]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zfs_fuid.c
Performance optimization of AVL tree comparator functions
[mirror_zfs.git] / module / zfs / zfs_fuid.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 #include <sys/zfs_context.h>
26 #include <sys/dmu.h>
27 #include <sys/avl.h>
28 #include <sys/zap.h>
29 #include <sys/refcount.h>
30 #include <sys/nvpair.h>
31 #ifdef _KERNEL
32 #include <sys/kidmap.h>
33 #include <sys/sid.h>
34 #include <sys/zfs_vfsops.h>
35 #include <sys/zfs_znode.h>
36 #endif
37 #include <sys/zfs_fuid.h>
38
39 /*
40 * FUID Domain table(s).
41 *
42 * The FUID table is stored as a packed nvlist of an array
43 * of nvlists which contain an index, domain string and offset
44 *
45 * During file system initialization the nvlist(s) are read and
46 * two AVL trees are created. One tree is keyed by the index number
47 * and the other by the domain string. Nodes are never removed from
48 * trees, but new entries may be added. If a new entry is added then
49 * the zsb->z_fuid_dirty flag is set to true and the caller will then
50 * be responsible for calling zfs_fuid_sync() to sync the changes to disk.
51 *
52 */
53
54 #define FUID_IDX "fuid_idx"
55 #define FUID_DOMAIN "fuid_domain"
56 #define FUID_OFFSET "fuid_offset"
57 #define FUID_NVP_ARRAY "fuid_nvlist"
58
59 typedef struct fuid_domain {
60 avl_node_t f_domnode;
61 avl_node_t f_idxnode;
62 ksiddomain_t *f_ksid;
63 uint64_t f_idx;
64 } fuid_domain_t;
65
66 static char *nulldomain = "";
67
68 /*
69 * Compare two indexes.
70 */
71 static int
72 idx_compare(const void *arg1, const void *arg2)
73 {
74 const fuid_domain_t *node1 = (const fuid_domain_t *)arg1;
75 const fuid_domain_t *node2 = (const fuid_domain_t *)arg2;
76
77 return (AVL_CMP(node1->f_idx, node2->f_idx));
78 }
79
80 /*
81 * Compare two domain strings.
82 */
83 static int
84 domain_compare(const void *arg1, const void *arg2)
85 {
86 const fuid_domain_t *node1 = (const fuid_domain_t *)arg1;
87 const fuid_domain_t *node2 = (const fuid_domain_t *)arg2;
88 int val;
89
90 val = strcmp(node1->f_ksid->kd_name, node2->f_ksid->kd_name);
91
92 return (AVL_ISIGN(val));
93 }
94
95 void
96 zfs_fuid_avl_tree_create(avl_tree_t *idx_tree, avl_tree_t *domain_tree)
97 {
98 avl_create(idx_tree, idx_compare,
99 sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_idxnode));
100 avl_create(domain_tree, domain_compare,
101 sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_domnode));
102 }
103
104 /*
105 * load initial fuid domain and idx trees. This function is used by
106 * both the kernel and zdb.
107 */
108 uint64_t
109 zfs_fuid_table_load(objset_t *os, uint64_t fuid_obj, avl_tree_t *idx_tree,
110 avl_tree_t *domain_tree)
111 {
112 dmu_buf_t *db;
113 uint64_t fuid_size;
114
115 ASSERT(fuid_obj != 0);
116 VERIFY(0 == dmu_bonus_hold(os, fuid_obj,
117 FTAG, &db));
118 fuid_size = *(uint64_t *)db->db_data;
119 dmu_buf_rele(db, FTAG);
120
121 if (fuid_size) {
122 nvlist_t **fuidnvp;
123 nvlist_t *nvp = NULL;
124 uint_t count;
125 char *packed;
126 int i;
127
128 packed = kmem_alloc(fuid_size, KM_SLEEP);
129 VERIFY(dmu_read(os, fuid_obj, 0,
130 fuid_size, packed, DMU_READ_PREFETCH) == 0);
131 VERIFY(nvlist_unpack(packed, fuid_size,
132 &nvp, 0) == 0);
133 VERIFY(nvlist_lookup_nvlist_array(nvp, FUID_NVP_ARRAY,
134 &fuidnvp, &count) == 0);
135
136 for (i = 0; i != count; i++) {
137 fuid_domain_t *domnode;
138 char *domain;
139 uint64_t idx;
140
141 VERIFY(nvlist_lookup_string(fuidnvp[i], FUID_DOMAIN,
142 &domain) == 0);
143 VERIFY(nvlist_lookup_uint64(fuidnvp[i], FUID_IDX,
144 &idx) == 0);
145
146 domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
147
148 domnode->f_idx = idx;
149 domnode->f_ksid = ksid_lookupdomain(domain);
150 avl_add(idx_tree, domnode);
151 avl_add(domain_tree, domnode);
152 }
153 nvlist_free(nvp);
154 kmem_free(packed, fuid_size);
155 }
156 return (fuid_size);
157 }
158
159 void
160 zfs_fuid_table_destroy(avl_tree_t *idx_tree, avl_tree_t *domain_tree)
161 {
162 fuid_domain_t *domnode;
163 void *cookie;
164
165 cookie = NULL;
166 while ((domnode = avl_destroy_nodes(domain_tree, &cookie)))
167 ksiddomain_rele(domnode->f_ksid);
168
169 avl_destroy(domain_tree);
170 cookie = NULL;
171 while ((domnode = avl_destroy_nodes(idx_tree, &cookie)))
172 kmem_free(domnode, sizeof (fuid_domain_t));
173 avl_destroy(idx_tree);
174 }
175
176 char *
177 zfs_fuid_idx_domain(avl_tree_t *idx_tree, uint32_t idx)
178 {
179 fuid_domain_t searchnode, *findnode;
180 avl_index_t loc;
181
182 searchnode.f_idx = idx;
183
184 findnode = avl_find(idx_tree, &searchnode, &loc);
185
186 return (findnode ? findnode->f_ksid->kd_name : nulldomain);
187 }
188
189 #ifdef _KERNEL
190 /*
191 * Load the fuid table(s) into memory.
192 */
193 static void
194 zfs_fuid_init(zfs_sb_t *zsb)
195 {
196 rw_enter(&zsb->z_fuid_lock, RW_WRITER);
197
198 if (zsb->z_fuid_loaded) {
199 rw_exit(&zsb->z_fuid_lock);
200 return;
201 }
202
203 zfs_fuid_avl_tree_create(&zsb->z_fuid_idx, &zsb->z_fuid_domain);
204
205 (void) zap_lookup(zsb->z_os, MASTER_NODE_OBJ,
206 ZFS_FUID_TABLES, 8, 1, &zsb->z_fuid_obj);
207 if (zsb->z_fuid_obj != 0) {
208 zsb->z_fuid_size = zfs_fuid_table_load(zsb->z_os,
209 zsb->z_fuid_obj, &zsb->z_fuid_idx,
210 &zsb->z_fuid_domain);
211 }
212
213 zsb->z_fuid_loaded = B_TRUE;
214 rw_exit(&zsb->z_fuid_lock);
215 }
216
217 /*
218 * sync out AVL trees to persistent storage.
219 */
220 void
221 zfs_fuid_sync(zfs_sb_t *zsb, dmu_tx_t *tx)
222 {
223 nvlist_t *nvp;
224 nvlist_t **fuids;
225 size_t nvsize = 0;
226 char *packed;
227 dmu_buf_t *db;
228 fuid_domain_t *domnode;
229 int numnodes;
230 int i;
231
232 if (!zsb->z_fuid_dirty) {
233 return;
234 }
235
236 rw_enter(&zsb->z_fuid_lock, RW_WRITER);
237
238 /*
239 * First see if table needs to be created?
240 */
241 if (zsb->z_fuid_obj == 0) {
242 zsb->z_fuid_obj = dmu_object_alloc(zsb->z_os,
243 DMU_OT_FUID, 1 << 14, DMU_OT_FUID_SIZE,
244 sizeof (uint64_t), tx);
245 VERIFY(zap_add(zsb->z_os, MASTER_NODE_OBJ,
246 ZFS_FUID_TABLES, sizeof (uint64_t), 1,
247 &zsb->z_fuid_obj, tx) == 0);
248 }
249
250 VERIFY(nvlist_alloc(&nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
251
252 numnodes = avl_numnodes(&zsb->z_fuid_idx);
253 fuids = kmem_alloc(numnodes * sizeof (void *), KM_SLEEP);
254 for (i = 0, domnode = avl_first(&zsb->z_fuid_domain); domnode; i++,
255 domnode = AVL_NEXT(&zsb->z_fuid_domain, domnode)) {
256 VERIFY(nvlist_alloc(&fuids[i], NV_UNIQUE_NAME, KM_SLEEP) == 0);
257 VERIFY(nvlist_add_uint64(fuids[i], FUID_IDX,
258 domnode->f_idx) == 0);
259 VERIFY(nvlist_add_uint64(fuids[i], FUID_OFFSET, 0) == 0);
260 VERIFY(nvlist_add_string(fuids[i], FUID_DOMAIN,
261 domnode->f_ksid->kd_name) == 0);
262 }
263 VERIFY(nvlist_add_nvlist_array(nvp, FUID_NVP_ARRAY,
264 fuids, numnodes) == 0);
265 for (i = 0; i != numnodes; i++)
266 nvlist_free(fuids[i]);
267 kmem_free(fuids, numnodes * sizeof (void *));
268 VERIFY(nvlist_size(nvp, &nvsize, NV_ENCODE_XDR) == 0);
269 packed = kmem_alloc(nvsize, KM_SLEEP);
270 VERIFY(nvlist_pack(nvp, &packed, &nvsize,
271 NV_ENCODE_XDR, KM_SLEEP) == 0);
272 nvlist_free(nvp);
273 zsb->z_fuid_size = nvsize;
274 dmu_write(zsb->z_os, zsb->z_fuid_obj, 0, zsb->z_fuid_size, packed, tx);
275 kmem_free(packed, zsb->z_fuid_size);
276 VERIFY(0 == dmu_bonus_hold(zsb->z_os, zsb->z_fuid_obj,
277 FTAG, &db));
278 dmu_buf_will_dirty(db, tx);
279 *(uint64_t *)db->db_data = zsb->z_fuid_size;
280 dmu_buf_rele(db, FTAG);
281
282 zsb->z_fuid_dirty = B_FALSE;
283 rw_exit(&zsb->z_fuid_lock);
284 }
285
286 /*
287 * Query domain table for a given domain.
288 *
289 * If domain isn't found and addok is set, it is added to AVL trees and
290 * the zsb->z_fuid_dirty flag will be set to TRUE. It will then be
291 * necessary for the caller or another thread to detect the dirty table
292 * and sync out the changes.
293 */
294 int
295 zfs_fuid_find_by_domain(zfs_sb_t *zsb, const char *domain,
296 char **retdomain, boolean_t addok)
297 {
298 fuid_domain_t searchnode, *findnode;
299 avl_index_t loc;
300 krw_t rw = RW_READER;
301
302 /*
303 * If the dummy "nobody" domain then return an index of 0
304 * to cause the created FUID to be a standard POSIX id
305 * for the user nobody.
306 */
307 if (domain[0] == '\0') {
308 if (retdomain)
309 *retdomain = nulldomain;
310 return (0);
311 }
312
313 searchnode.f_ksid = ksid_lookupdomain(domain);
314 if (retdomain)
315 *retdomain = searchnode.f_ksid->kd_name;
316 if (!zsb->z_fuid_loaded)
317 zfs_fuid_init(zsb);
318
319 retry:
320 rw_enter(&zsb->z_fuid_lock, rw);
321 findnode = avl_find(&zsb->z_fuid_domain, &searchnode, &loc);
322
323 if (findnode) {
324 rw_exit(&zsb->z_fuid_lock);
325 ksiddomain_rele(searchnode.f_ksid);
326 return (findnode->f_idx);
327 } else if (addok) {
328 fuid_domain_t *domnode;
329 uint64_t retidx;
330
331 if (rw == RW_READER && !rw_tryupgrade(&zsb->z_fuid_lock)) {
332 rw_exit(&zsb->z_fuid_lock);
333 rw = RW_WRITER;
334 goto retry;
335 }
336
337 domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
338 domnode->f_ksid = searchnode.f_ksid;
339
340 retidx = domnode->f_idx = avl_numnodes(&zsb->z_fuid_idx) + 1;
341
342 avl_add(&zsb->z_fuid_domain, domnode);
343 avl_add(&zsb->z_fuid_idx, domnode);
344 zsb->z_fuid_dirty = B_TRUE;
345 rw_exit(&zsb->z_fuid_lock);
346 return (retidx);
347 } else {
348 rw_exit(&zsb->z_fuid_lock);
349 return (-1);
350 }
351 }
352
353 /*
354 * Query domain table by index, returning domain string
355 *
356 * Returns a pointer from an avl node of the domain string.
357 *
358 */
359 const char *
360 zfs_fuid_find_by_idx(zfs_sb_t *zsb, uint32_t idx)
361 {
362 char *domain;
363
364 if (idx == 0 || !zsb->z_use_fuids)
365 return (NULL);
366
367 if (!zsb->z_fuid_loaded)
368 zfs_fuid_init(zsb);
369
370 rw_enter(&zsb->z_fuid_lock, RW_READER);
371
372 if (zsb->z_fuid_obj || zsb->z_fuid_dirty)
373 domain = zfs_fuid_idx_domain(&zsb->z_fuid_idx, idx);
374 else
375 domain = nulldomain;
376 rw_exit(&zsb->z_fuid_lock);
377
378 ASSERT(domain);
379 return (domain);
380 }
381
382 void
383 zfs_fuid_map_ids(znode_t *zp, cred_t *cr, uid_t *uidp, uid_t *gidp)
384 {
385 *uidp = zfs_fuid_map_id(ZTOZSB(zp), KUID_TO_SUID(ZTOI(zp)->i_uid),
386 cr, ZFS_OWNER);
387 *gidp = zfs_fuid_map_id(ZTOZSB(zp), KGID_TO_SGID(ZTOI(zp)->i_gid),
388 cr, ZFS_GROUP);
389 }
390
391 uid_t
392 zfs_fuid_map_id(zfs_sb_t *zsb, uint64_t fuid,
393 cred_t *cr, zfs_fuid_type_t type)
394 {
395 #ifdef HAVE_KSID
396 uint32_t index = FUID_INDEX(fuid);
397 const char *domain;
398 uid_t id;
399
400 if (index == 0)
401 return (fuid);
402
403 domain = zfs_fuid_find_by_idx(zsb, index);
404 ASSERT(domain != NULL);
405
406 if (type == ZFS_OWNER || type == ZFS_ACE_USER) {
407 (void) kidmap_getuidbysid(crgetzone(cr), domain,
408 FUID_RID(fuid), &id);
409 } else {
410 (void) kidmap_getgidbysid(crgetzone(cr), domain,
411 FUID_RID(fuid), &id);
412 }
413 return (id);
414 #else
415 /*
416 * The Linux port only supports POSIX IDs, use the passed id.
417 */
418 return (fuid);
419 #endif /* HAVE_KSID */
420 }
421
422 /*
423 * Add a FUID node to the list of fuid's being created for this
424 * ACL
425 *
426 * If ACL has multiple domains, then keep only one copy of each unique
427 * domain.
428 */
429 void
430 zfs_fuid_node_add(zfs_fuid_info_t **fuidpp, const char *domain, uint32_t rid,
431 uint64_t idx, uint64_t id, zfs_fuid_type_t type)
432 {
433 zfs_fuid_t *fuid;
434 zfs_fuid_domain_t *fuid_domain;
435 zfs_fuid_info_t *fuidp;
436 uint64_t fuididx;
437 boolean_t found = B_FALSE;
438
439 if (*fuidpp == NULL)
440 *fuidpp = zfs_fuid_info_alloc();
441
442 fuidp = *fuidpp;
443 /*
444 * First find fuid domain index in linked list
445 *
446 * If one isn't found then create an entry.
447 */
448
449 for (fuididx = 1, fuid_domain = list_head(&fuidp->z_domains);
450 fuid_domain; fuid_domain = list_next(&fuidp->z_domains,
451 fuid_domain), fuididx++) {
452 if (idx == fuid_domain->z_domidx) {
453 found = B_TRUE;
454 break;
455 }
456 }
457
458 if (!found) {
459 fuid_domain = kmem_alloc(sizeof (zfs_fuid_domain_t), KM_SLEEP);
460 fuid_domain->z_domain = domain;
461 fuid_domain->z_domidx = idx;
462 list_insert_tail(&fuidp->z_domains, fuid_domain);
463 fuidp->z_domain_str_sz += strlen(domain) + 1;
464 fuidp->z_domain_cnt++;
465 }
466
467 if (type == ZFS_ACE_USER || type == ZFS_ACE_GROUP) {
468
469 /*
470 * Now allocate fuid entry and add it on the end of the list
471 */
472
473 fuid = kmem_alloc(sizeof (zfs_fuid_t), KM_SLEEP);
474 fuid->z_id = id;
475 fuid->z_domidx = idx;
476 fuid->z_logfuid = FUID_ENCODE(fuididx, rid);
477
478 list_insert_tail(&fuidp->z_fuids, fuid);
479 fuidp->z_fuid_cnt++;
480 } else {
481 if (type == ZFS_OWNER)
482 fuidp->z_fuid_owner = FUID_ENCODE(fuididx, rid);
483 else
484 fuidp->z_fuid_group = FUID_ENCODE(fuididx, rid);
485 }
486 }
487
488 #ifdef HAVE_KSID
489 /*
490 * Create a file system FUID, based on information in the users cred
491 *
492 * If cred contains KSID_OWNER then it should be used to determine
493 * the uid otherwise cred's uid will be used. By default cred's gid
494 * is used unless it's an ephemeral ID in which case KSID_GROUP will
495 * be used if it exists.
496 */
497 uint64_t
498 zfs_fuid_create_cred(zfs_sb_t *zsb, zfs_fuid_type_t type,
499 cred_t *cr, zfs_fuid_info_t **fuidp)
500 {
501 uint64_t idx;
502 ksid_t *ksid;
503 uint32_t rid;
504 char *kdomain;
505 const char *domain;
506 uid_t id;
507
508 VERIFY(type == ZFS_OWNER || type == ZFS_GROUP);
509
510 ksid = crgetsid(cr, (type == ZFS_OWNER) ? KSID_OWNER : KSID_GROUP);
511
512 if (!zsb->z_use_fuids || (ksid == NULL)) {
513 id = (type == ZFS_OWNER) ? crgetuid(cr) : crgetgid(cr);
514
515 if (IS_EPHEMERAL(id))
516 return ((type == ZFS_OWNER) ? UID_NOBODY : GID_NOBODY);
517
518 return ((uint64_t)id);
519 }
520
521 /*
522 * ksid is present and FUID is supported
523 */
524 id = (type == ZFS_OWNER) ? ksid_getid(ksid) : crgetgid(cr);
525
526 if (!IS_EPHEMERAL(id))
527 return ((uint64_t)id);
528
529 if (type == ZFS_GROUP)
530 id = ksid_getid(ksid);
531
532 rid = ksid_getrid(ksid);
533 domain = ksid_getdomain(ksid);
534
535 idx = zfs_fuid_find_by_domain(zsb, domain, &kdomain, B_TRUE);
536
537 zfs_fuid_node_add(fuidp, kdomain, rid, idx, id, type);
538
539 return (FUID_ENCODE(idx, rid));
540 }
541 #endif /* HAVE_KSID */
542
543 /*
544 * Create a file system FUID for an ACL ace
545 * or a chown/chgrp of the file.
546 * This is similar to zfs_fuid_create_cred, except that
547 * we can't find the domain + rid information in the
548 * cred. Instead we have to query Winchester for the
549 * domain and rid.
550 *
551 * During replay operations the domain+rid information is
552 * found in the zfs_fuid_info_t that the replay code has
553 * attached to the zsb of the file system.
554 */
555 uint64_t
556 zfs_fuid_create(zfs_sb_t *zsb, uint64_t id, cred_t *cr,
557 zfs_fuid_type_t type, zfs_fuid_info_t **fuidpp)
558 {
559 #ifdef HAVE_KSID
560 const char *domain;
561 char *kdomain;
562 uint32_t fuid_idx = FUID_INDEX(id);
563 uint32_t rid;
564 idmap_stat status;
565 uint64_t idx = 0;
566 zfs_fuid_t *zfuid = NULL;
567 zfs_fuid_info_t *fuidp = NULL;
568
569 /*
570 * If POSIX ID, or entry is already a FUID then
571 * just return the id
572 *
573 * We may also be handed an already FUID'ized id via
574 * chmod.
575 */
576
577 if (!zsb->z_use_fuids || !IS_EPHEMERAL(id) || fuid_idx != 0)
578 return (id);
579
580 if (zsb->z_replay) {
581 fuidp = zsb->z_fuid_replay;
582
583 /*
584 * If we are passed an ephemeral id, but no
585 * fuid_info was logged then return NOBODY.
586 * This is most likely a result of idmap service
587 * not being available.
588 */
589 if (fuidp == NULL)
590 return (UID_NOBODY);
591
592 VERIFY3U(type, >=, ZFS_OWNER);
593 VERIFY3U(type, <=, ZFS_ACE_GROUP);
594
595 switch (type) {
596 case ZFS_ACE_USER:
597 case ZFS_ACE_GROUP:
598 zfuid = list_head(&fuidp->z_fuids);
599 rid = FUID_RID(zfuid->z_logfuid);
600 idx = FUID_INDEX(zfuid->z_logfuid);
601 break;
602 case ZFS_OWNER:
603 rid = FUID_RID(fuidp->z_fuid_owner);
604 idx = FUID_INDEX(fuidp->z_fuid_owner);
605 break;
606 case ZFS_GROUP:
607 rid = FUID_RID(fuidp->z_fuid_group);
608 idx = FUID_INDEX(fuidp->z_fuid_group);
609 break;
610 };
611 domain = fuidp->z_domain_table[idx - 1];
612 } else {
613 if (type == ZFS_OWNER || type == ZFS_ACE_USER)
614 status = kidmap_getsidbyuid(crgetzone(cr), id,
615 &domain, &rid);
616 else
617 status = kidmap_getsidbygid(crgetzone(cr), id,
618 &domain, &rid);
619
620 if (status != 0) {
621 /*
622 * When returning nobody we will need to
623 * make a dummy fuid table entry for logging
624 * purposes.
625 */
626 rid = UID_NOBODY;
627 domain = nulldomain;
628 }
629 }
630
631 idx = zfs_fuid_find_by_domain(zsb, domain, &kdomain, B_TRUE);
632
633 if (!zsb->z_replay)
634 zfs_fuid_node_add(fuidpp, kdomain,
635 rid, idx, id, type);
636 else if (zfuid != NULL) {
637 list_remove(&fuidp->z_fuids, zfuid);
638 kmem_free(zfuid, sizeof (zfs_fuid_t));
639 }
640 return (FUID_ENCODE(idx, rid));
641 #else
642 /*
643 * The Linux port only supports POSIX IDs, use the passed id.
644 */
645 return (id);
646 #endif
647 }
648
649 void
650 zfs_fuid_destroy(zfs_sb_t *zsb)
651 {
652 rw_enter(&zsb->z_fuid_lock, RW_WRITER);
653 if (!zsb->z_fuid_loaded) {
654 rw_exit(&zsb->z_fuid_lock);
655 return;
656 }
657 zfs_fuid_table_destroy(&zsb->z_fuid_idx, &zsb->z_fuid_domain);
658 rw_exit(&zsb->z_fuid_lock);
659 }
660
661 /*
662 * Allocate zfs_fuid_info for tracking FUIDs created during
663 * zfs_mknode, VOP_SETATTR() or VOP_SETSECATTR()
664 */
665 zfs_fuid_info_t *
666 zfs_fuid_info_alloc(void)
667 {
668 zfs_fuid_info_t *fuidp;
669
670 fuidp = kmem_zalloc(sizeof (zfs_fuid_info_t), KM_SLEEP);
671 list_create(&fuidp->z_domains, sizeof (zfs_fuid_domain_t),
672 offsetof(zfs_fuid_domain_t, z_next));
673 list_create(&fuidp->z_fuids, sizeof (zfs_fuid_t),
674 offsetof(zfs_fuid_t, z_next));
675 return (fuidp);
676 }
677
678 /*
679 * Release all memory associated with zfs_fuid_info_t
680 */
681 void
682 zfs_fuid_info_free(zfs_fuid_info_t *fuidp)
683 {
684 zfs_fuid_t *zfuid;
685 zfs_fuid_domain_t *zdomain;
686
687 while ((zfuid = list_head(&fuidp->z_fuids)) != NULL) {
688 list_remove(&fuidp->z_fuids, zfuid);
689 kmem_free(zfuid, sizeof (zfs_fuid_t));
690 }
691
692 if (fuidp->z_domain_table != NULL)
693 kmem_free(fuidp->z_domain_table,
694 (sizeof (char **)) * fuidp->z_domain_cnt);
695
696 while ((zdomain = list_head(&fuidp->z_domains)) != NULL) {
697 list_remove(&fuidp->z_domains, zdomain);
698 kmem_free(zdomain, sizeof (zfs_fuid_domain_t));
699 }
700
701 kmem_free(fuidp, sizeof (zfs_fuid_info_t));
702 }
703
704 /*
705 * Check to see if id is a groupmember. If cred
706 * has ksid info then sidlist is checked first
707 * and if still not found then POSIX groups are checked
708 *
709 * Will use a straight FUID compare when possible.
710 */
711 boolean_t
712 zfs_groupmember(zfs_sb_t *zsb, uint64_t id, cred_t *cr)
713 {
714 #ifdef HAVE_KSID
715 ksid_t *ksid = crgetsid(cr, KSID_GROUP);
716 ksidlist_t *ksidlist = crgetsidlist(cr);
717 uid_t gid;
718
719 if (ksid && ksidlist) {
720 int i;
721 ksid_t *ksid_groups;
722 uint32_t idx = FUID_INDEX(id);
723 uint32_t rid = FUID_RID(id);
724
725 ksid_groups = ksidlist->ksl_sids;
726
727 for (i = 0; i != ksidlist->ksl_nsid; i++) {
728 if (idx == 0) {
729 if (id != IDMAP_WK_CREATOR_GROUP_GID &&
730 id == ksid_groups[i].ks_id) {
731 return (B_TRUE);
732 }
733 } else {
734 const char *domain;
735
736 domain = zfs_fuid_find_by_idx(zsb, idx);
737 ASSERT(domain != NULL);
738
739 if (strcmp(domain,
740 IDMAP_WK_CREATOR_SID_AUTHORITY) == 0)
741 return (B_FALSE);
742
743 if ((strcmp(domain,
744 ksid_groups[i].ks_domain->kd_name) == 0) &&
745 rid == ksid_groups[i].ks_rid)
746 return (B_TRUE);
747 }
748 }
749 }
750
751 /*
752 * Not found in ksidlist, check posix groups
753 */
754 gid = zfs_fuid_map_id(zsb, id, cr, ZFS_GROUP);
755 return (groupmember(gid, cr));
756 #else
757 return (B_TRUE);
758 #endif
759 }
760
761 void
762 zfs_fuid_txhold(zfs_sb_t *zsb, dmu_tx_t *tx)
763 {
764 if (zsb->z_fuid_obj == 0) {
765 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
766 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
767 FUID_SIZE_ESTIMATE(zsb));
768 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL);
769 } else {
770 dmu_tx_hold_bonus(tx, zsb->z_fuid_obj);
771 dmu_tx_hold_write(tx, zsb->z_fuid_obj, 0,
772 FUID_SIZE_ESTIMATE(zsb));
773 }
774 }
775 #endif