]> git.proxmox.com Git - mirror_zfs-debian.git/blob - module/zfs/zfs_fm.c
New upstream version 0.7.2
[mirror_zfs-debian.git] / module / zfs / zfs_fm.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * Copyright (c) 2012 by Delphix. All rights reserved.
28 */
29
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/vdev.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/zio.h>
35 #include <sys/zio_checksum.h>
36
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/fm/protocol.h>
39 #include <sys/fm/util.h>
40 #include <sys/sysevent.h>
41
42 /*
43 * This general routine is responsible for generating all the different ZFS
44 * ereports. The payload is dependent on the class, and which arguments are
45 * supplied to the function:
46 *
47 * EREPORT POOL VDEV IO
48 * block X X X
49 * data X X
50 * device X X
51 * pool X
52 *
53 * If we are in a loading state, all errors are chained together by the same
54 * SPA-wide ENA (Error Numeric Association).
55 *
56 * For isolated I/O requests, we get the ENA from the zio_t. The propagation
57 * gets very complicated due to RAID-Z, gang blocks, and vdev caching. We want
58 * to chain together all ereports associated with a logical piece of data. For
59 * read I/Os, there are basically three 'types' of I/O, which form a roughly
60 * layered diagram:
61 *
62 * +---------------+
63 * | Aggregate I/O | No associated logical data or device
64 * +---------------+
65 * |
66 * V
67 * +---------------+ Reads associated with a piece of logical data.
68 * | Read I/O | This includes reads on behalf of RAID-Z,
69 * +---------------+ mirrors, gang blocks, retries, etc.
70 * |
71 * V
72 * +---------------+ Reads associated with a particular device, but
73 * | Physical I/O | no logical data. Issued as part of vdev caching
74 * +---------------+ and I/O aggregation.
75 *
76 * Note that 'physical I/O' here is not the same terminology as used in the rest
77 * of ZIO. Typically, 'physical I/O' simply means that there is no attached
78 * blockpointer. But I/O with no associated block pointer can still be related
79 * to a logical piece of data (i.e. RAID-Z requests).
80 *
81 * Purely physical I/O always have unique ENAs. They are not related to a
82 * particular piece of logical data, and therefore cannot be chained together.
83 * We still generate an ereport, but the DE doesn't correlate it with any
84 * logical piece of data. When such an I/O fails, the delegated I/O requests
85 * will issue a retry, which will trigger the 'real' ereport with the correct
86 * ENA.
87 *
88 * We keep track of the ENA for a ZIO chain through the 'io_logical' member.
89 * When a new logical I/O is issued, we set this to point to itself. Child I/Os
90 * then inherit this pointer, so that when it is first set subsequent failures
91 * will use the same ENA. For vdev cache fill and queue aggregation I/O,
92 * this pointer is set to NULL, and no ereport will be generated (since it
93 * doesn't actually correspond to any particular device or piece of data,
94 * and the caller will always retry without caching or queueing anyway).
95 *
96 * For checksum errors, we want to include more information about the actual
97 * error which occurs. Accordingly, we build an ereport when the error is
98 * noticed, but instead of sending it in immediately, we hang it off of the
99 * io_cksum_report field of the logical IO. When the logical IO completes
100 * (successfully or not), zfs_ereport_finish_checksum() is called with the
101 * good and bad versions of the buffer (if available), and we annotate the
102 * ereport with information about the differences.
103 */
104 #ifdef _KERNEL
105 void
106 zfs_zevent_post_cb(nvlist_t *nvl, nvlist_t *detector)
107 {
108 if (nvl)
109 fm_nvlist_destroy(nvl, FM_NVA_FREE);
110
111 if (detector)
112 fm_nvlist_destroy(detector, FM_NVA_FREE);
113 }
114
115 /*
116 * We want to rate limit ZIO delay and checksum events so as to not
117 * flood ZED when a disk is acting up.
118 *
119 * Returns 1 if we're ratelimiting, 0 if not.
120 */
121 static int
122 zfs_is_ratelimiting_event(const char *subclass, vdev_t *vd)
123 {
124 int rc = 0;
125 /*
126 * __ratelimit() returns 1 if we're *not* ratelimiting and 0 if we
127 * are. Invert it to get our return value.
128 */
129 if (strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) {
130 rc = !zfs_ratelimit(&vd->vdev_delay_rl);
131 } else if (strcmp(subclass, FM_EREPORT_ZFS_CHECKSUM) == 0) {
132 rc = !zfs_ratelimit(&vd->vdev_checksum_rl);
133 }
134
135 if (rc) {
136 /* We're rate limiting */
137 fm_erpt_dropped_increment();
138 }
139
140 return (rc);
141 }
142
143 static void
144 zfs_ereport_start(nvlist_t **ereport_out, nvlist_t **detector_out,
145 const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio,
146 uint64_t stateoroffset, uint64_t size)
147 {
148 nvlist_t *ereport, *detector;
149
150 uint64_t ena;
151 char class[64];
152
153 /*
154 * If we are doing a spa_tryimport() or in recovery mode,
155 * ignore errors.
156 */
157 if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT ||
158 spa_load_state(spa) == SPA_LOAD_RECOVER)
159 return;
160
161 /*
162 * If we are in the middle of opening a pool, and the previous attempt
163 * failed, don't bother logging any new ereports - we're just going to
164 * get the same diagnosis anyway.
165 */
166 if (spa_load_state(spa) != SPA_LOAD_NONE &&
167 spa->spa_last_open_failed)
168 return;
169
170 if (zio != NULL) {
171 /*
172 * If this is not a read or write zio, ignore the error. This
173 * can occur if the DKIOCFLUSHWRITECACHE ioctl fails.
174 */
175 if (zio->io_type != ZIO_TYPE_READ &&
176 zio->io_type != ZIO_TYPE_WRITE)
177 return;
178
179 if (vd != NULL) {
180 /*
181 * If the vdev has already been marked as failing due
182 * to a failed probe, then ignore any subsequent I/O
183 * errors, as the DE will automatically fault the vdev
184 * on the first such failure. This also catches cases
185 * where vdev_remove_wanted is set and the device has
186 * not yet been asynchronously placed into the REMOVED
187 * state.
188 */
189 if (zio->io_vd == vd && !vdev_accessible(vd, zio))
190 return;
191
192 /*
193 * Ignore checksum errors for reads from DTL regions of
194 * leaf vdevs.
195 */
196 if (zio->io_type == ZIO_TYPE_READ &&
197 zio->io_error == ECKSUM &&
198 vd->vdev_ops->vdev_op_leaf &&
199 vdev_dtl_contains(vd, DTL_MISSING, zio->io_txg, 1))
200 return;
201 }
202 }
203
204 /*
205 * For probe failure, we want to avoid posting ereports if we've
206 * already removed the device in the meantime.
207 */
208 if (vd != NULL &&
209 strcmp(subclass, FM_EREPORT_ZFS_PROBE_FAILURE) == 0 &&
210 (vd->vdev_remove_wanted || vd->vdev_state == VDEV_STATE_REMOVED))
211 return;
212
213 if ((strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) &&
214 (zio != NULL) && (!zio->io_timestamp)) {
215 /* Ignore bogus delay events */
216 return;
217 }
218
219 if ((ereport = fm_nvlist_create(NULL)) == NULL)
220 return;
221
222 if ((detector = fm_nvlist_create(NULL)) == NULL) {
223 fm_nvlist_destroy(ereport, FM_NVA_FREE);
224 return;
225 }
226
227 /*
228 * Serialize ereport generation
229 */
230 mutex_enter(&spa->spa_errlist_lock);
231
232 /*
233 * Determine the ENA to use for this event. If we are in a loading
234 * state, use a SPA-wide ENA. Otherwise, if we are in an I/O state, use
235 * a root zio-wide ENA. Otherwise, simply use a unique ENA.
236 */
237 if (spa_load_state(spa) != SPA_LOAD_NONE) {
238 if (spa->spa_ena == 0)
239 spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1);
240 ena = spa->spa_ena;
241 } else if (zio != NULL && zio->io_logical != NULL) {
242 if (zio->io_logical->io_ena == 0)
243 zio->io_logical->io_ena =
244 fm_ena_generate(0, FM_ENA_FMT1);
245 ena = zio->io_logical->io_ena;
246 } else {
247 ena = fm_ena_generate(0, FM_ENA_FMT1);
248 }
249
250 /*
251 * Construct the full class, detector, and other standard FMA fields.
252 */
253 (void) snprintf(class, sizeof (class), "%s.%s",
254 ZFS_ERROR_CLASS, subclass);
255
256 fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa),
257 vd != NULL ? vd->vdev_guid : 0);
258
259 fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL);
260
261 /*
262 * Construct the per-ereport payload, depending on which parameters are
263 * passed in.
264 */
265
266 /*
267 * Generic payload members common to all ereports.
268 */
269 fm_payload_set(ereport,
270 FM_EREPORT_PAYLOAD_ZFS_POOL, DATA_TYPE_STRING, spa_name(spa),
271 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, DATA_TYPE_UINT64, spa_guid(spa),
272 FM_EREPORT_PAYLOAD_ZFS_POOL_STATE, DATA_TYPE_UINT64,
273 (uint64_t)spa_state(spa),
274 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32,
275 (int32_t)spa_load_state(spa), NULL);
276
277 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE,
278 DATA_TYPE_STRING,
279 spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ?
280 FM_EREPORT_FAILMODE_WAIT :
281 spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ?
282 FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC,
283 NULL);
284
285 if (vd != NULL) {
286 vdev_t *pvd = vd->vdev_parent;
287 vdev_queue_t *vq = &vd->vdev_queue;
288 vdev_stat_t *vs = &vd->vdev_stat;
289 vdev_t *spare_vd;
290 uint64_t *spare_guids;
291 char **spare_paths;
292 int i, spare_count;
293
294 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID,
295 DATA_TYPE_UINT64, vd->vdev_guid,
296 FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE,
297 DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL);
298 if (vd->vdev_path != NULL)
299 fm_payload_set(ereport,
300 FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH,
301 DATA_TYPE_STRING, vd->vdev_path, NULL);
302 if (vd->vdev_devid != NULL)
303 fm_payload_set(ereport,
304 FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID,
305 DATA_TYPE_STRING, vd->vdev_devid, NULL);
306 if (vd->vdev_fru != NULL)
307 fm_payload_set(ereport,
308 FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU,
309 DATA_TYPE_STRING, vd->vdev_fru, NULL);
310 if (vd->vdev_enc_sysfs_path != NULL)
311 fm_payload_set(ereport,
312 FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
313 DATA_TYPE_STRING, vd->vdev_enc_sysfs_path, NULL);
314 if (vd->vdev_ashift)
315 fm_payload_set(ereport,
316 FM_EREPORT_PAYLOAD_ZFS_VDEV_ASHIFT,
317 DATA_TYPE_UINT64, vd->vdev_ashift, NULL);
318
319 if (vq != NULL) {
320 fm_payload_set(ereport,
321 FM_EREPORT_PAYLOAD_ZFS_VDEV_COMP_TS,
322 DATA_TYPE_UINT64, vq->vq_io_complete_ts, NULL);
323 fm_payload_set(ereport,
324 FM_EREPORT_PAYLOAD_ZFS_VDEV_DELTA_TS,
325 DATA_TYPE_UINT64, vq->vq_io_delta_ts, NULL);
326 }
327
328 if (vs != NULL) {
329 fm_payload_set(ereport,
330 FM_EREPORT_PAYLOAD_ZFS_VDEV_READ_ERRORS,
331 DATA_TYPE_UINT64, vs->vs_read_errors,
332 FM_EREPORT_PAYLOAD_ZFS_VDEV_WRITE_ERRORS,
333 DATA_TYPE_UINT64, vs->vs_write_errors,
334 FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_ERRORS,
335 DATA_TYPE_UINT64, vs->vs_checksum_errors, NULL);
336 }
337
338 if (pvd != NULL) {
339 fm_payload_set(ereport,
340 FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID,
341 DATA_TYPE_UINT64, pvd->vdev_guid,
342 FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE,
343 DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type,
344 NULL);
345 if (pvd->vdev_path)
346 fm_payload_set(ereport,
347 FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH,
348 DATA_TYPE_STRING, pvd->vdev_path, NULL);
349 if (pvd->vdev_devid)
350 fm_payload_set(ereport,
351 FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID,
352 DATA_TYPE_STRING, pvd->vdev_devid, NULL);
353 }
354
355 spare_count = spa->spa_spares.sav_count;
356 spare_paths = kmem_zalloc(sizeof (char *) * spare_count,
357 KM_SLEEP);
358 spare_guids = kmem_zalloc(sizeof (uint64_t) * spare_count,
359 KM_SLEEP);
360
361 for (i = 0; i < spare_count; i++) {
362 spare_vd = spa->spa_spares.sav_vdevs[i];
363 if (spare_vd) {
364 spare_paths[i] = spare_vd->vdev_path;
365 spare_guids[i] = spare_vd->vdev_guid;
366 }
367 }
368
369 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_PATHS,
370 DATA_TYPE_STRING_ARRAY, spare_count, spare_paths,
371 FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_GUIDS,
372 DATA_TYPE_UINT64_ARRAY, spare_count, spare_guids, NULL);
373
374 kmem_free(spare_guids, sizeof (uint64_t) * spare_count);
375 kmem_free(spare_paths, sizeof (char *) * spare_count);
376 }
377
378 if (zio != NULL) {
379 /*
380 * Payload common to all I/Os.
381 */
382 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR,
383 DATA_TYPE_INT32, zio->io_error, NULL);
384 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_FLAGS,
385 DATA_TYPE_INT32, zio->io_flags, NULL);
386 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_STAGE,
387 DATA_TYPE_UINT32, zio->io_stage, NULL);
388 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_PIPELINE,
389 DATA_TYPE_UINT32, zio->io_pipeline, NULL);
390 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELAY,
391 DATA_TYPE_UINT64, zio->io_delay, NULL);
392 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_TIMESTAMP,
393 DATA_TYPE_UINT64, zio->io_timestamp, NULL);
394 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELTA,
395 DATA_TYPE_UINT64, zio->io_delta, NULL);
396
397 /*
398 * If the 'size' parameter is non-zero, it indicates this is a
399 * RAID-Z or other I/O where the physical offset and length are
400 * provided for us, instead of within the zio_t.
401 */
402 if (vd != NULL) {
403 if (size)
404 fm_payload_set(ereport,
405 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
406 DATA_TYPE_UINT64, stateoroffset,
407 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
408 DATA_TYPE_UINT64, size, NULL);
409 else
410 fm_payload_set(ereport,
411 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
412 DATA_TYPE_UINT64, zio->io_offset,
413 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
414 DATA_TYPE_UINT64, zio->io_size, NULL);
415 }
416
417 /*
418 * Payload for I/Os with corresponding logical information.
419 */
420 if (zio->io_logical != NULL)
421 fm_payload_set(ereport,
422 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET,
423 DATA_TYPE_UINT64,
424 zio->io_logical->io_bookmark.zb_objset,
425 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT,
426 DATA_TYPE_UINT64,
427 zio->io_logical->io_bookmark.zb_object,
428 FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL,
429 DATA_TYPE_INT64,
430 zio->io_logical->io_bookmark.zb_level,
431 FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID,
432 DATA_TYPE_UINT64,
433 zio->io_logical->io_bookmark.zb_blkid, NULL);
434 } else if (vd != NULL) {
435 /*
436 * If we have a vdev but no zio, this is a device fault, and the
437 * 'stateoroffset' parameter indicates the previous state of the
438 * vdev.
439 */
440 fm_payload_set(ereport,
441 FM_EREPORT_PAYLOAD_ZFS_PREV_STATE,
442 DATA_TYPE_UINT64, stateoroffset, NULL);
443 }
444
445 mutex_exit(&spa->spa_errlist_lock);
446
447 *ereport_out = ereport;
448 *detector_out = detector;
449 }
450
451 /* if it's <= 128 bytes, save the corruption directly */
452 #define ZFM_MAX_INLINE (128 / sizeof (uint64_t))
453
454 #define MAX_RANGES 16
455
456 typedef struct zfs_ecksum_info {
457 /* histograms of set and cleared bits by bit number in a 64-bit word */
458 uint16_t zei_histogram_set[sizeof (uint64_t) * NBBY];
459 uint16_t zei_histogram_cleared[sizeof (uint64_t) * NBBY];
460
461 /* inline arrays of bits set and cleared. */
462 uint64_t zei_bits_set[ZFM_MAX_INLINE];
463 uint64_t zei_bits_cleared[ZFM_MAX_INLINE];
464
465 /*
466 * for each range, the number of bits set and cleared. The Hamming
467 * distance between the good and bad buffers is the sum of them all.
468 */
469 uint32_t zei_range_sets[MAX_RANGES];
470 uint32_t zei_range_clears[MAX_RANGES];
471
472 struct zei_ranges {
473 uint32_t zr_start;
474 uint32_t zr_end;
475 } zei_ranges[MAX_RANGES];
476
477 size_t zei_range_count;
478 uint32_t zei_mingap;
479 uint32_t zei_allowed_mingap;
480
481 } zfs_ecksum_info_t;
482
483 static void
484 update_histogram(uint64_t value_arg, uint16_t *hist, uint32_t *count)
485 {
486 size_t i;
487 size_t bits = 0;
488 uint64_t value = BE_64(value_arg);
489
490 /* We store the bits in big-endian (largest-first) order */
491 for (i = 0; i < 64; i++) {
492 if (value & (1ull << i)) {
493 if (hist[63 - i] < UINT16_MAX)
494 hist[63 - i]++;
495 ++bits;
496 }
497 }
498 /* update the count of bits changed */
499 *count += bits;
500 }
501
502 /*
503 * We've now filled up the range array, and need to increase "mingap" and
504 * shrink the range list accordingly. zei_mingap is always the smallest
505 * distance between array entries, so we set the new_allowed_gap to be
506 * one greater than that. We then go through the list, joining together
507 * any ranges which are closer than the new_allowed_gap.
508 *
509 * By construction, there will be at least one. We also update zei_mingap
510 * to the new smallest gap, to prepare for our next invocation.
511 */
512 static void
513 zei_shrink_ranges(zfs_ecksum_info_t *eip)
514 {
515 uint32_t mingap = UINT32_MAX;
516 uint32_t new_allowed_gap = eip->zei_mingap + 1;
517
518 size_t idx, output;
519 size_t max = eip->zei_range_count;
520
521 struct zei_ranges *r = eip->zei_ranges;
522
523 ASSERT3U(eip->zei_range_count, >, 0);
524 ASSERT3U(eip->zei_range_count, <=, MAX_RANGES);
525
526 output = idx = 0;
527 while (idx < max - 1) {
528 uint32_t start = r[idx].zr_start;
529 uint32_t end = r[idx].zr_end;
530
531 while (idx < max - 1) {
532 uint32_t nstart, nend, gap;
533
534 idx++;
535 nstart = r[idx].zr_start;
536 nend = r[idx].zr_end;
537
538 gap = nstart - end;
539 if (gap < new_allowed_gap) {
540 end = nend;
541 continue;
542 }
543 if (gap < mingap)
544 mingap = gap;
545 break;
546 }
547 r[output].zr_start = start;
548 r[output].zr_end = end;
549 output++;
550 }
551 ASSERT3U(output, <, eip->zei_range_count);
552 eip->zei_range_count = output;
553 eip->zei_mingap = mingap;
554 eip->zei_allowed_mingap = new_allowed_gap;
555 }
556
557 static void
558 zei_add_range(zfs_ecksum_info_t *eip, int start, int end)
559 {
560 struct zei_ranges *r = eip->zei_ranges;
561 size_t count = eip->zei_range_count;
562
563 if (count >= MAX_RANGES) {
564 zei_shrink_ranges(eip);
565 count = eip->zei_range_count;
566 }
567 if (count == 0) {
568 eip->zei_mingap = UINT32_MAX;
569 eip->zei_allowed_mingap = 1;
570 } else {
571 int gap = start - r[count - 1].zr_end;
572
573 if (gap < eip->zei_allowed_mingap) {
574 r[count - 1].zr_end = end;
575 return;
576 }
577 if (gap < eip->zei_mingap)
578 eip->zei_mingap = gap;
579 }
580 r[count].zr_start = start;
581 r[count].zr_end = end;
582 eip->zei_range_count++;
583 }
584
585 static size_t
586 zei_range_total_size(zfs_ecksum_info_t *eip)
587 {
588 struct zei_ranges *r = eip->zei_ranges;
589 size_t count = eip->zei_range_count;
590 size_t result = 0;
591 size_t idx;
592
593 for (idx = 0; idx < count; idx++)
594 result += (r[idx].zr_end - r[idx].zr_start);
595
596 return (result);
597 }
598
599 static zfs_ecksum_info_t *
600 annotate_ecksum(nvlist_t *ereport, zio_bad_cksum_t *info,
601 const abd_t *goodabd, const abd_t *badabd, size_t size,
602 boolean_t drop_if_identical)
603 {
604 const uint64_t *good;
605 const uint64_t *bad;
606
607 uint64_t allset = 0;
608 uint64_t allcleared = 0;
609
610 size_t nui64s = size / sizeof (uint64_t);
611
612 size_t inline_size;
613 int no_inline = 0;
614 size_t idx;
615 size_t range;
616
617 size_t offset = 0;
618 ssize_t start = -1;
619
620 zfs_ecksum_info_t *eip = kmem_zalloc(sizeof (*eip), KM_SLEEP);
621
622 /* don't do any annotation for injected checksum errors */
623 if (info != NULL && info->zbc_injected)
624 return (eip);
625
626 if (info != NULL && info->zbc_has_cksum) {
627 fm_payload_set(ereport,
628 FM_EREPORT_PAYLOAD_ZFS_CKSUM_EXPECTED,
629 DATA_TYPE_UINT64_ARRAY,
630 sizeof (info->zbc_expected) / sizeof (uint64_t),
631 (uint64_t *)&info->zbc_expected,
632 FM_EREPORT_PAYLOAD_ZFS_CKSUM_ACTUAL,
633 DATA_TYPE_UINT64_ARRAY,
634 sizeof (info->zbc_actual) / sizeof (uint64_t),
635 (uint64_t *)&info->zbc_actual,
636 FM_EREPORT_PAYLOAD_ZFS_CKSUM_ALGO,
637 DATA_TYPE_STRING,
638 info->zbc_checksum_name,
639 NULL);
640
641 if (info->zbc_byteswapped) {
642 fm_payload_set(ereport,
643 FM_EREPORT_PAYLOAD_ZFS_CKSUM_BYTESWAP,
644 DATA_TYPE_BOOLEAN, 1,
645 NULL);
646 }
647 }
648
649 if (badabd == NULL || goodabd == NULL)
650 return (eip);
651
652 ASSERT3U(size, ==, nui64s * sizeof (uint64_t));
653 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
654 ASSERT3U(size, <=, UINT32_MAX);
655
656 good = (const uint64_t *) abd_borrow_buf_copy((abd_t *)goodabd, size);
657 bad = (const uint64_t *) abd_borrow_buf_copy((abd_t *)badabd, size);
658
659 /* build up the range list by comparing the two buffers. */
660 for (idx = 0; idx < nui64s; idx++) {
661 if (good[idx] == bad[idx]) {
662 if (start == -1)
663 continue;
664
665 zei_add_range(eip, start, idx);
666 start = -1;
667 } else {
668 if (start != -1)
669 continue;
670
671 start = idx;
672 }
673 }
674 if (start != -1)
675 zei_add_range(eip, start, idx);
676
677 /* See if it will fit in our inline buffers */
678 inline_size = zei_range_total_size(eip);
679 if (inline_size > ZFM_MAX_INLINE)
680 no_inline = 1;
681
682 /*
683 * If there is no change and we want to drop if the buffers are
684 * identical, do so.
685 */
686 if (inline_size == 0 && drop_if_identical) {
687 kmem_free(eip, sizeof (*eip));
688 abd_return_buf((abd_t *)goodabd, (void *)good, size);
689 abd_return_buf((abd_t *)badabd, (void *)bad, size);
690 return (NULL);
691 }
692
693 /*
694 * Now walk through the ranges, filling in the details of the
695 * differences. Also convert our uint64_t-array offsets to byte
696 * offsets.
697 */
698 for (range = 0; range < eip->zei_range_count; range++) {
699 size_t start = eip->zei_ranges[range].zr_start;
700 size_t end = eip->zei_ranges[range].zr_end;
701
702 for (idx = start; idx < end; idx++) {
703 uint64_t set, cleared;
704
705 // bits set in bad, but not in good
706 set = ((~good[idx]) & bad[idx]);
707 // bits set in good, but not in bad
708 cleared = (good[idx] & (~bad[idx]));
709
710 allset |= set;
711 allcleared |= cleared;
712
713 if (!no_inline) {
714 ASSERT3U(offset, <, inline_size);
715 eip->zei_bits_set[offset] = set;
716 eip->zei_bits_cleared[offset] = cleared;
717 offset++;
718 }
719
720 update_histogram(set, eip->zei_histogram_set,
721 &eip->zei_range_sets[range]);
722 update_histogram(cleared, eip->zei_histogram_cleared,
723 &eip->zei_range_clears[range]);
724 }
725
726 /* convert to byte offsets */
727 eip->zei_ranges[range].zr_start *= sizeof (uint64_t);
728 eip->zei_ranges[range].zr_end *= sizeof (uint64_t);
729 }
730
731 abd_return_buf((abd_t *)goodabd, (void *)good, size);
732 abd_return_buf((abd_t *)badabd, (void *)bad, size);
733
734 eip->zei_allowed_mingap *= sizeof (uint64_t);
735 inline_size *= sizeof (uint64_t);
736
737 /* fill in ereport */
738 fm_payload_set(ereport,
739 FM_EREPORT_PAYLOAD_ZFS_BAD_OFFSET_RANGES,
740 DATA_TYPE_UINT32_ARRAY, 2 * eip->zei_range_count,
741 (uint32_t *)eip->zei_ranges,
742 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_MIN_GAP,
743 DATA_TYPE_UINT32, eip->zei_allowed_mingap,
744 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_SETS,
745 DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_sets,
746 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_CLEARS,
747 DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_clears,
748 NULL);
749
750 if (!no_inline) {
751 fm_payload_set(ereport,
752 FM_EREPORT_PAYLOAD_ZFS_BAD_SET_BITS,
753 DATA_TYPE_UINT8_ARRAY,
754 inline_size, (uint8_t *)eip->zei_bits_set,
755 FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_BITS,
756 DATA_TYPE_UINT8_ARRAY,
757 inline_size, (uint8_t *)eip->zei_bits_cleared,
758 NULL);
759 } else {
760 fm_payload_set(ereport,
761 FM_EREPORT_PAYLOAD_ZFS_BAD_SET_HISTOGRAM,
762 DATA_TYPE_UINT16_ARRAY,
763 NBBY * sizeof (uint64_t), eip->zei_histogram_set,
764 FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_HISTOGRAM,
765 DATA_TYPE_UINT16_ARRAY,
766 NBBY * sizeof (uint64_t), eip->zei_histogram_cleared,
767 NULL);
768 }
769 return (eip);
770 }
771 #endif
772
773 void
774 zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio,
775 uint64_t stateoroffset, uint64_t size)
776 {
777 #ifdef _KERNEL
778 nvlist_t *ereport = NULL;
779 nvlist_t *detector = NULL;
780
781 if (zfs_is_ratelimiting_event(subclass, vd))
782 return;
783
784 zfs_ereport_start(&ereport, &detector,
785 subclass, spa, vd, zio, stateoroffset, size);
786
787 if (ereport == NULL)
788 return;
789
790 /* Cleanup is handled by the callback function */
791 zfs_zevent_post(ereport, detector, zfs_zevent_post_cb);
792 #endif
793 }
794
795 void
796 zfs_ereport_start_checksum(spa_t *spa, vdev_t *vd,
797 struct zio *zio, uint64_t offset, uint64_t length, void *arg,
798 zio_bad_cksum_t *info)
799 {
800 zio_cksum_report_t *report;
801
802
803 #ifdef _KERNEL
804 if (zfs_is_ratelimiting_event(FM_EREPORT_ZFS_CHECKSUM, vd))
805 return;
806 #endif
807
808 report = kmem_zalloc(sizeof (*report), KM_SLEEP);
809
810 if (zio->io_vsd != NULL)
811 zio->io_vsd_ops->vsd_cksum_report(zio, report, arg);
812 else
813 zio_vsd_default_cksum_report(zio, report, arg);
814
815 /* copy the checksum failure information if it was provided */
816 if (info != NULL) {
817 report->zcr_ckinfo = kmem_zalloc(sizeof (*info), KM_SLEEP);
818 bcopy(info, report->zcr_ckinfo, sizeof (*info));
819 }
820
821 report->zcr_align = 1ULL << vd->vdev_top->vdev_ashift;
822 report->zcr_length = length;
823
824 #ifdef _KERNEL
825 zfs_ereport_start(&report->zcr_ereport, &report->zcr_detector,
826 FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio, offset, length);
827
828 if (report->zcr_ereport == NULL) {
829 zfs_ereport_free_checksum(report);
830 return;
831 }
832 #endif
833
834 mutex_enter(&spa->spa_errlist_lock);
835 report->zcr_next = zio->io_logical->io_cksum_report;
836 zio->io_logical->io_cksum_report = report;
837 mutex_exit(&spa->spa_errlist_lock);
838 }
839
840 void
841 zfs_ereport_finish_checksum(zio_cksum_report_t *report, const abd_t *good_data,
842 const abd_t *bad_data, boolean_t drop_if_identical)
843 {
844 #ifdef _KERNEL
845 zfs_ecksum_info_t *info;
846
847 info = annotate_ecksum(report->zcr_ereport, report->zcr_ckinfo,
848 good_data, bad_data, report->zcr_length, drop_if_identical);
849 if (info != NULL)
850 zfs_zevent_post(report->zcr_ereport,
851 report->zcr_detector, zfs_zevent_post_cb);
852 else
853 zfs_zevent_post_cb(report->zcr_ereport, report->zcr_detector);
854
855 report->zcr_ereport = report->zcr_detector = NULL;
856 if (info != NULL)
857 kmem_free(info, sizeof (*info));
858 #endif
859 }
860
861 void
862 zfs_ereport_free_checksum(zio_cksum_report_t *rpt)
863 {
864 #ifdef _KERNEL
865 if (rpt->zcr_ereport != NULL) {
866 fm_nvlist_destroy(rpt->zcr_ereport,
867 FM_NVA_FREE);
868 fm_nvlist_destroy(rpt->zcr_detector,
869 FM_NVA_FREE);
870 }
871 #endif
872 rpt->zcr_free(rpt->zcr_cbdata, rpt->zcr_cbinfo);
873
874 if (rpt->zcr_ckinfo != NULL)
875 kmem_free(rpt->zcr_ckinfo, sizeof (*rpt->zcr_ckinfo));
876
877 kmem_free(rpt, sizeof (*rpt));
878 }
879
880
881 void
882 zfs_ereport_post_checksum(spa_t *spa, vdev_t *vd,
883 struct zio *zio, uint64_t offset, uint64_t length,
884 const abd_t *good_data, const abd_t *bad_data, zio_bad_cksum_t *zbc)
885 {
886 #ifdef _KERNEL
887 nvlist_t *ereport = NULL;
888 nvlist_t *detector = NULL;
889 zfs_ecksum_info_t *info;
890
891 zfs_ereport_start(&ereport, &detector,
892 FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio, offset, length);
893
894 if (ereport == NULL)
895 return;
896
897 info = annotate_ecksum(ereport, zbc, good_data, bad_data, length,
898 B_FALSE);
899
900 if (info != NULL) {
901 zfs_zevent_post(ereport, detector, zfs_zevent_post_cb);
902 kmem_free(info, sizeof (*info));
903 }
904 #endif
905 }
906
907 /*
908 * The 'sysevent.fs.zfs.*' events are signals posted to notify user space of
909 * change in the pool. All sysevents are listed in sys/sysevent/eventdefs.h
910 * and are designed to be consumed by the ZFS Event Daemon (ZED). For
911 * additional details refer to the zed(8) man page.
912 */
913 nvlist_t *
914 zfs_event_create(spa_t *spa, vdev_t *vd, const char *type, const char *name,
915 nvlist_t *aux)
916 {
917 nvlist_t *resource = NULL;
918 #ifdef _KERNEL
919 char class[64];
920
921 if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT)
922 return (NULL);
923
924 if ((resource = fm_nvlist_create(NULL)) == NULL)
925 return (NULL);
926
927 (void) snprintf(class, sizeof (class), "%s.%s.%s", type,
928 ZFS_ERROR_CLASS, name);
929 VERIFY0(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION));
930 VERIFY0(nvlist_add_string(resource, FM_CLASS, class));
931 VERIFY0(nvlist_add_string(resource,
932 FM_EREPORT_PAYLOAD_ZFS_POOL, spa_name(spa)));
933 VERIFY0(nvlist_add_uint64(resource,
934 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa)));
935 VERIFY0(nvlist_add_uint64(resource,
936 FM_EREPORT_PAYLOAD_ZFS_POOL_STATE, spa_state(spa)));
937 VERIFY0(nvlist_add_int32(resource,
938 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, spa_load_state(spa)));
939
940 if (vd) {
941 VERIFY0(nvlist_add_uint64(resource,
942 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid));
943 VERIFY0(nvlist_add_uint64(resource,
944 FM_EREPORT_PAYLOAD_ZFS_VDEV_STATE, vd->vdev_state));
945 if (vd->vdev_path != NULL)
946 VERIFY0(nvlist_add_string(resource,
947 FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH, vd->vdev_path));
948 if (vd->vdev_devid != NULL)
949 VERIFY0(nvlist_add_string(resource,
950 FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID, vd->vdev_devid));
951 if (vd->vdev_fru != NULL)
952 VERIFY0(nvlist_add_string(resource,
953 FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU, vd->vdev_fru));
954 if (vd->vdev_enc_sysfs_path != NULL)
955 VERIFY0(nvlist_add_string(resource,
956 FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
957 vd->vdev_enc_sysfs_path));
958 }
959
960 /* also copy any optional payload data */
961 if (aux) {
962 nvpair_t *elem = NULL;
963
964 while ((elem = nvlist_next_nvpair(aux, elem)) != NULL)
965 (void) nvlist_add_nvpair(resource, elem);
966 }
967
968 #endif
969 return (resource);
970 }
971
972 static void
973 zfs_post_common(spa_t *spa, vdev_t *vd, const char *type, const char *name,
974 nvlist_t *aux)
975 {
976 #ifdef _KERNEL
977 nvlist_t *resource;
978
979 resource = zfs_event_create(spa, vd, type, name, aux);
980 if (resource)
981 zfs_zevent_post(resource, NULL, zfs_zevent_post_cb);
982 #endif
983 }
984
985 /*
986 * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev
987 * has been removed from the system. This will cause the DE to ignore any
988 * recent I/O errors, inferring that they are due to the asynchronous device
989 * removal.
990 */
991 void
992 zfs_post_remove(spa_t *spa, vdev_t *vd)
993 {
994 zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_REMOVED, NULL);
995 }
996
997 /*
998 * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool
999 * has the 'autoreplace' property set, and therefore any broken vdevs will be
1000 * handled by higher level logic, and no vdev fault should be generated.
1001 */
1002 void
1003 zfs_post_autoreplace(spa_t *spa, vdev_t *vd)
1004 {
1005 zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_AUTOREPLACE, NULL);
1006 }
1007
1008 /*
1009 * The 'resource.fs.zfs.statechange' event is an internal signal that the
1010 * given vdev has transitioned its state to DEGRADED or HEALTHY. This will
1011 * cause the retire agent to repair any outstanding fault management cases
1012 * open because the device was not found (fault.fs.zfs.device).
1013 */
1014 void
1015 zfs_post_state_change(spa_t *spa, vdev_t *vd, uint64_t laststate)
1016 {
1017 #ifdef _KERNEL
1018 nvlist_t *aux;
1019
1020 /*
1021 * Add optional supplemental keys to payload
1022 */
1023 aux = fm_nvlist_create(NULL);
1024 if (vd && aux) {
1025 if (vd->vdev_physpath) {
1026 (void) nvlist_add_string(aux,
1027 FM_EREPORT_PAYLOAD_ZFS_VDEV_PHYSPATH,
1028 vd->vdev_physpath);
1029 }
1030 if (vd->vdev_enc_sysfs_path) {
1031 (void) nvlist_add_string(aux,
1032 FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
1033 vd->vdev_enc_sysfs_path);
1034 }
1035
1036 (void) nvlist_add_uint64(aux,
1037 FM_EREPORT_PAYLOAD_ZFS_VDEV_LASTSTATE, laststate);
1038 }
1039
1040 zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_STATECHANGE,
1041 aux);
1042
1043 if (aux)
1044 fm_nvlist_destroy(aux, FM_NVA_FREE);
1045 #endif
1046 }
1047
1048 #if defined(_KERNEL) && defined(HAVE_SPL)
1049 EXPORT_SYMBOL(zfs_ereport_post);
1050 EXPORT_SYMBOL(zfs_ereport_post_checksum);
1051 EXPORT_SYMBOL(zfs_post_remove);
1052 EXPORT_SYMBOL(zfs_post_autoreplace);
1053 EXPORT_SYMBOL(zfs_post_state_change);
1054 #endif /* _KERNEL */