]> git.proxmox.com Git - mirror_zfs-debian.git/blob - module/zfs/zfs_ctldir.c
New upstream version 0.7.11
[mirror_zfs-debian.git] / module / zfs / zfs_ctldir.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 *
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (C) 2011 Lawrence Livermore National Security, LLC.
25 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
26 * LLNL-CODE-403049.
27 * Rewritten for Linux by:
28 * Rohan Puri <rohan.puri15@gmail.com>
29 * Brian Behlendorf <behlendorf1@llnl.gov>
30 * Copyright (c) 2013 by Delphix. All rights reserved.
31 * Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved.
32 */
33
34 /*
35 * ZFS control directory (a.k.a. ".zfs")
36 *
37 * This directory provides a common location for all ZFS meta-objects.
38 * Currently, this is only the 'snapshot' and 'shares' directory, but this may
39 * expand in the future. The elements are built dynamically, as the hierarchy
40 * does not actually exist on disk.
41 *
42 * For 'snapshot', we don't want to have all snapshots always mounted, because
43 * this would take up a huge amount of space in /etc/mnttab. We have three
44 * types of objects:
45 *
46 * ctldir ------> snapshotdir -------> snapshot
47 * |
48 * |
49 * V
50 * mounted fs
51 *
52 * The 'snapshot' node contains just enough information to lookup '..' and act
53 * as a mountpoint for the snapshot. Whenever we lookup a specific snapshot, we
54 * perform an automount of the underlying filesystem and return the
55 * corresponding inode.
56 *
57 * All mounts are handled automatically by an user mode helper which invokes
58 * the mount mount procedure. Unmounts are handled by allowing the mount
59 * point to expire so the kernel may automatically unmount it.
60 *
61 * The '.zfs', '.zfs/snapshot', and all directories created under
62 * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') all share the same
63 * share the same zfsvfs_t as the head filesystem (what '.zfs' lives under).
64 *
65 * File systems mounted on top of the '.zfs/snapshot/<snapname>' paths
66 * (ie: snapshots) are complete ZFS filesystems and have their own unique
67 * zfsvfs_t. However, the fsid reported by these mounts will be the same
68 * as that used by the parent zfsvfs_t to make NFS happy.
69 */
70
71 #include <sys/types.h>
72 #include <sys/param.h>
73 #include <sys/time.h>
74 #include <sys/systm.h>
75 #include <sys/sysmacros.h>
76 #include <sys/pathname.h>
77 #include <sys/vfs.h>
78 #include <sys/vfs_opreg.h>
79 #include <sys/zfs_ctldir.h>
80 #include <sys/zfs_ioctl.h>
81 #include <sys/zfs_vfsops.h>
82 #include <sys/zfs_vnops.h>
83 #include <sys/stat.h>
84 #include <sys/dmu.h>
85 #include <sys/dmu_objset.h>
86 #include <sys/dsl_destroy.h>
87 #include <sys/dsl_deleg.h>
88 #include <sys/mount.h>
89 #include <sys/zpl.h>
90 #include "zfs_namecheck.h"
91
92 /*
93 * Two AVL trees are maintained which contain all currently automounted
94 * snapshots. Every automounted snapshots maps to a single zfs_snapentry_t
95 * entry which MUST:
96 *
97 * - be attached to both trees, and
98 * - be unique, no duplicate entries are allowed.
99 *
100 * The zfs_snapshots_by_name tree is indexed by the full dataset name
101 * while the zfs_snapshots_by_objsetid tree is indexed by the unique
102 * objsetid. This allows for fast lookups either by name or objsetid.
103 */
104 static avl_tree_t zfs_snapshots_by_name;
105 static avl_tree_t zfs_snapshots_by_objsetid;
106 static krwlock_t zfs_snapshot_lock;
107
108 /*
109 * Control Directory Tunables (.zfs)
110 */
111 int zfs_expire_snapshot = ZFSCTL_EXPIRE_SNAPSHOT;
112 int zfs_admin_snapshot = 1;
113
114 typedef struct {
115 char *se_name; /* full snapshot name */
116 char *se_path; /* full mount path */
117 spa_t *se_spa; /* pool spa */
118 uint64_t se_objsetid; /* snapshot objset id */
119 struct dentry *se_root_dentry; /* snapshot root dentry */
120 taskqid_t se_taskqid; /* scheduled unmount taskqid */
121 avl_node_t se_node_name; /* zfs_snapshots_by_name link */
122 avl_node_t se_node_objsetid; /* zfs_snapshots_by_objsetid link */
123 refcount_t se_refcount; /* reference count */
124 } zfs_snapentry_t;
125
126 static void zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay);
127
128 /*
129 * Allocate a new zfs_snapentry_t being careful to make a copy of the
130 * the snapshot name and provided mount point. No reference is taken.
131 */
132 static zfs_snapentry_t *
133 zfsctl_snapshot_alloc(char *full_name, char *full_path, spa_t *spa,
134 uint64_t objsetid, struct dentry *root_dentry)
135 {
136 zfs_snapentry_t *se;
137
138 se = kmem_zalloc(sizeof (zfs_snapentry_t), KM_SLEEP);
139
140 se->se_name = strdup(full_name);
141 se->se_path = strdup(full_path);
142 se->se_spa = spa;
143 se->se_objsetid = objsetid;
144 se->se_root_dentry = root_dentry;
145 se->se_taskqid = TASKQID_INVALID;
146
147 refcount_create(&se->se_refcount);
148
149 return (se);
150 }
151
152 /*
153 * Free a zfs_snapentry_t the called must ensure there are no active
154 * references.
155 */
156 static void
157 zfsctl_snapshot_free(zfs_snapentry_t *se)
158 {
159 refcount_destroy(&se->se_refcount);
160 strfree(se->se_name);
161 strfree(se->se_path);
162
163 kmem_free(se, sizeof (zfs_snapentry_t));
164 }
165
166 /*
167 * Hold a reference on the zfs_snapentry_t.
168 */
169 static void
170 zfsctl_snapshot_hold(zfs_snapentry_t *se)
171 {
172 refcount_add(&se->se_refcount, NULL);
173 }
174
175 /*
176 * Release a reference on the zfs_snapentry_t. When the number of
177 * references drops to zero the structure will be freed.
178 */
179 static void
180 zfsctl_snapshot_rele(zfs_snapentry_t *se)
181 {
182 if (refcount_remove(&se->se_refcount, NULL) == 0)
183 zfsctl_snapshot_free(se);
184 }
185
186 /*
187 * Add a zfs_snapentry_t to both the zfs_snapshots_by_name and
188 * zfs_snapshots_by_objsetid trees. While the zfs_snapentry_t is part
189 * of the trees a reference is held.
190 */
191 static void
192 zfsctl_snapshot_add(zfs_snapentry_t *se)
193 {
194 ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
195 refcount_add(&se->se_refcount, NULL);
196 avl_add(&zfs_snapshots_by_name, se);
197 avl_add(&zfs_snapshots_by_objsetid, se);
198 }
199
200 /*
201 * Remove a zfs_snapentry_t from both the zfs_snapshots_by_name and
202 * zfs_snapshots_by_objsetid trees. Upon removal a reference is dropped,
203 * this can result in the structure being freed if that was the last
204 * remaining reference.
205 */
206 static void
207 zfsctl_snapshot_remove(zfs_snapentry_t *se)
208 {
209 ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
210 avl_remove(&zfs_snapshots_by_name, se);
211 avl_remove(&zfs_snapshots_by_objsetid, se);
212 zfsctl_snapshot_rele(se);
213 }
214
215 /*
216 * Snapshot name comparison function for the zfs_snapshots_by_name.
217 */
218 static int
219 snapentry_compare_by_name(const void *a, const void *b)
220 {
221 const zfs_snapentry_t *se_a = a;
222 const zfs_snapentry_t *se_b = b;
223 int ret;
224
225 ret = strcmp(se_a->se_name, se_b->se_name);
226
227 if (ret < 0)
228 return (-1);
229 else if (ret > 0)
230 return (1);
231 else
232 return (0);
233 }
234
235 /*
236 * Snapshot name comparison function for the zfs_snapshots_by_objsetid.
237 */
238 static int
239 snapentry_compare_by_objsetid(const void *a, const void *b)
240 {
241 const zfs_snapentry_t *se_a = a;
242 const zfs_snapentry_t *se_b = b;
243
244 if (se_a->se_spa != se_b->se_spa)
245 return ((ulong_t)se_a->se_spa < (ulong_t)se_b->se_spa ? -1 : 1);
246
247 if (se_a->se_objsetid < se_b->se_objsetid)
248 return (-1);
249 else if (se_a->se_objsetid > se_b->se_objsetid)
250 return (1);
251 else
252 return (0);
253 }
254
255 /*
256 * Find a zfs_snapentry_t in zfs_snapshots_by_name. If the snapname
257 * is found a pointer to the zfs_snapentry_t is returned and a reference
258 * taken on the structure. The caller is responsible for dropping the
259 * reference with zfsctl_snapshot_rele(). If the snapname is not found
260 * NULL will be returned.
261 */
262 static zfs_snapentry_t *
263 zfsctl_snapshot_find_by_name(char *snapname)
264 {
265 zfs_snapentry_t *se, search;
266
267 ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
268
269 search.se_name = snapname;
270 se = avl_find(&zfs_snapshots_by_name, &search, NULL);
271 if (se)
272 refcount_add(&se->se_refcount, NULL);
273
274 return (se);
275 }
276
277 /*
278 * Find a zfs_snapentry_t in zfs_snapshots_by_objsetid given the objset id
279 * rather than the snapname. In all other respects it behaves the same
280 * as zfsctl_snapshot_find_by_name().
281 */
282 static zfs_snapentry_t *
283 zfsctl_snapshot_find_by_objsetid(spa_t *spa, uint64_t objsetid)
284 {
285 zfs_snapentry_t *se, search;
286
287 ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
288
289 search.se_spa = spa;
290 search.se_objsetid = objsetid;
291 se = avl_find(&zfs_snapshots_by_objsetid, &search, NULL);
292 if (se)
293 refcount_add(&se->se_refcount, NULL);
294
295 return (se);
296 }
297
298 /*
299 * Rename a zfs_snapentry_t in the zfs_snapshots_by_name. The structure is
300 * removed, renamed, and added back to the new correct location in the tree.
301 */
302 static int
303 zfsctl_snapshot_rename(char *old_snapname, char *new_snapname)
304 {
305 zfs_snapentry_t *se;
306
307 ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
308
309 se = zfsctl_snapshot_find_by_name(old_snapname);
310 if (se == NULL)
311 return (ENOENT);
312
313 zfsctl_snapshot_remove(se);
314 strfree(se->se_name);
315 se->se_name = strdup(new_snapname);
316 zfsctl_snapshot_add(se);
317 zfsctl_snapshot_rele(se);
318
319 return (0);
320 }
321
322 /*
323 * Delayed task responsible for unmounting an expired automounted snapshot.
324 */
325 static void
326 snapentry_expire(void *data)
327 {
328 zfs_snapentry_t *se = (zfs_snapentry_t *)data;
329 spa_t *spa = se->se_spa;
330 uint64_t objsetid = se->se_objsetid;
331
332 if (zfs_expire_snapshot <= 0) {
333 zfsctl_snapshot_rele(se);
334 return;
335 }
336
337 se->se_taskqid = TASKQID_INVALID;
338 (void) zfsctl_snapshot_unmount(se->se_name, MNT_EXPIRE);
339 zfsctl_snapshot_rele(se);
340
341 /*
342 * Reschedule the unmount if the zfs_snapentry_t wasn't removed.
343 * This can occur when the snapshot is busy.
344 */
345 rw_enter(&zfs_snapshot_lock, RW_READER);
346 if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
347 zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot);
348 zfsctl_snapshot_rele(se);
349 }
350 rw_exit(&zfs_snapshot_lock);
351 }
352
353 /*
354 * Cancel an automatic unmount of a snapname. This callback is responsible
355 * for dropping the reference on the zfs_snapentry_t which was taken when
356 * during dispatch.
357 */
358 static void
359 zfsctl_snapshot_unmount_cancel(zfs_snapentry_t *se)
360 {
361 ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
362
363 if (taskq_cancel_id(system_delay_taskq, se->se_taskqid) == 0) {
364 se->se_taskqid = TASKQID_INVALID;
365 zfsctl_snapshot_rele(se);
366 }
367 }
368
369 /*
370 * Dispatch the unmount task for delayed handling with a hold protecting it.
371 */
372 static void
373 zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay)
374 {
375 ASSERT3S(se->se_taskqid, ==, TASKQID_INVALID);
376
377 if (delay <= 0)
378 return;
379
380 zfsctl_snapshot_hold(se);
381 se->se_taskqid = taskq_dispatch_delay(system_delay_taskq,
382 snapentry_expire, se, TQ_SLEEP, ddi_get_lbolt() + delay * HZ);
383 }
384
385 /*
386 * Schedule an automatic unmount of objset id to occur in delay seconds from
387 * now. Any previous delayed unmount will be cancelled in favor of the
388 * updated deadline. A reference is taken by zfsctl_snapshot_find_by_name()
389 * and held until the outstanding task is handled or cancelled.
390 */
391 int
392 zfsctl_snapshot_unmount_delay(spa_t *spa, uint64_t objsetid, int delay)
393 {
394 zfs_snapentry_t *se;
395 int error = ENOENT;
396
397 rw_enter(&zfs_snapshot_lock, RW_READER);
398 if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
399 zfsctl_snapshot_unmount_cancel(se);
400 zfsctl_snapshot_unmount_delay_impl(se, delay);
401 zfsctl_snapshot_rele(se);
402 error = 0;
403 }
404 rw_exit(&zfs_snapshot_lock);
405
406 return (error);
407 }
408
409 /*
410 * Check if snapname is currently mounted. Returned non-zero when mounted
411 * and zero when unmounted.
412 */
413 static boolean_t
414 zfsctl_snapshot_ismounted(char *snapname)
415 {
416 zfs_snapentry_t *se;
417 boolean_t ismounted = B_FALSE;
418
419 rw_enter(&zfs_snapshot_lock, RW_READER);
420 if ((se = zfsctl_snapshot_find_by_name(snapname)) != NULL) {
421 zfsctl_snapshot_rele(se);
422 ismounted = B_TRUE;
423 }
424 rw_exit(&zfs_snapshot_lock);
425
426 return (ismounted);
427 }
428
429 /*
430 * Check if the given inode is a part of the virtual .zfs directory.
431 */
432 boolean_t
433 zfsctl_is_node(struct inode *ip)
434 {
435 return (ITOZ(ip)->z_is_ctldir);
436 }
437
438 /*
439 * Check if the given inode is a .zfs/snapshots/snapname directory.
440 */
441 boolean_t
442 zfsctl_is_snapdir(struct inode *ip)
443 {
444 return (zfsctl_is_node(ip) && (ip->i_ino <= ZFSCTL_INO_SNAPDIRS));
445 }
446
447 /*
448 * Allocate a new inode with the passed id and ops.
449 */
450 static struct inode *
451 zfsctl_inode_alloc(zfsvfs_t *zfsvfs, uint64_t id,
452 const struct file_operations *fops, const struct inode_operations *ops)
453 {
454 inode_timespec_t now;
455 struct inode *ip;
456 znode_t *zp;
457
458 ip = new_inode(zfsvfs->z_sb);
459 if (ip == NULL)
460 return (NULL);
461
462 now = current_time(ip);
463 zp = ITOZ(ip);
464 ASSERT3P(zp->z_dirlocks, ==, NULL);
465 ASSERT3P(zp->z_acl_cached, ==, NULL);
466 ASSERT3P(zp->z_xattr_cached, ==, NULL);
467 zp->z_id = id;
468 zp->z_unlinked = 0;
469 zp->z_atime_dirty = 0;
470 zp->z_zn_prefetch = 0;
471 zp->z_moved = 0;
472 zp->z_sa_hdl = NULL;
473 zp->z_blksz = 0;
474 zp->z_seq = 0;
475 zp->z_mapcnt = 0;
476 zp->z_size = 0;
477 zp->z_pflags = 0;
478 zp->z_mode = 0;
479 zp->z_sync_cnt = 0;
480 zp->z_is_mapped = B_FALSE;
481 zp->z_is_ctldir = B_TRUE;
482 zp->z_is_sa = B_FALSE;
483 zp->z_is_stale = B_FALSE;
484 ip->i_generation = 0;
485 ip->i_ino = id;
486 ip->i_mode = (S_IFDIR | S_IRWXUGO);
487 ip->i_uid = SUID_TO_KUID(0);
488 ip->i_gid = SGID_TO_KGID(0);
489 ip->i_blkbits = SPA_MINBLOCKSHIFT;
490 ip->i_atime = now;
491 ip->i_mtime = now;
492 ip->i_ctime = now;
493 ip->i_fop = fops;
494 ip->i_op = ops;
495 #if defined(IOP_XATTR)
496 ip->i_opflags &= ~IOP_XATTR;
497 #endif
498
499 if (insert_inode_locked(ip)) {
500 unlock_new_inode(ip);
501 iput(ip);
502 return (NULL);
503 }
504
505 mutex_enter(&zfsvfs->z_znodes_lock);
506 list_insert_tail(&zfsvfs->z_all_znodes, zp);
507 zfsvfs->z_nr_znodes++;
508 membar_producer();
509 mutex_exit(&zfsvfs->z_znodes_lock);
510
511 unlock_new_inode(ip);
512
513 return (ip);
514 }
515
516 /*
517 * Lookup the inode with given id, it will be allocated if needed.
518 */
519 static struct inode *
520 zfsctl_inode_lookup(zfsvfs_t *zfsvfs, uint64_t id,
521 const struct file_operations *fops, const struct inode_operations *ops)
522 {
523 struct inode *ip = NULL;
524
525 while (ip == NULL) {
526 ip = ilookup(zfsvfs->z_sb, (unsigned long)id);
527 if (ip)
528 break;
529
530 /* May fail due to concurrent zfsctl_inode_alloc() */
531 ip = zfsctl_inode_alloc(zfsvfs, id, fops, ops);
532 }
533
534 return (ip);
535 }
536
537 /*
538 * Create the '.zfs' directory. This directory is cached as part of the VFS
539 * structure. This results in a hold on the zfsvfs_t. The code in zfs_umount()
540 * therefore checks against a vfs_count of 2 instead of 1. This reference
541 * is removed when the ctldir is destroyed in the unmount. All other entities
542 * under the '.zfs' directory are created dynamically as needed.
543 *
544 * Because the dynamically created '.zfs' directory entries assume the use
545 * of 64-bit inode numbers this support must be disabled on 32-bit systems.
546 */
547 int
548 zfsctl_create(zfsvfs_t *zfsvfs)
549 {
550 ASSERT(zfsvfs->z_ctldir == NULL);
551
552 zfsvfs->z_ctldir = zfsctl_inode_alloc(zfsvfs, ZFSCTL_INO_ROOT,
553 &zpl_fops_root, &zpl_ops_root);
554 if (zfsvfs->z_ctldir == NULL)
555 return (SET_ERROR(ENOENT));
556
557 return (0);
558 }
559
560 /*
561 * Destroy the '.zfs' directory or remove a snapshot from zfs_snapshots_by_name.
562 * Only called when the filesystem is unmounted.
563 */
564 void
565 zfsctl_destroy(zfsvfs_t *zfsvfs)
566 {
567 if (zfsvfs->z_issnap) {
568 zfs_snapentry_t *se;
569 spa_t *spa = zfsvfs->z_os->os_spa;
570 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os);
571
572 rw_enter(&zfs_snapshot_lock, RW_WRITER);
573 if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid))
574 != NULL) {
575 zfsctl_snapshot_unmount_cancel(se);
576 zfsctl_snapshot_remove(se);
577 zfsctl_snapshot_rele(se);
578 }
579 rw_exit(&zfs_snapshot_lock);
580 } else if (zfsvfs->z_ctldir) {
581 iput(zfsvfs->z_ctldir);
582 zfsvfs->z_ctldir = NULL;
583 }
584 }
585
586 /*
587 * Given a root znode, retrieve the associated .zfs directory.
588 * Add a hold to the vnode and return it.
589 */
590 struct inode *
591 zfsctl_root(znode_t *zp)
592 {
593 ASSERT(zfs_has_ctldir(zp));
594 igrab(ZTOZSB(zp)->z_ctldir);
595 return (ZTOZSB(zp)->z_ctldir);
596 }
597
598 /*
599 * Generate a long fid to indicate a snapdir. We encode whether snapdir is
600 * already monunted in gen field. We do this because nfsd lookup will not
601 * trigger automount. Next time the nfsd does fh_to_dentry, we will notice
602 * this and do automount and return ESTALE to force nfsd revalidate and follow
603 * mount.
604 */
605 static int
606 zfsctl_snapdir_fid(struct inode *ip, fid_t *fidp)
607 {
608 zfid_short_t *zfid = (zfid_short_t *)fidp;
609 zfid_long_t *zlfid = (zfid_long_t *)fidp;
610 uint32_t gen = 0;
611 uint64_t object;
612 uint64_t objsetid;
613 int i;
614 struct dentry *dentry;
615
616 if (fidp->fid_len < LONG_FID_LEN) {
617 fidp->fid_len = LONG_FID_LEN;
618 return (SET_ERROR(ENOSPC));
619 }
620
621 object = ip->i_ino;
622 objsetid = ZFSCTL_INO_SNAPDIRS - ip->i_ino;
623 zfid->zf_len = LONG_FID_LEN;
624
625 dentry = d_obtain_alias(igrab(ip));
626 if (!IS_ERR(dentry)) {
627 gen = !!d_mountpoint(dentry);
628 dput(dentry);
629 }
630
631 for (i = 0; i < sizeof (zfid->zf_object); i++)
632 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
633
634 for (i = 0; i < sizeof (zfid->zf_gen); i++)
635 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
636
637 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
638 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
639
640 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
641 zlfid->zf_setgen[i] = 0;
642
643 return (0);
644 }
645
646 /*
647 * Generate an appropriate fid for an entry in the .zfs directory.
648 */
649 int
650 zfsctl_fid(struct inode *ip, fid_t *fidp)
651 {
652 znode_t *zp = ITOZ(ip);
653 zfsvfs_t *zfsvfs = ITOZSB(ip);
654 uint64_t object = zp->z_id;
655 zfid_short_t *zfid;
656 int i;
657
658 ZFS_ENTER(zfsvfs);
659
660 if (zfsctl_is_snapdir(ip)) {
661 ZFS_EXIT(zfsvfs);
662 return (zfsctl_snapdir_fid(ip, fidp));
663 }
664
665 if (fidp->fid_len < SHORT_FID_LEN) {
666 fidp->fid_len = SHORT_FID_LEN;
667 ZFS_EXIT(zfsvfs);
668 return (SET_ERROR(ENOSPC));
669 }
670
671 zfid = (zfid_short_t *)fidp;
672
673 zfid->zf_len = SHORT_FID_LEN;
674
675 for (i = 0; i < sizeof (zfid->zf_object); i++)
676 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
677
678 /* .zfs znodes always have a generation number of 0 */
679 for (i = 0; i < sizeof (zfid->zf_gen); i++)
680 zfid->zf_gen[i] = 0;
681
682 ZFS_EXIT(zfsvfs);
683 return (0);
684 }
685
686 /*
687 * Construct a full dataset name in full_name: "pool/dataset@snap_name"
688 */
689 static int
690 zfsctl_snapshot_name(zfsvfs_t *zfsvfs, const char *snap_name, int len,
691 char *full_name)
692 {
693 objset_t *os = zfsvfs->z_os;
694
695 if (zfs_component_namecheck(snap_name, NULL, NULL) != 0)
696 return (SET_ERROR(EILSEQ));
697
698 dmu_objset_name(os, full_name);
699 if ((strlen(full_name) + 1 + strlen(snap_name)) >= len)
700 return (SET_ERROR(ENAMETOOLONG));
701
702 (void) strcat(full_name, "@");
703 (void) strcat(full_name, snap_name);
704
705 return (0);
706 }
707
708 /*
709 * Returns full path in full_path: "/pool/dataset/.zfs/snapshot/snap_name/"
710 */
711 static int
712 zfsctl_snapshot_path(struct path *path, int len, char *full_path)
713 {
714 char *path_buffer, *path_ptr;
715 int path_len, error = 0;
716
717 path_buffer = kmem_alloc(len, KM_SLEEP);
718
719 path_ptr = d_path(path, path_buffer, len);
720 if (IS_ERR(path_ptr)) {
721 error = -PTR_ERR(path_ptr);
722 goto out;
723 }
724
725 path_len = path_buffer + len - 1 - path_ptr;
726 if (path_len > len) {
727 error = SET_ERROR(EFAULT);
728 goto out;
729 }
730
731 memcpy(full_path, path_ptr, path_len);
732 full_path[path_len] = '\0';
733 out:
734 kmem_free(path_buffer, len);
735
736 return (error);
737 }
738
739 /*
740 * Returns full path in full_path: "/pool/dataset/.zfs/snapshot/snap_name/"
741 */
742 static int
743 zfsctl_snapshot_path_objset(zfsvfs_t *zfsvfs, uint64_t objsetid,
744 int path_len, char *full_path)
745 {
746 objset_t *os = zfsvfs->z_os;
747 fstrans_cookie_t cookie;
748 char *snapname;
749 boolean_t case_conflict;
750 uint64_t id, pos = 0;
751 int error = 0;
752
753 if (zfsvfs->z_vfs->vfs_mntpoint == NULL)
754 return (ENOENT);
755
756 cookie = spl_fstrans_mark();
757 snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
758
759 while (error == 0) {
760 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
761 error = dmu_snapshot_list_next(zfsvfs->z_os,
762 ZFS_MAX_DATASET_NAME_LEN, snapname, &id, &pos,
763 &case_conflict);
764 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
765 if (error)
766 goto out;
767
768 if (id == objsetid)
769 break;
770 }
771
772 memset(full_path, 0, path_len);
773 snprintf(full_path, path_len - 1, "%s/.zfs/snapshot/%s",
774 zfsvfs->z_vfs->vfs_mntpoint, snapname);
775 out:
776 kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN);
777 spl_fstrans_unmark(cookie);
778
779 return (error);
780 }
781
782 /*
783 * Special case the handling of "..".
784 */
785 int
786 zfsctl_root_lookup(struct inode *dip, char *name, struct inode **ipp,
787 int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
788 {
789 zfsvfs_t *zfsvfs = ITOZSB(dip);
790 int error = 0;
791
792 ZFS_ENTER(zfsvfs);
793
794 if (strcmp(name, "..") == 0) {
795 *ipp = dip->i_sb->s_root->d_inode;
796 } else if (strcmp(name, ZFS_SNAPDIR_NAME) == 0) {
797 *ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SNAPDIR,
798 &zpl_fops_snapdir, &zpl_ops_snapdir);
799 } else if (strcmp(name, ZFS_SHAREDIR_NAME) == 0) {
800 *ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SHARES,
801 &zpl_fops_shares, &zpl_ops_shares);
802 } else {
803 *ipp = NULL;
804 }
805
806 if (*ipp == NULL)
807 error = SET_ERROR(ENOENT);
808
809 ZFS_EXIT(zfsvfs);
810
811 return (error);
812 }
813
814 /*
815 * Lookup entry point for the 'snapshot' directory. Try to open the
816 * snapshot if it exist, creating the pseudo filesystem inode as necessary.
817 * Perform a mount of the associated dataset on top of the inode.
818 */
819 int
820 zfsctl_snapdir_lookup(struct inode *dip, char *name, struct inode **ipp,
821 int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
822 {
823 zfsvfs_t *zfsvfs = ITOZSB(dip);
824 uint64_t id;
825 int error;
826
827 ZFS_ENTER(zfsvfs);
828
829 error = dmu_snapshot_lookup(zfsvfs->z_os, name, &id);
830 if (error) {
831 ZFS_EXIT(zfsvfs);
832 return (error);
833 }
834
835 *ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SNAPDIRS - id,
836 &simple_dir_operations, &simple_dir_inode_operations);
837 if (*ipp == NULL)
838 error = SET_ERROR(ENOENT);
839
840 ZFS_EXIT(zfsvfs);
841
842 return (error);
843 }
844
845 /*
846 * Renaming a directory under '.zfs/snapshot' will automatically trigger
847 * a rename of the snapshot to the new given name. The rename is confined
848 * to the '.zfs/snapshot' directory snapshots cannot be moved elsewhere.
849 */
850 int
851 zfsctl_snapdir_rename(struct inode *sdip, char *snm,
852 struct inode *tdip, char *tnm, cred_t *cr, int flags)
853 {
854 zfsvfs_t *zfsvfs = ITOZSB(sdip);
855 char *to, *from, *real, *fsname;
856 int error;
857
858 if (!zfs_admin_snapshot)
859 return (EACCES);
860
861 ZFS_ENTER(zfsvfs);
862
863 to = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
864 from = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
865 real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
866 fsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
867
868 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
869 error = dmu_snapshot_realname(zfsvfs->z_os, snm, real,
870 ZFS_MAX_DATASET_NAME_LEN, NULL);
871 if (error == 0) {
872 snm = real;
873 } else if (error != ENOTSUP) {
874 goto out;
875 }
876 }
877
878 dmu_objset_name(zfsvfs->z_os, fsname);
879
880 error = zfsctl_snapshot_name(ITOZSB(sdip), snm,
881 ZFS_MAX_DATASET_NAME_LEN, from);
882 if (error == 0)
883 error = zfsctl_snapshot_name(ITOZSB(tdip), tnm,
884 ZFS_MAX_DATASET_NAME_LEN, to);
885 if (error == 0)
886 error = zfs_secpolicy_rename_perms(from, to, cr);
887 if (error != 0)
888 goto out;
889
890 /*
891 * Cannot move snapshots out of the snapdir.
892 */
893 if (sdip != tdip) {
894 error = SET_ERROR(EINVAL);
895 goto out;
896 }
897
898 /*
899 * No-op when names are identical.
900 */
901 if (strcmp(snm, tnm) == 0) {
902 error = 0;
903 goto out;
904 }
905
906 rw_enter(&zfs_snapshot_lock, RW_WRITER);
907
908 error = dsl_dataset_rename_snapshot(fsname, snm, tnm, B_FALSE);
909 if (error == 0)
910 (void) zfsctl_snapshot_rename(snm, tnm);
911
912 rw_exit(&zfs_snapshot_lock);
913 out:
914 kmem_free(from, ZFS_MAX_DATASET_NAME_LEN);
915 kmem_free(to, ZFS_MAX_DATASET_NAME_LEN);
916 kmem_free(real, ZFS_MAX_DATASET_NAME_LEN);
917 kmem_free(fsname, ZFS_MAX_DATASET_NAME_LEN);
918
919 ZFS_EXIT(zfsvfs);
920
921 return (error);
922 }
923
924 /*
925 * Removing a directory under '.zfs/snapshot' will automatically trigger
926 * the removal of the snapshot with the given name.
927 */
928 int
929 zfsctl_snapdir_remove(struct inode *dip, char *name, cred_t *cr, int flags)
930 {
931 zfsvfs_t *zfsvfs = ITOZSB(dip);
932 char *snapname, *real;
933 int error;
934
935 if (!zfs_admin_snapshot)
936 return (EACCES);
937
938 ZFS_ENTER(zfsvfs);
939
940 snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
941 real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
942
943 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
944 error = dmu_snapshot_realname(zfsvfs->z_os, name, real,
945 ZFS_MAX_DATASET_NAME_LEN, NULL);
946 if (error == 0) {
947 name = real;
948 } else if (error != ENOTSUP) {
949 goto out;
950 }
951 }
952
953 error = zfsctl_snapshot_name(ITOZSB(dip), name,
954 ZFS_MAX_DATASET_NAME_LEN, snapname);
955 if (error == 0)
956 error = zfs_secpolicy_destroy_perms(snapname, cr);
957 if (error != 0)
958 goto out;
959
960 error = zfsctl_snapshot_unmount(snapname, MNT_FORCE);
961 if ((error == 0) || (error == ENOENT))
962 error = dsl_destroy_snapshot(snapname, B_FALSE);
963 out:
964 kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN);
965 kmem_free(real, ZFS_MAX_DATASET_NAME_LEN);
966
967 ZFS_EXIT(zfsvfs);
968
969 return (error);
970 }
971
972 /*
973 * Creating a directory under '.zfs/snapshot' will automatically trigger
974 * the creation of a new snapshot with the given name.
975 */
976 int
977 zfsctl_snapdir_mkdir(struct inode *dip, char *dirname, vattr_t *vap,
978 struct inode **ipp, cred_t *cr, int flags)
979 {
980 zfsvfs_t *zfsvfs = ITOZSB(dip);
981 char *dsname;
982 int error;
983
984 if (!zfs_admin_snapshot)
985 return (EACCES);
986
987 dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
988
989 if (zfs_component_namecheck(dirname, NULL, NULL) != 0) {
990 error = SET_ERROR(EILSEQ);
991 goto out;
992 }
993
994 dmu_objset_name(zfsvfs->z_os, dsname);
995
996 error = zfs_secpolicy_snapshot_perms(dsname, cr);
997 if (error != 0)
998 goto out;
999
1000 if (error == 0) {
1001 error = dmu_objset_snapshot_one(dsname, dirname);
1002 if (error != 0)
1003 goto out;
1004
1005 error = zfsctl_snapdir_lookup(dip, dirname, ipp,
1006 0, cr, NULL, NULL);
1007 }
1008 out:
1009 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
1010
1011 return (error);
1012 }
1013
1014 /*
1015 * Attempt to unmount a snapshot by making a call to user space.
1016 * There is no assurance that this can or will succeed, is just a
1017 * best effort. In the case where it does fail, perhaps because
1018 * it's in use, the unmount will fail harmlessly.
1019 */
1020 int
1021 zfsctl_snapshot_unmount(char *snapname, int flags)
1022 {
1023 char *argv[] = { "/usr/bin/env", "umount", "-t", "zfs", "-n", NULL,
1024 NULL };
1025 char *envp[] = { NULL };
1026 zfs_snapentry_t *se;
1027 int error;
1028
1029 rw_enter(&zfs_snapshot_lock, RW_READER);
1030 if ((se = zfsctl_snapshot_find_by_name(snapname)) == NULL) {
1031 rw_exit(&zfs_snapshot_lock);
1032 return (ENOENT);
1033 }
1034 rw_exit(&zfs_snapshot_lock);
1035
1036 if (flags & MNT_FORCE)
1037 argv[4] = "-fn";
1038 argv[5] = se->se_path;
1039 dprintf("unmount; path=%s\n", se->se_path);
1040 error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
1041 zfsctl_snapshot_rele(se);
1042
1043
1044 /*
1045 * The umount system utility will return 256 on error. We must
1046 * assume this error is because the file system is busy so it is
1047 * converted to the more sensible EBUSY.
1048 */
1049 if (error)
1050 error = SET_ERROR(EBUSY);
1051
1052 return (error);
1053 }
1054
1055 #define MOUNT_BUSY 0x80 /* Mount failed due to EBUSY (from mntent.h) */
1056
1057 int
1058 zfsctl_snapshot_mount(struct path *path, int flags)
1059 {
1060 struct dentry *dentry = path->dentry;
1061 struct inode *ip = dentry->d_inode;
1062 zfsvfs_t *zfsvfs;
1063 zfsvfs_t *snap_zfsvfs;
1064 zfs_snapentry_t *se;
1065 char *full_name, *full_path;
1066 char *argv[] = { "/usr/bin/env", "mount", "-t", "zfs", "-n", NULL, NULL,
1067 NULL };
1068 char *envp[] = { NULL };
1069 int error;
1070 struct path spath;
1071
1072 if (ip == NULL)
1073 return (EISDIR);
1074
1075 zfsvfs = ITOZSB(ip);
1076 ZFS_ENTER(zfsvfs);
1077
1078 full_name = kmem_zalloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
1079 full_path = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1080
1081 error = zfsctl_snapshot_name(zfsvfs, dname(dentry),
1082 ZFS_MAX_DATASET_NAME_LEN, full_name);
1083 if (error)
1084 goto error;
1085
1086 error = zfsctl_snapshot_path(path, MAXPATHLEN, full_path);
1087 if (error)
1088 goto error;
1089
1090 /*
1091 * Multiple concurrent automounts of a snapshot are never allowed.
1092 * The snapshot may be manually mounted as many times as desired.
1093 */
1094 if (zfsctl_snapshot_ismounted(full_name)) {
1095 error = 0;
1096 goto error;
1097 }
1098
1099 /*
1100 * Attempt to mount the snapshot from user space. Normally this
1101 * would be done using the vfs_kern_mount() function, however that
1102 * function is marked GPL-only and cannot be used. On error we
1103 * careful to log the real error to the console and return EISDIR
1104 * to safely abort the automount. This should be very rare.
1105 *
1106 * If the user mode helper happens to return EBUSY, a concurrent
1107 * mount is already in progress in which case the error is ignored.
1108 * Take note that if the program was executed successfully the return
1109 * value from call_usermodehelper() will be (exitcode << 8 + signal).
1110 */
1111 dprintf("mount; name=%s path=%s\n", full_name, full_path);
1112 argv[5] = full_name;
1113 argv[6] = full_path;
1114 error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
1115 if (error) {
1116 if (!(error & MOUNT_BUSY << 8)) {
1117 cmn_err(CE_WARN, "Unable to automount %s/%s: %d",
1118 full_path, full_name, error);
1119 error = SET_ERROR(EISDIR);
1120 } else {
1121 /*
1122 * EBUSY, this could mean a concurrent mount, or the
1123 * snapshot has already been mounted at completely
1124 * different place. We return 0 so VFS will retry. For
1125 * the latter case the VFS will retry several times
1126 * and return ELOOP, which is probably not a very good
1127 * behavior.
1128 */
1129 error = 0;
1130 }
1131 goto error;
1132 }
1133
1134 /*
1135 * Follow down in to the mounted snapshot and set MNT_SHRINKABLE
1136 * to identify this as an automounted filesystem.
1137 */
1138 spath = *path;
1139 path_get(&spath);
1140 if (zpl_follow_down_one(&spath)) {
1141 snap_zfsvfs = ITOZSB(spath.dentry->d_inode);
1142 snap_zfsvfs->z_parent = zfsvfs;
1143 dentry = spath.dentry;
1144 spath.mnt->mnt_flags |= MNT_SHRINKABLE;
1145
1146 rw_enter(&zfs_snapshot_lock, RW_WRITER);
1147 se = zfsctl_snapshot_alloc(full_name, full_path,
1148 snap_zfsvfs->z_os->os_spa, dmu_objset_id(snap_zfsvfs->z_os),
1149 dentry);
1150 zfsctl_snapshot_add(se);
1151 zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot);
1152 rw_exit(&zfs_snapshot_lock);
1153 }
1154 path_put(&spath);
1155 error:
1156 kmem_free(full_name, ZFS_MAX_DATASET_NAME_LEN);
1157 kmem_free(full_path, MAXPATHLEN);
1158
1159 ZFS_EXIT(zfsvfs);
1160
1161 return (error);
1162 }
1163
1164 /*
1165 * Get the snapdir inode from fid
1166 */
1167 int
1168 zfsctl_snapdir_vget(struct super_block *sb, uint64_t objsetid, int gen,
1169 struct inode **ipp)
1170 {
1171 int error;
1172 struct path path;
1173 char *mnt;
1174 struct dentry *dentry;
1175
1176 mnt = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1177
1178 error = zfsctl_snapshot_path_objset(sb->s_fs_info, objsetid,
1179 MAXPATHLEN, mnt);
1180 if (error)
1181 goto out;
1182
1183 /* Trigger automount */
1184 error = -kern_path(mnt, LOOKUP_FOLLOW|LOOKUP_DIRECTORY, &path);
1185 if (error)
1186 goto out;
1187
1188 path_put(&path);
1189 /*
1190 * Get the snapdir inode. Note, we don't want to use the above
1191 * path because it contains the root of the snapshot rather
1192 * than the snapdir.
1193 */
1194 *ipp = ilookup(sb, ZFSCTL_INO_SNAPDIRS - objsetid);
1195 if (*ipp == NULL) {
1196 error = SET_ERROR(ENOENT);
1197 goto out;
1198 }
1199
1200 /* check gen, see zfsctl_snapdir_fid */
1201 dentry = d_obtain_alias(igrab(*ipp));
1202 if (gen != (!IS_ERR(dentry) && d_mountpoint(dentry))) {
1203 iput(*ipp);
1204 *ipp = NULL;
1205 error = SET_ERROR(ENOENT);
1206 }
1207 if (!IS_ERR(dentry))
1208 dput(dentry);
1209 out:
1210 kmem_free(mnt, MAXPATHLEN);
1211 return (error);
1212 }
1213
1214 int
1215 zfsctl_shares_lookup(struct inode *dip, char *name, struct inode **ipp,
1216 int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
1217 {
1218 zfsvfs_t *zfsvfs = ITOZSB(dip);
1219 struct inode *ip;
1220 znode_t *dzp;
1221 int error;
1222
1223 ZFS_ENTER(zfsvfs);
1224
1225 if (zfsvfs->z_shares_dir == 0) {
1226 ZFS_EXIT(zfsvfs);
1227 return (SET_ERROR(ENOTSUP));
1228 }
1229
1230 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) {
1231 error = zfs_lookup(ZTOI(dzp), name, &ip, 0, cr, NULL, NULL);
1232 iput(ZTOI(dzp));
1233 }
1234
1235 ZFS_EXIT(zfsvfs);
1236
1237 return (error);
1238 }
1239
1240 /*
1241 * Initialize the various pieces we'll need to create and manipulate .zfs
1242 * directories. Currently this is unused but available.
1243 */
1244 void
1245 zfsctl_init(void)
1246 {
1247 avl_create(&zfs_snapshots_by_name, snapentry_compare_by_name,
1248 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t,
1249 se_node_name));
1250 avl_create(&zfs_snapshots_by_objsetid, snapentry_compare_by_objsetid,
1251 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t,
1252 se_node_objsetid));
1253 rw_init(&zfs_snapshot_lock, NULL, RW_DEFAULT, NULL);
1254 }
1255
1256 /*
1257 * Cleanup the various pieces we needed for .zfs directories. In particular
1258 * ensure the expiry timer is canceled safely.
1259 */
1260 void
1261 zfsctl_fini(void)
1262 {
1263 avl_destroy(&zfs_snapshots_by_name);
1264 avl_destroy(&zfs_snapshots_by_objsetid);
1265 rw_destroy(&zfs_snapshot_lock);
1266 }
1267
1268 module_param(zfs_admin_snapshot, int, 0644);
1269 MODULE_PARM_DESC(zfs_admin_snapshot, "Enable mkdir/rmdir/mv in .zfs/snapshot");
1270
1271 module_param(zfs_expire_snapshot, int, 0644);
1272 MODULE_PARM_DESC(zfs_expire_snapshot, "Seconds to expire .zfs/snapshot");