]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zfs_vfsops.c
Align mount options handling and type/function names with OpenZFS
[mirror_zfs.git] / module / zfs / zfs_vfsops.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
24 */
25
26 /* Portions Copyright 2010 Robert Milkowski */
27
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/sysmacros.h>
32 #include <sys/kmem.h>
33 #include <sys/pathname.h>
34 #include <sys/vnode.h>
35 #include <sys/vfs.h>
36 #include <sys/vfs_opreg.h>
37 #include <sys/mntent.h>
38 #include <sys/mount.h>
39 #include <sys/cmn_err.h>
40 #include "fs/fs_subr.h"
41 #include <sys/zfs_znode.h>
42 #include <sys/zfs_vnops.h>
43 #include <sys/zfs_dir.h>
44 #include <sys/zil.h>
45 #include <sys/fs/zfs.h>
46 #include <sys/dmu.h>
47 #include <sys/dsl_prop.h>
48 #include <sys/dsl_dataset.h>
49 #include <sys/dsl_deleg.h>
50 #include <sys/spa.h>
51 #include <sys/zap.h>
52 #include <sys/sa.h>
53 #include <sys/sa_impl.h>
54 #include <sys/varargs.h>
55 #include <sys/policy.h>
56 #include <sys/atomic.h>
57 #include <sys/mkdev.h>
58 #include <sys/modctl.h>
59 #include <sys/refstr.h>
60 #include <sys/zfs_ioctl.h>
61 #include <sys/zfs_ctldir.h>
62 #include <sys/zfs_fuid.h>
63 #include <sys/bootconf.h>
64 #include <sys/sunddi.h>
65 #include <sys/dnlc.h>
66 #include <sys/dmu_objset.h>
67 #include <sys/spa_boot.h>
68 #include <sys/zpl.h>
69 #include "zfs_comutil.h"
70
71 enum {
72 TOKEN_RO,
73 TOKEN_RW,
74 TOKEN_SETUID,
75 TOKEN_NOSETUID,
76 TOKEN_EXEC,
77 TOKEN_NOEXEC,
78 TOKEN_DEVICES,
79 TOKEN_NODEVICES,
80 TOKEN_DIRXATTR,
81 TOKEN_SAXATTR,
82 TOKEN_XATTR,
83 TOKEN_NOXATTR,
84 TOKEN_ATIME,
85 TOKEN_NOATIME,
86 TOKEN_RELATIME,
87 TOKEN_NORELATIME,
88 TOKEN_NBMAND,
89 TOKEN_NONBMAND,
90 TOKEN_MNTPOINT,
91 TOKEN_LAST,
92 };
93
94 static const match_table_t zpl_tokens = {
95 { TOKEN_RO, MNTOPT_RO },
96 { TOKEN_RW, MNTOPT_RW },
97 { TOKEN_SETUID, MNTOPT_SETUID },
98 { TOKEN_NOSETUID, MNTOPT_NOSETUID },
99 { TOKEN_EXEC, MNTOPT_EXEC },
100 { TOKEN_NOEXEC, MNTOPT_NOEXEC },
101 { TOKEN_DEVICES, MNTOPT_DEVICES },
102 { TOKEN_NODEVICES, MNTOPT_NODEVICES },
103 { TOKEN_DIRXATTR, MNTOPT_DIRXATTR },
104 { TOKEN_SAXATTR, MNTOPT_SAXATTR },
105 { TOKEN_XATTR, MNTOPT_XATTR },
106 { TOKEN_NOXATTR, MNTOPT_NOXATTR },
107 { TOKEN_ATIME, MNTOPT_ATIME },
108 { TOKEN_NOATIME, MNTOPT_NOATIME },
109 { TOKEN_RELATIME, MNTOPT_RELATIME },
110 { TOKEN_NORELATIME, MNTOPT_NORELATIME },
111 { TOKEN_NBMAND, MNTOPT_NBMAND },
112 { TOKEN_NONBMAND, MNTOPT_NONBMAND },
113 { TOKEN_MNTPOINT, MNTOPT_MNTPOINT "=%s" },
114 { TOKEN_LAST, NULL },
115 };
116
117 static void
118 zfsvfs_vfs_free(vfs_t *vfsp)
119 {
120 if (vfsp != NULL) {
121 if (vfsp->vfs_mntpoint != NULL)
122 strfree(vfsp->vfs_mntpoint);
123
124 kmem_free(vfsp, sizeof (vfs_t));
125 }
126 }
127
128 static int
129 zfsvfs_parse_option(char *option, int token, substring_t *args, vfs_t *vfsp)
130 {
131 switch (token) {
132 case TOKEN_RO:
133 vfsp->vfs_readonly = B_TRUE;
134 vfsp->vfs_do_readonly = B_TRUE;
135 break;
136 case TOKEN_RW:
137 vfsp->vfs_readonly = B_FALSE;
138 vfsp->vfs_do_readonly = B_TRUE;
139 break;
140 case TOKEN_SETUID:
141 vfsp->vfs_setuid = B_TRUE;
142 vfsp->vfs_do_setuid = B_TRUE;
143 break;
144 case TOKEN_NOSETUID:
145 vfsp->vfs_setuid = B_FALSE;
146 vfsp->vfs_do_setuid = B_TRUE;
147 break;
148 case TOKEN_EXEC:
149 vfsp->vfs_exec = B_TRUE;
150 vfsp->vfs_do_exec = B_TRUE;
151 break;
152 case TOKEN_NOEXEC:
153 vfsp->vfs_exec = B_FALSE;
154 vfsp->vfs_do_exec = B_TRUE;
155 break;
156 case TOKEN_DEVICES:
157 vfsp->vfs_devices = B_TRUE;
158 vfsp->vfs_do_devices = B_TRUE;
159 break;
160 case TOKEN_NODEVICES:
161 vfsp->vfs_devices = B_FALSE;
162 vfsp->vfs_do_devices = B_TRUE;
163 break;
164 case TOKEN_DIRXATTR:
165 vfsp->vfs_xattr = ZFS_XATTR_DIR;
166 vfsp->vfs_do_xattr = B_TRUE;
167 break;
168 case TOKEN_SAXATTR:
169 vfsp->vfs_xattr = ZFS_XATTR_SA;
170 vfsp->vfs_do_xattr = B_TRUE;
171 break;
172 case TOKEN_XATTR:
173 vfsp->vfs_xattr = ZFS_XATTR_DIR;
174 vfsp->vfs_do_xattr = B_TRUE;
175 break;
176 case TOKEN_NOXATTR:
177 vfsp->vfs_xattr = ZFS_XATTR_OFF;
178 vfsp->vfs_do_xattr = B_TRUE;
179 break;
180 case TOKEN_ATIME:
181 vfsp->vfs_atime = B_TRUE;
182 vfsp->vfs_do_atime = B_TRUE;
183 break;
184 case TOKEN_NOATIME:
185 vfsp->vfs_atime = B_FALSE;
186 vfsp->vfs_do_atime = B_TRUE;
187 break;
188 case TOKEN_RELATIME:
189 vfsp->vfs_relatime = B_TRUE;
190 vfsp->vfs_do_relatime = B_TRUE;
191 break;
192 case TOKEN_NORELATIME:
193 vfsp->vfs_relatime = B_FALSE;
194 vfsp->vfs_do_relatime = B_TRUE;
195 break;
196 case TOKEN_NBMAND:
197 vfsp->vfs_nbmand = B_TRUE;
198 vfsp->vfs_do_nbmand = B_TRUE;
199 break;
200 case TOKEN_NONBMAND:
201 vfsp->vfs_nbmand = B_FALSE;
202 vfsp->vfs_do_nbmand = B_TRUE;
203 break;
204 case TOKEN_MNTPOINT:
205 vfsp->vfs_mntpoint = match_strdup(&args[0]);
206 if (vfsp->vfs_mntpoint == NULL)
207 return (SET_ERROR(ENOMEM));
208
209 break;
210 default:
211 break;
212 }
213
214 return (0);
215 }
216
217 /*
218 * Parse the raw mntopts and return a vfs_t describing the options.
219 */
220 static int
221 zfsvfs_parse_options(char *mntopts, vfs_t **vfsp)
222 {
223 vfs_t *tmp_vfsp;
224 int error;
225
226 tmp_vfsp = kmem_zalloc(sizeof (vfs_t), KM_SLEEP);
227
228 if (mntopts != NULL) {
229 substring_t args[MAX_OPT_ARGS];
230 char *tmp_mntopts, *p, *t;
231 int token;
232
233 tmp_mntopts = t = strdup(mntopts);
234 if (tmp_mntopts == NULL)
235 return (SET_ERROR(ENOMEM));
236
237 while ((p = strsep(&t, ",")) != NULL) {
238 if (!*p)
239 continue;
240
241 args[0].to = args[0].from = NULL;
242 token = match_token(p, zpl_tokens, args);
243 error = zfsvfs_parse_option(p, token, args, tmp_vfsp);
244 if (error) {
245 strfree(tmp_mntopts);
246 zfsvfs_vfs_free(tmp_vfsp);
247 return (error);
248 }
249 }
250
251 strfree(tmp_mntopts);
252 }
253
254 *vfsp = tmp_vfsp;
255
256 return (0);
257 }
258
259 boolean_t
260 zfs_is_readonly(zfsvfs_t *zfsvfs)
261 {
262 return (!!(zfsvfs->z_sb->s_flags & MS_RDONLY));
263 }
264
265 /*ARGSUSED*/
266 int
267 zfs_sync(struct super_block *sb, int wait, cred_t *cr)
268 {
269 zfsvfs_t *zfsvfs = sb->s_fs_info;
270
271 /*
272 * Data integrity is job one. We don't want a compromised kernel
273 * writing to the storage pool, so we never sync during panic.
274 */
275 if (unlikely(oops_in_progress))
276 return (0);
277
278 /*
279 * Semantically, the only requirement is that the sync be initiated.
280 * The DMU syncs out txgs frequently, so there's nothing to do.
281 */
282 if (!wait)
283 return (0);
284
285 if (zfsvfs != NULL) {
286 /*
287 * Sync a specific filesystem.
288 */
289 dsl_pool_t *dp;
290
291 ZFS_ENTER(zfsvfs);
292 dp = dmu_objset_pool(zfsvfs->z_os);
293
294 /*
295 * If the system is shutting down, then skip any
296 * filesystems which may exist on a suspended pool.
297 */
298 if (spa_suspended(dp->dp_spa)) {
299 ZFS_EXIT(zfsvfs);
300 return (0);
301 }
302
303 if (zfsvfs->z_log != NULL)
304 zil_commit(zfsvfs->z_log, 0);
305
306 ZFS_EXIT(zfsvfs);
307 } else {
308 /*
309 * Sync all ZFS filesystems. This is what happens when you
310 * run sync(1M). Unlike other filesystems, ZFS honors the
311 * request by waiting for all pools to commit all dirty data.
312 */
313 spa_sync_allpools();
314 }
315
316 return (0);
317 }
318
319 static void
320 atime_changed_cb(void *arg, uint64_t newval)
321 {
322 ((zfsvfs_t *)arg)->z_atime = newval;
323 }
324
325 static void
326 relatime_changed_cb(void *arg, uint64_t newval)
327 {
328 ((zfsvfs_t *)arg)->z_relatime = newval;
329 }
330
331 static void
332 xattr_changed_cb(void *arg, uint64_t newval)
333 {
334 zfsvfs_t *zfsvfs = arg;
335
336 if (newval == ZFS_XATTR_OFF) {
337 zfsvfs->z_flags &= ~ZSB_XATTR;
338 } else {
339 zfsvfs->z_flags |= ZSB_XATTR;
340
341 if (newval == ZFS_XATTR_SA)
342 zfsvfs->z_xattr_sa = B_TRUE;
343 else
344 zfsvfs->z_xattr_sa = B_FALSE;
345 }
346 }
347
348 static void
349 acltype_changed_cb(void *arg, uint64_t newval)
350 {
351 zfsvfs_t *zfsvfs = arg;
352
353 switch (newval) {
354 case ZFS_ACLTYPE_OFF:
355 zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF;
356 zfsvfs->z_sb->s_flags &= ~MS_POSIXACL;
357 break;
358 case ZFS_ACLTYPE_POSIXACL:
359 #ifdef CONFIG_FS_POSIX_ACL
360 zfsvfs->z_acl_type = ZFS_ACLTYPE_POSIXACL;
361 zfsvfs->z_sb->s_flags |= MS_POSIXACL;
362 #else
363 zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF;
364 zfsvfs->z_sb->s_flags &= ~MS_POSIXACL;
365 #endif /* CONFIG_FS_POSIX_ACL */
366 break;
367 default:
368 break;
369 }
370 }
371
372 static void
373 blksz_changed_cb(void *arg, uint64_t newval)
374 {
375 zfsvfs_t *zfsvfs = arg;
376 ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
377 ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
378 ASSERT(ISP2(newval));
379
380 zfsvfs->z_max_blksz = newval;
381 }
382
383 static void
384 readonly_changed_cb(void *arg, uint64_t newval)
385 {
386 zfsvfs_t *zfsvfs = arg;
387 struct super_block *sb = zfsvfs->z_sb;
388
389 if (sb == NULL)
390 return;
391
392 if (newval)
393 sb->s_flags |= MS_RDONLY;
394 else
395 sb->s_flags &= ~MS_RDONLY;
396 }
397
398 static void
399 devices_changed_cb(void *arg, uint64_t newval)
400 {
401 }
402
403 static void
404 setuid_changed_cb(void *arg, uint64_t newval)
405 {
406 }
407
408 static void
409 exec_changed_cb(void *arg, uint64_t newval)
410 {
411 }
412
413 static void
414 nbmand_changed_cb(void *arg, uint64_t newval)
415 {
416 zfsvfs_t *zfsvfs = arg;
417 struct super_block *sb = zfsvfs->z_sb;
418
419 if (sb == NULL)
420 return;
421
422 if (newval == TRUE)
423 sb->s_flags |= MS_MANDLOCK;
424 else
425 sb->s_flags &= ~MS_MANDLOCK;
426 }
427
428 static void
429 snapdir_changed_cb(void *arg, uint64_t newval)
430 {
431 ((zfsvfs_t *)arg)->z_show_ctldir = newval;
432 }
433
434 static void
435 vscan_changed_cb(void *arg, uint64_t newval)
436 {
437 ((zfsvfs_t *)arg)->z_vscan = newval;
438 }
439
440 static void
441 acl_inherit_changed_cb(void *arg, uint64_t newval)
442 {
443 ((zfsvfs_t *)arg)->z_acl_inherit = newval;
444 }
445
446 static int
447 zfs_register_callbacks(vfs_t *vfsp)
448 {
449 struct dsl_dataset *ds = NULL;
450 objset_t *os = NULL;
451 zfsvfs_t *zfsvfs = NULL;
452 int error = 0;
453
454 ASSERT(vfsp);
455 zfsvfs = vfsp->vfs_data;
456 ASSERT(zfsvfs);
457 os = zfsvfs->z_os;
458
459 /*
460 * The act of registering our callbacks will destroy any mount
461 * options we may have. In order to enable temporary overrides
462 * of mount options, we stash away the current values and
463 * restore them after we register the callbacks.
464 */
465 if (zfs_is_readonly(zfsvfs) || !spa_writeable(dmu_objset_spa(os))) {
466 vfsp->vfs_do_readonly = B_TRUE;
467 vfsp->vfs_readonly = B_TRUE;
468 }
469
470 /*
471 * Register property callbacks.
472 *
473 * It would probably be fine to just check for i/o error from
474 * the first prop_register(), but I guess I like to go
475 * overboard...
476 */
477 ds = dmu_objset_ds(os);
478 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
479 error = dsl_prop_register(ds,
480 zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
481 error = error ? error : dsl_prop_register(ds,
482 zfs_prop_to_name(ZFS_PROP_RELATIME), relatime_changed_cb, zfsvfs);
483 error = error ? error : dsl_prop_register(ds,
484 zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
485 error = error ? error : dsl_prop_register(ds,
486 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
487 error = error ? error : dsl_prop_register(ds,
488 zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
489 error = error ? error : dsl_prop_register(ds,
490 zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs);
491 error = error ? error : dsl_prop_register(ds,
492 zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
493 error = error ? error : dsl_prop_register(ds,
494 zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
495 error = error ? error : dsl_prop_register(ds,
496 zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
497 error = error ? error : dsl_prop_register(ds,
498 zfs_prop_to_name(ZFS_PROP_ACLTYPE), acltype_changed_cb, zfsvfs);
499 error = error ? error : dsl_prop_register(ds,
500 zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
501 zfsvfs);
502 error = error ? error : dsl_prop_register(ds,
503 zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs);
504 error = error ? error : dsl_prop_register(ds,
505 zfs_prop_to_name(ZFS_PROP_NBMAND), nbmand_changed_cb, zfsvfs);
506 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
507 if (error)
508 goto unregister;
509
510 /*
511 * Invoke our callbacks to restore temporary mount options.
512 */
513 if (vfsp->vfs_do_readonly)
514 readonly_changed_cb(zfsvfs, vfsp->vfs_readonly);
515 if (vfsp->vfs_do_setuid)
516 setuid_changed_cb(zfsvfs, vfsp->vfs_setuid);
517 if (vfsp->vfs_do_exec)
518 exec_changed_cb(zfsvfs, vfsp->vfs_exec);
519 if (vfsp->vfs_do_devices)
520 devices_changed_cb(zfsvfs, vfsp->vfs_devices);
521 if (vfsp->vfs_do_xattr)
522 xattr_changed_cb(zfsvfs, vfsp->vfs_xattr);
523 if (vfsp->vfs_do_atime)
524 atime_changed_cb(zfsvfs, vfsp->vfs_atime);
525 if (vfsp->vfs_do_relatime)
526 relatime_changed_cb(zfsvfs, vfsp->vfs_relatime);
527 if (vfsp->vfs_do_nbmand)
528 nbmand_changed_cb(zfsvfs, vfsp->vfs_nbmand);
529
530 return (0);
531
532 unregister:
533 dsl_prop_unregister_all(ds, zfsvfs);
534 return (error);
535 }
536
537 static int
538 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
539 uint64_t *userp, uint64_t *groupp)
540 {
541 /*
542 * Is it a valid type of object to track?
543 */
544 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
545 return (SET_ERROR(ENOENT));
546
547 /*
548 * If we have a NULL data pointer
549 * then assume the id's aren't changing and
550 * return EEXIST to the dmu to let it know to
551 * use the same ids
552 */
553 if (data == NULL)
554 return (SET_ERROR(EEXIST));
555
556 if (bonustype == DMU_OT_ZNODE) {
557 znode_phys_t *znp = data;
558 *userp = znp->zp_uid;
559 *groupp = znp->zp_gid;
560 } else {
561 int hdrsize;
562 sa_hdr_phys_t *sap = data;
563 sa_hdr_phys_t sa = *sap;
564 boolean_t swap = B_FALSE;
565
566 ASSERT(bonustype == DMU_OT_SA);
567
568 if (sa.sa_magic == 0) {
569 /*
570 * This should only happen for newly created
571 * files that haven't had the znode data filled
572 * in yet.
573 */
574 *userp = 0;
575 *groupp = 0;
576 return (0);
577 }
578 if (sa.sa_magic == BSWAP_32(SA_MAGIC)) {
579 sa.sa_magic = SA_MAGIC;
580 sa.sa_layout_info = BSWAP_16(sa.sa_layout_info);
581 swap = B_TRUE;
582 } else {
583 VERIFY3U(sa.sa_magic, ==, SA_MAGIC);
584 }
585
586 hdrsize = sa_hdrsize(&sa);
587 VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t));
588 *userp = *((uint64_t *)((uintptr_t)data + hdrsize +
589 SA_UID_OFFSET));
590 *groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
591 SA_GID_OFFSET));
592 if (swap) {
593 *userp = BSWAP_64(*userp);
594 *groupp = BSWAP_64(*groupp);
595 }
596 }
597 return (0);
598 }
599
600 static void
601 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
602 char *domainbuf, int buflen, uid_t *ridp)
603 {
604 uint64_t fuid;
605 const char *domain;
606
607 fuid = strtonum(fuidstr, NULL);
608
609 domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
610 if (domain)
611 (void) strlcpy(domainbuf, domain, buflen);
612 else
613 domainbuf[0] = '\0';
614 *ridp = FUID_RID(fuid);
615 }
616
617 static uint64_t
618 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
619 {
620 switch (type) {
621 case ZFS_PROP_USERUSED:
622 case ZFS_PROP_USEROBJUSED:
623 return (DMU_USERUSED_OBJECT);
624 case ZFS_PROP_GROUPUSED:
625 case ZFS_PROP_GROUPOBJUSED:
626 return (DMU_GROUPUSED_OBJECT);
627 case ZFS_PROP_USERQUOTA:
628 return (zfsvfs->z_userquota_obj);
629 case ZFS_PROP_GROUPQUOTA:
630 return (zfsvfs->z_groupquota_obj);
631 case ZFS_PROP_USEROBJQUOTA:
632 return (zfsvfs->z_userobjquota_obj);
633 case ZFS_PROP_GROUPOBJQUOTA:
634 return (zfsvfs->z_groupobjquota_obj);
635 default:
636 return (ZFS_NO_OBJECT);
637 }
638 }
639
640 int
641 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
642 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
643 {
644 int error;
645 zap_cursor_t zc;
646 zap_attribute_t za;
647 zfs_useracct_t *buf = vbuf;
648 uint64_t obj;
649 int offset = 0;
650
651 if (!dmu_objset_userspace_present(zfsvfs->z_os))
652 return (SET_ERROR(ENOTSUP));
653
654 if ((type == ZFS_PROP_USEROBJUSED || type == ZFS_PROP_GROUPOBJUSED ||
655 type == ZFS_PROP_USEROBJQUOTA || type == ZFS_PROP_GROUPOBJQUOTA) &&
656 !dmu_objset_userobjspace_present(zfsvfs->z_os))
657 return (SET_ERROR(ENOTSUP));
658
659 obj = zfs_userquota_prop_to_obj(zfsvfs, type);
660 if (obj == ZFS_NO_OBJECT) {
661 *bufsizep = 0;
662 return (0);
663 }
664
665 if (type == ZFS_PROP_USEROBJUSED || type == ZFS_PROP_GROUPOBJUSED)
666 offset = DMU_OBJACCT_PREFIX_LEN;
667
668 for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
669 (error = zap_cursor_retrieve(&zc, &za)) == 0;
670 zap_cursor_advance(&zc)) {
671 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
672 *bufsizep)
673 break;
674
675 /*
676 * skip object quota (with zap name prefix DMU_OBJACCT_PREFIX)
677 * when dealing with block quota and vice versa.
678 */
679 if ((offset > 0) != (strncmp(za.za_name, DMU_OBJACCT_PREFIX,
680 DMU_OBJACCT_PREFIX_LEN) == 0))
681 continue;
682
683 fuidstr_to_sid(zfsvfs, za.za_name + offset,
684 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
685
686 buf->zu_space = za.za_first_integer;
687 buf++;
688 }
689 if (error == ENOENT)
690 error = 0;
691
692 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
693 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
694 *cookiep = zap_cursor_serialize(&zc);
695 zap_cursor_fini(&zc);
696 return (error);
697 }
698
699 /*
700 * buf must be big enough (eg, 32 bytes)
701 */
702 static int
703 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
704 char *buf, boolean_t addok)
705 {
706 uint64_t fuid;
707 int domainid = 0;
708
709 if (domain && domain[0]) {
710 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
711 if (domainid == -1)
712 return (SET_ERROR(ENOENT));
713 }
714 fuid = FUID_ENCODE(domainid, rid);
715 (void) sprintf(buf, "%llx", (longlong_t)fuid);
716 return (0);
717 }
718
719 int
720 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
721 const char *domain, uint64_t rid, uint64_t *valp)
722 {
723 char buf[20 + DMU_OBJACCT_PREFIX_LEN];
724 int offset = 0;
725 int err;
726 uint64_t obj;
727
728 *valp = 0;
729
730 if (!dmu_objset_userspace_present(zfsvfs->z_os))
731 return (SET_ERROR(ENOTSUP));
732
733 if ((type == ZFS_PROP_USEROBJUSED || type == ZFS_PROP_GROUPOBJUSED ||
734 type == ZFS_PROP_USEROBJQUOTA || type == ZFS_PROP_GROUPOBJQUOTA) &&
735 !dmu_objset_userobjspace_present(zfsvfs->z_os))
736 return (SET_ERROR(ENOTSUP));
737
738 obj = zfs_userquota_prop_to_obj(zfsvfs, type);
739 if (obj == ZFS_NO_OBJECT)
740 return (0);
741
742 if (type == ZFS_PROP_USEROBJUSED || type == ZFS_PROP_GROUPOBJUSED) {
743 strlcpy(buf, DMU_OBJACCT_PREFIX, DMU_OBJACCT_PREFIX_LEN);
744 offset = DMU_OBJACCT_PREFIX_LEN;
745 }
746
747 err = id_to_fuidstr(zfsvfs, domain, rid, buf + offset, B_FALSE);
748 if (err)
749 return (err);
750
751 err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
752 if (err == ENOENT)
753 err = 0;
754 return (err);
755 }
756
757 int
758 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
759 const char *domain, uint64_t rid, uint64_t quota)
760 {
761 char buf[32];
762 int err;
763 dmu_tx_t *tx;
764 uint64_t *objp;
765 boolean_t fuid_dirtied;
766
767 if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
768 return (SET_ERROR(ENOTSUP));
769
770 switch (type) {
771 case ZFS_PROP_USERQUOTA:
772 objp = &zfsvfs->z_userquota_obj;
773 break;
774 case ZFS_PROP_GROUPQUOTA:
775 objp = &zfsvfs->z_groupquota_obj;
776 break;
777 case ZFS_PROP_USEROBJQUOTA:
778 objp = &zfsvfs->z_userobjquota_obj;
779 break;
780 case ZFS_PROP_GROUPOBJQUOTA:
781 objp = &zfsvfs->z_groupobjquota_obj;
782 break;
783 default:
784 return (SET_ERROR(EINVAL));
785 }
786
787 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
788 if (err)
789 return (err);
790 fuid_dirtied = zfsvfs->z_fuid_dirty;
791
792 tx = dmu_tx_create(zfsvfs->z_os);
793 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
794 if (*objp == 0) {
795 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
796 zfs_userquota_prop_prefixes[type]);
797 }
798 if (fuid_dirtied)
799 zfs_fuid_txhold(zfsvfs, tx);
800 err = dmu_tx_assign(tx, TXG_WAIT);
801 if (err) {
802 dmu_tx_abort(tx);
803 return (err);
804 }
805
806 mutex_enter(&zfsvfs->z_lock);
807 if (*objp == 0) {
808 *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
809 DMU_OT_NONE, 0, tx);
810 VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
811 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
812 }
813 mutex_exit(&zfsvfs->z_lock);
814
815 if (quota == 0) {
816 err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
817 if (err == ENOENT)
818 err = 0;
819 } else {
820 err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
821 }
822 ASSERT(err == 0);
823 if (fuid_dirtied)
824 zfs_fuid_sync(zfsvfs, tx);
825 dmu_tx_commit(tx);
826 return (err);
827 }
828
829 boolean_t
830 zfs_fuid_overobjquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
831 {
832 char buf[20 + DMU_OBJACCT_PREFIX_LEN];
833 uint64_t used, quota, usedobj, quotaobj;
834 int err;
835
836 if (!dmu_objset_userobjspace_present(zfsvfs->z_os)) {
837 if (dmu_objset_userobjspace_upgradable(zfsvfs->z_os))
838 dmu_objset_userobjspace_upgrade(zfsvfs->z_os);
839 return (B_FALSE);
840 }
841
842 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
843 quotaobj = isgroup ? zfsvfs->z_groupobjquota_obj :
844 zfsvfs->z_userobjquota_obj;
845 if (quotaobj == 0 || zfsvfs->z_replay)
846 return (B_FALSE);
847
848 (void) sprintf(buf, "%llx", (longlong_t)fuid);
849 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
850 if (err != 0)
851 return (B_FALSE);
852
853 (void) sprintf(buf, DMU_OBJACCT_PREFIX "%llx", (longlong_t)fuid);
854 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
855 if (err != 0)
856 return (B_FALSE);
857 return (used >= quota);
858 }
859
860 boolean_t
861 zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
862 {
863 char buf[20];
864 uint64_t used, quota, usedobj, quotaobj;
865 int err;
866
867 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
868 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
869
870 if (quotaobj == 0 || zfsvfs->z_replay)
871 return (B_FALSE);
872
873 (void) sprintf(buf, "%llx", (longlong_t)fuid);
874 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
875 if (err != 0)
876 return (B_FALSE);
877
878 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
879 if (err != 0)
880 return (B_FALSE);
881 return (used >= quota);
882 }
883
884 boolean_t
885 zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup)
886 {
887 uint64_t fuid;
888 uint64_t quotaobj;
889 struct inode *ip = ZTOI(zp);
890
891 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
892
893 fuid = isgroup ? KGID_TO_SGID(ip->i_gid) : KUID_TO_SUID(ip->i_uid);
894
895 if (quotaobj == 0 || zfsvfs->z_replay)
896 return (B_FALSE);
897
898 return (zfs_fuid_overquota(zfsvfs, isgroup, fuid));
899 }
900
901 int
902 zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
903 {
904 objset_t *os;
905 zfsvfs_t *zfsvfs;
906 uint64_t zval;
907 int i, size, error;
908 uint64_t sa_obj;
909
910 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
911
912 /*
913 * We claim to always be readonly so we can open snapshots;
914 * other ZPL code will prevent us from writing to snapshots.
915 */
916 error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
917 if (error) {
918 kmem_free(zfsvfs, sizeof (zfsvfs_t));
919 return (error);
920 }
921
922 /*
923 * Initialize the zfs-specific filesystem structure.
924 * Should probably make this a kmem cache, shuffle fields.
925 */
926 zfsvfs->z_vfs = NULL;
927 zfsvfs->z_sb = NULL;
928 zfsvfs->z_parent = zfsvfs;
929 zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
930 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
931 zfsvfs->z_os = os;
932
933 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
934 if (error) {
935 goto out;
936 } else if (zfsvfs->z_version > ZPL_VERSION) {
937 error = SET_ERROR(ENOTSUP);
938 goto out;
939 }
940 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
941 goto out;
942 zfsvfs->z_norm = (int)zval;
943
944 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
945 goto out;
946 zfsvfs->z_utf8 = (zval != 0);
947
948 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
949 goto out;
950 zfsvfs->z_case = (uint_t)zval;
951
952 if ((error = zfs_get_zplprop(os, ZFS_PROP_ACLTYPE, &zval)) != 0)
953 goto out;
954 zfsvfs->z_acl_type = (uint_t)zval;
955
956 /*
957 * Fold case on file systems that are always or sometimes case
958 * insensitive.
959 */
960 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
961 zfsvfs->z_case == ZFS_CASE_MIXED)
962 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
963
964 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
965 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
966
967 if (zfsvfs->z_use_sa) {
968 /* should either have both of these objects or none */
969 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
970 &sa_obj);
971 if (error)
972 goto out;
973
974 error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &zval);
975 if ((error == 0) && (zval == ZFS_XATTR_SA))
976 zfsvfs->z_xattr_sa = B_TRUE;
977 } else {
978 /*
979 * Pre SA versions file systems should never touch
980 * either the attribute registration or layout objects.
981 */
982 sa_obj = 0;
983 }
984
985 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
986 &zfsvfs->z_attr_table);
987 if (error)
988 goto out;
989
990 if (zfsvfs->z_version >= ZPL_VERSION_SA)
991 sa_register_update_callback(os, zfs_sa_upgrade);
992
993 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
994 &zfsvfs->z_root);
995 if (error)
996 goto out;
997 ASSERT(zfsvfs->z_root != 0);
998
999 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
1000 &zfsvfs->z_unlinkedobj);
1001 if (error)
1002 goto out;
1003
1004 error = zap_lookup(os, MASTER_NODE_OBJ,
1005 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
1006 8, 1, &zfsvfs->z_userquota_obj);
1007 if (error && error != ENOENT)
1008 goto out;
1009
1010 error = zap_lookup(os, MASTER_NODE_OBJ,
1011 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
1012 8, 1, &zfsvfs->z_groupquota_obj);
1013 if (error && error != ENOENT)
1014 goto out;
1015
1016 error = zap_lookup(os, MASTER_NODE_OBJ,
1017 zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA],
1018 8, 1, &zfsvfs->z_userobjquota_obj);
1019 if (error && error != ENOENT)
1020 goto out;
1021
1022 error = zap_lookup(os, MASTER_NODE_OBJ,
1023 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA],
1024 8, 1, &zfsvfs->z_groupobjquota_obj);
1025 if (error && error != ENOENT)
1026 goto out;
1027
1028 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
1029 &zfsvfs->z_fuid_obj);
1030 if (error && error != ENOENT)
1031 goto out;
1032
1033 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
1034 &zfsvfs->z_shares_dir);
1035 if (error && error != ENOENT)
1036 goto out;
1037
1038 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1039 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
1040 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
1041 offsetof(znode_t, z_link_node));
1042 rrm_init(&zfsvfs->z_teardown_lock, B_FALSE);
1043 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
1044 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
1045
1046 size = MIN(1 << (highbit64(zfs_object_mutex_size)-1), ZFS_OBJ_MTX_MAX);
1047 zfsvfs->z_hold_size = size;
1048 zfsvfs->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size,
1049 KM_SLEEP);
1050 zfsvfs->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP);
1051 for (i = 0; i != size; i++) {
1052 avl_create(&zfsvfs->z_hold_trees[i], zfs_znode_hold_compare,
1053 sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node));
1054 mutex_init(&zfsvfs->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL);
1055 }
1056
1057 *zfvp = zfsvfs;
1058 return (0);
1059
1060 out:
1061 dmu_objset_disown(os, zfsvfs);
1062 *zfvp = NULL;
1063 kmem_free(zfsvfs, sizeof (zfsvfs_t));
1064 return (error);
1065 }
1066
1067 int
1068 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
1069 {
1070 int error;
1071
1072 error = zfs_register_callbacks(zfsvfs->z_vfs);
1073 if (error)
1074 return (error);
1075
1076 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
1077
1078 /*
1079 * If we are not mounting (ie: online recv), then we don't
1080 * have to worry about replaying the log as we blocked all
1081 * operations out since we closed the ZIL.
1082 */
1083 if (mounting) {
1084 boolean_t readonly;
1085
1086 /*
1087 * During replay we remove the read only flag to
1088 * allow replays to succeed.
1089 */
1090 readonly = zfs_is_readonly(zfsvfs);
1091 if (readonly != 0)
1092 readonly_changed_cb(zfsvfs, B_FALSE);
1093 else
1094 zfs_unlinked_drain(zfsvfs);
1095
1096 /*
1097 * Parse and replay the intent log.
1098 *
1099 * Because of ziltest, this must be done after
1100 * zfs_unlinked_drain(). (Further note: ziltest
1101 * doesn't use readonly mounts, where
1102 * zfs_unlinked_drain() isn't called.) This is because
1103 * ziltest causes spa_sync() to think it's committed,
1104 * but actually it is not, so the intent log contains
1105 * many txg's worth of changes.
1106 *
1107 * In particular, if object N is in the unlinked set in
1108 * the last txg to actually sync, then it could be
1109 * actually freed in a later txg and then reallocated
1110 * in a yet later txg. This would write a "create
1111 * object N" record to the intent log. Normally, this
1112 * would be fine because the spa_sync() would have
1113 * written out the fact that object N is free, before
1114 * we could write the "create object N" intent log
1115 * record.
1116 *
1117 * But when we are in ziltest mode, we advance the "open
1118 * txg" without actually spa_sync()-ing the changes to
1119 * disk. So we would see that object N is still
1120 * allocated and in the unlinked set, and there is an
1121 * intent log record saying to allocate it.
1122 */
1123 if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1124 if (zil_replay_disable) {
1125 zil_destroy(zfsvfs->z_log, B_FALSE);
1126 } else {
1127 zfsvfs->z_replay = B_TRUE;
1128 zil_replay(zfsvfs->z_os, zfsvfs,
1129 zfs_replay_vector);
1130 zfsvfs->z_replay = B_FALSE;
1131 }
1132 }
1133
1134 /* restore readonly bit */
1135 if (readonly != 0)
1136 readonly_changed_cb(zfsvfs, B_TRUE);
1137 }
1138
1139 /*
1140 * Set the objset user_ptr to track its zfsvfs.
1141 */
1142 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1143 dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1144 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1145
1146 return (0);
1147 }
1148
1149 void
1150 zfsvfs_free(zfsvfs_t *zfsvfs)
1151 {
1152 int i, size = zfsvfs->z_hold_size;
1153
1154 zfs_fuid_destroy(zfsvfs);
1155
1156 mutex_destroy(&zfsvfs->z_znodes_lock);
1157 mutex_destroy(&zfsvfs->z_lock);
1158 list_destroy(&zfsvfs->z_all_znodes);
1159 rrm_destroy(&zfsvfs->z_teardown_lock);
1160 rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1161 rw_destroy(&zfsvfs->z_fuid_lock);
1162 for (i = 0; i != size; i++) {
1163 avl_destroy(&zfsvfs->z_hold_trees[i]);
1164 mutex_destroy(&zfsvfs->z_hold_locks[i]);
1165 }
1166 vmem_free(zfsvfs->z_hold_trees, sizeof (avl_tree_t) * size);
1167 vmem_free(zfsvfs->z_hold_locks, sizeof (kmutex_t) * size);
1168 zfsvfs_vfs_free(zfsvfs->z_vfs);
1169 kmem_free(zfsvfs, sizeof (zfsvfs_t));
1170 }
1171
1172 static void
1173 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1174 {
1175 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1176 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1177 }
1178
1179 void
1180 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1181 {
1182 objset_t *os = zfsvfs->z_os;
1183
1184 if (!dmu_objset_is_snapshot(os))
1185 dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs);
1186 }
1187
1188 #ifdef HAVE_MLSLABEL
1189 /*
1190 * Check that the hex label string is appropriate for the dataset being
1191 * mounted into the global_zone proper.
1192 *
1193 * Return an error if the hex label string is not default or
1194 * admin_low/admin_high. For admin_low labels, the corresponding
1195 * dataset must be readonly.
1196 */
1197 int
1198 zfs_check_global_label(const char *dsname, const char *hexsl)
1199 {
1200 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1201 return (0);
1202 if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1203 return (0);
1204 if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1205 /* must be readonly */
1206 uint64_t rdonly;
1207
1208 if (dsl_prop_get_integer(dsname,
1209 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1210 return (SET_ERROR(EACCES));
1211 return (rdonly ? 0 : EACCES);
1212 }
1213 return (SET_ERROR(EACCES));
1214 }
1215 #endif /* HAVE_MLSLABEL */
1216
1217 int
1218 zfs_statvfs(struct dentry *dentry, struct kstatfs *statp)
1219 {
1220 zfsvfs_t *zfsvfs = dentry->d_sb->s_fs_info;
1221 uint64_t refdbytes, availbytes, usedobjs, availobjs;
1222 uint64_t fsid;
1223 uint32_t bshift;
1224
1225 ZFS_ENTER(zfsvfs);
1226
1227 dmu_objset_space(zfsvfs->z_os,
1228 &refdbytes, &availbytes, &usedobjs, &availobjs);
1229
1230 fsid = dmu_objset_fsid_guid(zfsvfs->z_os);
1231 /*
1232 * The underlying storage pool actually uses multiple block
1233 * size. Under Solaris frsize (fragment size) is reported as
1234 * the smallest block size we support, and bsize (block size)
1235 * as the filesystem's maximum block size. Unfortunately,
1236 * under Linux the fragment size and block size are often used
1237 * interchangeably. Thus we are forced to report both of them
1238 * as the filesystem's maximum block size.
1239 */
1240 statp->f_frsize = zfsvfs->z_max_blksz;
1241 statp->f_bsize = zfsvfs->z_max_blksz;
1242 bshift = fls(statp->f_bsize) - 1;
1243
1244 /*
1245 * The following report "total" blocks of various kinds in
1246 * the file system, but reported in terms of f_bsize - the
1247 * "preferred" size.
1248 */
1249
1250 statp->f_blocks = (refdbytes + availbytes) >> bshift;
1251 statp->f_bfree = availbytes >> bshift;
1252 statp->f_bavail = statp->f_bfree; /* no root reservation */
1253
1254 /*
1255 * statvfs() should really be called statufs(), because it assumes
1256 * static metadata. ZFS doesn't preallocate files, so the best
1257 * we can do is report the max that could possibly fit in f_files,
1258 * and that minus the number actually used in f_ffree.
1259 * For f_ffree, report the smaller of the number of object available
1260 * and the number of blocks (each object will take at least a block).
1261 */
1262 statp->f_ffree = MIN(availobjs, availbytes >> DNODE_SHIFT);
1263 statp->f_files = statp->f_ffree + usedobjs;
1264 statp->f_fsid.val[0] = (uint32_t)fsid;
1265 statp->f_fsid.val[1] = (uint32_t)(fsid >> 32);
1266 statp->f_type = ZFS_SUPER_MAGIC;
1267 statp->f_namelen = MAXNAMELEN - 1;
1268
1269 /*
1270 * We have all of 40 characters to stuff a string here.
1271 * Is there anything useful we could/should provide?
1272 */
1273 bzero(statp->f_spare, sizeof (statp->f_spare));
1274
1275 ZFS_EXIT(zfsvfs);
1276 return (0);
1277 }
1278
1279 int
1280 zfs_root(zfsvfs_t *zfsvfs, struct inode **ipp)
1281 {
1282 znode_t *rootzp;
1283 int error;
1284
1285 ZFS_ENTER(zfsvfs);
1286
1287 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1288 if (error == 0)
1289 *ipp = ZTOI(rootzp);
1290
1291 ZFS_EXIT(zfsvfs);
1292 return (error);
1293 }
1294
1295 #ifdef HAVE_D_PRUNE_ALIASES
1296 /*
1297 * Linux kernels older than 3.1 do not support a per-filesystem shrinker.
1298 * To accommodate this we must improvise and manually walk the list of znodes
1299 * attempting to prune dentries in order to be able to drop the inodes.
1300 *
1301 * To avoid scanning the same znodes multiple times they are always rotated
1302 * to the end of the z_all_znodes list. New znodes are inserted at the
1303 * end of the list so we're always scanning the oldest znodes first.
1304 */
1305 static int
1306 zfs_prune_aliases(zfsvfs_t *zfsvfs, unsigned long nr_to_scan)
1307 {
1308 znode_t **zp_array, *zp;
1309 int max_array = MIN(nr_to_scan, PAGE_SIZE * 8 / sizeof (znode_t *));
1310 int objects = 0;
1311 int i = 0, j = 0;
1312
1313 zp_array = kmem_zalloc(max_array * sizeof (znode_t *), KM_SLEEP);
1314
1315 mutex_enter(&zfsvfs->z_znodes_lock);
1316 while ((zp = list_head(&zfsvfs->z_all_znodes)) != NULL) {
1317
1318 if ((i++ > nr_to_scan) || (j >= max_array))
1319 break;
1320
1321 ASSERT(list_link_active(&zp->z_link_node));
1322 list_remove(&zfsvfs->z_all_znodes, zp);
1323 list_insert_tail(&zfsvfs->z_all_znodes, zp);
1324
1325 /* Skip active znodes and .zfs entries */
1326 if (MUTEX_HELD(&zp->z_lock) || zp->z_is_ctldir)
1327 continue;
1328
1329 if (igrab(ZTOI(zp)) == NULL)
1330 continue;
1331
1332 zp_array[j] = zp;
1333 j++;
1334 }
1335 mutex_exit(&zfsvfs->z_znodes_lock);
1336
1337 for (i = 0; i < j; i++) {
1338 zp = zp_array[i];
1339
1340 ASSERT3P(zp, !=, NULL);
1341 d_prune_aliases(ZTOI(zp));
1342
1343 if (atomic_read(&ZTOI(zp)->i_count) == 1)
1344 objects++;
1345
1346 iput(ZTOI(zp));
1347 }
1348
1349 kmem_free(zp_array, max_array * sizeof (znode_t *));
1350
1351 return (objects);
1352 }
1353 #endif /* HAVE_D_PRUNE_ALIASES */
1354
1355 /*
1356 * The ARC has requested that the filesystem drop entries from the dentry
1357 * and inode caches. This can occur when the ARC needs to free meta data
1358 * blocks but can't because they are all pinned by entries in these caches.
1359 */
1360 int
1361 zfs_prune(struct super_block *sb, unsigned long nr_to_scan, int *objects)
1362 {
1363 zfsvfs_t *zfsvfs = sb->s_fs_info;
1364 int error = 0;
1365 #if defined(HAVE_SHRINK) || defined(HAVE_SPLIT_SHRINKER_CALLBACK)
1366 struct shrinker *shrinker = &sb->s_shrink;
1367 struct shrink_control sc = {
1368 .nr_to_scan = nr_to_scan,
1369 .gfp_mask = GFP_KERNEL,
1370 };
1371 #endif
1372
1373 ZFS_ENTER(zfsvfs);
1374
1375 #if defined(HAVE_SPLIT_SHRINKER_CALLBACK) && \
1376 defined(SHRINK_CONTROL_HAS_NID) && \
1377 defined(SHRINKER_NUMA_AWARE)
1378 if (sb->s_shrink.flags & SHRINKER_NUMA_AWARE) {
1379 *objects = 0;
1380 for_each_online_node(sc.nid) {
1381 *objects += (*shrinker->scan_objects)(shrinker, &sc);
1382 }
1383 } else {
1384 *objects = (*shrinker->scan_objects)(shrinker, &sc);
1385 }
1386
1387 #elif defined(HAVE_SPLIT_SHRINKER_CALLBACK)
1388 *objects = (*shrinker->scan_objects)(shrinker, &sc);
1389 #elif defined(HAVE_SHRINK)
1390 *objects = (*shrinker->shrink)(shrinker, &sc);
1391 #elif defined(HAVE_D_PRUNE_ALIASES)
1392 #define D_PRUNE_ALIASES_IS_DEFAULT
1393 *objects = zfs_prune_aliases(zfsvfs, nr_to_scan);
1394 #else
1395 #error "No available dentry and inode cache pruning mechanism."
1396 #endif
1397
1398 #if defined(HAVE_D_PRUNE_ALIASES) && !defined(D_PRUNE_ALIASES_IS_DEFAULT)
1399 #undef D_PRUNE_ALIASES_IS_DEFAULT
1400 /*
1401 * Fall back to zfs_prune_aliases if the kernel's per-superblock
1402 * shrinker couldn't free anything, possibly due to the inodes being
1403 * allocated in a different memcg.
1404 */
1405 if (*objects == 0)
1406 *objects = zfs_prune_aliases(zfsvfs, nr_to_scan);
1407 #endif
1408
1409 ZFS_EXIT(zfsvfs);
1410
1411 dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
1412 "pruning, nr_to_scan=%lu objects=%d error=%d\n",
1413 nr_to_scan, *objects, error);
1414
1415 return (error);
1416 }
1417
1418 /*
1419 * Teardown the zfsvfs_t.
1420 *
1421 * Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock'
1422 * and 'z_teardown_inactive_lock' held.
1423 */
1424 static int
1425 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1426 {
1427 znode_t *zp;
1428
1429 /*
1430 * If someone has not already unmounted this file system,
1431 * drain the iput_taskq to ensure all active references to the
1432 * zfsvfs_t have been handled only then can it be safely destroyed.
1433 */
1434 if (zfsvfs->z_os) {
1435 /*
1436 * If we're unmounting we have to wait for the list to
1437 * drain completely.
1438 *
1439 * If we're not unmounting there's no guarantee the list
1440 * will drain completely, but iputs run from the taskq
1441 * may add the parents of dir-based xattrs to the taskq
1442 * so we want to wait for these.
1443 *
1444 * We can safely read z_nr_znodes without locking because the
1445 * VFS has already blocked operations which add to the
1446 * z_all_znodes list and thus increment z_nr_znodes.
1447 */
1448 int round = 0;
1449 while (zfsvfs->z_nr_znodes > 0) {
1450 taskq_wait_outstanding(dsl_pool_iput_taskq(
1451 dmu_objset_pool(zfsvfs->z_os)), 0);
1452 if (++round > 1 && !unmounting)
1453 break;
1454 }
1455 }
1456
1457 rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1458
1459 if (!unmounting) {
1460 /*
1461 * We purge the parent filesystem's super block as the
1462 * parent filesystem and all of its snapshots have their
1463 * inode's super block set to the parent's filesystem's
1464 * super block. Note, 'z_parent' is self referential
1465 * for non-snapshots.
1466 */
1467 shrink_dcache_sb(zfsvfs->z_parent->z_sb);
1468 }
1469
1470 /*
1471 * Close the zil. NB: Can't close the zil while zfs_inactive
1472 * threads are blocked as zil_close can call zfs_inactive.
1473 */
1474 if (zfsvfs->z_log) {
1475 zil_close(zfsvfs->z_log);
1476 zfsvfs->z_log = NULL;
1477 }
1478
1479 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1480
1481 /*
1482 * If we are not unmounting (ie: online recv) and someone already
1483 * unmounted this file system while we were doing the switcheroo,
1484 * or a reopen of z_os failed then just bail out now.
1485 */
1486 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1487 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1488 rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1489 return (SET_ERROR(EIO));
1490 }
1491
1492 /*
1493 * At this point there are no VFS ops active, and any new VFS ops
1494 * will fail with EIO since we have z_teardown_lock for writer (only
1495 * relevant for forced unmount).
1496 *
1497 * Release all holds on dbufs.
1498 */
1499 if (!unmounting) {
1500 mutex_enter(&zfsvfs->z_znodes_lock);
1501 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1502 zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1503 if (zp->z_sa_hdl)
1504 zfs_znode_dmu_fini(zp);
1505 }
1506 mutex_exit(&zfsvfs->z_znodes_lock);
1507 }
1508
1509 /*
1510 * If we are unmounting, set the unmounted flag and let new VFS ops
1511 * unblock. zfs_inactive will have the unmounted behavior, and all
1512 * other VFS ops will fail with EIO.
1513 */
1514 if (unmounting) {
1515 zfsvfs->z_unmounted = B_TRUE;
1516 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1517 rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1518 }
1519
1520 /*
1521 * z_os will be NULL if there was an error in attempting to reopen
1522 * zfsvfs, so just return as the properties had already been
1523 *
1524 * unregistered and cached data had been evicted before.
1525 */
1526 if (zfsvfs->z_os == NULL)
1527 return (0);
1528
1529 /*
1530 * Unregister properties.
1531 */
1532 zfs_unregister_callbacks(zfsvfs);
1533
1534 /*
1535 * Evict cached data
1536 */
1537 if (dsl_dataset_is_dirty(dmu_objset_ds(zfsvfs->z_os)) &&
1538 !zfs_is_readonly(zfsvfs))
1539 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1540 dmu_objset_evict_dbufs(zfsvfs->z_os);
1541
1542 return (0);
1543 }
1544
1545 #if !defined(HAVE_2ARGS_BDI_SETUP_AND_REGISTER) && \
1546 !defined(HAVE_3ARGS_BDI_SETUP_AND_REGISTER)
1547 atomic_long_t zfs_bdi_seq = ATOMIC_LONG_INIT(0);
1548 #endif
1549
1550 int
1551 zfs_domount(struct super_block *sb, zfs_mnt_t *zm, int silent)
1552 {
1553 const char *osname = zm->mnt_osname;
1554 struct inode *root_inode;
1555 uint64_t recordsize;
1556 int error = 0;
1557 zfsvfs_t *zfsvfs;
1558
1559 ASSERT(zm);
1560 ASSERT(osname);
1561
1562 error = zfsvfs_create(osname, &zfsvfs);
1563 if (error)
1564 return (error);
1565
1566 error = zfsvfs_parse_options(zm->mnt_data, &zfsvfs->z_vfs);
1567 if (error)
1568 goto out;
1569
1570 if ((error = dsl_prop_get_integer(osname, "recordsize",
1571 &recordsize, NULL)))
1572 goto out;
1573
1574 zfsvfs->z_vfs->vfs_data = zfsvfs;
1575 zfsvfs->z_sb = sb;
1576 sb->s_fs_info = zfsvfs;
1577 sb->s_magic = ZFS_SUPER_MAGIC;
1578 sb->s_maxbytes = MAX_LFS_FILESIZE;
1579 sb->s_time_gran = 1;
1580 sb->s_blocksize = recordsize;
1581 sb->s_blocksize_bits = ilog2(recordsize);
1582 zfsvfs->z_bdi.ra_pages = 0;
1583 sb->s_bdi = &zfsvfs->z_bdi;
1584
1585 error = -zpl_bdi_setup_and_register(&zfsvfs->z_bdi, "zfs");
1586 if (error)
1587 goto out;
1588
1589 /* Set callback operations for the file system. */
1590 sb->s_op = &zpl_super_operations;
1591 sb->s_xattr = zpl_xattr_handlers;
1592 sb->s_export_op = &zpl_export_operations;
1593 #ifdef HAVE_S_D_OP
1594 sb->s_d_op = &zpl_dentry_operations;
1595 #endif /* HAVE_S_D_OP */
1596
1597 /* Set features for file system. */
1598 zfs_set_fuid_feature(zfsvfs);
1599
1600 if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1601 uint64_t pval;
1602
1603 atime_changed_cb(zfsvfs, B_FALSE);
1604 readonly_changed_cb(zfsvfs, B_TRUE);
1605 if ((error = dsl_prop_get_integer(osname,
1606 "xattr", &pval, NULL)))
1607 goto out;
1608 xattr_changed_cb(zfsvfs, pval);
1609 if ((error = dsl_prop_get_integer(osname,
1610 "acltype", &pval, NULL)))
1611 goto out;
1612 acltype_changed_cb(zfsvfs, pval);
1613 zfsvfs->z_issnap = B_TRUE;
1614 zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1615 zfsvfs->z_snap_defer_time = jiffies;
1616
1617 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1618 dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1619 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1620 } else {
1621 if ((error = zfsvfs_setup(zfsvfs, B_TRUE)))
1622 goto out;
1623 }
1624
1625 /* Allocate a root inode for the filesystem. */
1626 error = zfs_root(zfsvfs, &root_inode);
1627 if (error) {
1628 (void) zfs_umount(sb);
1629 goto out;
1630 }
1631
1632 /* Allocate a root dentry for the filesystem */
1633 sb->s_root = d_make_root(root_inode);
1634 if (sb->s_root == NULL) {
1635 (void) zfs_umount(sb);
1636 error = SET_ERROR(ENOMEM);
1637 goto out;
1638 }
1639
1640 if (!zfsvfs->z_issnap)
1641 zfsctl_create(zfsvfs);
1642
1643 zfsvfs->z_arc_prune = arc_add_prune_callback(zpl_prune_sb, sb);
1644 out:
1645 if (error) {
1646 dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1647 zfsvfs_free(zfsvfs);
1648 /*
1649 * make sure we don't have dangling sb->s_fs_info which
1650 * zfs_preumount will use.
1651 */
1652 sb->s_fs_info = NULL;
1653 }
1654
1655 return (error);
1656 }
1657
1658 /*
1659 * Called when an unmount is requested and certain sanity checks have
1660 * already passed. At this point no dentries or inodes have been reclaimed
1661 * from their respective caches. We drop the extra reference on the .zfs
1662 * control directory to allow everything to be reclaimed. All snapshots
1663 * must already have been unmounted to reach this point.
1664 */
1665 void
1666 zfs_preumount(struct super_block *sb)
1667 {
1668 zfsvfs_t *zfsvfs = sb->s_fs_info;
1669
1670 /* zfsvfs is NULL when zfs_domount fails during mount */
1671 if (zfsvfs) {
1672 zfsctl_destroy(sb->s_fs_info);
1673 /*
1674 * Wait for iput_async before entering evict_inodes in
1675 * generic_shutdown_super. The reason we must finish before
1676 * evict_inodes is when lazytime is on, or when zfs_purgedir
1677 * calls zfs_zget, iput would bump i_count from 0 to 1. This
1678 * would race with the i_count check in evict_inodes. This means
1679 * it could destroy the inode while we are still using it.
1680 *
1681 * We wait for two passes. xattr directories in the first pass
1682 * may add xattr entries in zfs_purgedir, so in the second pass
1683 * we wait for them. We don't use taskq_wait here because it is
1684 * a pool wide taskq. Other mounted filesystems can constantly
1685 * do iput_async and there's no guarantee when taskq will be
1686 * empty.
1687 */
1688 taskq_wait_outstanding(dsl_pool_iput_taskq(
1689 dmu_objset_pool(zfsvfs->z_os)), 0);
1690 taskq_wait_outstanding(dsl_pool_iput_taskq(
1691 dmu_objset_pool(zfsvfs->z_os)), 0);
1692 }
1693 }
1694
1695 /*
1696 * Called once all other unmount released tear down has occurred.
1697 * It is our responsibility to release any remaining infrastructure.
1698 */
1699 /*ARGSUSED*/
1700 int
1701 zfs_umount(struct super_block *sb)
1702 {
1703 zfsvfs_t *zfsvfs = sb->s_fs_info;
1704 objset_t *os;
1705
1706 arc_remove_prune_callback(zfsvfs->z_arc_prune);
1707 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1708 os = zfsvfs->z_os;
1709 bdi_destroy(sb->s_bdi);
1710
1711 /*
1712 * z_os will be NULL if there was an error in
1713 * attempting to reopen zfsvfs.
1714 */
1715 if (os != NULL) {
1716 /*
1717 * Unset the objset user_ptr.
1718 */
1719 mutex_enter(&os->os_user_ptr_lock);
1720 dmu_objset_set_user(os, NULL);
1721 mutex_exit(&os->os_user_ptr_lock);
1722
1723 /*
1724 * Finally release the objset
1725 */
1726 dmu_objset_disown(os, zfsvfs);
1727 }
1728
1729 zfsvfs_free(zfsvfs);
1730 return (0);
1731 }
1732
1733 int
1734 zfs_remount(struct super_block *sb, int *flags, zfs_mnt_t *zm)
1735 {
1736 zfsvfs_t *zfsvfs = sb->s_fs_info;
1737 vfs_t *vfsp;
1738 int error;
1739
1740 error = zfsvfs_parse_options(zm->mnt_data, &vfsp);
1741 if (error)
1742 return (error);
1743
1744 zfs_unregister_callbacks(zfsvfs);
1745 zfsvfs_vfs_free(zfsvfs->z_vfs);
1746
1747 vfsp->vfs_data = zfsvfs;
1748 zfsvfs->z_vfs = vfsp;
1749 (void) zfs_register_callbacks(vfsp);
1750
1751 return (error);
1752 }
1753
1754 int
1755 zfs_vget(struct super_block *sb, struct inode **ipp, fid_t *fidp)
1756 {
1757 zfsvfs_t *zfsvfs = sb->s_fs_info;
1758 znode_t *zp;
1759 uint64_t object = 0;
1760 uint64_t fid_gen = 0;
1761 uint64_t gen_mask;
1762 uint64_t zp_gen;
1763 int i, err;
1764
1765 *ipp = NULL;
1766
1767 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1768 zfid_short_t *zfid = (zfid_short_t *)fidp;
1769
1770 for (i = 0; i < sizeof (zfid->zf_object); i++)
1771 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1772
1773 for (i = 0; i < sizeof (zfid->zf_gen); i++)
1774 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1775 } else {
1776 return (SET_ERROR(EINVAL));
1777 }
1778
1779 /* LONG_FID_LEN means snapdirs */
1780 if (fidp->fid_len == LONG_FID_LEN) {
1781 zfid_long_t *zlfid = (zfid_long_t *)fidp;
1782 uint64_t objsetid = 0;
1783 uint64_t setgen = 0;
1784
1785 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1786 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1787
1788 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1789 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1790
1791 if (objsetid != ZFSCTL_INO_SNAPDIRS - object) {
1792 dprintf("snapdir fid: objsetid (%llu) != "
1793 "ZFSCTL_INO_SNAPDIRS (%llu) - object (%llu)\n",
1794 objsetid, ZFSCTL_INO_SNAPDIRS, object);
1795
1796 return (SET_ERROR(EINVAL));
1797 }
1798
1799 if (fid_gen > 1 || setgen != 0) {
1800 dprintf("snapdir fid: fid_gen (%llu) and setgen "
1801 "(%llu)\n", fid_gen, setgen);
1802 return (SET_ERROR(EINVAL));
1803 }
1804
1805 return (zfsctl_snapdir_vget(sb, objsetid, fid_gen, ipp));
1806 }
1807
1808 ZFS_ENTER(zfsvfs);
1809 /* A zero fid_gen means we are in the .zfs control directories */
1810 if (fid_gen == 0 &&
1811 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1812 *ipp = zfsvfs->z_ctldir;
1813 ASSERT(*ipp != NULL);
1814 if (object == ZFSCTL_INO_SNAPDIR) {
1815 VERIFY(zfsctl_root_lookup(*ipp, "snapshot", ipp,
1816 0, kcred, NULL, NULL) == 0);
1817 } else {
1818 igrab(*ipp);
1819 }
1820 ZFS_EXIT(zfsvfs);
1821 return (0);
1822 }
1823
1824 gen_mask = -1ULL >> (64 - 8 * i);
1825
1826 dprintf("getting %llu [%llu mask %llx]\n", object, fid_gen, gen_mask);
1827 if ((err = zfs_zget(zfsvfs, object, &zp))) {
1828 ZFS_EXIT(zfsvfs);
1829 return (err);
1830 }
1831
1832 /* Don't export xattr stuff */
1833 if (zp->z_pflags & ZFS_XATTR) {
1834 iput(ZTOI(zp));
1835 ZFS_EXIT(zfsvfs);
1836 return (SET_ERROR(ENOENT));
1837 }
1838
1839 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
1840 sizeof (uint64_t));
1841 zp_gen = zp_gen & gen_mask;
1842 if (zp_gen == 0)
1843 zp_gen = 1;
1844 if ((fid_gen == 0) && (zfsvfs->z_root == object))
1845 fid_gen = zp_gen;
1846 if (zp->z_unlinked || zp_gen != fid_gen) {
1847 dprintf("znode gen (%llu) != fid gen (%llu)\n", zp_gen,
1848 fid_gen);
1849 iput(ZTOI(zp));
1850 ZFS_EXIT(zfsvfs);
1851 return (SET_ERROR(ENOENT));
1852 }
1853
1854 *ipp = ZTOI(zp);
1855 if (*ipp)
1856 zfs_inode_update(ITOZ(*ipp));
1857
1858 ZFS_EXIT(zfsvfs);
1859 return (0);
1860 }
1861
1862 /*
1863 * Block out VFS ops and close zfsvfs_t
1864 *
1865 * Note, if successful, then we return with the 'z_teardown_lock' and
1866 * 'z_teardown_inactive_lock' write held. We leave ownership of the underlying
1867 * dataset and objset intact so that they can be atomically handed off during
1868 * a subsequent rollback or recv operation and the resume thereafter.
1869 */
1870 int
1871 zfs_suspend_fs(zfsvfs_t *zfsvfs)
1872 {
1873 int error;
1874
1875 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
1876 return (error);
1877
1878 return (0);
1879 }
1880
1881 /*
1882 * Reopen zfsvfs_t and release VFS ops.
1883 */
1884 int
1885 zfs_resume_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
1886 {
1887 int err, err2;
1888 znode_t *zp;
1889 uint64_t sa_obj = 0;
1890
1891 ASSERT(RRM_WRITE_HELD(&zfsvfs->z_teardown_lock));
1892 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
1893
1894 /*
1895 * We already own this, so just update the objset_t, as the one we
1896 * had before may have been evicted.
1897 */
1898 VERIFY3P(ds->ds_owner, ==, zfsvfs);
1899 VERIFY(dsl_dataset_long_held(ds));
1900 VERIFY0(dmu_objset_from_ds(ds, &zfsvfs->z_os));
1901
1902 /*
1903 * Make sure version hasn't changed
1904 */
1905
1906 err = zfs_get_zplprop(zfsvfs->z_os, ZFS_PROP_VERSION,
1907 &zfsvfs->z_version);
1908
1909 if (err)
1910 goto bail;
1911
1912 err = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
1913 ZFS_SA_ATTRS, 8, 1, &sa_obj);
1914
1915 if (err && zfsvfs->z_version >= ZPL_VERSION_SA)
1916 goto bail;
1917
1918 if ((err = sa_setup(zfsvfs->z_os, sa_obj,
1919 zfs_attr_table, ZPL_END, &zfsvfs->z_attr_table)) != 0)
1920 goto bail;
1921
1922 if (zfsvfs->z_version >= ZPL_VERSION_SA)
1923 sa_register_update_callback(zfsvfs->z_os,
1924 zfs_sa_upgrade);
1925
1926 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
1927
1928 zfs_set_fuid_feature(zfsvfs);
1929 zfsvfs->z_rollback_time = jiffies;
1930
1931 /*
1932 * Attempt to re-establish all the active inodes with their
1933 * dbufs. If a zfs_rezget() fails, then we unhash the inode
1934 * and mark it stale. This prevents a collision if a new
1935 * inode/object is created which must use the same inode
1936 * number. The stale inode will be be released when the
1937 * VFS prunes the dentry holding the remaining references
1938 * on the stale inode.
1939 */
1940 mutex_enter(&zfsvfs->z_znodes_lock);
1941 for (zp = list_head(&zfsvfs->z_all_znodes); zp;
1942 zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1943 err2 = zfs_rezget(zp);
1944 if (err2) {
1945 remove_inode_hash(ZTOI(zp));
1946 zp->z_is_stale = B_TRUE;
1947 }
1948 }
1949 mutex_exit(&zfsvfs->z_znodes_lock);
1950
1951 bail:
1952 /* release the VFS ops */
1953 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1954 rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1955
1956 if (err) {
1957 /*
1958 * Since we couldn't setup the sa framework, try to force
1959 * unmount this file system.
1960 */
1961 if (zfsvfs->z_os)
1962 (void) zfs_umount(zfsvfs->z_sb);
1963 }
1964 return (err);
1965 }
1966
1967 int
1968 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
1969 {
1970 int error;
1971 objset_t *os = zfsvfs->z_os;
1972 dmu_tx_t *tx;
1973
1974 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
1975 return (SET_ERROR(EINVAL));
1976
1977 if (newvers < zfsvfs->z_version)
1978 return (SET_ERROR(EINVAL));
1979
1980 if (zfs_spa_version_map(newvers) >
1981 spa_version(dmu_objset_spa(zfsvfs->z_os)))
1982 return (SET_ERROR(ENOTSUP));
1983
1984 tx = dmu_tx_create(os);
1985 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
1986 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
1987 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
1988 ZFS_SA_ATTRS);
1989 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1990 }
1991 error = dmu_tx_assign(tx, TXG_WAIT);
1992 if (error) {
1993 dmu_tx_abort(tx);
1994 return (error);
1995 }
1996
1997 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
1998 8, 1, &newvers, tx);
1999
2000 if (error) {
2001 dmu_tx_commit(tx);
2002 return (error);
2003 }
2004
2005 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2006 uint64_t sa_obj;
2007
2008 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2009 SPA_VERSION_SA);
2010 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2011 DMU_OT_NONE, 0, tx);
2012
2013 error = zap_add(os, MASTER_NODE_OBJ,
2014 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2015 ASSERT0(error);
2016
2017 VERIFY(0 == sa_set_sa_object(os, sa_obj));
2018 sa_register_update_callback(os, zfs_sa_upgrade);
2019 }
2020
2021 spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2022 "from %llu to %llu", zfsvfs->z_version, newvers);
2023
2024 dmu_tx_commit(tx);
2025
2026 zfsvfs->z_version = newvers;
2027
2028 zfs_set_fuid_feature(zfsvfs);
2029
2030 return (0);
2031 }
2032
2033 /*
2034 * Read a property stored within the master node.
2035 */
2036 int
2037 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2038 {
2039 const char *pname;
2040 int error = SET_ERROR(ENOENT);
2041
2042 /*
2043 * Look up the file system's value for the property. For the
2044 * version property, we look up a slightly different string.
2045 */
2046 if (prop == ZFS_PROP_VERSION)
2047 pname = ZPL_VERSION_STR;
2048 else
2049 pname = zfs_prop_to_name(prop);
2050
2051 if (os != NULL)
2052 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2053
2054 if (error == ENOENT) {
2055 /* No value set, use the default value */
2056 switch (prop) {
2057 case ZFS_PROP_VERSION:
2058 *value = ZPL_VERSION;
2059 break;
2060 case ZFS_PROP_NORMALIZE:
2061 case ZFS_PROP_UTF8ONLY:
2062 *value = 0;
2063 break;
2064 case ZFS_PROP_CASE:
2065 *value = ZFS_CASE_SENSITIVE;
2066 break;
2067 case ZFS_PROP_ACLTYPE:
2068 *value = ZFS_ACLTYPE_OFF;
2069 break;
2070 default:
2071 return (error);
2072 }
2073 error = 0;
2074 }
2075 return (error);
2076 }
2077
2078 /*
2079 * Return true if the coresponding vfs's unmounted flag is set.
2080 * Otherwise return false.
2081 * If this function returns true we know VFS unmount has been initiated.
2082 */
2083 boolean_t
2084 zfs_get_vfs_flag_unmounted(objset_t *os)
2085 {
2086 zfsvfs_t *zfvp;
2087 boolean_t unmounted = B_FALSE;
2088
2089 ASSERT(dmu_objset_type(os) == DMU_OST_ZFS);
2090
2091 mutex_enter(&os->os_user_ptr_lock);
2092 zfvp = dmu_objset_get_user(os);
2093 if (zfvp != NULL && zfvp->z_unmounted)
2094 unmounted = B_TRUE;
2095 mutex_exit(&os->os_user_ptr_lock);
2096
2097 return (unmounted);
2098 }
2099
2100 void
2101 zfs_init(void)
2102 {
2103 zfsctl_init();
2104 zfs_znode_init();
2105 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2106 register_filesystem(&zpl_fs_type);
2107 }
2108
2109 void
2110 zfs_fini(void)
2111 {
2112 /*
2113 * we don't use outstanding because zpl_posix_acl_free might add more.
2114 */
2115 taskq_wait(system_delay_taskq);
2116 taskq_wait(system_taskq);
2117 unregister_filesystem(&zpl_fs_type);
2118 zfs_znode_fini();
2119 zfsctl_fini();
2120 }
2121
2122 #if defined(_KERNEL) && defined(HAVE_SPL)
2123 EXPORT_SYMBOL(zfs_suspend_fs);
2124 EXPORT_SYMBOL(zfs_resume_fs);
2125 EXPORT_SYMBOL(zfs_userspace_one);
2126 EXPORT_SYMBOL(zfs_userspace_many);
2127 EXPORT_SYMBOL(zfs_set_userquota);
2128 EXPORT_SYMBOL(zfs_owner_overquota);
2129 EXPORT_SYMBOL(zfs_fuid_overquota);
2130 EXPORT_SYMBOL(zfs_fuid_overobjquota);
2131 EXPORT_SYMBOL(zfs_set_version);
2132 EXPORT_SYMBOL(zfsvfs_create);
2133 EXPORT_SYMBOL(zfsvfs_free);
2134 EXPORT_SYMBOL(zfs_is_readonly);
2135 EXPORT_SYMBOL(zfs_domount);
2136 EXPORT_SYMBOL(zfs_preumount);
2137 EXPORT_SYMBOL(zfs_umount);
2138 EXPORT_SYMBOL(zfs_remount);
2139 EXPORT_SYMBOL(zfs_statvfs);
2140 EXPORT_SYMBOL(zfs_vget);
2141 EXPORT_SYMBOL(zfs_prune);
2142 #endif