]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zfs_fm.c
3246 ZFS I/O deadman thread
[mirror_zfs.git] / module / zfs / zfs_fm.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * Copyright (c) 2012 by Delphix. All rights reserved.
28 */
29
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/vdev.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/zio.h>
35 #include <sys/zio_checksum.h>
36
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/fm/protocol.h>
39 #include <sys/fm/util.h>
40 #include <sys/sysevent.h>
41
42 /*
43 * This general routine is responsible for generating all the different ZFS
44 * ereports. The payload is dependent on the class, and which arguments are
45 * supplied to the function:
46 *
47 * EREPORT POOL VDEV IO
48 * block X X X
49 * data X X
50 * device X X
51 * pool X
52 *
53 * If we are in a loading state, all errors are chained together by the same
54 * SPA-wide ENA (Error Numeric Association).
55 *
56 * For isolated I/O requests, we get the ENA from the zio_t. The propagation
57 * gets very complicated due to RAID-Z, gang blocks, and vdev caching. We want
58 * to chain together all ereports associated with a logical piece of data. For
59 * read I/Os, there are basically three 'types' of I/O, which form a roughly
60 * layered diagram:
61 *
62 * +---------------+
63 * | Aggregate I/O | No associated logical data or device
64 * +---------------+
65 * |
66 * V
67 * +---------------+ Reads associated with a piece of logical data.
68 * | Read I/O | This includes reads on behalf of RAID-Z,
69 * +---------------+ mirrors, gang blocks, retries, etc.
70 * |
71 * V
72 * +---------------+ Reads associated with a particular device, but
73 * | Physical I/O | no logical data. Issued as part of vdev caching
74 * +---------------+ and I/O aggregation.
75 *
76 * Note that 'physical I/O' here is not the same terminology as used in the rest
77 * of ZIO. Typically, 'physical I/O' simply means that there is no attached
78 * blockpointer. But I/O with no associated block pointer can still be related
79 * to a logical piece of data (i.e. RAID-Z requests).
80 *
81 * Purely physical I/O always have unique ENAs. They are not related to a
82 * particular piece of logical data, and therefore cannot be chained together.
83 * We still generate an ereport, but the DE doesn't correlate it with any
84 * logical piece of data. When such an I/O fails, the delegated I/O requests
85 * will issue a retry, which will trigger the 'real' ereport with the correct
86 * ENA.
87 *
88 * We keep track of the ENA for a ZIO chain through the 'io_logical' member.
89 * When a new logical I/O is issued, we set this to point to itself. Child I/Os
90 * then inherit this pointer, so that when it is first set subsequent failures
91 * will use the same ENA. For vdev cache fill and queue aggregation I/O,
92 * this pointer is set to NULL, and no ereport will be generated (since it
93 * doesn't actually correspond to any particular device or piece of data,
94 * and the caller will always retry without caching or queueing anyway).
95 *
96 * For checksum errors, we want to include more information about the actual
97 * error which occurs. Accordingly, we build an ereport when the error is
98 * noticed, but instead of sending it in immediately, we hang it off of the
99 * io_cksum_report field of the logical IO. When the logical IO completes
100 * (successfully or not), zfs_ereport_finish_checksum() is called with the
101 * good and bad versions of the buffer (if available), and we annotate the
102 * ereport with information about the differences.
103 */
104 #ifdef _KERNEL
105 static void
106 zfs_zevent_post_cb(nvlist_t *nvl, nvlist_t *detector)
107 {
108 if (nvl)
109 fm_nvlist_destroy(nvl, FM_NVA_FREE);
110
111 if (detector)
112 fm_nvlist_destroy(detector, FM_NVA_FREE);
113 }
114
115 static void
116 zfs_ereport_start(nvlist_t **ereport_out, nvlist_t **detector_out,
117 const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio,
118 uint64_t stateoroffset, uint64_t size)
119 {
120 nvlist_t *ereport, *detector;
121
122 uint64_t ena;
123 char class[64];
124
125 /*
126 * If we are doing a spa_tryimport() or in recovery mode,
127 * ignore errors.
128 */
129 if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT ||
130 spa_load_state(spa) == SPA_LOAD_RECOVER)
131 return;
132
133 /*
134 * If we are in the middle of opening a pool, and the previous attempt
135 * failed, don't bother logging any new ereports - we're just going to
136 * get the same diagnosis anyway.
137 */
138 if (spa_load_state(spa) != SPA_LOAD_NONE &&
139 spa->spa_last_open_failed)
140 return;
141
142 if (zio != NULL) {
143 /*
144 * If this is not a read or write zio, ignore the error. This
145 * can occur if the DKIOCFLUSHWRITECACHE ioctl fails.
146 */
147 if (zio->io_type != ZIO_TYPE_READ &&
148 zio->io_type != ZIO_TYPE_WRITE)
149 return;
150
151 if (vd != NULL) {
152 /*
153 * If the vdev has already been marked as failing due
154 * to a failed probe, then ignore any subsequent I/O
155 * errors, as the DE will automatically fault the vdev
156 * on the first such failure. This also catches cases
157 * where vdev_remove_wanted is set and the device has
158 * not yet been asynchronously placed into the REMOVED
159 * state.
160 */
161 if (zio->io_vd == vd && !vdev_accessible(vd, zio))
162 return;
163
164 /*
165 * Ignore checksum errors for reads from DTL regions of
166 * leaf vdevs.
167 */
168 if (zio->io_type == ZIO_TYPE_READ &&
169 zio->io_error == ECKSUM &&
170 vd->vdev_ops->vdev_op_leaf &&
171 vdev_dtl_contains(vd, DTL_MISSING, zio->io_txg, 1))
172 return;
173 }
174 }
175
176 /*
177 * For probe failure, we want to avoid posting ereports if we've
178 * already removed the device in the meantime.
179 */
180 if (vd != NULL &&
181 strcmp(subclass, FM_EREPORT_ZFS_PROBE_FAILURE) == 0 &&
182 (vd->vdev_remove_wanted || vd->vdev_state == VDEV_STATE_REMOVED))
183 return;
184
185 if ((ereport = fm_nvlist_create(NULL)) == NULL)
186 return;
187
188 if ((detector = fm_nvlist_create(NULL)) == NULL) {
189 fm_nvlist_destroy(ereport, FM_NVA_FREE);
190 return;
191 }
192
193 /*
194 * Serialize ereport generation
195 */
196 mutex_enter(&spa->spa_errlist_lock);
197
198 /*
199 * Determine the ENA to use for this event. If we are in a loading
200 * state, use a SPA-wide ENA. Otherwise, if we are in an I/O state, use
201 * a root zio-wide ENA. Otherwise, simply use a unique ENA.
202 */
203 if (spa_load_state(spa) != SPA_LOAD_NONE) {
204 if (spa->spa_ena == 0)
205 spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1);
206 ena = spa->spa_ena;
207 } else if (zio != NULL && zio->io_logical != NULL) {
208 if (zio->io_logical->io_ena == 0)
209 zio->io_logical->io_ena =
210 fm_ena_generate(0, FM_ENA_FMT1);
211 ena = zio->io_logical->io_ena;
212 } else {
213 ena = fm_ena_generate(0, FM_ENA_FMT1);
214 }
215
216 /*
217 * Construct the full class, detector, and other standard FMA fields.
218 */
219 (void) snprintf(class, sizeof (class), "%s.%s",
220 ZFS_ERROR_CLASS, subclass);
221
222 fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa),
223 vd != NULL ? vd->vdev_guid : 0);
224
225 fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL);
226
227 /*
228 * Construct the per-ereport payload, depending on which parameters are
229 * passed in.
230 */
231
232 /*
233 * Generic payload members common to all ereports.
234 */
235 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL,
236 DATA_TYPE_STRING, spa_name(spa), FM_EREPORT_PAYLOAD_ZFS_POOL_GUID,
237 DATA_TYPE_UINT64, spa_guid(spa),
238 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32,
239 spa_load_state(spa), NULL);
240
241 if (spa != NULL) {
242 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE,
243 DATA_TYPE_STRING,
244 spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ?
245 FM_EREPORT_FAILMODE_WAIT :
246 spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ?
247 FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC,
248 NULL);
249 }
250
251 if (vd != NULL) {
252 vdev_t *pvd = vd->vdev_parent;
253 vdev_queue_t *vq = &vd->vdev_queue;
254
255 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID,
256 DATA_TYPE_UINT64, vd->vdev_guid,
257 FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE,
258 DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL);
259 if (vd->vdev_path != NULL)
260 fm_payload_set(ereport,
261 FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH,
262 DATA_TYPE_STRING, vd->vdev_path, NULL);
263 if (vd->vdev_devid != NULL)
264 fm_payload_set(ereport,
265 FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID,
266 DATA_TYPE_STRING, vd->vdev_devid, NULL);
267 if (vd->vdev_fru != NULL)
268 fm_payload_set(ereport,
269 FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU,
270 DATA_TYPE_STRING, vd->vdev_fru, NULL);
271 if (vd->vdev_ashift)
272 fm_payload_set(ereport,
273 FM_EREPORT_PAYLOAD_ZFS_VDEV_ASHIFT,
274 DATA_TYPE_UINT64, vd->vdev_ashift, NULL);
275
276 if (vq != NULL) {
277 fm_payload_set(ereport,
278 FM_EREPORT_PAYLOAD_ZFS_VDEV_COMP_TS,
279 DATA_TYPE_UINT64, vq->vq_io_complete_ts, NULL);
280 fm_payload_set(ereport,
281 FM_EREPORT_PAYLOAD_ZFS_VDEV_DELTA_TS,
282 DATA_TYPE_UINT64, vq->vq_io_delta_ts, NULL);
283 }
284
285 if (pvd != NULL) {
286 fm_payload_set(ereport,
287 FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID,
288 DATA_TYPE_UINT64, pvd->vdev_guid,
289 FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE,
290 DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type,
291 NULL);
292 if (pvd->vdev_path)
293 fm_payload_set(ereport,
294 FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH,
295 DATA_TYPE_STRING, pvd->vdev_path, NULL);
296 if (pvd->vdev_devid)
297 fm_payload_set(ereport,
298 FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID,
299 DATA_TYPE_STRING, pvd->vdev_devid, NULL);
300 }
301 }
302
303 if (zio != NULL) {
304 /*
305 * Payload common to all I/Os.
306 */
307 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR,
308 DATA_TYPE_INT32, zio->io_error, NULL);
309 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_FLAGS,
310 DATA_TYPE_INT32, zio->io_flags, NULL);
311 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_STAGE,
312 DATA_TYPE_UINT32, zio->io_stage, NULL);
313 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_PIPELINE,
314 DATA_TYPE_UINT32, zio->io_pipeline, NULL);
315 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELAY,
316 DATA_TYPE_UINT64, zio->io_delay, NULL);
317 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_TIMESTAMP,
318 DATA_TYPE_UINT64, zio->io_timestamp, NULL);
319 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DEADLINE,
320 DATA_TYPE_UINT64, zio->io_deadline, NULL);
321 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELTA,
322 DATA_TYPE_UINT64, zio->io_delta, NULL);
323
324 /*
325 * If the 'size' parameter is non-zero, it indicates this is a
326 * RAID-Z or other I/O where the physical offset and length are
327 * provided for us, instead of within the zio_t.
328 */
329 if (vd != NULL) {
330 if (size)
331 fm_payload_set(ereport,
332 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
333 DATA_TYPE_UINT64, stateoroffset,
334 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
335 DATA_TYPE_UINT64, size, NULL);
336 else
337 fm_payload_set(ereport,
338 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
339 DATA_TYPE_UINT64, zio->io_offset,
340 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
341 DATA_TYPE_UINT64, zio->io_size, NULL);
342 }
343
344 /*
345 * Payload for I/Os with corresponding logical information.
346 */
347 if (zio->io_logical != NULL)
348 fm_payload_set(ereport,
349 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET,
350 DATA_TYPE_UINT64,
351 zio->io_logical->io_bookmark.zb_objset,
352 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT,
353 DATA_TYPE_UINT64,
354 zio->io_logical->io_bookmark.zb_object,
355 FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL,
356 DATA_TYPE_INT64,
357 zio->io_logical->io_bookmark.zb_level,
358 FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID,
359 DATA_TYPE_UINT64,
360 zio->io_logical->io_bookmark.zb_blkid, NULL);
361 } else if (vd != NULL) {
362 /*
363 * If we have a vdev but no zio, this is a device fault, and the
364 * 'stateoroffset' parameter indicates the previous state of the
365 * vdev.
366 */
367 fm_payload_set(ereport,
368 FM_EREPORT_PAYLOAD_ZFS_PREV_STATE,
369 DATA_TYPE_UINT64, stateoroffset, NULL);
370 }
371
372 mutex_exit(&spa->spa_errlist_lock);
373
374 *ereport_out = ereport;
375 *detector_out = detector;
376 }
377
378 /* if it's <= 128 bytes, save the corruption directly */
379 #define ZFM_MAX_INLINE (128 / sizeof (uint64_t))
380
381 #define MAX_RANGES 16
382
383 typedef struct zfs_ecksum_info {
384 /* histograms of set and cleared bits by bit number in a 64-bit word */
385 uint16_t zei_histogram_set[sizeof (uint64_t) * NBBY];
386 uint16_t zei_histogram_cleared[sizeof (uint64_t) * NBBY];
387
388 /* inline arrays of bits set and cleared. */
389 uint64_t zei_bits_set[ZFM_MAX_INLINE];
390 uint64_t zei_bits_cleared[ZFM_MAX_INLINE];
391
392 /*
393 * for each range, the number of bits set and cleared. The Hamming
394 * distance between the good and bad buffers is the sum of them all.
395 */
396 uint32_t zei_range_sets[MAX_RANGES];
397 uint32_t zei_range_clears[MAX_RANGES];
398
399 struct zei_ranges {
400 uint32_t zr_start;
401 uint32_t zr_end;
402 } zei_ranges[MAX_RANGES];
403
404 size_t zei_range_count;
405 uint32_t zei_mingap;
406 uint32_t zei_allowed_mingap;
407
408 } zfs_ecksum_info_t;
409
410 static void
411 update_histogram(uint64_t value_arg, uint16_t *hist, uint32_t *count)
412 {
413 size_t i;
414 size_t bits = 0;
415 uint64_t value = BE_64(value_arg);
416
417 /* We store the bits in big-endian (largest-first) order */
418 for (i = 0; i < 64; i++) {
419 if (value & (1ull << i)) {
420 hist[63 - i]++;
421 ++bits;
422 }
423 }
424 /* update the count of bits changed */
425 *count += bits;
426 }
427
428 /*
429 * We've now filled up the range array, and need to increase "mingap" and
430 * shrink the range list accordingly. zei_mingap is always the smallest
431 * distance between array entries, so we set the new_allowed_gap to be
432 * one greater than that. We then go through the list, joining together
433 * any ranges which are closer than the new_allowed_gap.
434 *
435 * By construction, there will be at least one. We also update zei_mingap
436 * to the new smallest gap, to prepare for our next invocation.
437 */
438 static void
439 zei_shrink_ranges(zfs_ecksum_info_t *eip)
440 {
441 uint32_t mingap = UINT32_MAX;
442 uint32_t new_allowed_gap = eip->zei_mingap + 1;
443
444 size_t idx, output;
445 size_t max = eip->zei_range_count;
446
447 struct zei_ranges *r = eip->zei_ranges;
448
449 ASSERT3U(eip->zei_range_count, >, 0);
450 ASSERT3U(eip->zei_range_count, <=, MAX_RANGES);
451
452 output = idx = 0;
453 while (idx < max - 1) {
454 uint32_t start = r[idx].zr_start;
455 uint32_t end = r[idx].zr_end;
456
457 while (idx < max - 1) {
458 uint32_t nstart, nend, gap;
459
460 idx++;
461 nstart = r[idx].zr_start;
462 nend = r[idx].zr_end;
463
464 gap = nstart - end;
465 if (gap < new_allowed_gap) {
466 end = nend;
467 continue;
468 }
469 if (gap < mingap)
470 mingap = gap;
471 break;
472 }
473 r[output].zr_start = start;
474 r[output].zr_end = end;
475 output++;
476 }
477 ASSERT3U(output, <, eip->zei_range_count);
478 eip->zei_range_count = output;
479 eip->zei_mingap = mingap;
480 eip->zei_allowed_mingap = new_allowed_gap;
481 }
482
483 static void
484 zei_add_range(zfs_ecksum_info_t *eip, int start, int end)
485 {
486 struct zei_ranges *r = eip->zei_ranges;
487 size_t count = eip->zei_range_count;
488
489 if (count >= MAX_RANGES) {
490 zei_shrink_ranges(eip);
491 count = eip->zei_range_count;
492 }
493 if (count == 0) {
494 eip->zei_mingap = UINT32_MAX;
495 eip->zei_allowed_mingap = 1;
496 } else {
497 int gap = start - r[count - 1].zr_end;
498
499 if (gap < eip->zei_allowed_mingap) {
500 r[count - 1].zr_end = end;
501 return;
502 }
503 if (gap < eip->zei_mingap)
504 eip->zei_mingap = gap;
505 }
506 r[count].zr_start = start;
507 r[count].zr_end = end;
508 eip->zei_range_count++;
509 }
510
511 static size_t
512 zei_range_total_size(zfs_ecksum_info_t *eip)
513 {
514 struct zei_ranges *r = eip->zei_ranges;
515 size_t count = eip->zei_range_count;
516 size_t result = 0;
517 size_t idx;
518
519 for (idx = 0; idx < count; idx++)
520 result += (r[idx].zr_end - r[idx].zr_start);
521
522 return (result);
523 }
524
525 static zfs_ecksum_info_t *
526 annotate_ecksum(nvlist_t *ereport, zio_bad_cksum_t *info,
527 const uint8_t *goodbuf, const uint8_t *badbuf, size_t size,
528 boolean_t drop_if_identical)
529 {
530 const uint64_t *good = (const uint64_t *)goodbuf;
531 const uint64_t *bad = (const uint64_t *)badbuf;
532
533 uint64_t allset = 0;
534 uint64_t allcleared = 0;
535
536 size_t nui64s = size / sizeof (uint64_t);
537
538 size_t inline_size;
539 int no_inline = 0;
540 size_t idx;
541 size_t range;
542
543 size_t offset = 0;
544 ssize_t start = -1;
545
546 zfs_ecksum_info_t *eip = kmem_zalloc(sizeof (*eip), KM_PUSHPAGE);
547
548 /* don't do any annotation for injected checksum errors */
549 if (info != NULL && info->zbc_injected)
550 return (eip);
551
552 if (info != NULL && info->zbc_has_cksum) {
553 fm_payload_set(ereport,
554 FM_EREPORT_PAYLOAD_ZFS_CKSUM_EXPECTED,
555 DATA_TYPE_UINT64_ARRAY,
556 sizeof (info->zbc_expected) / sizeof (uint64_t),
557 (uint64_t *)&info->zbc_expected,
558 FM_EREPORT_PAYLOAD_ZFS_CKSUM_ACTUAL,
559 DATA_TYPE_UINT64_ARRAY,
560 sizeof (info->zbc_actual) / sizeof (uint64_t),
561 (uint64_t *)&info->zbc_actual,
562 FM_EREPORT_PAYLOAD_ZFS_CKSUM_ALGO,
563 DATA_TYPE_STRING,
564 info->zbc_checksum_name,
565 NULL);
566
567 if (info->zbc_byteswapped) {
568 fm_payload_set(ereport,
569 FM_EREPORT_PAYLOAD_ZFS_CKSUM_BYTESWAP,
570 DATA_TYPE_BOOLEAN, 1,
571 NULL);
572 }
573 }
574
575 if (badbuf == NULL || goodbuf == NULL)
576 return (eip);
577
578 ASSERT3U(nui64s, <=, UINT16_MAX);
579 ASSERT3U(size, ==, nui64s * sizeof (uint64_t));
580 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
581 ASSERT3U(size, <=, UINT32_MAX);
582
583 /* build up the range list by comparing the two buffers. */
584 for (idx = 0; idx < nui64s; idx++) {
585 if (good[idx] == bad[idx]) {
586 if (start == -1)
587 continue;
588
589 zei_add_range(eip, start, idx);
590 start = -1;
591 } else {
592 if (start != -1)
593 continue;
594
595 start = idx;
596 }
597 }
598 if (start != -1)
599 zei_add_range(eip, start, idx);
600
601 /* See if it will fit in our inline buffers */
602 inline_size = zei_range_total_size(eip);
603 if (inline_size > ZFM_MAX_INLINE)
604 no_inline = 1;
605
606 /*
607 * If there is no change and we want to drop if the buffers are
608 * identical, do so.
609 */
610 if (inline_size == 0 && drop_if_identical) {
611 kmem_free(eip, sizeof (*eip));
612 return (NULL);
613 }
614
615 /*
616 * Now walk through the ranges, filling in the details of the
617 * differences. Also convert our uint64_t-array offsets to byte
618 * offsets.
619 */
620 for (range = 0; range < eip->zei_range_count; range++) {
621 size_t start = eip->zei_ranges[range].zr_start;
622 size_t end = eip->zei_ranges[range].zr_end;
623
624 for (idx = start; idx < end; idx++) {
625 uint64_t set, cleared;
626
627 // bits set in bad, but not in good
628 set = ((~good[idx]) & bad[idx]);
629 // bits set in good, but not in bad
630 cleared = (good[idx] & (~bad[idx]));
631
632 allset |= set;
633 allcleared |= cleared;
634
635 if (!no_inline) {
636 ASSERT3U(offset, <, inline_size);
637 eip->zei_bits_set[offset] = set;
638 eip->zei_bits_cleared[offset] = cleared;
639 offset++;
640 }
641
642 update_histogram(set, eip->zei_histogram_set,
643 &eip->zei_range_sets[range]);
644 update_histogram(cleared, eip->zei_histogram_cleared,
645 &eip->zei_range_clears[range]);
646 }
647
648 /* convert to byte offsets */
649 eip->zei_ranges[range].zr_start *= sizeof (uint64_t);
650 eip->zei_ranges[range].zr_end *= sizeof (uint64_t);
651 }
652 eip->zei_allowed_mingap *= sizeof (uint64_t);
653 inline_size *= sizeof (uint64_t);
654
655 /* fill in ereport */
656 fm_payload_set(ereport,
657 FM_EREPORT_PAYLOAD_ZFS_BAD_OFFSET_RANGES,
658 DATA_TYPE_UINT32_ARRAY, 2 * eip->zei_range_count,
659 (uint32_t *)eip->zei_ranges,
660 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_MIN_GAP,
661 DATA_TYPE_UINT32, eip->zei_allowed_mingap,
662 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_SETS,
663 DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_sets,
664 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_CLEARS,
665 DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_clears,
666 NULL);
667
668 if (!no_inline) {
669 fm_payload_set(ereport,
670 FM_EREPORT_PAYLOAD_ZFS_BAD_SET_BITS,
671 DATA_TYPE_UINT8_ARRAY,
672 inline_size, (uint8_t *)eip->zei_bits_set,
673 FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_BITS,
674 DATA_TYPE_UINT8_ARRAY,
675 inline_size, (uint8_t *)eip->zei_bits_cleared,
676 NULL);
677 } else {
678 fm_payload_set(ereport,
679 FM_EREPORT_PAYLOAD_ZFS_BAD_SET_HISTOGRAM,
680 DATA_TYPE_UINT16_ARRAY,
681 NBBY * sizeof (uint64_t), eip->zei_histogram_set,
682 FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_HISTOGRAM,
683 DATA_TYPE_UINT16_ARRAY,
684 NBBY * sizeof (uint64_t), eip->zei_histogram_cleared,
685 NULL);
686 }
687 return (eip);
688 }
689 #endif
690
691 void
692 zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio,
693 uint64_t stateoroffset, uint64_t size)
694 {
695 #ifdef _KERNEL
696 nvlist_t *ereport = NULL;
697 nvlist_t *detector = NULL;
698
699 zfs_ereport_start(&ereport, &detector,
700 subclass, spa, vd, zio, stateoroffset, size);
701
702 if (ereport == NULL)
703 return;
704
705 /* Cleanup is handled by the callback function */
706 zfs_zevent_post(ereport, detector, zfs_zevent_post_cb);
707 #endif
708 }
709
710 void
711 zfs_ereport_start_checksum(spa_t *spa, vdev_t *vd,
712 struct zio *zio, uint64_t offset, uint64_t length, void *arg,
713 zio_bad_cksum_t *info)
714 {
715 zio_cksum_report_t *report = kmem_zalloc(sizeof (*report), KM_PUSHPAGE);
716
717 if (zio->io_vsd != NULL)
718 zio->io_vsd_ops->vsd_cksum_report(zio, report, arg);
719 else
720 zio_vsd_default_cksum_report(zio, report, arg);
721
722 /* copy the checksum failure information if it was provided */
723 if (info != NULL) {
724 report->zcr_ckinfo = kmem_zalloc(sizeof (*info), KM_PUSHPAGE);
725 bcopy(info, report->zcr_ckinfo, sizeof (*info));
726 }
727
728 report->zcr_align = 1ULL << vd->vdev_top->vdev_ashift;
729 report->zcr_length = length;
730
731 #ifdef _KERNEL
732 zfs_ereport_start(&report->zcr_ereport, &report->zcr_detector,
733 FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio, offset, length);
734
735 if (report->zcr_ereport == NULL) {
736 report->zcr_free(report->zcr_cbdata, report->zcr_cbinfo);
737 if (report->zcr_ckinfo != NULL) {
738 kmem_free(report->zcr_ckinfo,
739 sizeof (*report->zcr_ckinfo));
740 }
741 kmem_free(report, sizeof (*report));
742 return;
743 }
744 #endif
745
746 mutex_enter(&spa->spa_errlist_lock);
747 report->zcr_next = zio->io_logical->io_cksum_report;
748 zio->io_logical->io_cksum_report = report;
749 mutex_exit(&spa->spa_errlist_lock);
750 }
751
752 void
753 zfs_ereport_finish_checksum(zio_cksum_report_t *report,
754 const void *good_data, const void *bad_data, boolean_t drop_if_identical)
755 {
756 #ifdef _KERNEL
757 zfs_ecksum_info_t *info = NULL;
758 info = annotate_ecksum(report->zcr_ereport, report->zcr_ckinfo,
759 good_data, bad_data, report->zcr_length, drop_if_identical);
760
761 if (info != NULL)
762 zfs_zevent_post(report->zcr_ereport,
763 report->zcr_detector, zfs_zevent_post_cb);
764
765 report->zcr_ereport = report->zcr_detector = NULL;
766 if (info != NULL)
767 kmem_free(info, sizeof (*info));
768 #endif
769 }
770
771 void
772 zfs_ereport_free_checksum(zio_cksum_report_t *rpt)
773 {
774 #ifdef _KERNEL
775 if (rpt->zcr_ereport != NULL) {
776 fm_nvlist_destroy(rpt->zcr_ereport,
777 FM_NVA_FREE);
778 fm_nvlist_destroy(rpt->zcr_detector,
779 FM_NVA_FREE);
780 }
781 #endif
782 rpt->zcr_free(rpt->zcr_cbdata, rpt->zcr_cbinfo);
783
784 if (rpt->zcr_ckinfo != NULL)
785 kmem_free(rpt->zcr_ckinfo, sizeof (*rpt->zcr_ckinfo));
786
787 kmem_free(rpt, sizeof (*rpt));
788 }
789
790 void
791 zfs_ereport_send_interim_checksum(zio_cksum_report_t *report)
792 {
793 #ifdef _KERNEL
794 zfs_zevent_post(report->zcr_ereport, report->zcr_detector, NULL);
795 #endif
796 }
797
798 void
799 zfs_ereport_post_checksum(spa_t *spa, vdev_t *vd,
800 struct zio *zio, uint64_t offset, uint64_t length,
801 const void *good_data, const void *bad_data, zio_bad_cksum_t *zbc)
802 {
803 #ifdef _KERNEL
804 nvlist_t *ereport = NULL;
805 nvlist_t *detector = NULL;
806 zfs_ecksum_info_t *info;
807
808 zfs_ereport_start(&ereport, &detector,
809 FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio, offset, length);
810
811 if (ereport == NULL)
812 return;
813
814 info = annotate_ecksum(ereport, zbc, good_data, bad_data, length,
815 B_FALSE);
816
817 if (info != NULL) {
818 zfs_zevent_post(ereport, detector, zfs_zevent_post_cb);
819 kmem_free(info, sizeof (*info));
820 }
821 #endif
822 }
823
824 static void
825 zfs_post_common(spa_t *spa, vdev_t *vd, const char *name)
826 {
827 #ifdef _KERNEL
828 nvlist_t *resource;
829 char class[64];
830
831 if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT)
832 return;
833
834 if ((resource = fm_nvlist_create(NULL)) == NULL)
835 return;
836
837 (void) snprintf(class, sizeof (class), "%s.%s.%s", FM_RSRC_RESOURCE,
838 ZFS_ERROR_CLASS, name);
839 VERIFY(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION) == 0);
840 VERIFY(nvlist_add_string(resource, FM_CLASS, class) == 0);
841 VERIFY(nvlist_add_uint64(resource,
842 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa)) == 0);
843 if (vd) {
844 VERIFY(nvlist_add_uint64(resource,
845 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid) == 0);
846 VERIFY(nvlist_add_uint64(resource,
847 FM_EREPORT_PAYLOAD_ZFS_VDEV_STATE, vd->vdev_state) == 0);
848 }
849
850 zfs_zevent_post(resource, NULL, zfs_zevent_post_cb);
851 #endif
852 }
853
854 /*
855 * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev
856 * has been removed from the system. This will cause the DE to ignore any
857 * recent I/O errors, inferring that they are due to the asynchronous device
858 * removal.
859 */
860 void
861 zfs_post_remove(spa_t *spa, vdev_t *vd)
862 {
863 zfs_post_common(spa, vd, FM_EREPORT_RESOURCE_REMOVED);
864 }
865
866 /*
867 * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool
868 * has the 'autoreplace' property set, and therefore any broken vdevs will be
869 * handled by higher level logic, and no vdev fault should be generated.
870 */
871 void
872 zfs_post_autoreplace(spa_t *spa, vdev_t *vd)
873 {
874 zfs_post_common(spa, vd, FM_EREPORT_RESOURCE_AUTOREPLACE);
875 }
876
877 /*
878 * The 'resource.fs.zfs.statechange' event is an internal signal that the
879 * given vdev has transitioned its state to DEGRADED or HEALTHY. This will
880 * cause the retire agent to repair any outstanding fault management cases
881 * open because the device was not found (fault.fs.zfs.device).
882 */
883 void
884 zfs_post_state_change(spa_t *spa, vdev_t *vd)
885 {
886 zfs_post_common(spa, vd, FM_EREPORT_RESOURCE_STATECHANGE);
887 }
888
889 #if defined(_KERNEL) && defined(HAVE_SPL)
890 EXPORT_SYMBOL(zfs_ereport_post);
891 EXPORT_SYMBOL(zfs_ereport_post_checksum);
892 EXPORT_SYMBOL(zfs_post_remove);
893 EXPORT_SYMBOL(zfs_post_autoreplace);
894 EXPORT_SYMBOL(zfs_post_state_change);
895 #endif /* _KERNEL */