]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zfs_fm.c
Turn on/off enclosure slot fault LED even when disk isn't present
[mirror_zfs.git] / module / zfs / zfs_fm.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * Copyright (c) 2012 by Delphix. All rights reserved.
28 */
29
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/vdev.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/zio.h>
35 #include <sys/zio_checksum.h>
36
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/fm/protocol.h>
39 #include <sys/fm/util.h>
40 #include <sys/sysevent.h>
41
42 /*
43 * This general routine is responsible for generating all the different ZFS
44 * ereports. The payload is dependent on the class, and which arguments are
45 * supplied to the function:
46 *
47 * EREPORT POOL VDEV IO
48 * block X X X
49 * data X X
50 * device X X
51 * pool X
52 *
53 * If we are in a loading state, all errors are chained together by the same
54 * SPA-wide ENA (Error Numeric Association).
55 *
56 * For isolated I/O requests, we get the ENA from the zio_t. The propagation
57 * gets very complicated due to RAID-Z, gang blocks, and vdev caching. We want
58 * to chain together all ereports associated with a logical piece of data. For
59 * read I/Os, there are basically three 'types' of I/O, which form a roughly
60 * layered diagram:
61 *
62 * +---------------+
63 * | Aggregate I/O | No associated logical data or device
64 * +---------------+
65 * |
66 * V
67 * +---------------+ Reads associated with a piece of logical data.
68 * | Read I/O | This includes reads on behalf of RAID-Z,
69 * +---------------+ mirrors, gang blocks, retries, etc.
70 * |
71 * V
72 * +---------------+ Reads associated with a particular device, but
73 * | Physical I/O | no logical data. Issued as part of vdev caching
74 * +---------------+ and I/O aggregation.
75 *
76 * Note that 'physical I/O' here is not the same terminology as used in the rest
77 * of ZIO. Typically, 'physical I/O' simply means that there is no attached
78 * blockpointer. But I/O with no associated block pointer can still be related
79 * to a logical piece of data (i.e. RAID-Z requests).
80 *
81 * Purely physical I/O always have unique ENAs. They are not related to a
82 * particular piece of logical data, and therefore cannot be chained together.
83 * We still generate an ereport, but the DE doesn't correlate it with any
84 * logical piece of data. When such an I/O fails, the delegated I/O requests
85 * will issue a retry, which will trigger the 'real' ereport with the correct
86 * ENA.
87 *
88 * We keep track of the ENA for a ZIO chain through the 'io_logical' member.
89 * When a new logical I/O is issued, we set this to point to itself. Child I/Os
90 * then inherit this pointer, so that when it is first set subsequent failures
91 * will use the same ENA. For vdev cache fill and queue aggregation I/O,
92 * this pointer is set to NULL, and no ereport will be generated (since it
93 * doesn't actually correspond to any particular device or piece of data,
94 * and the caller will always retry without caching or queueing anyway).
95 *
96 * For checksum errors, we want to include more information about the actual
97 * error which occurs. Accordingly, we build an ereport when the error is
98 * noticed, but instead of sending it in immediately, we hang it off of the
99 * io_cksum_report field of the logical IO. When the logical IO completes
100 * (successfully or not), zfs_ereport_finish_checksum() is called with the
101 * good and bad versions of the buffer (if available), and we annotate the
102 * ereport with information about the differences.
103 */
104 #ifdef _KERNEL
105 static void
106 zfs_zevent_post_cb(nvlist_t *nvl, nvlist_t *detector)
107 {
108 if (nvl)
109 fm_nvlist_destroy(nvl, FM_NVA_FREE);
110
111 if (detector)
112 fm_nvlist_destroy(detector, FM_NVA_FREE);
113 }
114
115 /*
116 * We want to rate limit ZIO delay and checksum events so as to not
117 * flood ZED when a disk is acting up.
118 *
119 * Returns 1 if we're ratelimiting, 0 if not.
120 */
121 static int
122 zfs_is_ratelimiting_event(const char *subclass, vdev_t *vd)
123 {
124 int rc = 0;
125 /*
126 * __ratelimit() returns 1 if we're *not* ratelimiting and 0 if we
127 * are. Invert it to get our return value.
128 */
129 if (strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) {
130 rc = !zfs_ratelimit(&vd->vdev_delay_rl);
131 } else if (strcmp(subclass, FM_EREPORT_ZFS_CHECKSUM) == 0) {
132 rc = !zfs_ratelimit(&vd->vdev_checksum_rl);
133 }
134
135 if (rc) {
136 /* We're rate limiting */
137 fm_erpt_dropped_increment();
138 }
139
140 return (rc);
141 }
142
143 static void
144 zfs_ereport_start(nvlist_t **ereport_out, nvlist_t **detector_out,
145 const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio,
146 uint64_t stateoroffset, uint64_t size)
147 {
148 nvlist_t *ereport, *detector;
149
150 uint64_t ena;
151 char class[64];
152
153 /*
154 * If we are doing a spa_tryimport() or in recovery mode,
155 * ignore errors.
156 */
157 if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT ||
158 spa_load_state(spa) == SPA_LOAD_RECOVER)
159 return;
160
161 /*
162 * If we are in the middle of opening a pool, and the previous attempt
163 * failed, don't bother logging any new ereports - we're just going to
164 * get the same diagnosis anyway.
165 */
166 if (spa_load_state(spa) != SPA_LOAD_NONE &&
167 spa->spa_last_open_failed)
168 return;
169
170 if (zio != NULL) {
171 /*
172 * If this is not a read or write zio, ignore the error. This
173 * can occur if the DKIOCFLUSHWRITECACHE ioctl fails.
174 */
175 if (zio->io_type != ZIO_TYPE_READ &&
176 zio->io_type != ZIO_TYPE_WRITE)
177 return;
178
179 if (vd != NULL) {
180 /*
181 * If the vdev has already been marked as failing due
182 * to a failed probe, then ignore any subsequent I/O
183 * errors, as the DE will automatically fault the vdev
184 * on the first such failure. This also catches cases
185 * where vdev_remove_wanted is set and the device has
186 * not yet been asynchronously placed into the REMOVED
187 * state.
188 */
189 if (zio->io_vd == vd && !vdev_accessible(vd, zio))
190 return;
191
192 /*
193 * Ignore checksum errors for reads from DTL regions of
194 * leaf vdevs.
195 */
196 if (zio->io_type == ZIO_TYPE_READ &&
197 zio->io_error == ECKSUM &&
198 vd->vdev_ops->vdev_op_leaf &&
199 vdev_dtl_contains(vd, DTL_MISSING, zio->io_txg, 1))
200 return;
201 }
202 }
203
204 /*
205 * For probe failure, we want to avoid posting ereports if we've
206 * already removed the device in the meantime.
207 */
208 if (vd != NULL &&
209 strcmp(subclass, FM_EREPORT_ZFS_PROBE_FAILURE) == 0 &&
210 (vd->vdev_remove_wanted || vd->vdev_state == VDEV_STATE_REMOVED))
211 return;
212
213 if ((ereport = fm_nvlist_create(NULL)) == NULL)
214 return;
215
216 if ((detector = fm_nvlist_create(NULL)) == NULL) {
217 fm_nvlist_destroy(ereport, FM_NVA_FREE);
218 return;
219 }
220
221 if ((strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) &&
222 (zio != NULL) && (!zio->io_timestamp)) {
223 /* Ignore bogus delay events */
224 return;
225 }
226
227 /*
228 * Serialize ereport generation
229 */
230 mutex_enter(&spa->spa_errlist_lock);
231
232 /*
233 * Determine the ENA to use for this event. If we are in a loading
234 * state, use a SPA-wide ENA. Otherwise, if we are in an I/O state, use
235 * a root zio-wide ENA. Otherwise, simply use a unique ENA.
236 */
237 if (spa_load_state(spa) != SPA_LOAD_NONE) {
238 if (spa->spa_ena == 0)
239 spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1);
240 ena = spa->spa_ena;
241 } else if (zio != NULL && zio->io_logical != NULL) {
242 if (zio->io_logical->io_ena == 0)
243 zio->io_logical->io_ena =
244 fm_ena_generate(0, FM_ENA_FMT1);
245 ena = zio->io_logical->io_ena;
246 } else {
247 ena = fm_ena_generate(0, FM_ENA_FMT1);
248 }
249
250 /*
251 * Construct the full class, detector, and other standard FMA fields.
252 */
253 (void) snprintf(class, sizeof (class), "%s.%s",
254 ZFS_ERROR_CLASS, subclass);
255
256 fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa),
257 vd != NULL ? vd->vdev_guid : 0);
258
259 fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL);
260
261 /*
262 * Construct the per-ereport payload, depending on which parameters are
263 * passed in.
264 */
265
266 /*
267 * Generic payload members common to all ereports.
268 */
269 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL,
270 DATA_TYPE_STRING, spa_name(spa), FM_EREPORT_PAYLOAD_ZFS_POOL_GUID,
271 DATA_TYPE_UINT64, spa_guid(spa),
272 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32,
273 spa_load_state(spa), NULL);
274
275 if (spa != NULL) {
276 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE,
277 DATA_TYPE_STRING,
278 spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ?
279 FM_EREPORT_FAILMODE_WAIT :
280 spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ?
281 FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC,
282 NULL);
283 }
284
285 if (vd != NULL) {
286 vdev_t *pvd = vd->vdev_parent;
287 vdev_queue_t *vq = &vd->vdev_queue;
288 vdev_stat_t *vs = &vd->vdev_stat;
289 vdev_t *spare_vd;
290 uint64_t *spare_guids;
291 char **spare_paths;
292 int i, spare_count;
293
294 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID,
295 DATA_TYPE_UINT64, vd->vdev_guid,
296 FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE,
297 DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL);
298 if (vd->vdev_path != NULL)
299 fm_payload_set(ereport,
300 FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH,
301 DATA_TYPE_STRING, vd->vdev_path, NULL);
302 if (vd->vdev_devid != NULL)
303 fm_payload_set(ereport,
304 FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID,
305 DATA_TYPE_STRING, vd->vdev_devid, NULL);
306 if (vd->vdev_fru != NULL)
307 fm_payload_set(ereport,
308 FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU,
309 DATA_TYPE_STRING, vd->vdev_fru, NULL);
310 if (vd->vdev_ashift)
311 fm_payload_set(ereport,
312 FM_EREPORT_PAYLOAD_ZFS_VDEV_ASHIFT,
313 DATA_TYPE_UINT64, vd->vdev_ashift, NULL);
314
315 if (vq != NULL) {
316 fm_payload_set(ereport,
317 FM_EREPORT_PAYLOAD_ZFS_VDEV_COMP_TS,
318 DATA_TYPE_UINT64, vq->vq_io_complete_ts, NULL);
319 fm_payload_set(ereport,
320 FM_EREPORT_PAYLOAD_ZFS_VDEV_DELTA_TS,
321 DATA_TYPE_UINT64, vq->vq_io_delta_ts, NULL);
322 }
323
324 if (vs != NULL) {
325 fm_payload_set(ereport,
326 FM_EREPORT_PAYLOAD_ZFS_VDEV_READ_ERRORS,
327 DATA_TYPE_UINT64, vs->vs_read_errors,
328 FM_EREPORT_PAYLOAD_ZFS_VDEV_WRITE_ERRORS,
329 DATA_TYPE_UINT64, vs->vs_write_errors,
330 FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_ERRORS,
331 DATA_TYPE_UINT64, vs->vs_checksum_errors, NULL);
332 }
333
334 if (pvd != NULL) {
335 fm_payload_set(ereport,
336 FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID,
337 DATA_TYPE_UINT64, pvd->vdev_guid,
338 FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE,
339 DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type,
340 NULL);
341 if (pvd->vdev_path)
342 fm_payload_set(ereport,
343 FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH,
344 DATA_TYPE_STRING, pvd->vdev_path, NULL);
345 if (pvd->vdev_devid)
346 fm_payload_set(ereport,
347 FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID,
348 DATA_TYPE_STRING, pvd->vdev_devid, NULL);
349 }
350
351 spare_count = spa->spa_spares.sav_count;
352 spare_paths = kmem_zalloc(sizeof (char *) * spare_count,
353 KM_SLEEP);
354 spare_guids = kmem_zalloc(sizeof (uint64_t) * spare_count,
355 KM_SLEEP);
356
357 for (i = 0; i < spare_count; i++) {
358 spare_vd = spa->spa_spares.sav_vdevs[i];
359 if (spare_vd) {
360 spare_paths[i] = spare_vd->vdev_path;
361 spare_guids[i] = spare_vd->vdev_guid;
362 }
363 }
364
365 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_PATHS,
366 DATA_TYPE_STRING_ARRAY, spare_count, spare_paths,
367 FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_GUIDS,
368 DATA_TYPE_UINT64_ARRAY, spare_count, spare_guids, NULL);
369
370 kmem_free(spare_guids, sizeof (uint64_t) * spare_count);
371 kmem_free(spare_paths, sizeof (char *) * spare_count);
372 }
373
374 if (zio != NULL) {
375 /*
376 * Payload common to all I/Os.
377 */
378 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR,
379 DATA_TYPE_INT32, zio->io_error, NULL);
380 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_FLAGS,
381 DATA_TYPE_INT32, zio->io_flags, NULL);
382 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_STAGE,
383 DATA_TYPE_UINT32, zio->io_stage, NULL);
384 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_PIPELINE,
385 DATA_TYPE_UINT32, zio->io_pipeline, NULL);
386 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELAY,
387 DATA_TYPE_UINT64, zio->io_delay, NULL);
388 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_TIMESTAMP,
389 DATA_TYPE_UINT64, zio->io_timestamp, NULL);
390 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELTA,
391 DATA_TYPE_UINT64, zio->io_delta, NULL);
392
393 /*
394 * If the 'size' parameter is non-zero, it indicates this is a
395 * RAID-Z or other I/O where the physical offset and length are
396 * provided for us, instead of within the zio_t.
397 */
398 if (vd != NULL) {
399 if (size)
400 fm_payload_set(ereport,
401 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
402 DATA_TYPE_UINT64, stateoroffset,
403 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
404 DATA_TYPE_UINT64, size, NULL);
405 else
406 fm_payload_set(ereport,
407 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
408 DATA_TYPE_UINT64, zio->io_offset,
409 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
410 DATA_TYPE_UINT64, zio->io_size, NULL);
411 }
412
413 /*
414 * Payload for I/Os with corresponding logical information.
415 */
416 if (zio->io_logical != NULL)
417 fm_payload_set(ereport,
418 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET,
419 DATA_TYPE_UINT64,
420 zio->io_logical->io_bookmark.zb_objset,
421 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT,
422 DATA_TYPE_UINT64,
423 zio->io_logical->io_bookmark.zb_object,
424 FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL,
425 DATA_TYPE_INT64,
426 zio->io_logical->io_bookmark.zb_level,
427 FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID,
428 DATA_TYPE_UINT64,
429 zio->io_logical->io_bookmark.zb_blkid, NULL);
430 } else if (vd != NULL) {
431 /*
432 * If we have a vdev but no zio, this is a device fault, and the
433 * 'stateoroffset' parameter indicates the previous state of the
434 * vdev.
435 */
436 fm_payload_set(ereport,
437 FM_EREPORT_PAYLOAD_ZFS_PREV_STATE,
438 DATA_TYPE_UINT64, stateoroffset, NULL);
439 }
440
441 mutex_exit(&spa->spa_errlist_lock);
442
443 *ereport_out = ereport;
444 *detector_out = detector;
445 }
446
447 /* if it's <= 128 bytes, save the corruption directly */
448 #define ZFM_MAX_INLINE (128 / sizeof (uint64_t))
449
450 #define MAX_RANGES 16
451
452 typedef struct zfs_ecksum_info {
453 /* histograms of set and cleared bits by bit number in a 64-bit word */
454 uint16_t zei_histogram_set[sizeof (uint64_t) * NBBY];
455 uint16_t zei_histogram_cleared[sizeof (uint64_t) * NBBY];
456
457 /* inline arrays of bits set and cleared. */
458 uint64_t zei_bits_set[ZFM_MAX_INLINE];
459 uint64_t zei_bits_cleared[ZFM_MAX_INLINE];
460
461 /*
462 * for each range, the number of bits set and cleared. The Hamming
463 * distance between the good and bad buffers is the sum of them all.
464 */
465 uint32_t zei_range_sets[MAX_RANGES];
466 uint32_t zei_range_clears[MAX_RANGES];
467
468 struct zei_ranges {
469 uint32_t zr_start;
470 uint32_t zr_end;
471 } zei_ranges[MAX_RANGES];
472
473 size_t zei_range_count;
474 uint32_t zei_mingap;
475 uint32_t zei_allowed_mingap;
476
477 } zfs_ecksum_info_t;
478
479 static void
480 update_histogram(uint64_t value_arg, uint16_t *hist, uint32_t *count)
481 {
482 size_t i;
483 size_t bits = 0;
484 uint64_t value = BE_64(value_arg);
485
486 /* We store the bits in big-endian (largest-first) order */
487 for (i = 0; i < 64; i++) {
488 if (value & (1ull << i)) {
489 if (hist[63 - i] < UINT16_MAX)
490 hist[63 - i]++;
491 ++bits;
492 }
493 }
494 /* update the count of bits changed */
495 *count += bits;
496 }
497
498 /*
499 * We've now filled up the range array, and need to increase "mingap" and
500 * shrink the range list accordingly. zei_mingap is always the smallest
501 * distance between array entries, so we set the new_allowed_gap to be
502 * one greater than that. We then go through the list, joining together
503 * any ranges which are closer than the new_allowed_gap.
504 *
505 * By construction, there will be at least one. We also update zei_mingap
506 * to the new smallest gap, to prepare for our next invocation.
507 */
508 static void
509 zei_shrink_ranges(zfs_ecksum_info_t *eip)
510 {
511 uint32_t mingap = UINT32_MAX;
512 uint32_t new_allowed_gap = eip->zei_mingap + 1;
513
514 size_t idx, output;
515 size_t max = eip->zei_range_count;
516
517 struct zei_ranges *r = eip->zei_ranges;
518
519 ASSERT3U(eip->zei_range_count, >, 0);
520 ASSERT3U(eip->zei_range_count, <=, MAX_RANGES);
521
522 output = idx = 0;
523 while (idx < max - 1) {
524 uint32_t start = r[idx].zr_start;
525 uint32_t end = r[idx].zr_end;
526
527 while (idx < max - 1) {
528 uint32_t nstart, nend, gap;
529
530 idx++;
531 nstart = r[idx].zr_start;
532 nend = r[idx].zr_end;
533
534 gap = nstart - end;
535 if (gap < new_allowed_gap) {
536 end = nend;
537 continue;
538 }
539 if (gap < mingap)
540 mingap = gap;
541 break;
542 }
543 r[output].zr_start = start;
544 r[output].zr_end = end;
545 output++;
546 }
547 ASSERT3U(output, <, eip->zei_range_count);
548 eip->zei_range_count = output;
549 eip->zei_mingap = mingap;
550 eip->zei_allowed_mingap = new_allowed_gap;
551 }
552
553 static void
554 zei_add_range(zfs_ecksum_info_t *eip, int start, int end)
555 {
556 struct zei_ranges *r = eip->zei_ranges;
557 size_t count = eip->zei_range_count;
558
559 if (count >= MAX_RANGES) {
560 zei_shrink_ranges(eip);
561 count = eip->zei_range_count;
562 }
563 if (count == 0) {
564 eip->zei_mingap = UINT32_MAX;
565 eip->zei_allowed_mingap = 1;
566 } else {
567 int gap = start - r[count - 1].zr_end;
568
569 if (gap < eip->zei_allowed_mingap) {
570 r[count - 1].zr_end = end;
571 return;
572 }
573 if (gap < eip->zei_mingap)
574 eip->zei_mingap = gap;
575 }
576 r[count].zr_start = start;
577 r[count].zr_end = end;
578 eip->zei_range_count++;
579 }
580
581 static size_t
582 zei_range_total_size(zfs_ecksum_info_t *eip)
583 {
584 struct zei_ranges *r = eip->zei_ranges;
585 size_t count = eip->zei_range_count;
586 size_t result = 0;
587 size_t idx;
588
589 for (idx = 0; idx < count; idx++)
590 result += (r[idx].zr_end - r[idx].zr_start);
591
592 return (result);
593 }
594
595 static zfs_ecksum_info_t *
596 annotate_ecksum(nvlist_t *ereport, zio_bad_cksum_t *info,
597 const uint8_t *goodbuf, const uint8_t *badbuf, size_t size,
598 boolean_t drop_if_identical)
599 {
600 const uint64_t *good = (const uint64_t *)goodbuf;
601 const uint64_t *bad = (const uint64_t *)badbuf;
602
603 uint64_t allset = 0;
604 uint64_t allcleared = 0;
605
606 size_t nui64s = size / sizeof (uint64_t);
607
608 size_t inline_size;
609 int no_inline = 0;
610 size_t idx;
611 size_t range;
612
613 size_t offset = 0;
614 ssize_t start = -1;
615
616 zfs_ecksum_info_t *eip = kmem_zalloc(sizeof (*eip), KM_SLEEP);
617
618 /* don't do any annotation for injected checksum errors */
619 if (info != NULL && info->zbc_injected)
620 return (eip);
621
622 if (info != NULL && info->zbc_has_cksum) {
623 fm_payload_set(ereport,
624 FM_EREPORT_PAYLOAD_ZFS_CKSUM_EXPECTED,
625 DATA_TYPE_UINT64_ARRAY,
626 sizeof (info->zbc_expected) / sizeof (uint64_t),
627 (uint64_t *)&info->zbc_expected,
628 FM_EREPORT_PAYLOAD_ZFS_CKSUM_ACTUAL,
629 DATA_TYPE_UINT64_ARRAY,
630 sizeof (info->zbc_actual) / sizeof (uint64_t),
631 (uint64_t *)&info->zbc_actual,
632 FM_EREPORT_PAYLOAD_ZFS_CKSUM_ALGO,
633 DATA_TYPE_STRING,
634 info->zbc_checksum_name,
635 NULL);
636
637 if (info->zbc_byteswapped) {
638 fm_payload_set(ereport,
639 FM_EREPORT_PAYLOAD_ZFS_CKSUM_BYTESWAP,
640 DATA_TYPE_BOOLEAN, 1,
641 NULL);
642 }
643 }
644
645 if (badbuf == NULL || goodbuf == NULL)
646 return (eip);
647
648 ASSERT3U(size, ==, nui64s * sizeof (uint64_t));
649 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
650 ASSERT3U(size, <=, UINT32_MAX);
651
652 /* build up the range list by comparing the two buffers. */
653 for (idx = 0; idx < nui64s; idx++) {
654 if (good[idx] == bad[idx]) {
655 if (start == -1)
656 continue;
657
658 zei_add_range(eip, start, idx);
659 start = -1;
660 } else {
661 if (start != -1)
662 continue;
663
664 start = idx;
665 }
666 }
667 if (start != -1)
668 zei_add_range(eip, start, idx);
669
670 /* See if it will fit in our inline buffers */
671 inline_size = zei_range_total_size(eip);
672 if (inline_size > ZFM_MAX_INLINE)
673 no_inline = 1;
674
675 /*
676 * If there is no change and we want to drop if the buffers are
677 * identical, do so.
678 */
679 if (inline_size == 0 && drop_if_identical) {
680 kmem_free(eip, sizeof (*eip));
681 return (NULL);
682 }
683
684 /*
685 * Now walk through the ranges, filling in the details of the
686 * differences. Also convert our uint64_t-array offsets to byte
687 * offsets.
688 */
689 for (range = 0; range < eip->zei_range_count; range++) {
690 size_t start = eip->zei_ranges[range].zr_start;
691 size_t end = eip->zei_ranges[range].zr_end;
692
693 for (idx = start; idx < end; idx++) {
694 uint64_t set, cleared;
695
696 // bits set in bad, but not in good
697 set = ((~good[idx]) & bad[idx]);
698 // bits set in good, but not in bad
699 cleared = (good[idx] & (~bad[idx]));
700
701 allset |= set;
702 allcleared |= cleared;
703
704 if (!no_inline) {
705 ASSERT3U(offset, <, inline_size);
706 eip->zei_bits_set[offset] = set;
707 eip->zei_bits_cleared[offset] = cleared;
708 offset++;
709 }
710
711 update_histogram(set, eip->zei_histogram_set,
712 &eip->zei_range_sets[range]);
713 update_histogram(cleared, eip->zei_histogram_cleared,
714 &eip->zei_range_clears[range]);
715 }
716
717 /* convert to byte offsets */
718 eip->zei_ranges[range].zr_start *= sizeof (uint64_t);
719 eip->zei_ranges[range].zr_end *= sizeof (uint64_t);
720 }
721 eip->zei_allowed_mingap *= sizeof (uint64_t);
722 inline_size *= sizeof (uint64_t);
723
724 /* fill in ereport */
725 fm_payload_set(ereport,
726 FM_EREPORT_PAYLOAD_ZFS_BAD_OFFSET_RANGES,
727 DATA_TYPE_UINT32_ARRAY, 2 * eip->zei_range_count,
728 (uint32_t *)eip->zei_ranges,
729 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_MIN_GAP,
730 DATA_TYPE_UINT32, eip->zei_allowed_mingap,
731 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_SETS,
732 DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_sets,
733 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_CLEARS,
734 DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_clears,
735 NULL);
736
737 if (!no_inline) {
738 fm_payload_set(ereport,
739 FM_EREPORT_PAYLOAD_ZFS_BAD_SET_BITS,
740 DATA_TYPE_UINT8_ARRAY,
741 inline_size, (uint8_t *)eip->zei_bits_set,
742 FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_BITS,
743 DATA_TYPE_UINT8_ARRAY,
744 inline_size, (uint8_t *)eip->zei_bits_cleared,
745 NULL);
746 } else {
747 fm_payload_set(ereport,
748 FM_EREPORT_PAYLOAD_ZFS_BAD_SET_HISTOGRAM,
749 DATA_TYPE_UINT16_ARRAY,
750 NBBY * sizeof (uint64_t), eip->zei_histogram_set,
751 FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_HISTOGRAM,
752 DATA_TYPE_UINT16_ARRAY,
753 NBBY * sizeof (uint64_t), eip->zei_histogram_cleared,
754 NULL);
755 }
756 return (eip);
757 }
758 #endif
759
760 void
761 zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio,
762 uint64_t stateoroffset, uint64_t size)
763 {
764 #ifdef _KERNEL
765 nvlist_t *ereport = NULL;
766 nvlist_t *detector = NULL;
767
768 zfs_ereport_start(&ereport, &detector,
769 subclass, spa, vd, zio, stateoroffset, size);
770
771 if (ereport == NULL)
772 return;
773
774 if (zfs_is_ratelimiting_event(subclass, vd))
775 return;
776
777 /* Cleanup is handled by the callback function */
778 zfs_zevent_post(ereport, detector, zfs_zevent_post_cb);
779 #endif
780 }
781
782 void
783 zfs_ereport_start_checksum(spa_t *spa, vdev_t *vd,
784 struct zio *zio, uint64_t offset, uint64_t length, void *arg,
785 zio_bad_cksum_t *info)
786 {
787 zio_cksum_report_t *report;
788
789
790 #ifdef _KERNEL
791 if (zfs_is_ratelimiting_event(FM_EREPORT_ZFS_CHECKSUM, vd))
792 return;
793 #endif
794
795 report = kmem_zalloc(sizeof (*report), KM_SLEEP);
796
797 if (zio->io_vsd != NULL)
798 zio->io_vsd_ops->vsd_cksum_report(zio, report, arg);
799 else
800 zio_vsd_default_cksum_report(zio, report, arg);
801
802 /* copy the checksum failure information if it was provided */
803 if (info != NULL) {
804 report->zcr_ckinfo = kmem_zalloc(sizeof (*info), KM_SLEEP);
805 bcopy(info, report->zcr_ckinfo, sizeof (*info));
806 }
807
808 report->zcr_align = 1ULL << vd->vdev_top->vdev_ashift;
809 report->zcr_length = length;
810
811 #ifdef _KERNEL
812 zfs_ereport_start(&report->zcr_ereport, &report->zcr_detector,
813 FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio, offset, length);
814
815 if (report->zcr_ereport == NULL) {
816 zfs_ereport_free_checksum(report);
817 return;
818 }
819 #endif
820
821 mutex_enter(&spa->spa_errlist_lock);
822 report->zcr_next = zio->io_logical->io_cksum_report;
823 zio->io_logical->io_cksum_report = report;
824 mutex_exit(&spa->spa_errlist_lock);
825 }
826
827 void
828 zfs_ereport_finish_checksum(zio_cksum_report_t *report,
829 const void *good_data, const void *bad_data, boolean_t drop_if_identical)
830 {
831 #ifdef _KERNEL
832 zfs_ecksum_info_t *info;
833
834 info = annotate_ecksum(report->zcr_ereport, report->zcr_ckinfo,
835 good_data, bad_data, report->zcr_length, drop_if_identical);
836 if (info != NULL)
837 zfs_zevent_post(report->zcr_ereport,
838 report->zcr_detector, zfs_zevent_post_cb);
839 else
840 zfs_zevent_post_cb(report->zcr_ereport, report->zcr_detector);
841
842 report->zcr_ereport = report->zcr_detector = NULL;
843 if (info != NULL)
844 kmem_free(info, sizeof (*info));
845 #endif
846 }
847
848 void
849 zfs_ereport_free_checksum(zio_cksum_report_t *rpt)
850 {
851 #ifdef _KERNEL
852 if (rpt->zcr_ereport != NULL) {
853 fm_nvlist_destroy(rpt->zcr_ereport,
854 FM_NVA_FREE);
855 fm_nvlist_destroy(rpt->zcr_detector,
856 FM_NVA_FREE);
857 }
858 #endif
859 rpt->zcr_free(rpt->zcr_cbdata, rpt->zcr_cbinfo);
860
861 if (rpt->zcr_ckinfo != NULL)
862 kmem_free(rpt->zcr_ckinfo, sizeof (*rpt->zcr_ckinfo));
863
864 kmem_free(rpt, sizeof (*rpt));
865 }
866
867
868 void
869 zfs_ereport_post_checksum(spa_t *spa, vdev_t *vd,
870 struct zio *zio, uint64_t offset, uint64_t length,
871 const void *good_data, const void *bad_data, zio_bad_cksum_t *zbc)
872 {
873 #ifdef _KERNEL
874 nvlist_t *ereport = NULL;
875 nvlist_t *detector = NULL;
876 zfs_ecksum_info_t *info;
877
878 zfs_ereport_start(&ereport, &detector,
879 FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio, offset, length);
880
881 if (ereport == NULL)
882 return;
883
884 info = annotate_ecksum(ereport, zbc, good_data, bad_data, length,
885 B_FALSE);
886
887 if (info != NULL) {
888 zfs_zevent_post(ereport, detector, zfs_zevent_post_cb);
889 kmem_free(info, sizeof (*info));
890 }
891 #endif
892 }
893
894 static void
895 zfs_post_common(spa_t *spa, vdev_t *vd, const char *type, const char *name,
896 nvlist_t *aux)
897 {
898 #ifdef _KERNEL
899 nvlist_t *resource;
900 char class[64];
901
902 if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT)
903 return;
904
905 if ((resource = fm_nvlist_create(NULL)) == NULL)
906 return;
907
908 (void) snprintf(class, sizeof (class), "%s.%s.%s", type,
909 ZFS_ERROR_CLASS, name);
910 VERIFY0(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION));
911 VERIFY0(nvlist_add_string(resource, FM_CLASS, class));
912 VERIFY0(nvlist_add_uint64(resource,
913 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa)));
914 VERIFY0(nvlist_add_int32(resource,
915 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, spa_load_state(spa)));
916
917 if (vd) {
918 VERIFY0(nvlist_add_uint64(resource,
919 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid));
920 VERIFY0(nvlist_add_uint64(resource,
921 FM_EREPORT_PAYLOAD_ZFS_VDEV_STATE, vd->vdev_state));
922 if (vd->vdev_path != NULL)
923 VERIFY0(nvlist_add_string(resource,
924 FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH, vd->vdev_path));
925 if (vd->vdev_devid != NULL)
926 VERIFY0(nvlist_add_string(resource,
927 FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID, vd->vdev_devid));
928 if (vd->vdev_fru != NULL)
929 VERIFY0(nvlist_add_string(resource,
930 FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU, vd->vdev_fru));
931 /* also copy any optional payload data */
932 if (aux) {
933 nvpair_t *elem = NULL;
934
935 while ((elem = nvlist_next_nvpair(aux, elem)) != NULL)
936 (void) nvlist_add_nvpair(resource, elem);
937 }
938 }
939
940 zfs_zevent_post(resource, NULL, zfs_zevent_post_cb);
941 #endif
942 }
943
944 /*
945 * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev
946 * has been removed from the system. This will cause the DE to ignore any
947 * recent I/O errors, inferring that they are due to the asynchronous device
948 * removal.
949 */
950 void
951 zfs_post_remove(spa_t *spa, vdev_t *vd)
952 {
953 zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_REMOVED, NULL);
954 }
955
956 /*
957 * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool
958 * has the 'autoreplace' property set, and therefore any broken vdevs will be
959 * handled by higher level logic, and no vdev fault should be generated.
960 */
961 void
962 zfs_post_autoreplace(spa_t *spa, vdev_t *vd)
963 {
964 zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_AUTOREPLACE, NULL);
965 }
966
967 /*
968 * The 'resource.fs.zfs.statechange' event is an internal signal that the
969 * given vdev has transitioned its state to DEGRADED or HEALTHY. This will
970 * cause the retire agent to repair any outstanding fault management cases
971 * open because the device was not found (fault.fs.zfs.device).
972 */
973 void
974 zfs_post_state_change(spa_t *spa, vdev_t *vd, uint64_t laststate)
975 {
976 #ifdef _KERNEL
977 nvlist_t *aux;
978
979 /*
980 * Add optional supplemental keys to payload
981 */
982 aux = fm_nvlist_create(NULL);
983 if (vd && aux) {
984 if (vd->vdev_physpath) {
985 (void) nvlist_add_string(aux,
986 FM_EREPORT_PAYLOAD_ZFS_VDEV_PHYSPATH,
987 vd->vdev_physpath);
988 }
989 if (vd->vdev_enc_sysfs_path) {
990 (void) nvlist_add_string(aux,
991 FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
992 vd->vdev_enc_sysfs_path);
993 }
994
995 (void) nvlist_add_uint64(aux,
996 FM_EREPORT_PAYLOAD_ZFS_VDEV_LASTSTATE, laststate);
997 }
998
999 zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_STATECHANGE,
1000 aux);
1001
1002 if (aux)
1003 fm_nvlist_destroy(aux, FM_NVA_FREE);
1004 #endif
1005 }
1006
1007 /*
1008 * The 'sysevent.fs.zfs.*' events are signals posted to notify user space of
1009 * change in the pool. All sysevents are listed in sys/sysevent/eventdefs.h
1010 * and are designed to be consumed by the ZFS Event Daemon (ZED). For
1011 * additional details refer to the zed(8) man page.
1012 */
1013 void
1014 zfs_post_sysevent(spa_t *spa, vdev_t *vd, const char *name)
1015 {
1016 zfs_post_common(spa, vd, FM_SYSEVENT_CLASS, name, NULL);
1017 }
1018
1019 #if defined(_KERNEL) && defined(HAVE_SPL)
1020 EXPORT_SYMBOL(zfs_ereport_post);
1021 EXPORT_SYMBOL(zfs_ereport_post_checksum);
1022 EXPORT_SYMBOL(zfs_post_remove);
1023 EXPORT_SYMBOL(zfs_post_autoreplace);
1024 EXPORT_SYMBOL(zfs_post_state_change);
1025 EXPORT_SYMBOL(zfs_post_sysevent);
1026 #endif /* _KERNEL */