]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zfs_fm.c
Add missing ZFS tunables
[mirror_zfs.git] / module / zfs / zfs_fm.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 #include <sys/spa.h>
27 #include <sys/spa_impl.h>
28 #include <sys/vdev.h>
29 #include <sys/vdev_impl.h>
30 #include <sys/zio.h>
31 #include <sys/zio_checksum.h>
32
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/fm/protocol.h>
35 #include <sys/fm/util.h>
36 #include <sys/sysevent.h>
37
38 /*
39 * This general routine is responsible for generating all the different ZFS
40 * ereports. The payload is dependent on the class, and which arguments are
41 * supplied to the function:
42 *
43 * EREPORT POOL VDEV IO
44 * block X X X
45 * data X X
46 * device X X
47 * pool X
48 *
49 * If we are in a loading state, all errors are chained together by the same
50 * SPA-wide ENA (Error Numeric Association).
51 *
52 * For isolated I/O requests, we get the ENA from the zio_t. The propagation
53 * gets very complicated due to RAID-Z, gang blocks, and vdev caching. We want
54 * to chain together all ereports associated with a logical piece of data. For
55 * read I/Os, there are basically three 'types' of I/O, which form a roughly
56 * layered diagram:
57 *
58 * +---------------+
59 * | Aggregate I/O | No associated logical data or device
60 * +---------------+
61 * |
62 * V
63 * +---------------+ Reads associated with a piece of logical data.
64 * | Read I/O | This includes reads on behalf of RAID-Z,
65 * +---------------+ mirrors, gang blocks, retries, etc.
66 * |
67 * V
68 * +---------------+ Reads associated with a particular device, but
69 * | Physical I/O | no logical data. Issued as part of vdev caching
70 * +---------------+ and I/O aggregation.
71 *
72 * Note that 'physical I/O' here is not the same terminology as used in the rest
73 * of ZIO. Typically, 'physical I/O' simply means that there is no attached
74 * blockpointer. But I/O with no associated block pointer can still be related
75 * to a logical piece of data (i.e. RAID-Z requests).
76 *
77 * Purely physical I/O always have unique ENAs. They are not related to a
78 * particular piece of logical data, and therefore cannot be chained together.
79 * We still generate an ereport, but the DE doesn't correlate it with any
80 * logical piece of data. When such an I/O fails, the delegated I/O requests
81 * will issue a retry, which will trigger the 'real' ereport with the correct
82 * ENA.
83 *
84 * We keep track of the ENA for a ZIO chain through the 'io_logical' member.
85 * When a new logical I/O is issued, we set this to point to itself. Child I/Os
86 * then inherit this pointer, so that when it is first set subsequent failures
87 * will use the same ENA. For vdev cache fill and queue aggregation I/O,
88 * this pointer is set to NULL, and no ereport will be generated (since it
89 * doesn't actually correspond to any particular device or piece of data,
90 * and the caller will always retry without caching or queueing anyway).
91 *
92 * For checksum errors, we want to include more information about the actual
93 * error which occurs. Accordingly, we build an ereport when the error is
94 * noticed, but instead of sending it in immediately, we hang it off of the
95 * io_cksum_report field of the logical IO. When the logical IO completes
96 * (successfully or not), zfs_ereport_finish_checksum() is called with the
97 * good and bad versions of the buffer (if available), and we annotate the
98 * ereport with information about the differences.
99 */
100 #ifdef _KERNEL
101 static void
102 zfs_zevent_post_cb(nvlist_t *nvl, nvlist_t *detector)
103 {
104 if (nvl)
105 fm_nvlist_destroy(nvl, FM_NVA_FREE);
106
107 if (detector)
108 fm_nvlist_destroy(detector, FM_NVA_FREE);
109 }
110
111 static void
112 zfs_ereport_start(nvlist_t **ereport_out, nvlist_t **detector_out,
113 const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio,
114 uint64_t stateoroffset, uint64_t size)
115 {
116 nvlist_t *ereport, *detector;
117
118 uint64_t ena;
119 char class[64];
120
121 /*
122 * If we are doing a spa_tryimport() or in recovery mode,
123 * ignore errors.
124 */
125 if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT ||
126 spa_load_state(spa) == SPA_LOAD_RECOVER)
127 return;
128
129 /*
130 * If we are in the middle of opening a pool, and the previous attempt
131 * failed, don't bother logging any new ereports - we're just going to
132 * get the same diagnosis anyway.
133 */
134 if (spa_load_state(spa) != SPA_LOAD_NONE &&
135 spa->spa_last_open_failed)
136 return;
137
138 if (zio != NULL) {
139 /*
140 * If this is not a read or write zio, ignore the error. This
141 * can occur if the DKIOCFLUSHWRITECACHE ioctl fails.
142 */
143 if (zio->io_type != ZIO_TYPE_READ &&
144 zio->io_type != ZIO_TYPE_WRITE)
145 return;
146
147 if (vd != NULL) {
148 /*
149 * If the vdev has already been marked as failing due
150 * to a failed probe, then ignore any subsequent I/O
151 * errors, as the DE will automatically fault the vdev
152 * on the first such failure. This also catches cases
153 * where vdev_remove_wanted is set and the device has
154 * not yet been asynchronously placed into the REMOVED
155 * state.
156 */
157 if (zio->io_vd == vd && !vdev_accessible(vd, zio))
158 return;
159
160 /*
161 * Ignore checksum errors for reads from DTL regions of
162 * leaf vdevs.
163 */
164 if (zio->io_type == ZIO_TYPE_READ &&
165 zio->io_error == ECKSUM &&
166 vd->vdev_ops->vdev_op_leaf &&
167 vdev_dtl_contains(vd, DTL_MISSING, zio->io_txg, 1))
168 return;
169 }
170 }
171
172 /*
173 * For probe failure, we want to avoid posting ereports if we've
174 * already removed the device in the meantime.
175 */
176 if (vd != NULL &&
177 strcmp(subclass, FM_EREPORT_ZFS_PROBE_FAILURE) == 0 &&
178 (vd->vdev_remove_wanted || vd->vdev_state == VDEV_STATE_REMOVED))
179 return;
180
181 if ((ereport = fm_nvlist_create(NULL)) == NULL)
182 return;
183
184 if ((detector = fm_nvlist_create(NULL)) == NULL) {
185 fm_nvlist_destroy(ereport, FM_NVA_FREE);
186 return;
187 }
188
189 /*
190 * Serialize ereport generation
191 */
192 mutex_enter(&spa->spa_errlist_lock);
193
194 /*
195 * Determine the ENA to use for this event. If we are in a loading
196 * state, use a SPA-wide ENA. Otherwise, if we are in an I/O state, use
197 * a root zio-wide ENA. Otherwise, simply use a unique ENA.
198 */
199 if (spa_load_state(spa) != SPA_LOAD_NONE) {
200 if (spa->spa_ena == 0)
201 spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1);
202 ena = spa->spa_ena;
203 } else if (zio != NULL && zio->io_logical != NULL) {
204 if (zio->io_logical->io_ena == 0)
205 zio->io_logical->io_ena =
206 fm_ena_generate(0, FM_ENA_FMT1);
207 ena = zio->io_logical->io_ena;
208 } else {
209 ena = fm_ena_generate(0, FM_ENA_FMT1);
210 }
211
212 /*
213 * Construct the full class, detector, and other standard FMA fields.
214 */
215 (void) snprintf(class, sizeof (class), "%s.%s",
216 ZFS_ERROR_CLASS, subclass);
217
218 fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa),
219 vd != NULL ? vd->vdev_guid : 0);
220
221 fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL);
222
223 /*
224 * Construct the per-ereport payload, depending on which parameters are
225 * passed in.
226 */
227
228 /*
229 * Generic payload members common to all ereports.
230 */
231 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL,
232 DATA_TYPE_STRING, spa_name(spa), FM_EREPORT_PAYLOAD_ZFS_POOL_GUID,
233 DATA_TYPE_UINT64, spa_guid(spa),
234 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32,
235 spa_load_state(spa), NULL);
236
237 if (spa != NULL) {
238 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE,
239 DATA_TYPE_STRING,
240 spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ?
241 FM_EREPORT_FAILMODE_WAIT :
242 spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ?
243 FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC,
244 NULL);
245 }
246
247 if (vd != NULL) {
248 vdev_t *pvd = vd->vdev_parent;
249
250 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID,
251 DATA_TYPE_UINT64, vd->vdev_guid,
252 FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE,
253 DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL);
254 if (vd->vdev_path != NULL)
255 fm_payload_set(ereport,
256 FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH,
257 DATA_TYPE_STRING, vd->vdev_path, NULL);
258 if (vd->vdev_devid != NULL)
259 fm_payload_set(ereport,
260 FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID,
261 DATA_TYPE_STRING, vd->vdev_devid, NULL);
262 if (vd->vdev_fru != NULL)
263 fm_payload_set(ereport,
264 FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU,
265 DATA_TYPE_STRING, vd->vdev_fru, NULL);
266
267 if (pvd != NULL) {
268 fm_payload_set(ereport,
269 FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID,
270 DATA_TYPE_UINT64, pvd->vdev_guid,
271 FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE,
272 DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type,
273 NULL);
274 if (pvd->vdev_path)
275 fm_payload_set(ereport,
276 FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH,
277 DATA_TYPE_STRING, pvd->vdev_path, NULL);
278 if (pvd->vdev_devid)
279 fm_payload_set(ereport,
280 FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID,
281 DATA_TYPE_STRING, pvd->vdev_devid, NULL);
282 }
283 }
284
285 if (zio != NULL) {
286 /*
287 * Payload common to all I/Os.
288 */
289 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR,
290 DATA_TYPE_INT32, zio->io_error, NULL);
291 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_FLAGS,
292 DATA_TYPE_INT32, zio->io_flags, NULL);
293 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELAY,
294 DATA_TYPE_UINT64, zio->io_delay, NULL);
295
296 /*
297 * If the 'size' parameter is non-zero, it indicates this is a
298 * RAID-Z or other I/O where the physical offset and length are
299 * provided for us, instead of within the zio_t.
300 */
301 if (vd != NULL) {
302 if (size)
303 fm_payload_set(ereport,
304 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
305 DATA_TYPE_UINT64, stateoroffset,
306 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
307 DATA_TYPE_UINT64, size, NULL);
308 else
309 fm_payload_set(ereport,
310 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
311 DATA_TYPE_UINT64, zio->io_offset,
312 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
313 DATA_TYPE_UINT64, zio->io_size, NULL);
314 }
315
316 /*
317 * Payload for I/Os with corresponding logical information.
318 */
319 if (zio->io_logical != NULL)
320 fm_payload_set(ereport,
321 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET,
322 DATA_TYPE_UINT64,
323 zio->io_logical->io_bookmark.zb_objset,
324 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT,
325 DATA_TYPE_UINT64,
326 zio->io_logical->io_bookmark.zb_object,
327 FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL,
328 DATA_TYPE_INT64,
329 zio->io_logical->io_bookmark.zb_level,
330 FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID,
331 DATA_TYPE_UINT64,
332 zio->io_logical->io_bookmark.zb_blkid, NULL);
333 } else if (vd != NULL) {
334 /*
335 * If we have a vdev but no zio, this is a device fault, and the
336 * 'stateoroffset' parameter indicates the previous state of the
337 * vdev.
338 */
339 fm_payload_set(ereport,
340 FM_EREPORT_PAYLOAD_ZFS_PREV_STATE,
341 DATA_TYPE_UINT64, stateoroffset, NULL);
342 }
343
344 mutex_exit(&spa->spa_errlist_lock);
345
346 *ereport_out = ereport;
347 *detector_out = detector;
348 }
349
350 /* if it's <= 128 bytes, save the corruption directly */
351 #define ZFM_MAX_INLINE (128 / sizeof (uint64_t))
352
353 #define MAX_RANGES 16
354
355 typedef struct zfs_ecksum_info {
356 /* histograms of set and cleared bits by bit number in a 64-bit word */
357 uint16_t zei_histogram_set[sizeof (uint64_t) * NBBY];
358 uint16_t zei_histogram_cleared[sizeof (uint64_t) * NBBY];
359
360 /* inline arrays of bits set and cleared. */
361 uint64_t zei_bits_set[ZFM_MAX_INLINE];
362 uint64_t zei_bits_cleared[ZFM_MAX_INLINE];
363
364 /*
365 * for each range, the number of bits set and cleared. The Hamming
366 * distance between the good and bad buffers is the sum of them all.
367 */
368 uint32_t zei_range_sets[MAX_RANGES];
369 uint32_t zei_range_clears[MAX_RANGES];
370
371 struct zei_ranges {
372 uint32_t zr_start;
373 uint32_t zr_end;
374 } zei_ranges[MAX_RANGES];
375
376 size_t zei_range_count;
377 uint32_t zei_mingap;
378 uint32_t zei_allowed_mingap;
379
380 } zfs_ecksum_info_t;
381
382 static void
383 update_histogram(uint64_t value_arg, uint16_t *hist, uint32_t *count)
384 {
385 size_t i;
386 size_t bits = 0;
387 uint64_t value = BE_64(value_arg);
388
389 /* We store the bits in big-endian (largest-first) order */
390 for (i = 0; i < 64; i++) {
391 if (value & (1ull << i)) {
392 hist[63 - i]++;
393 ++bits;
394 }
395 }
396 /* update the count of bits changed */
397 *count += bits;
398 }
399
400 /*
401 * We've now filled up the range array, and need to increase "mingap" and
402 * shrink the range list accordingly. zei_mingap is always the smallest
403 * distance between array entries, so we set the new_allowed_gap to be
404 * one greater than that. We then go through the list, joining together
405 * any ranges which are closer than the new_allowed_gap.
406 *
407 * By construction, there will be at least one. We also update zei_mingap
408 * to the new smallest gap, to prepare for our next invocation.
409 */
410 static void
411 zei_shrink_ranges(zfs_ecksum_info_t *eip)
412 {
413 uint32_t mingap = UINT32_MAX;
414 uint32_t new_allowed_gap = eip->zei_mingap + 1;
415
416 size_t idx, output;
417 size_t max = eip->zei_range_count;
418
419 struct zei_ranges *r = eip->zei_ranges;
420
421 ASSERT3U(eip->zei_range_count, >, 0);
422 ASSERT3U(eip->zei_range_count, <=, MAX_RANGES);
423
424 output = idx = 0;
425 while (idx < max - 1) {
426 uint32_t start = r[idx].zr_start;
427 uint32_t end = r[idx].zr_end;
428
429 while (idx < max - 1) {
430 uint32_t nstart, nend, gap;
431
432 idx++;
433 nstart = r[idx].zr_start;
434 nend = r[idx].zr_end;
435
436 gap = nstart - end;
437 if (gap < new_allowed_gap) {
438 end = nend;
439 continue;
440 }
441 if (gap < mingap)
442 mingap = gap;
443 break;
444 }
445 r[output].zr_start = start;
446 r[output].zr_end = end;
447 output++;
448 }
449 ASSERT3U(output, <, eip->zei_range_count);
450 eip->zei_range_count = output;
451 eip->zei_mingap = mingap;
452 eip->zei_allowed_mingap = new_allowed_gap;
453 }
454
455 static void
456 zei_add_range(zfs_ecksum_info_t *eip, int start, int end)
457 {
458 struct zei_ranges *r = eip->zei_ranges;
459 size_t count = eip->zei_range_count;
460
461 if (count >= MAX_RANGES) {
462 zei_shrink_ranges(eip);
463 count = eip->zei_range_count;
464 }
465 if (count == 0) {
466 eip->zei_mingap = UINT32_MAX;
467 eip->zei_allowed_mingap = 1;
468 } else {
469 int gap = start - r[count - 1].zr_end;
470
471 if (gap < eip->zei_allowed_mingap) {
472 r[count - 1].zr_end = end;
473 return;
474 }
475 if (gap < eip->zei_mingap)
476 eip->zei_mingap = gap;
477 }
478 r[count].zr_start = start;
479 r[count].zr_end = end;
480 eip->zei_range_count++;
481 }
482
483 static size_t
484 zei_range_total_size(zfs_ecksum_info_t *eip)
485 {
486 struct zei_ranges *r = eip->zei_ranges;
487 size_t count = eip->zei_range_count;
488 size_t result = 0;
489 size_t idx;
490
491 for (idx = 0; idx < count; idx++)
492 result += (r[idx].zr_end - r[idx].zr_start);
493
494 return (result);
495 }
496
497 static zfs_ecksum_info_t *
498 annotate_ecksum(nvlist_t *ereport, zio_bad_cksum_t *info,
499 const uint8_t *goodbuf, const uint8_t *badbuf, size_t size,
500 boolean_t drop_if_identical)
501 {
502 const uint64_t *good = (const uint64_t *)goodbuf;
503 const uint64_t *bad = (const uint64_t *)badbuf;
504
505 uint64_t allset = 0;
506 uint64_t allcleared = 0;
507
508 size_t nui64s = size / sizeof (uint64_t);
509
510 size_t inline_size;
511 int no_inline = 0;
512 size_t idx;
513 size_t range;
514
515 size_t offset = 0;
516 ssize_t start = -1;
517
518 zfs_ecksum_info_t *eip = kmem_zalloc(sizeof (*eip), KM_SLEEP);
519
520 /* don't do any annotation for injected checksum errors */
521 if (info != NULL && info->zbc_injected)
522 return (eip);
523
524 if (info != NULL && info->zbc_has_cksum) {
525 fm_payload_set(ereport,
526 FM_EREPORT_PAYLOAD_ZFS_CKSUM_EXPECTED,
527 DATA_TYPE_UINT64_ARRAY,
528 sizeof (info->zbc_expected) / sizeof (uint64_t),
529 (uint64_t *)&info->zbc_expected,
530 FM_EREPORT_PAYLOAD_ZFS_CKSUM_ACTUAL,
531 DATA_TYPE_UINT64_ARRAY,
532 sizeof (info->zbc_actual) / sizeof (uint64_t),
533 (uint64_t *)&info->zbc_actual,
534 FM_EREPORT_PAYLOAD_ZFS_CKSUM_ALGO,
535 DATA_TYPE_STRING,
536 info->zbc_checksum_name,
537 NULL);
538
539 if (info->zbc_byteswapped) {
540 fm_payload_set(ereport,
541 FM_EREPORT_PAYLOAD_ZFS_CKSUM_BYTESWAP,
542 DATA_TYPE_BOOLEAN, 1,
543 NULL);
544 }
545 }
546
547 if (badbuf == NULL || goodbuf == NULL)
548 return (eip);
549
550 ASSERT3U(nui64s, <=, UINT16_MAX);
551 ASSERT3U(size, ==, nui64s * sizeof (uint64_t));
552 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
553 ASSERT3U(size, <=, UINT32_MAX);
554
555 /* build up the range list by comparing the two buffers. */
556 for (idx = 0; idx < nui64s; idx++) {
557 if (good[idx] == bad[idx]) {
558 if (start == -1)
559 continue;
560
561 zei_add_range(eip, start, idx);
562 start = -1;
563 } else {
564 if (start != -1)
565 continue;
566
567 start = idx;
568 }
569 }
570 if (start != -1)
571 zei_add_range(eip, start, idx);
572
573 /* See if it will fit in our inline buffers */
574 inline_size = zei_range_total_size(eip);
575 if (inline_size > ZFM_MAX_INLINE)
576 no_inline = 1;
577
578 /*
579 * If there is no change and we want to drop if the buffers are
580 * identical, do so.
581 */
582 if (inline_size == 0 && drop_if_identical) {
583 kmem_free(eip, sizeof (*eip));
584 return (NULL);
585 }
586
587 /*
588 * Now walk through the ranges, filling in the details of the
589 * differences. Also convert our uint64_t-array offsets to byte
590 * offsets.
591 */
592 for (range = 0; range < eip->zei_range_count; range++) {
593 size_t start = eip->zei_ranges[range].zr_start;
594 size_t end = eip->zei_ranges[range].zr_end;
595
596 for (idx = start; idx < end; idx++) {
597 uint64_t set, cleared;
598
599 // bits set in bad, but not in good
600 set = ((~good[idx]) & bad[idx]);
601 // bits set in good, but not in bad
602 cleared = (good[idx] & (~bad[idx]));
603
604 allset |= set;
605 allcleared |= cleared;
606
607 if (!no_inline) {
608 ASSERT3U(offset, <, inline_size);
609 eip->zei_bits_set[offset] = set;
610 eip->zei_bits_cleared[offset] = cleared;
611 offset++;
612 }
613
614 update_histogram(set, eip->zei_histogram_set,
615 &eip->zei_range_sets[range]);
616 update_histogram(cleared, eip->zei_histogram_cleared,
617 &eip->zei_range_clears[range]);
618 }
619
620 /* convert to byte offsets */
621 eip->zei_ranges[range].zr_start *= sizeof (uint64_t);
622 eip->zei_ranges[range].zr_end *= sizeof (uint64_t);
623 }
624 eip->zei_allowed_mingap *= sizeof (uint64_t);
625 inline_size *= sizeof (uint64_t);
626
627 /* fill in ereport */
628 fm_payload_set(ereport,
629 FM_EREPORT_PAYLOAD_ZFS_BAD_OFFSET_RANGES,
630 DATA_TYPE_UINT32_ARRAY, 2 * eip->zei_range_count,
631 (uint32_t *)eip->zei_ranges,
632 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_MIN_GAP,
633 DATA_TYPE_UINT32, eip->zei_allowed_mingap,
634 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_SETS,
635 DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_sets,
636 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_CLEARS,
637 DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_clears,
638 NULL);
639
640 if (!no_inline) {
641 fm_payload_set(ereport,
642 FM_EREPORT_PAYLOAD_ZFS_BAD_SET_BITS,
643 DATA_TYPE_UINT8_ARRAY,
644 inline_size, (uint8_t *)eip->zei_bits_set,
645 FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_BITS,
646 DATA_TYPE_UINT8_ARRAY,
647 inline_size, (uint8_t *)eip->zei_bits_cleared,
648 NULL);
649 } else {
650 fm_payload_set(ereport,
651 FM_EREPORT_PAYLOAD_ZFS_BAD_SET_HISTOGRAM,
652 DATA_TYPE_UINT16_ARRAY,
653 NBBY * sizeof (uint64_t), eip->zei_histogram_set,
654 FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_HISTOGRAM,
655 DATA_TYPE_UINT16_ARRAY,
656 NBBY * sizeof (uint64_t), eip->zei_histogram_cleared,
657 NULL);
658 }
659 return (eip);
660 }
661 #endif
662
663 void
664 zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio,
665 uint64_t stateoroffset, uint64_t size)
666 {
667 #ifdef _KERNEL
668 nvlist_t *ereport = NULL;
669 nvlist_t *detector = NULL;
670
671 zfs_ereport_start(&ereport, &detector,
672 subclass, spa, vd, zio, stateoroffset, size);
673
674 if (ereport == NULL)
675 return;
676
677 /* Cleanup is handled by the callback function */
678 zfs_zevent_post(ereport, detector, zfs_zevent_post_cb);
679 #endif
680 }
681
682 void
683 zfs_ereport_start_checksum(spa_t *spa, vdev_t *vd,
684 struct zio *zio, uint64_t offset, uint64_t length, void *arg,
685 zio_bad_cksum_t *info)
686 {
687 zio_cksum_report_t *report = kmem_zalloc(sizeof (*report), KM_SLEEP);
688
689 if (zio->io_vsd != NULL)
690 zio->io_vsd_ops->vsd_cksum_report(zio, report, arg);
691 else
692 zio_vsd_default_cksum_report(zio, report, arg);
693
694 /* copy the checksum failure information if it was provided */
695 if (info != NULL) {
696 report->zcr_ckinfo = kmem_zalloc(sizeof (*info), KM_SLEEP);
697 bcopy(info, report->zcr_ckinfo, sizeof (*info));
698 }
699
700 report->zcr_align = 1ULL << vd->vdev_top->vdev_ashift;
701 report->zcr_length = length;
702
703 #ifdef _KERNEL
704 zfs_ereport_start(&report->zcr_ereport, &report->zcr_detector,
705 FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio, offset, length);
706
707 if (report->zcr_ereport == NULL) {
708 report->zcr_free(report->zcr_cbdata, report->zcr_cbinfo);
709 kmem_free(report, sizeof (*report));
710 return;
711 }
712 #endif
713
714 mutex_enter(&spa->spa_errlist_lock);
715 report->zcr_next = zio->io_logical->io_cksum_report;
716 zio->io_logical->io_cksum_report = report;
717 mutex_exit(&spa->spa_errlist_lock);
718 }
719
720 void
721 zfs_ereport_finish_checksum(zio_cksum_report_t *report,
722 const void *good_data, const void *bad_data, boolean_t drop_if_identical)
723 {
724 #ifdef _KERNEL
725 zfs_ecksum_info_t *info = NULL;
726 info = annotate_ecksum(report->zcr_ereport, report->zcr_ckinfo,
727 good_data, bad_data, report->zcr_length, drop_if_identical);
728
729 if (info != NULL)
730 zfs_zevent_post(report->zcr_ereport,
731 report->zcr_detector, zfs_zevent_post_cb);
732
733 report->zcr_ereport = report->zcr_detector = NULL;
734 if (info != NULL)
735 kmem_free(info, sizeof (*info));
736 #endif
737 }
738
739 void
740 zfs_ereport_free_checksum(zio_cksum_report_t *rpt)
741 {
742 #ifdef _KERNEL
743 if (rpt->zcr_ereport != NULL) {
744 fm_nvlist_destroy(rpt->zcr_ereport,
745 FM_NVA_FREE);
746 fm_nvlist_destroy(rpt->zcr_detector,
747 FM_NVA_FREE);
748 }
749 #endif
750 rpt->zcr_free(rpt->zcr_cbdata, rpt->zcr_cbinfo);
751
752 if (rpt->zcr_ckinfo != NULL)
753 kmem_free(rpt->zcr_ckinfo, sizeof (*rpt->zcr_ckinfo));
754
755 kmem_free(rpt, sizeof (*rpt));
756 }
757
758 void
759 zfs_ereport_send_interim_checksum(zio_cksum_report_t *report)
760 {
761 #ifdef _KERNEL
762 zfs_zevent_post(report->zcr_ereport, report->zcr_detector, NULL);
763 #endif
764 }
765
766 void
767 zfs_ereport_post_checksum(spa_t *spa, vdev_t *vd,
768 struct zio *zio, uint64_t offset, uint64_t length,
769 const void *good_data, const void *bad_data, zio_bad_cksum_t *zbc)
770 {
771 #ifdef _KERNEL
772 nvlist_t *ereport = NULL;
773 nvlist_t *detector = NULL;
774 zfs_ecksum_info_t *info;
775
776 zfs_ereport_start(&ereport, &detector,
777 FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio, offset, length);
778
779 if (ereport == NULL)
780 return;
781
782 info = annotate_ecksum(ereport, zbc, good_data, bad_data, length,
783 B_FALSE);
784
785 if (info != NULL) {
786 zfs_zevent_post(ereport, detector, zfs_zevent_post_cb);
787 kmem_free(info, sizeof (*info));
788 }
789 #endif
790 }
791
792 static void
793 zfs_post_common(spa_t *spa, vdev_t *vd, const char *name)
794 {
795 #ifdef _KERNEL
796 nvlist_t *resource;
797 char class[64];
798
799 if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT)
800 return;
801
802 if ((resource = fm_nvlist_create(NULL)) == NULL)
803 return;
804
805 (void) snprintf(class, sizeof (class), "%s.%s.%s", FM_RSRC_RESOURCE,
806 ZFS_ERROR_CLASS, name);
807 VERIFY(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION) == 0);
808 VERIFY(nvlist_add_string(resource, FM_CLASS, class) == 0);
809 VERIFY(nvlist_add_uint64(resource,
810 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa)) == 0);
811 if (vd) {
812 VERIFY(nvlist_add_uint64(resource,
813 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid) == 0);
814 VERIFY(nvlist_add_uint64(resource,
815 FM_EREPORT_PAYLOAD_ZFS_VDEV_STATE, vd->vdev_state) == 0);
816 }
817
818 zfs_zevent_post(resource, NULL, zfs_zevent_post_cb);
819 #endif
820 }
821
822 /*
823 * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev
824 * has been removed from the system. This will cause the DE to ignore any
825 * recent I/O errors, inferring that they are due to the asynchronous device
826 * removal.
827 */
828 void
829 zfs_post_remove(spa_t *spa, vdev_t *vd)
830 {
831 zfs_post_common(spa, vd, FM_EREPORT_RESOURCE_REMOVED);
832 }
833
834 /*
835 * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool
836 * has the 'autoreplace' property set, and therefore any broken vdevs will be
837 * handled by higher level logic, and no vdev fault should be generated.
838 */
839 void
840 zfs_post_autoreplace(spa_t *spa, vdev_t *vd)
841 {
842 zfs_post_common(spa, vd, FM_EREPORT_RESOURCE_AUTOREPLACE);
843 }
844
845 /*
846 * The 'resource.fs.zfs.statechange' event is an internal signal that the
847 * given vdev has transitioned its state to DEGRADED or HEALTHY. This will
848 * cause the retire agent to repair any outstanding fault management cases
849 * open because the device was not found (fault.fs.zfs.device).
850 */
851 void
852 zfs_post_state_change(spa_t *spa, vdev_t *vd)
853 {
854 zfs_post_common(spa, vd, FM_EREPORT_RESOURCE_STATECHANGE);
855 }
856
857 #if defined(_KERNEL) && defined(HAVE_SPL)
858 EXPORT_SYMBOL(zfs_ereport_post);
859 EXPORT_SYMBOL(zfs_ereport_post_checksum);
860 EXPORT_SYMBOL(zfs_post_remove);
861 EXPORT_SYMBOL(zfs_post_autoreplace);
862 EXPORT_SYMBOL(zfs_post_state_change);
863 #endif /* _KERNEL */