfsvfs_t *zfsvfs = ITOZSB(ip);
650 uint64_t object = zp->z_id;
651 zfid_short_t *zfid;
652 int i;
653
654 ZFS_ENTER(zfsvfs);
655
656 if (zfsctl_is_snapdir(ip)) {
657 ZFS_EXIT(zfsvfs);
658 return (zfsctl_snapdir_fid(ip, fidp));
659 }
660
661 if (fidp->fid_len < SHORT_FID_LEN) {
662 fidp->fid_len = SHORT_FID_LEN;
663 ZFS_EXIT(zfsvfs);
664 return (SET_ERROR(ENOSPC));
665 }
666
667 zfid = (zfid_short_t *)fidp;
668
669 zfid->zf_len = SHORT_FID_LEN;
670
671 for (i = 0; i < sizeof (zfid->zf_object); i++)
672 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
673
674 /* .zfs znodes always have a generation number of 0 */
675 for (i = 0; i < sizeof (zfid->zf_gen); i++)
676 zfid->zf_gen[i] = 0;
677
678 ZFS_EXIT(zfsvfs);
679 return (0);
680 }
681
682 /*
683 * Construct a full dataset name in full_name: "pool/dataset@snap_name"
684 */
685 static int
686 zfsctl_snapshot_name(zfsvfs_t *zfsvfs, const char *snap_name, int len,
687 char *full_name)
688 {
689 objset_t *os = zfsvfs->z_os;
690
691 if (zfs_component_namecheck(snap_name, NULL, NULL) != 0)
692 return (SET_ERROR(EILSEQ));
693
694 dmu_objset_name(os, full_name);
695 if ((strlen(full_name) + 1 + strlen(snap_name)) >= len)
696 return (SET_ERROR(ENAMETOOLONG));
697
698 (void) strcat(full_name, "@");
699 (void) strcat(full_name, snap_name);
700
701 return (0);
702 }
703
704 /*
705 * Returns full path in full_path: "/pool/dataset/.zfs/snapshot/snap_name/"
706 */
707 static int
708 zfsctl_snapshot_path(struct path *path, int len, char *full_path)
709 {
710 char *path_buffer, *path_ptr;
711 int path_len, error = 0;
712
713 path_buffer = kmem_alloc(len, KM_SLEEP);
714
715 path_ptr = d_path(path, path_buffer, len);
716 if (IS_ERR(path_ptr)) {
717 error = -PTR_ERR(path_ptr);
718 goto out;
719 }
720
721 path_len = path_buffer + len - 1 - path_ptr;
722 if (path_len > len) {
723 error = SET_ERROR(EFAULT);
724 goto out;
725 }
726
727 memcpy(full_path, path_ptr, path_len);
728 full_path[path_len] = '\0';
729 out:
730 kmem_free(path_buffer, len);
731
732 return (error);
733 }
734
735 /*
736 * Returns full path in full_path: "/pool/dataset/.zfs/snapshot/snap_name/"
737 */
738 static int
739 zfsctl_snapshot_path_objset(zfsvfs_t *zfsvfs, uint64_t objsetid,
740 int path_len, char *full_path)
741 {
742 objset_t *os = zfsvfs->z_os;
743 fstrans_cookie_t cookie;
744 char *snapname;
745 boolean_t case_conflict;
746 uint64_t id, pos = 0;
747 int error = 0;
748
749 if (zfsvfs->z_vfs->vfs_mntpoint == NULL)
750 return (SET_ERROR(ENOENT));
751
752 cookie = spl_fstrans_mark();
753 snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
754
755 while (error == 0) {
756 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
757 error = dmu_snapshot_list_next(zfsvfs->z_os,
758 ZFS_MAX_DATASET_NAME_LEN, snapname, &id, &pos,
759 &case_conflict);
760 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
761 if (error)
762 goto out;
763
764 if (id == objsetid)
765 break;
766 }
767
768 memset(full_path, 0, path_len);
769 snprintf(full_path, path_len - 1, "%s/.zfs/snapshot/%s",
770 zfsvfs->z_vfs->vfs_mntpoint, snapname);
771 out:
772 kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN);
773 spl_fstrans_unmark(cookie);
774
775 return (error);
776 }
777
778 /*
779 * Special case the handling of "..".
780 */
781 int
782 zfsctl_root_lookup(struct inode *dip, char *name, struct inode **ipp,
783 int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
784 {
785 zfsvfs_t *zfsvfs = ITOZSB(dip);
786 int error = 0;
787
788 ZFS_ENTER(zfsvfs);
789
790 if (strcmp(name, "..") == 0) {
791 *ipp = dip->i_sb->s_root->d_inode;
792 } else if (strcmp(name, ZFS_SNAPDIR_NAME) == 0) {
793 *ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SNAPDIR,
794 &zpl_fops_snapdir, &zpl_ops_snapdir);
795 } else if (strcmp(name, ZFS_SHAREDIR_NAME) == 0) {
796 *ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SHARES,
797 &zpl_fops_shares, &zpl_ops_shares);
798 } else {
799 *ipp = NULL;
800 }
801
802 if (*ipp == NULL)
803 error = SET_ERROR(ENOENT);
804
805 ZFS_EXIT(zfsvfs);
806
807 return (error);
808 }
809
810 /*
811 * Lookup entry point for the 'snapshot' directory. Try to open the
812 * snapshot if it exist, creating the pseudo filesystem inode as necessary.
813 * Perform a mount of the associated dataset on top of the inode.
814 */
815 int
816 zfsctl_snapdir_lookup(struct inode *dip, char *name, struct inode **ipp,
817 int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
818 {
819 zfsvfs_t *zfsvfs = ITOZSB(dip);
820 uint64_t id;
821 int error;
822
823 ZFS_ENTER(zfsvfs);
824
825 error = dmu_snapshot_lookup(zfsvfs->z_os, name, &id);
826 if (error) {
827 ZFS_EXIT(zfsvfs);
828 return (error);
829 }
830
831 *ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SNAPDIRS - id,
832 &simple_dir_operations, &simple_dir_inode_operations);
833 if (*ipp == NULL)
834 error = SET_ERROR(ENOENT);
835
836 ZFS_EXIT(zfsvfs);
837
838 return (error);
839 }
840
841 /*
842 * Renaming a directory under '.zfs/snapshot' will automatically trigger
843 * a rename of the snapshot to the new given name. The rename is confined
844 * to the '.zfs/snapshot' directory snapshots cannot be moved elsewhere.
845 */
846 int
847 zfsctl_snapdir_rename(struct inode *sdip, char *snm,
848 struct inode *tdip, char *tnm, cred_t *cr, int flags)
849 {
850 zfsvfs_t *zfsvfs = ITOZSB(sdip);
851 char *to, *from, *real, *fsname;
852 int error;
853
854 if (!zfs_admin_snapshot)
855 return (SET_ERROR(EACCES));
856
857 ZFS_ENTER(zfsvfs);
858
859 to = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
860 from = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
861 real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
862 fsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
863
864 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
865 error = dmu_snapshot_realname(zfsvfs->z_os, snm, real,
866 ZFS_MAX_DATASET_NAME_LEN, NULL);
867 if (error == 0) {
868 snm = real;
869 } else if (error != ENOTSUP) {
870 goto out;
871 }
872 }
873
874 dmu_objset_name(zfsvfs->z_os, fsname);
875
876 error = zfsctl_snapshot_name(ITOZSB(sdip), snm,
877 ZFS_MAX_DATASET_NAME_LEN, from);
878 if (error == 0)
879 error = zfsctl_snapshot_name(ITOZSB(tdip), tnm,
880 ZFS_MAX_DATASET_NAME_LEN, to);
881 if (error == 0)
882 error = zfs_secpolicy_rename_perms(from, to, cr);
883 if (error != 0)
884 goto out;
885
886 /*
887 * Cannot move snapshots out of the snapdir.
888 */
889 if (sdip != tdip) {
890 error = SET_ERROR(EINVAL);
891 goto out;
892 }
893
894 /*
895 * No-op when names are identical.
896 */
897 if (strcmp(snm, tnm) == 0) {
898 error = 0;
899 goto out;
900 }
901
902 rw_enter(&zfs_snapshot_lock, RW_WRITER);
903
904 error = dsl_dataset_rename_snapshot(fsname, snm, tnm, B_FALSE);
905 if (error == 0)
906 (void) zfsctl_snapshot_rename(snm, tnm);
907
908 rw_exit(&zfs_snapshot_lock);
909 out:
910 kmem_free(from, ZFS_MAX_DATASET_NAME_LEN);
911 kmem_free(to, ZFS_MAX_DATASET_NAME_LEN);
912 kmem_free(real, ZFS_MAX_DATASET_NAME_LEN);
913 kmem_free(fsname, ZFS_MAX_DATASET_NAME_LEN);
914
915 ZFS_EXIT(zfsvfs);
916
917 return (error);
918 }
919
920 /*
921 * Removing a directory under '.zfs/snapshot' will automatically trigger
922 * the removal of the snapshot with the given name.
923 */
924 int
925 zfsctl_snapdir_remove(struct inode *dip, char *name, cred_t *cr, int flags)
926 {
927 zfsvfs_t *zfsvfs = ITOZSB(dip);
928 char *snapname, *real;
929 int error;
930
931 if (!zfs_admin_snapshot)
932 return (SET_ERROR(EACCES));
933
934 ZFS_ENTER(zfsvfs);
935
936 snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
937 real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
938
939 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
940 error = dmu_snapshot_realname(zfsvfs->z_os, name, real,
941 ZFS_MAX_DATASET_NAME_LEN, NULL);
942 if (error == 0) {
943 name = real;
944 } else if (error != ENOTSUP) {
945 goto out;
946 }
947 }
948
949 error = zfsctl_snapshot_name(ITOZSB(dip), name,
950 ZFS_MAX_DATASET_NAME_LEN, snapname);
951 if (error == 0)
952 error = zfs_secpolicy_destroy_perms(snapname, cr);
953 if (error != 0)
954 goto out;
955
956 error = zfsctl_snapshot_unmount(snapname, MNT_FORCE);
957 if ((error == 0) || (error == ENOENT))
958 error = dsl_destroy_snapshot(snapname, B_FALSE);
959 out:
960 kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN);
961 kmem_free(real, ZFS_MAX_DATASET_NAME_LEN);
962
963 ZFS_EXIT(zfsvfs);
964
965 return (error);
966 }
967
968 /*
969 * Creating a directory under '.zfs/snapshot' will automatically trigger
970 * the creation of a new snapshot with the given name.
971 */
972 int
973 zfsctl_snapdir_mkdir(struct inode *dip, char *dirname, vattr_t *vap,
974 struct inode **ipp, cred_t *cr, int flags)
975 {
976 zfsvfs_t *zfsvfs = ITOZSB(dip);
977 char *dsname;
978 int error;
979
980 if (!zfs_admin_snapshot)
981 return (SET_ERROR(EACCES));
982
983 dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
984
985 if (zfs_component_namecheck(dirname, NULL, NULL) != 0) {
986 error = SET_ERROR(EILSEQ);
987 goto out;
988 }
989
990 dmu_objset_name(zfsvfs->z_os, dsname);
991
992 error = zfs_secpolicy_snapshot_perms(dsname, cr);
993 if (error != 0)
994 goto out;
995
996 if (error == 0) {
997 error = dmu_objset_snapshot_one(dsname, dirname);
998 if (error != 0)
999 goto out;
1000
1001 error = zfsctl_snapdir_lookup(dip, dirname, ipp,
1002 0, cr, NULL, NULL);
1003 }
1004 out:
1005 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
1006
1007 return (error);
1008 }
1009
1010 /*
1011 * Attempt to unmount a snapshot by making a call to user space.
1012 * There is no assurance that this can or will succeed, is just a
1013 * best effort. In the case where it does fail, perhaps because
1014 * it's in use, the unmount will fail harmlessly.
1015 */
1016 int
1017 zfsctl_snapshot_unmount(char *snapname, int flags)
1018 {
1019 char *argv[] = { "/usr/bin/env", "umount", "-t", "zfs", "-n", NULL,
1020 NULL };
1021 char *envp[] = { NULL };
1022 zfs_snapentry_t *se;
1023 int error;
1024
1025 rw_enter(&zfs_snapshot_lock, RW_READER);
1026 if ((se = zfsctl_snapshot_find_by_name(snapname)) == NULL) {
1027 rw_exit(&zfs_snapshot_lock);
1028 return (SET_ERROR(ENOENT));
1029 }
1030 rw_exit(&zfs_snapshot_lock);
1031
1032 if (flags & MNT_FORCE)
1033 argv[4] = "-fn";
1034 argv[5] = se->se_path;
1035 dprintf("unmount; path=%s\n", se->se_path);
1036 error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
1037 zfsctl_snapshot_rele(se);
1038
1039
1040 /*
1041 * The umount system utility will return 256 on error. We must
1042 * assume this error is because the file system is busy so it is
1043 * converted to the more sensible EBUSY.
1044 */
1045 if (error)
1046 error = SET_ERROR(EBUSY);
1047
1048 return (error);
1049 }
1050
1051 #define MOUNT_BUSY 0x80 /* Mount failed due to EBUSY (from mntent.h) */
1052
1053 int
1054 zfsctl_snapshot_mount(struct path *path, int flags)
1055 {
1056 struct dentry *dentry = path->dentry;
1057 struct inode *ip = dentry->d_inode;
1058 zfsvfs_t *zfsvfs;
1059 zfsvfs_t *snap_zfsvfs;
1060 zfs_snapentry_t *se;
1061 char *full_name, *full_path;
1062 char *argv[] = { "/usr/bin/env", "mount", "-t", "zfs", "-n", NULL, NULL,
1063 NULL };
1064 char *envp[] = { NULL };
1065 int error;
1066 struct path spath;
1067
1068 if (ip == NULL)
1069 return (SET_ERROR(EISDIR));
1070
1071 zfsvfs = ITOZSB(ip);
1072 ZFS_ENTER(zfsvfs);
1073
1074 full_name = kmem_zalloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
1075 full_path = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1076
1077 error = zfsctl_snapshot_name(zfsvfs, dname(dentry),
1078 ZFS_MAX_DATASET_NAME_LEN, full_name);
1079 if (error)
1080 goto error;
1081
1082 error = zfsctl_snapshot_path(path, MAXPATHLEN, full_path);
1083 if (error)
1084 goto error;
1085
1086 /*
1087 * Multiple concurrent automounts of a snapshot are never allowed.
1088 * The snapshot may be manually mounted as many times as desired.
1089 */
1090 if (zfsctl_snapshot_ismounted(full_name)) {
1091 error = 0;
1092 goto error;
1093 }
1094
1095 /*
1096 * Attempt to mount the snapshot from user space. Normally this
1097 * would be done using the vfs_kern_mount() function, however that
1098 * function is marked GPL-only and cannot be used. On error we
1099 * careful to log the real error to the console and return EISDIR
1100 * to safely abort the automount. This should be very rare.
1101 *
1102 * If the user mode helper happens to return EBUSY, a concurrent
1103 * mount is already in progress in which case the error is ignored.
1104 * Take note that if the program was executed successfully the return
1105 * value from call_usermodehelper() will be (exitcode << 8 + signal).
1106 */
1107 dprintf("mount; name=%s path=%s\n", full_name, full_path);
1108 argv[5] = full_name;
1109 argv[6] = full_path;
1110 error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
1111 if (error) {
1112 if (!(error & MOUNT_BUSY << 8)) {
1113 cmn_err(CE_WARN, "Unable to automount %s/%s: %d",
1114 full_path, full_name, error);
1115 error = SET_ERROR(EISDIR);
1116 } else {
1117 /*
1118 * EBUSY, this could mean a concurrent mount, or the
1119 * snapshot has already been mounted at completely
1120 * different place. We return 0 so VFS will retry. For
1121 * the latter case the VFS will retry several times
1122 * and return ELOOP, which is probably not a very good
1123 * behavior.
1124 */
1125 error = 0;
1126 }
1127 goto error;
1128 }
1129
1130 /*
1131 * Follow down in to the mounted snapshot and set MNT_SHRINKABLE
1132 * to identify this as an automounted filesystem.
1133 */
1134 spath = *path;
1135 path_get(&spath);
1136 if (zpl_follow_down_one(&spath)) {
1137 snap_zfsvfs = ITOZSB(spath.dentry->d_inode);
1138 snap_zfsvfs->z_parent = zfsvfs;
1139 dentry = spath.dentry;
1140 spath.mnt->mnt_flags |= MNT_SHRINKABLE;
1141
1142 rw_enter(&zfs_snapshot_lock, RW_WRITER);
1143 se = zfsctl_snapshot_alloc(full_name, full_path,
1144 snap_zfsvfs->z_os->os_spa, dmu_objset_id(snap_zfsvfs->z_os),
1145 dentry);
1146 zfsctl_snapshot_add(se);
1147 zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot);
1148 rw_exit(&zfs_snapshot_lock);
1149 }
1150 path_put(&spath);
1151 error:
1152 kmem_free(full_name, ZFS_MAX_DATASET_NAME_LEN);
1153 kmem_free(full_path, MAXPATHLEN);
1154
1155 ZFS_EXIT(zfsvfs);
1156
1157 return (error);
1158 }
1159
1160 /*
1161 * Get the snapdir inode from fid
1162 */
1163 int
1164 zfsctl_snapdir_vget(struct super_block *sb, uint64_t objsetid, int gen,
1165 struct inode **ipp)
1166 {
1167 int error;
1168 struct path path;
1169 char *mnt;
1170 struct dentry *dentry;
1171
1172 mnt = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1173
1174 error = zfsctl_snapshot_path_objset(sb->s_fs_info, objsetid,
1175 MAXPATHLEN, mnt);
1176 if (error)
1177 goto out;
1178
1179 /* Trigger automount */
1180 error = -kern_path(mnt, LOOKUP_FOLLOW|LOOKUP_DIRECTORY, &path);
1181 if (error)
1182 goto out;
1183
1184 path_put(&path);
1185 /*
1186 * Get the snapdir inode. Note, we don't want to use the above
1187 * path because it contains the root of the snapshot rather
1188 * than the snapdir.
1189 */
1190 *ipp = ilookup(sb, ZFSCTL_INO_SNAPDIRS - objsetid);
1191 if (*ipp == NULL) {
1192 error = SET_ERROR(ENOENT);
1193 goto out;
1194 }
1195
1196 /* check gen, see zfsctl_snapdir_fid */
1197 dentry = d_obtain_alias(igrab(*ipp));
1198 if (gen != (!IS_ERR(dentry) && d_mountpoint(dentry))) {
1199 iput(*ipp);
1200 *ipp = NULL;
1201 error = SET_ERROR(ENOENT);
1202 }
1203 if (!IS_ERR(dentry))
1204 dput(dentry);
1205 out:
1206 kmem_free(mnt, MAXPATHLEN);
1207 return (error);
1208 }
1209
1210 int
1211 zfsctl_shares_lookup(struct inode *dip, char *name, struct inode **ipp,
1212 int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
1213 {
1214 zfsvfs_t *zfsvfs = ITOZSB(dip);
1215 struct inode *ip;
1216 znode_t *dzp;
1217 int error;
1218
1219 ZFS_ENTER(zfsvfs);
1220
1221 if (zfsvfs->z_shares_dir == 0) {
1222 ZFS_EXIT(zfsvfs);
1223 return (SET_ERROR(ENOTSUP));
1224 }
1225
1226 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) {
1227 error = zfs_lookup(ZTOI(dzp), name, &ip, 0, cr, NULL, NULL);
1228 iput(ZTOI(dzp));
1229 }
1230
1231 ZFS_EXIT(zfsvfs);
1232
1233 return (error);
1234 }
1235
1236 /*
1237 * Initialize the various pieces we'll need to create and manipulate .zfs
1238 * directories. Currently this is unused but available.
1239 */
1240 void
1241 zfsctl_init(void)
1242 {
1243 avl_create(&zfs_snapshots_by_name, snapentry_compare_by_name,
1244 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t,
1245 se_node_name));
1246 avl_create(&zfs_snapshots_by_objsetid, snapentry_compare_by_objsetid,
1247 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t,
1248 se_node_objsetid));
1249 rw_init(&zfs_snapshot_lock, NULL, RW_DEFAULT, NULL);
1250 }
1251
1252 /*
1253 * Cleanup the various pieces we needed for .zfs directories. In particular
1254 * ensure the expiry timer is canceled safely.
1255 */
1256 void
1257 zfsctl_fini(void)
1258 {
1259 avl_destroy(&zfs_snapshots_by_name);
1260 avl_destroy(&zfs_snapshots_by_objsetid);
1261 rw_destroy(&zfs_snapshot_lock);
1262 }
1263
1264 module_param(zfs_admin_snapshot, int, 0644);
1265 MODULE_PARM_DESC(zfs_admin_snapshot, "Enable mkdir/rmdir/mv in .zfs/snapshot");
1266
1267 module_param(zfs_expire_snapshot, int, 0644);
1268 MODULE_PARM_DESC(zfs_expire_snapshot, "Seconds to expire .zfs/snapshot");