]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zfs_vfsops.c
Add linux kernel disk support
[mirror_zfs.git] / module / zfs / zfs_vfsops.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 /* Portions Copyright 2010 Robert Milkowski */
26
27 #include <sys/types.h>
28 #include <sys/param.h>
29 #include <sys/systm.h>
30 #include <sys/sysmacros.h>
31 #include <sys/kmem.h>
32 #include <sys/pathname.h>
33 #include <sys/vnode.h>
34 #include <sys/vfs.h>
35 #include <sys/vfs_opreg.h>
36 #include <sys/mntent.h>
37 #include <sys/mount.h>
38 #include <sys/cmn_err.h>
39 #include "fs/fs_subr.h"
40 #include <sys/zfs_znode.h>
41 #include <sys/zfs_dir.h>
42 #include <sys/zil.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/dmu.h>
45 #include <sys/dsl_prop.h>
46 #include <sys/dsl_dataset.h>
47 #include <sys/dsl_deleg.h>
48 #include <sys/spa.h>
49 #include <sys/zap.h>
50 #include <sys/sa.h>
51 #include <sys/varargs.h>
52 #include <sys/policy.h>
53 #include <sys/atomic.h>
54 #include <sys/mkdev.h>
55 #include <sys/modctl.h>
56 #include <sys/refstr.h>
57 #include <sys/zfs_ioctl.h>
58 #include <sys/zfs_ctldir.h>
59 #include <sys/zfs_fuid.h>
60 #include <sys/bootconf.h>
61 #include <sys/sunddi.h>
62 #include <sys/dnlc.h>
63 #include <sys/dmu_objset.h>
64 #include <sys/spa_boot.h>
65 #include <sys/sa.h>
66 #include "zfs_comutil.h"
67
68 #ifdef HAVE_ZPL
69 int zfsfstype;
70 vfsops_t *zfs_vfsops = NULL;
71 static major_t zfs_major;
72 static minor_t zfs_minor;
73 static kmutex_t zfs_dev_mtx;
74
75 extern int sys_shutdown;
76
77 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr);
78 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr);
79 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot);
80 static int zfs_root(vfs_t *vfsp, vnode_t **vpp);
81 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp);
82 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp);
83 static void zfs_freevfs(vfs_t *vfsp);
84
85 static const fs_operation_def_t zfs_vfsops_template[] = {
86 VFSNAME_MOUNT, { .vfs_mount = zfs_mount },
87 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot },
88 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount },
89 VFSNAME_ROOT, { .vfs_root = zfs_root },
90 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs },
91 VFSNAME_SYNC, { .vfs_sync = zfs_sync },
92 VFSNAME_VGET, { .vfs_vget = zfs_vget },
93 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs },
94 NULL, NULL
95 };
96
97 static const fs_operation_def_t zfs_vfsops_eio_template[] = {
98 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs },
99 NULL, NULL
100 };
101
102 /*
103 * We need to keep a count of active fs's.
104 * This is necessary to prevent our module
105 * from being unloaded after a umount -f
106 */
107 static uint32_t zfs_active_fs_count = 0;
108
109 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL };
110 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL };
111 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
112 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
113
114 /*
115 * MO_DEFAULT is not used since the default value is determined
116 * by the equivalent property.
117 */
118 static mntopt_t mntopts[] = {
119 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL },
120 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL },
121 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL },
122 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL }
123 };
124
125 static mntopts_t zfs_mntopts = {
126 sizeof (mntopts) / sizeof (mntopt_t),
127 mntopts
128 };
129
130 /*ARGSUSED*/
131 int
132 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
133 {
134 /*
135 * Data integrity is job one. We don't want a compromised kernel
136 * writing to the storage pool, so we never sync during panic.
137 */
138 if (panicstr)
139 return (0);
140
141 /*
142 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS
143 * to sync metadata, which they would otherwise cache indefinitely.
144 * Semantically, the only requirement is that the sync be initiated.
145 * The DMU syncs out txgs frequently, so there's nothing to do.
146 */
147 if (flag & SYNC_ATTR)
148 return (0);
149
150 if (vfsp != NULL) {
151 /*
152 * Sync a specific filesystem.
153 */
154 zfsvfs_t *zfsvfs = vfsp->vfs_data;
155 dsl_pool_t *dp;
156
157 ZFS_ENTER(zfsvfs);
158 dp = dmu_objset_pool(zfsvfs->z_os);
159
160 /*
161 * If the system is shutting down, then skip any
162 * filesystems which may exist on a suspended pool.
163 */
164 if (sys_shutdown && spa_suspended(dp->dp_spa)) {
165 ZFS_EXIT(zfsvfs);
166 return (0);
167 }
168
169 if (zfsvfs->z_log != NULL)
170 zil_commit(zfsvfs->z_log, 0);
171
172 ZFS_EXIT(zfsvfs);
173 } else {
174 /*
175 * Sync all ZFS filesystems. This is what happens when you
176 * run sync(1M). Unlike other filesystems, ZFS honors the
177 * request by waiting for all pools to commit all dirty data.
178 */
179 spa_sync_allpools();
180 }
181
182 return (0);
183 }
184
185 static int
186 zfs_create_unique_device(dev_t *dev)
187 {
188 major_t new_major;
189
190 do {
191 ASSERT3U(zfs_minor, <=, MAXMIN32);
192 minor_t start = zfs_minor;
193 do {
194 mutex_enter(&zfs_dev_mtx);
195 if (zfs_minor >= MAXMIN32) {
196 /*
197 * If we're still using the real major
198 * keep out of /dev/zfs and /dev/zvol minor
199 * number space. If we're using a getudev()'ed
200 * major number, we can use all of its minors.
201 */
202 if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
203 zfs_minor = ZFS_MIN_MINOR;
204 else
205 zfs_minor = 0;
206 } else {
207 zfs_minor++;
208 }
209 *dev = makedevice(zfs_major, zfs_minor);
210 mutex_exit(&zfs_dev_mtx);
211 } while (vfs_devismounted(*dev) && zfs_minor != start);
212 if (zfs_minor == start) {
213 /*
214 * We are using all ~262,000 minor numbers for the
215 * current major number. Create a new major number.
216 */
217 if ((new_major = getudev()) == (major_t)-1) {
218 cmn_err(CE_WARN,
219 "zfs_mount: Can't get unique major "
220 "device number.");
221 return (-1);
222 }
223 mutex_enter(&zfs_dev_mtx);
224 zfs_major = new_major;
225 zfs_minor = 0;
226
227 mutex_exit(&zfs_dev_mtx);
228 } else {
229 break;
230 }
231 /* CONSTANTCONDITION */
232 } while (1);
233
234 return (0);
235 }
236
237 static void
238 atime_changed_cb(void *arg, uint64_t newval)
239 {
240 zfsvfs_t *zfsvfs = arg;
241
242 if (newval == TRUE) {
243 zfsvfs->z_atime = TRUE;
244 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
245 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
246 } else {
247 zfsvfs->z_atime = FALSE;
248 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
249 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
250 }
251 }
252
253 static void
254 xattr_changed_cb(void *arg, uint64_t newval)
255 {
256 zfsvfs_t *zfsvfs = arg;
257
258 if (newval == TRUE) {
259 /* XXX locking on vfs_flag? */
260 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
261 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
262 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
263 } else {
264 /* XXX locking on vfs_flag? */
265 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
266 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
267 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
268 }
269 }
270
271 static void
272 blksz_changed_cb(void *arg, uint64_t newval)
273 {
274 zfsvfs_t *zfsvfs = arg;
275
276 if (newval < SPA_MINBLOCKSIZE ||
277 newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
278 newval = SPA_MAXBLOCKSIZE;
279
280 zfsvfs->z_max_blksz = newval;
281 zfsvfs->z_vfs->vfs_bsize = newval;
282 }
283
284 static void
285 readonly_changed_cb(void *arg, uint64_t newval)
286 {
287 zfsvfs_t *zfsvfs = arg;
288
289 if (newval) {
290 /* XXX locking on vfs_flag? */
291 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
292 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
293 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
294 } else {
295 /* XXX locking on vfs_flag? */
296 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
297 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
298 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
299 }
300 }
301
302 static void
303 devices_changed_cb(void *arg, uint64_t newval)
304 {
305 zfsvfs_t *zfsvfs = arg;
306
307 if (newval == FALSE) {
308 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES;
309 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES);
310 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0);
311 } else {
312 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES;
313 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES);
314 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0);
315 }
316 }
317
318 static void
319 setuid_changed_cb(void *arg, uint64_t newval)
320 {
321 zfsvfs_t *zfsvfs = arg;
322
323 if (newval == FALSE) {
324 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
325 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
326 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
327 } else {
328 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
329 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
330 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
331 }
332 }
333
334 static void
335 exec_changed_cb(void *arg, uint64_t newval)
336 {
337 zfsvfs_t *zfsvfs = arg;
338
339 if (newval == FALSE) {
340 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
341 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
342 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
343 } else {
344 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
345 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
346 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
347 }
348 }
349
350 /*
351 * The nbmand mount option can be changed at mount time.
352 * We can't allow it to be toggled on live file systems or incorrect
353 * behavior may be seen from cifs clients
354 *
355 * This property isn't registered via dsl_prop_register(), but this callback
356 * will be called when a file system is first mounted
357 */
358 static void
359 nbmand_changed_cb(void *arg, uint64_t newval)
360 {
361 zfsvfs_t *zfsvfs = arg;
362 if (newval == FALSE) {
363 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
364 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
365 } else {
366 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
367 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
368 }
369 }
370
371 static void
372 snapdir_changed_cb(void *arg, uint64_t newval)
373 {
374 zfsvfs_t *zfsvfs = arg;
375
376 zfsvfs->z_show_ctldir = newval;
377 }
378
379 static void
380 vscan_changed_cb(void *arg, uint64_t newval)
381 {
382 zfsvfs_t *zfsvfs = arg;
383
384 zfsvfs->z_vscan = newval;
385 }
386
387 static void
388 acl_inherit_changed_cb(void *arg, uint64_t newval)
389 {
390 zfsvfs_t *zfsvfs = arg;
391
392 zfsvfs->z_acl_inherit = newval;
393 }
394
395 static int
396 zfs_register_callbacks(vfs_t *vfsp)
397 {
398 struct dsl_dataset *ds = NULL;
399 objset_t *os = NULL;
400 zfsvfs_t *zfsvfs = NULL;
401 uint64_t nbmand;
402 int readonly, do_readonly = B_FALSE;
403 int setuid, do_setuid = B_FALSE;
404 int exec, do_exec = B_FALSE;
405 int devices, do_devices = B_FALSE;
406 int xattr, do_xattr = B_FALSE;
407 int atime, do_atime = B_FALSE;
408 int error = 0;
409
410 ASSERT(vfsp);
411 zfsvfs = vfsp->vfs_data;
412 ASSERT(zfsvfs);
413 os = zfsvfs->z_os;
414
415 /*
416 * The act of registering our callbacks will destroy any mount
417 * options we may have. In order to enable temporary overrides
418 * of mount options, we stash away the current values and
419 * restore them after we register the callbacks.
420 */
421 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
422 !spa_writeable(dmu_objset_spa(os))) {
423 readonly = B_TRUE;
424 do_readonly = B_TRUE;
425 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
426 readonly = B_FALSE;
427 do_readonly = B_TRUE;
428 }
429 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
430 devices = B_FALSE;
431 setuid = B_FALSE;
432 do_devices = B_TRUE;
433 do_setuid = B_TRUE;
434 } else {
435 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) {
436 devices = B_FALSE;
437 do_devices = B_TRUE;
438 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) {
439 devices = B_TRUE;
440 do_devices = B_TRUE;
441 }
442
443 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
444 setuid = B_FALSE;
445 do_setuid = B_TRUE;
446 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
447 setuid = B_TRUE;
448 do_setuid = B_TRUE;
449 }
450 }
451 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
452 exec = B_FALSE;
453 do_exec = B_TRUE;
454 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
455 exec = B_TRUE;
456 do_exec = B_TRUE;
457 }
458 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
459 xattr = B_FALSE;
460 do_xattr = B_TRUE;
461 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
462 xattr = B_TRUE;
463 do_xattr = B_TRUE;
464 }
465 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
466 atime = B_FALSE;
467 do_atime = B_TRUE;
468 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
469 atime = B_TRUE;
470 do_atime = B_TRUE;
471 }
472
473 /*
474 * nbmand is a special property. It can only be changed at
475 * mount time.
476 *
477 * This is weird, but it is documented to only be changeable
478 * at mount time.
479 */
480 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
481 nbmand = B_FALSE;
482 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
483 nbmand = B_TRUE;
484 } else {
485 char osname[MAXNAMELEN];
486
487 dmu_objset_name(os, osname);
488 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
489 NULL)) {
490 return (error);
491 }
492 }
493
494 /*
495 * Register property callbacks.
496 *
497 * It would probably be fine to just check for i/o error from
498 * the first prop_register(), but I guess I like to go
499 * overboard...
500 */
501 ds = dmu_objset_ds(os);
502 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs);
503 error = error ? error : dsl_prop_register(ds,
504 "xattr", xattr_changed_cb, zfsvfs);
505 error = error ? error : dsl_prop_register(ds,
506 "recordsize", blksz_changed_cb, zfsvfs);
507 error = error ? error : dsl_prop_register(ds,
508 "readonly", readonly_changed_cb, zfsvfs);
509 error = error ? error : dsl_prop_register(ds,
510 "devices", devices_changed_cb, zfsvfs);
511 error = error ? error : dsl_prop_register(ds,
512 "setuid", setuid_changed_cb, zfsvfs);
513 error = error ? error : dsl_prop_register(ds,
514 "exec", exec_changed_cb, zfsvfs);
515 error = error ? error : dsl_prop_register(ds,
516 "snapdir", snapdir_changed_cb, zfsvfs);
517 error = error ? error : dsl_prop_register(ds,
518 "aclinherit", acl_inherit_changed_cb, zfsvfs);
519 error = error ? error : dsl_prop_register(ds,
520 "vscan", vscan_changed_cb, zfsvfs);
521 if (error)
522 goto unregister;
523
524 /*
525 * Invoke our callbacks to restore temporary mount options.
526 */
527 if (do_readonly)
528 readonly_changed_cb(zfsvfs, readonly);
529 if (do_setuid)
530 setuid_changed_cb(zfsvfs, setuid);
531 if (do_exec)
532 exec_changed_cb(zfsvfs, exec);
533 if (do_devices)
534 devices_changed_cb(zfsvfs, devices);
535 if (do_xattr)
536 xattr_changed_cb(zfsvfs, xattr);
537 if (do_atime)
538 atime_changed_cb(zfsvfs, atime);
539
540 nbmand_changed_cb(zfsvfs, nbmand);
541
542 return (0);
543
544 unregister:
545 /*
546 * We may attempt to unregister some callbacks that are not
547 * registered, but this is OK; it will simply return ENOMSG,
548 * which we will ignore.
549 */
550 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs);
551 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs);
552 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs);
553 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs);
554 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs);
555 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs);
556 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs);
557 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs);
558 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
559 zfsvfs);
560 (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs);
561 return (error);
562
563 }
564
565 static int
566 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
567 uint64_t *userp, uint64_t *groupp)
568 {
569 znode_phys_t *znp = data;
570 int error = 0;
571
572 /*
573 * Is it a valid type of object to track?
574 */
575 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
576 return (ENOENT);
577
578 /*
579 * If we have a NULL data pointer
580 * then assume the id's aren't changing and
581 * return EEXIST to the dmu to let it know to
582 * use the same ids
583 */
584 if (data == NULL)
585 return (EEXIST);
586
587 if (bonustype == DMU_OT_ZNODE) {
588 *userp = znp->zp_uid;
589 *groupp = znp->zp_gid;
590 } else {
591 int hdrsize;
592
593 ASSERT(bonustype == DMU_OT_SA);
594 hdrsize = sa_hdrsize(data);
595
596 if (hdrsize != 0) {
597 *userp = *((uint64_t *)((uintptr_t)data + hdrsize +
598 SA_UID_OFFSET));
599 *groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
600 SA_GID_OFFSET));
601 } else {
602 /*
603 * This should only happen for newly created
604 * files that haven't had the znode data filled
605 * in yet.
606 */
607 *userp = 0;
608 *groupp = 0;
609 }
610 }
611 return (error);
612 }
613
614 static void
615 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
616 char *domainbuf, int buflen, uid_t *ridp)
617 {
618 uint64_t fuid;
619 const char *domain;
620
621 fuid = strtonum(fuidstr, NULL);
622
623 domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
624 if (domain)
625 (void) strlcpy(domainbuf, domain, buflen);
626 else
627 domainbuf[0] = '\0';
628 *ridp = FUID_RID(fuid);
629 }
630
631 static uint64_t
632 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
633 {
634 switch (type) {
635 case ZFS_PROP_USERUSED:
636 return (DMU_USERUSED_OBJECT);
637 case ZFS_PROP_GROUPUSED:
638 return (DMU_GROUPUSED_OBJECT);
639 case ZFS_PROP_USERQUOTA:
640 return (zfsvfs->z_userquota_obj);
641 case ZFS_PROP_GROUPQUOTA:
642 return (zfsvfs->z_groupquota_obj);
643 }
644 return (0);
645 }
646
647 int
648 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
649 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
650 {
651 int error;
652 zap_cursor_t zc;
653 zap_attribute_t za;
654 zfs_useracct_t *buf = vbuf;
655 uint64_t obj;
656
657 if (!dmu_objset_userspace_present(zfsvfs->z_os))
658 return (ENOTSUP);
659
660 obj = zfs_userquota_prop_to_obj(zfsvfs, type);
661 if (obj == 0) {
662 *bufsizep = 0;
663 return (0);
664 }
665
666 for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
667 (error = zap_cursor_retrieve(&zc, &za)) == 0;
668 zap_cursor_advance(&zc)) {
669 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
670 *bufsizep)
671 break;
672
673 fuidstr_to_sid(zfsvfs, za.za_name,
674 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
675
676 buf->zu_space = za.za_first_integer;
677 buf++;
678 }
679 if (error == ENOENT)
680 error = 0;
681
682 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
683 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
684 *cookiep = zap_cursor_serialize(&zc);
685 zap_cursor_fini(&zc);
686 return (error);
687 }
688
689 /*
690 * buf must be big enough (eg, 32 bytes)
691 */
692 static int
693 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
694 char *buf, boolean_t addok)
695 {
696 uint64_t fuid;
697 int domainid = 0;
698
699 if (domain && domain[0]) {
700 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
701 if (domainid == -1)
702 return (ENOENT);
703 }
704 fuid = FUID_ENCODE(domainid, rid);
705 (void) sprintf(buf, "%llx", (longlong_t)fuid);
706 return (0);
707 }
708
709 int
710 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
711 const char *domain, uint64_t rid, uint64_t *valp)
712 {
713 char buf[32];
714 int err;
715 uint64_t obj;
716
717 *valp = 0;
718
719 if (!dmu_objset_userspace_present(zfsvfs->z_os))
720 return (ENOTSUP);
721
722 obj = zfs_userquota_prop_to_obj(zfsvfs, type);
723 if (obj == 0)
724 return (0);
725
726 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
727 if (err)
728 return (err);
729
730 err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
731 if (err == ENOENT)
732 err = 0;
733 return (err);
734 }
735
736 int
737 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
738 const char *domain, uint64_t rid, uint64_t quota)
739 {
740 char buf[32];
741 int err;
742 dmu_tx_t *tx;
743 uint64_t *objp;
744 boolean_t fuid_dirtied;
745
746 if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
747 return (EINVAL);
748
749 if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
750 return (ENOTSUP);
751
752 objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
753 &zfsvfs->z_groupquota_obj;
754
755 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
756 if (err)
757 return (err);
758 fuid_dirtied = zfsvfs->z_fuid_dirty;
759
760 tx = dmu_tx_create(zfsvfs->z_os);
761 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
762 if (*objp == 0) {
763 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
764 zfs_userquota_prop_prefixes[type]);
765 }
766 if (fuid_dirtied)
767 zfs_fuid_txhold(zfsvfs, tx);
768 err = dmu_tx_assign(tx, TXG_WAIT);
769 if (err) {
770 dmu_tx_abort(tx);
771 return (err);
772 }
773
774 mutex_enter(&zfsvfs->z_lock);
775 if (*objp == 0) {
776 *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
777 DMU_OT_NONE, 0, tx);
778 VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
779 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
780 }
781 mutex_exit(&zfsvfs->z_lock);
782
783 if (quota == 0) {
784 err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
785 if (err == ENOENT)
786 err = 0;
787 } else {
788 err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
789 }
790 ASSERT(err == 0);
791 if (fuid_dirtied)
792 zfs_fuid_sync(zfsvfs, tx);
793 dmu_tx_commit(tx);
794 return (err);
795 }
796
797 boolean_t
798 zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
799 {
800 char buf[32];
801 uint64_t used, quota, usedobj, quotaobj;
802 int err;
803
804 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
805 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
806
807 if (quotaobj == 0 || zfsvfs->z_replay)
808 return (B_FALSE);
809
810 (void) sprintf(buf, "%llx", (longlong_t)fuid);
811 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
812 if (err != 0)
813 return (B_FALSE);
814
815 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
816 if (err != 0)
817 return (B_FALSE);
818 return (used >= quota);
819 }
820
821 boolean_t
822 zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup)
823 {
824 uint64_t fuid;
825 uint64_t quotaobj;
826
827 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
828
829 fuid = isgroup ? zp->z_gid : zp->z_uid;
830
831 if (quotaobj == 0 || zfsvfs->z_replay)
832 return (B_FALSE);
833
834 return (zfs_fuid_overquota(zfsvfs, isgroup, fuid));
835 }
836
837 int
838 zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
839 {
840 objset_t *os;
841 zfsvfs_t *zfsvfs;
842 uint64_t zval;
843 int i, error;
844 uint64_t sa_obj;
845
846 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
847
848 /*
849 * We claim to always be readonly so we can open snapshots;
850 * other ZPL code will prevent us from writing to snapshots.
851 */
852 error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
853 if (error) {
854 kmem_free(zfsvfs, sizeof (zfsvfs_t));
855 return (error);
856 }
857
858 /*
859 * Initialize the zfs-specific filesystem structure.
860 * Should probably make this a kmem cache, shuffle fields,
861 * and just bzero up to z_hold_mtx[].
862 */
863 zfsvfs->z_vfs = NULL;
864 zfsvfs->z_parent = zfsvfs;
865 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
866 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
867 zfsvfs->z_os = os;
868
869 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
870 if (error) {
871 goto out;
872 } else if (zfsvfs->z_version >
873 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
874 (void) printf("Can't mount a version %lld file system "
875 "on a version %lld pool\n. Pool must be upgraded to mount "
876 "this file system.", (u_longlong_t)zfsvfs->z_version,
877 (u_longlong_t)spa_version(dmu_objset_spa(os)));
878 error = ENOTSUP;
879 goto out;
880 }
881 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
882 goto out;
883 zfsvfs->z_norm = (int)zval;
884
885 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
886 goto out;
887 zfsvfs->z_utf8 = (zval != 0);
888
889 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
890 goto out;
891 zfsvfs->z_case = (uint_t)zval;
892
893 /*
894 * Fold case on file systems that are always or sometimes case
895 * insensitive.
896 */
897 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
898 zfsvfs->z_case == ZFS_CASE_MIXED)
899 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
900
901 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
902 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
903
904 if (zfsvfs->z_use_sa) {
905 /* should either have both of these objects or none */
906 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
907 &sa_obj);
908 if (error)
909 return (error);
910 } else {
911 /*
912 * Pre SA versions file systems should never touch
913 * either the attribute registration or layout objects.
914 */
915 sa_obj = 0;
916 }
917
918 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
919 &zfsvfs->z_attr_table);
920 if (error)
921 goto out;
922
923 if (zfsvfs->z_version >= ZPL_VERSION_SA)
924 sa_register_update_callback(os, zfs_sa_upgrade);
925
926 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
927 &zfsvfs->z_root);
928 if (error)
929 goto out;
930 ASSERT(zfsvfs->z_root != 0);
931
932 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
933 &zfsvfs->z_unlinkedobj);
934 if (error)
935 goto out;
936
937 error = zap_lookup(os, MASTER_NODE_OBJ,
938 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
939 8, 1, &zfsvfs->z_userquota_obj);
940 if (error && error != ENOENT)
941 goto out;
942
943 error = zap_lookup(os, MASTER_NODE_OBJ,
944 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
945 8, 1, &zfsvfs->z_groupquota_obj);
946 if (error && error != ENOENT)
947 goto out;
948
949 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
950 &zfsvfs->z_fuid_obj);
951 if (error && error != ENOENT)
952 goto out;
953
954 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
955 &zfsvfs->z_shares_dir);
956 if (error && error != ENOENT)
957 goto out;
958
959 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
960 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
961 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
962 offsetof(znode_t, z_link_node));
963 rrw_init(&zfsvfs->z_teardown_lock);
964 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
965 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
966 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
967 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
968
969 *zfvp = zfsvfs;
970 return (0);
971
972 out:
973 dmu_objset_disown(os, zfsvfs);
974 *zfvp = NULL;
975 kmem_free(zfsvfs, sizeof (zfsvfs_t));
976 return (error);
977 }
978
979 static int
980 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
981 {
982 int error;
983
984 error = zfs_register_callbacks(zfsvfs->z_vfs);
985 if (error)
986 return (error);
987
988 /*
989 * Set the objset user_ptr to track its zfsvfs.
990 */
991 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
992 dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
993 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
994
995 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
996
997 /*
998 * If we are not mounting (ie: online recv), then we don't
999 * have to worry about replaying the log as we blocked all
1000 * operations out since we closed the ZIL.
1001 */
1002 if (mounting) {
1003 boolean_t readonly;
1004
1005 /*
1006 * During replay we remove the read only flag to
1007 * allow replays to succeed.
1008 */
1009 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1010 if (readonly != 0)
1011 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1012 else
1013 zfs_unlinked_drain(zfsvfs);
1014
1015 /*
1016 * Parse and replay the intent log.
1017 *
1018 * Because of ziltest, this must be done after
1019 * zfs_unlinked_drain(). (Further note: ziltest
1020 * doesn't use readonly mounts, where
1021 * zfs_unlinked_drain() isn't called.) This is because
1022 * ziltest causes spa_sync() to think it's committed,
1023 * but actually it is not, so the intent log contains
1024 * many txg's worth of changes.
1025 *
1026 * In particular, if object N is in the unlinked set in
1027 * the last txg to actually sync, then it could be
1028 * actually freed in a later txg and then reallocated
1029 * in a yet later txg. This would write a "create
1030 * object N" record to the intent log. Normally, this
1031 * would be fine because the spa_sync() would have
1032 * written out the fact that object N is free, before
1033 * we could write the "create object N" intent log
1034 * record.
1035 *
1036 * But when we are in ziltest mode, we advance the "open
1037 * txg" without actually spa_sync()-ing the changes to
1038 * disk. So we would see that object N is still
1039 * allocated and in the unlinked set, and there is an
1040 * intent log record saying to allocate it.
1041 */
1042 if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1043 if (zil_replay_disable) {
1044 zil_destroy(zfsvfs->z_log, B_FALSE);
1045 } else {
1046 zfsvfs->z_replay = B_TRUE;
1047 zil_replay(zfsvfs->z_os, zfsvfs,
1048 zfs_replay_vector);
1049 zfsvfs->z_replay = B_FALSE;
1050 }
1051 }
1052 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1053 }
1054
1055 return (0);
1056 }
1057
1058 void
1059 zfsvfs_free(zfsvfs_t *zfsvfs)
1060 {
1061 int i;
1062 extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1063
1064 /*
1065 * This is a barrier to prevent the filesystem from going away in
1066 * zfs_znode_move() until we can safely ensure that the filesystem is
1067 * not unmounted. We consider the filesystem valid before the barrier
1068 * and invalid after the barrier.
1069 */
1070 rw_enter(&zfsvfs_lock, RW_READER);
1071 rw_exit(&zfsvfs_lock);
1072
1073 zfs_fuid_destroy(zfsvfs);
1074
1075 mutex_destroy(&zfsvfs->z_znodes_lock);
1076 mutex_destroy(&zfsvfs->z_lock);
1077 list_destroy(&zfsvfs->z_all_znodes);
1078 rrw_destroy(&zfsvfs->z_teardown_lock);
1079 rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1080 rw_destroy(&zfsvfs->z_fuid_lock);
1081 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1082 mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1083 kmem_free(zfsvfs, sizeof (zfsvfs_t));
1084 }
1085
1086 static void
1087 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1088 {
1089 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1090 if (zfsvfs->z_use_fuids && zfsvfs->z_vfs) {
1091 vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1092 vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1093 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1094 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1095 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1096 vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1097 }
1098 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1099 }
1100
1101 static int
1102 zfs_domount(vfs_t *vfsp, char *osname)
1103 {
1104 dev_t mount_dev;
1105 uint64_t recordsize, fsid_guid;
1106 int error = 0;
1107 zfsvfs_t *zfsvfs;
1108
1109 ASSERT(vfsp);
1110 ASSERT(osname);
1111
1112 error = zfsvfs_create(osname, &zfsvfs);
1113 if (error)
1114 return (error);
1115 zfsvfs->z_vfs = vfsp;
1116
1117 /* Initialize the generic filesystem structure. */
1118 vfsp->vfs_bcount = 0;
1119 vfsp->vfs_data = NULL;
1120
1121 if (zfs_create_unique_device(&mount_dev) == -1) {
1122 error = ENODEV;
1123 goto out;
1124 }
1125 ASSERT(vfs_devismounted(mount_dev) == 0);
1126
1127 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1128 NULL))
1129 goto out;
1130
1131 vfsp->vfs_dev = mount_dev;
1132 vfsp->vfs_fstype = zfsfstype;
1133 vfsp->vfs_bsize = recordsize;
1134 vfsp->vfs_flag |= VFS_NOTRUNC;
1135 vfsp->vfs_data = zfsvfs;
1136
1137 /*
1138 * The fsid is 64 bits, composed of an 8-bit fs type, which
1139 * separates our fsid from any other filesystem types, and a
1140 * 56-bit objset unique ID. The objset unique ID is unique to
1141 * all objsets open on this system, provided by unique_create().
1142 * The 8-bit fs type must be put in the low bits of fsid[1]
1143 * because that's where other Solaris filesystems put it.
1144 */
1145 fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1146 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1147 vfsp->vfs_fsid.val[0] = fsid_guid;
1148 vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1149 zfsfstype & 0xFF;
1150
1151 /*
1152 * Set features for file system.
1153 */
1154 zfs_set_fuid_feature(zfsvfs);
1155 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1156 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1157 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1158 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1159 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1160 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1161 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1162 }
1163 vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1164
1165 if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1166 uint64_t pval;
1167
1168 atime_changed_cb(zfsvfs, B_FALSE);
1169 readonly_changed_cb(zfsvfs, B_TRUE);
1170 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1171 goto out;
1172 xattr_changed_cb(zfsvfs, pval);
1173 zfsvfs->z_issnap = B_TRUE;
1174 zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1175
1176 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1177 dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1178 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1179 } else {
1180 error = zfsvfs_setup(zfsvfs, B_TRUE);
1181 }
1182
1183 if (!zfsvfs->z_issnap)
1184 zfsctl_create(zfsvfs);
1185 out:
1186 if (error) {
1187 dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1188 zfsvfs_free(zfsvfs);
1189 } else {
1190 atomic_add_32(&zfs_active_fs_count, 1);
1191 }
1192
1193 return (error);
1194 }
1195
1196 void
1197 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1198 {
1199 objset_t *os = zfsvfs->z_os;
1200 struct dsl_dataset *ds;
1201
1202 /*
1203 * Unregister properties.
1204 */
1205 if (!dmu_objset_is_snapshot(os)) {
1206 ds = dmu_objset_ds(os);
1207 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
1208 zfsvfs) == 0);
1209
1210 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
1211 zfsvfs) == 0);
1212
1213 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
1214 zfsvfs) == 0);
1215
1216 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
1217 zfsvfs) == 0);
1218
1219 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
1220 zfsvfs) == 0);
1221
1222 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
1223 zfsvfs) == 0);
1224
1225 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
1226 zfsvfs) == 0);
1227
1228 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
1229 zfsvfs) == 0);
1230
1231 VERIFY(dsl_prop_unregister(ds, "aclinherit",
1232 acl_inherit_changed_cb, zfsvfs) == 0);
1233
1234 VERIFY(dsl_prop_unregister(ds, "vscan",
1235 vscan_changed_cb, zfsvfs) == 0);
1236 }
1237 }
1238
1239 /*
1240 * Convert a decimal digit string to a uint64_t integer.
1241 */
1242 static int
1243 str_to_uint64(char *str, uint64_t *objnum)
1244 {
1245 uint64_t num = 0;
1246
1247 while (*str) {
1248 if (*str < '0' || *str > '9')
1249 return (EINVAL);
1250
1251 num = num*10 + *str++ - '0';
1252 }
1253
1254 *objnum = num;
1255 return (0);
1256 }
1257
1258 /*
1259 * The boot path passed from the boot loader is in the form of
1260 * "rootpool-name/root-filesystem-object-number'. Convert this
1261 * string to a dataset name: "rootpool-name/root-filesystem-name".
1262 */
1263 static int
1264 zfs_parse_bootfs(char *bpath, char *outpath)
1265 {
1266 char *slashp;
1267 uint64_t objnum;
1268 int error;
1269
1270 if (*bpath == 0 || *bpath == '/')
1271 return (EINVAL);
1272
1273 (void) strcpy(outpath, bpath);
1274
1275 slashp = strchr(bpath, '/');
1276
1277 /* if no '/', just return the pool name */
1278 if (slashp == NULL) {
1279 return (0);
1280 }
1281
1282 /* if not a number, just return the root dataset name */
1283 if (str_to_uint64(slashp+1, &objnum)) {
1284 return (0);
1285 }
1286
1287 *slashp = '\0';
1288 error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1289 *slashp = '/';
1290
1291 return (error);
1292 }
1293
1294 /*
1295 * zfs_check_global_label:
1296 * Check that the hex label string is appropriate for the dataset
1297 * being mounted into the global_zone proper.
1298 *
1299 * Return an error if the hex label string is not default or
1300 * admin_low/admin_high. For admin_low labels, the corresponding
1301 * dataset must be readonly.
1302 */
1303 int
1304 zfs_check_global_label(const char *dsname, const char *hexsl)
1305 {
1306 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1307 return (0);
1308 if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1309 return (0);
1310 if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1311 /* must be readonly */
1312 uint64_t rdonly;
1313
1314 if (dsl_prop_get_integer(dsname,
1315 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1316 return (EACCES);
1317 return (rdonly ? 0 : EACCES);
1318 }
1319 return (EACCES);
1320 }
1321
1322 /*
1323 * zfs_mount_label_policy:
1324 * Determine whether the mount is allowed according to MAC check.
1325 * by comparing (where appropriate) label of the dataset against
1326 * the label of the zone being mounted into. If the dataset has
1327 * no label, create one.
1328 *
1329 * Returns:
1330 * 0 : access allowed
1331 * >0 : error code, such as EACCES
1332 */
1333 static int
1334 zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1335 {
1336 int error, retv;
1337 zone_t *mntzone = NULL;
1338 ts_label_t *mnt_tsl;
1339 bslabel_t *mnt_sl;
1340 bslabel_t ds_sl;
1341 char ds_hexsl[MAXNAMELEN];
1342
1343 retv = EACCES; /* assume the worst */
1344
1345 /*
1346 * Start by getting the dataset label if it exists.
1347 */
1348 error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1349 1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1350 if (error)
1351 return (EACCES);
1352
1353 /*
1354 * If labeling is NOT enabled, then disallow the mount of datasets
1355 * which have a non-default label already. No other label checks
1356 * are needed.
1357 */
1358 if (!is_system_labeled()) {
1359 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1360 return (0);
1361 return (EACCES);
1362 }
1363
1364 /*
1365 * Get the label of the mountpoint. If mounting into the global
1366 * zone (i.e. mountpoint is not within an active zone and the
1367 * zoned property is off), the label must be default or
1368 * admin_low/admin_high only; no other checks are needed.
1369 */
1370 mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1371 if (mntzone->zone_id == GLOBAL_ZONEID) {
1372 uint64_t zoned;
1373
1374 zone_rele(mntzone);
1375
1376 if (dsl_prop_get_integer(osname,
1377 zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1378 return (EACCES);
1379 if (!zoned)
1380 return (zfs_check_global_label(osname, ds_hexsl));
1381 else
1382 /*
1383 * This is the case of a zone dataset being mounted
1384 * initially, before the zone has been fully created;
1385 * allow this mount into global zone.
1386 */
1387 return (0);
1388 }
1389
1390 mnt_tsl = mntzone->zone_slabel;
1391 ASSERT(mnt_tsl != NULL);
1392 label_hold(mnt_tsl);
1393 mnt_sl = label2bslabel(mnt_tsl);
1394
1395 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1396 /*
1397 * The dataset doesn't have a real label, so fabricate one.
1398 */
1399 char *str = NULL;
1400
1401 if (l_to_str_internal(mnt_sl, &str) == 0 &&
1402 dsl_prop_set(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1403 ZPROP_SRC_LOCAL, 1, strlen(str) + 1, str) == 0)
1404 retv = 0;
1405 if (str != NULL)
1406 kmem_free(str, strlen(str) + 1);
1407 } else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1408 /*
1409 * Now compare labels to complete the MAC check. If the
1410 * labels are equal then allow access. If the mountpoint
1411 * label dominates the dataset label, allow readonly access.
1412 * Otherwise, access is denied.
1413 */
1414 if (blequal(mnt_sl, &ds_sl))
1415 retv = 0;
1416 else if (bldominates(mnt_sl, &ds_sl)) {
1417 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1418 retv = 0;
1419 }
1420 }
1421
1422 label_rele(mnt_tsl);
1423 zone_rele(mntzone);
1424 return (retv);
1425 }
1426
1427 static int
1428 zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1429 {
1430 int error = 0;
1431 static int zfsrootdone = 0;
1432 zfsvfs_t *zfsvfs = NULL;
1433 znode_t *zp = NULL;
1434 vnode_t *vp = NULL;
1435 char *zfs_bootfs;
1436 char *zfs_devid;
1437
1438 ASSERT(vfsp);
1439
1440 /*
1441 * The filesystem that we mount as root is defined in the
1442 * boot property "zfs-bootfs" with a format of
1443 * "poolname/root-dataset-objnum".
1444 */
1445 if (why == ROOT_INIT) {
1446 if (zfsrootdone++)
1447 return (EBUSY);
1448 /*
1449 * the process of doing a spa_load will require the
1450 * clock to be set before we could (for example) do
1451 * something better by looking at the timestamp on
1452 * an uberblock, so just set it to -1.
1453 */
1454 clkset(-1);
1455
1456 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1457 cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1458 "bootfs name");
1459 return (EINVAL);
1460 }
1461 zfs_devid = spa_get_bootprop("diskdevid");
1462 error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1463 if (zfs_devid)
1464 spa_free_bootprop(zfs_devid);
1465 if (error) {
1466 spa_free_bootprop(zfs_bootfs);
1467 cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1468 error);
1469 return (error);
1470 }
1471 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1472 spa_free_bootprop(zfs_bootfs);
1473 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1474 error);
1475 return (error);
1476 }
1477
1478 spa_free_bootprop(zfs_bootfs);
1479
1480 if (error = vfs_lock(vfsp))
1481 return (error);
1482
1483 if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1484 cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1485 goto out;
1486 }
1487
1488 zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1489 ASSERT(zfsvfs);
1490 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1491 cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1492 goto out;
1493 }
1494
1495 vp = ZTOV(zp);
1496 mutex_enter(&vp->v_lock);
1497 vp->v_flag |= VROOT;
1498 mutex_exit(&vp->v_lock);
1499 rootvp = vp;
1500
1501 /*
1502 * Leave rootvp held. The root file system is never unmounted.
1503 */
1504
1505 vfs_add((struct vnode *)0, vfsp,
1506 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1507 out:
1508 vfs_unlock(vfsp);
1509 return (error);
1510 } else if (why == ROOT_REMOUNT) {
1511 readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1512 vfsp->vfs_flag |= VFS_REMOUNT;
1513
1514 /* refresh mount options */
1515 zfs_unregister_callbacks(vfsp->vfs_data);
1516 return (zfs_register_callbacks(vfsp));
1517
1518 } else if (why == ROOT_UNMOUNT) {
1519 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1520 (void) zfs_sync(vfsp, 0, 0);
1521 return (0);
1522 }
1523
1524 /*
1525 * if "why" is equal to anything else other than ROOT_INIT,
1526 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1527 */
1528 return (ENOTSUP);
1529 }
1530
1531 /*ARGSUSED*/
1532 static int
1533 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
1534 {
1535 char *osname;
1536 pathname_t spn;
1537 int error = 0;
1538 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ?
1539 UIO_SYSSPACE : UIO_USERSPACE;
1540 int canwrite;
1541
1542 if (mvp->v_type != VDIR)
1543 return (ENOTDIR);
1544
1545 mutex_enter(&mvp->v_lock);
1546 if ((uap->flags & MS_REMOUNT) == 0 &&
1547 (uap->flags & MS_OVERLAY) == 0 &&
1548 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1549 mutex_exit(&mvp->v_lock);
1550 return (EBUSY);
1551 }
1552 mutex_exit(&mvp->v_lock);
1553
1554 /*
1555 * ZFS does not support passing unparsed data in via MS_DATA.
1556 * Users should use the MS_OPTIONSTR interface; this means
1557 * that all option parsing is already done and the options struct
1558 * can be interrogated.
1559 */
1560 if ((uap->flags & MS_DATA) && uap->datalen > 0)
1561 return (EINVAL);
1562
1563 /*
1564 * Get the objset name (the "special" mount argument).
1565 */
1566 if (error = pn_get(uap->spec, fromspace, &spn))
1567 return (error);
1568
1569 osname = spn.pn_path;
1570
1571 /*
1572 * Check for mount privilege?
1573 *
1574 * If we don't have privilege then see if
1575 * we have local permission to allow it
1576 */
1577 error = secpolicy_fs_mount(cr, mvp, vfsp);
1578 if (error) {
1579 if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) {
1580 vattr_t vattr;
1581
1582 /*
1583 * Make sure user is the owner of the mount point
1584 * or has sufficient privileges.
1585 */
1586
1587 vattr.va_mask = AT_UID;
1588
1589 if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) {
1590 goto out;
1591 }
1592
1593 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 &&
1594 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) {
1595 goto out;
1596 }
1597 secpolicy_fs_mount_clearopts(cr, vfsp);
1598 } else {
1599 goto out;
1600 }
1601 }
1602
1603 /*
1604 * Refuse to mount a filesystem if we are in a local zone and the
1605 * dataset is not visible.
1606 */
1607 if (!INGLOBALZONE(curproc) &&
1608 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1609 error = EPERM;
1610 goto out;
1611 }
1612
1613 error = zfs_mount_label_policy(vfsp, osname);
1614 if (error)
1615 goto out;
1616
1617 /*
1618 * When doing a remount, we simply refresh our temporary properties
1619 * according to those options set in the current VFS options.
1620 */
1621 if (uap->flags & MS_REMOUNT) {
1622 /* refresh mount options */
1623 zfs_unregister_callbacks(vfsp->vfs_data);
1624 error = zfs_register_callbacks(vfsp);
1625 goto out;
1626 }
1627
1628 error = zfs_domount(vfsp, osname);
1629
1630 /*
1631 * Add an extra VFS_HOLD on our parent vfs so that it can't
1632 * disappear due to a forced unmount.
1633 */
1634 if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1635 VFS_HOLD(mvp->v_vfsp);
1636
1637 out:
1638 pn_free(&spn);
1639 return (error);
1640 }
1641
1642 static int
1643 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp)
1644 {
1645 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1646 dev32_t d32;
1647 uint64_t refdbytes, availbytes, usedobjs, availobjs;
1648
1649 ZFS_ENTER(zfsvfs);
1650
1651 dmu_objset_space(zfsvfs->z_os,
1652 &refdbytes, &availbytes, &usedobjs, &availobjs);
1653
1654 /*
1655 * The underlying storage pool actually uses multiple block sizes.
1656 * We report the fragsize as the smallest block size we support,
1657 * and we report our blocksize as the filesystem's maximum blocksize.
1658 */
1659 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
1660 statp->f_bsize = zfsvfs->z_max_blksz;
1661
1662 /*
1663 * The following report "total" blocks of various kinds in the
1664 * file system, but reported in terms of f_frsize - the
1665 * "fragment" size.
1666 */
1667
1668 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1669 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT;
1670 statp->f_bavail = statp->f_bfree; /* no root reservation */
1671
1672 /*
1673 * statvfs() should really be called statufs(), because it assumes
1674 * static metadata. ZFS doesn't preallocate files, so the best
1675 * we can do is report the max that could possibly fit in f_files,
1676 * and that minus the number actually used in f_ffree.
1677 * For f_ffree, report the smaller of the number of object available
1678 * and the number of blocks (each object will take at least a block).
1679 */
1680 statp->f_ffree = MIN(availobjs, statp->f_bfree);
1681 statp->f_favail = statp->f_ffree; /* no "root reservation" */
1682 statp->f_files = statp->f_ffree + usedobjs;
1683
1684 (void) cmpldev(&d32, vfsp->vfs_dev);
1685 statp->f_fsid = d32;
1686
1687 /*
1688 * We're a zfs filesystem.
1689 */
1690 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
1691
1692 statp->f_flag = vf_to_stf(vfsp->vfs_flag);
1693
1694 statp->f_namemax = ZFS_MAXNAMELEN;
1695
1696 /*
1697 * We have all of 32 characters to stuff a string here.
1698 * Is there anything useful we could/should provide?
1699 */
1700 bzero(statp->f_fstr, sizeof (statp->f_fstr));
1701
1702 ZFS_EXIT(zfsvfs);
1703 return (0);
1704 }
1705
1706 static int
1707 zfs_root(vfs_t *vfsp, vnode_t **vpp)
1708 {
1709 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1710 znode_t *rootzp;
1711 int error;
1712
1713 ZFS_ENTER(zfsvfs);
1714
1715 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1716 if (error == 0)
1717 *vpp = ZTOV(rootzp);
1718
1719 ZFS_EXIT(zfsvfs);
1720 return (error);
1721 }
1722
1723 /*
1724 * Teardown the zfsvfs::z_os.
1725 *
1726 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1727 * and 'z_teardown_inactive_lock' held.
1728 */
1729 static int
1730 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1731 {
1732 znode_t *zp;
1733
1734 rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1735
1736 if (!unmounting) {
1737 /*
1738 * We purge the parent filesystem's vfsp as the parent
1739 * filesystem and all of its snapshots have their vnode's
1740 * v_vfsp set to the parent's filesystem's vfsp. Note,
1741 * 'z_parent' is self referential for non-snapshots.
1742 */
1743 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1744 }
1745
1746 /*
1747 * Close the zil. NB: Can't close the zil while zfs_inactive
1748 * threads are blocked as zil_close can call zfs_inactive.
1749 */
1750 if (zfsvfs->z_log) {
1751 zil_close(zfsvfs->z_log);
1752 zfsvfs->z_log = NULL;
1753 }
1754
1755 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1756
1757 /*
1758 * If we are not unmounting (ie: online recv) and someone already
1759 * unmounted this file system while we were doing the switcheroo,
1760 * or a reopen of z_os failed then just bail out now.
1761 */
1762 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1763 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1764 rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1765 return (EIO);
1766 }
1767
1768 /*
1769 * At this point there are no vops active, and any new vops will
1770 * fail with EIO since we have z_teardown_lock for writer (only
1771 * relavent for forced unmount).
1772 *
1773 * Release all holds on dbufs.
1774 */
1775 mutex_enter(&zfsvfs->z_znodes_lock);
1776 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1777 zp = list_next(&zfsvfs->z_all_znodes, zp))
1778 if (zp->z_sa_hdl) {
1779 ASSERT(ZTOV(zp)->v_count > 0);
1780 zfs_znode_dmu_fini(zp);
1781 }
1782 mutex_exit(&zfsvfs->z_znodes_lock);
1783
1784 /*
1785 * If we are unmounting, set the unmounted flag and let new vops
1786 * unblock. zfs_inactive will have the unmounted behavior, and all
1787 * other vops will fail with EIO.
1788 */
1789 if (unmounting) {
1790 zfsvfs->z_unmounted = B_TRUE;
1791 rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1792 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1793 }
1794
1795 /*
1796 * z_os will be NULL if there was an error in attempting to reopen
1797 * zfsvfs, so just return as the properties had already been
1798 * unregistered and cached data had been evicted before.
1799 */
1800 if (zfsvfs->z_os == NULL)
1801 return (0);
1802
1803 /*
1804 * Unregister properties.
1805 */
1806 zfs_unregister_callbacks(zfsvfs);
1807
1808 /*
1809 * Evict cached data
1810 */
1811 if (dmu_objset_is_dirty_anywhere(zfsvfs->z_os))
1812 if (!(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY))
1813 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1814 (void) dmu_objset_evict_dbufs(zfsvfs->z_os);
1815
1816 return (0);
1817 }
1818
1819 /*ARGSUSED*/
1820 static int
1821 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr)
1822 {
1823 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1824 objset_t *os;
1825 int ret;
1826
1827 ret = secpolicy_fs_unmount(cr, vfsp);
1828 if (ret) {
1829 if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1830 ZFS_DELEG_PERM_MOUNT, cr))
1831 return (ret);
1832 }
1833
1834 /*
1835 * We purge the parent filesystem's vfsp as the parent filesystem
1836 * and all of its snapshots have their vnode's v_vfsp set to the
1837 * parent's filesystem's vfsp. Note, 'z_parent' is self
1838 * referential for non-snapshots.
1839 */
1840 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1841
1842 /*
1843 * Unmount any snapshots mounted under .zfs before unmounting the
1844 * dataset itself.
1845 */
1846 if (zfsvfs->z_ctldir != NULL &&
1847 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) {
1848 return (ret);
1849 }
1850
1851 if (!(fflag & MS_FORCE)) {
1852 /*
1853 * Check the number of active vnodes in the file system.
1854 * Our count is maintained in the vfs structure, but the
1855 * number is off by 1 to indicate a hold on the vfs
1856 * structure itself.
1857 *
1858 * The '.zfs' directory maintains a reference of its
1859 * own, and any active references underneath are
1860 * reflected in the vnode count.
1861 */
1862 if (zfsvfs->z_ctldir == NULL) {
1863 if (vfsp->vfs_count > 1)
1864 return (EBUSY);
1865 } else {
1866 if (vfsp->vfs_count > 2 ||
1867 zfsvfs->z_ctldir->v_count > 1)
1868 return (EBUSY);
1869 }
1870 }
1871
1872 vfsp->vfs_flag |= VFS_UNMOUNTED;
1873
1874 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1875 os = zfsvfs->z_os;
1876
1877 /*
1878 * z_os will be NULL if there was an error in
1879 * attempting to reopen zfsvfs.
1880 */
1881 if (os != NULL) {
1882 /*
1883 * Unset the objset user_ptr.
1884 */
1885 mutex_enter(&os->os_user_ptr_lock);
1886 dmu_objset_set_user(os, NULL);
1887 mutex_exit(&os->os_user_ptr_lock);
1888
1889 /*
1890 * Finally release the objset
1891 */
1892 dmu_objset_disown(os, zfsvfs);
1893 }
1894
1895 /*
1896 * We can now safely destroy the '.zfs' directory node.
1897 */
1898 if (zfsvfs->z_ctldir != NULL)
1899 zfsctl_destroy(zfsvfs);
1900
1901 return (0);
1902 }
1903
1904 static int
1905 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
1906 {
1907 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1908 znode_t *zp;
1909 uint64_t object = 0;
1910 uint64_t fid_gen = 0;
1911 uint64_t gen_mask;
1912 uint64_t zp_gen;
1913 int i, err;
1914
1915 *vpp = NULL;
1916
1917 ZFS_ENTER(zfsvfs);
1918
1919 if (fidp->fid_len == LONG_FID_LEN) {
1920 zfid_long_t *zlfid = (zfid_long_t *)fidp;
1921 uint64_t objsetid = 0;
1922 uint64_t setgen = 0;
1923
1924 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1925 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1926
1927 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1928 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1929
1930 ZFS_EXIT(zfsvfs);
1931
1932 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
1933 if (err)
1934 return (EINVAL);
1935 ZFS_ENTER(zfsvfs);
1936 }
1937
1938 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1939 zfid_short_t *zfid = (zfid_short_t *)fidp;
1940
1941 for (i = 0; i < sizeof (zfid->zf_object); i++)
1942 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1943
1944 for (i = 0; i < sizeof (zfid->zf_gen); i++)
1945 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1946 } else {
1947 ZFS_EXIT(zfsvfs);
1948 return (EINVAL);
1949 }
1950
1951 /* A zero fid_gen means we are in the .zfs control directories */
1952 if (fid_gen == 0 &&
1953 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1954 *vpp = zfsvfs->z_ctldir;
1955 ASSERT(*vpp != NULL);
1956 if (object == ZFSCTL_INO_SNAPDIR) {
1957 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
1958 0, NULL, NULL, NULL, NULL, NULL) == 0);
1959 } else {
1960 VN_HOLD(*vpp);
1961 }
1962 ZFS_EXIT(zfsvfs);
1963 return (0);
1964 }
1965
1966 gen_mask = -1ULL >> (64 - 8 * i);
1967
1968 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
1969 if (err = zfs_zget(zfsvfs, object, &zp)) {
1970 ZFS_EXIT(zfsvfs);
1971 return (err);
1972 }
1973 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
1974 sizeof (uint64_t));
1975 zp_gen = zp_gen & gen_mask;
1976 if (zp_gen == 0)
1977 zp_gen = 1;
1978 if (zp->z_unlinked || zp_gen != fid_gen) {
1979 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
1980 VN_RELE(ZTOV(zp));
1981 ZFS_EXIT(zfsvfs);
1982 return (EINVAL);
1983 }
1984
1985 *vpp = ZTOV(zp);
1986 ZFS_EXIT(zfsvfs);
1987 return (0);
1988 }
1989
1990 /*
1991 * Block out VOPs and close zfsvfs_t::z_os
1992 *
1993 * Note, if successful, then we return with the 'z_teardown_lock' and
1994 * 'z_teardown_inactive_lock' write held.
1995 */
1996 int
1997 zfs_suspend_fs(zfsvfs_t *zfsvfs)
1998 {
1999 int error;
2000
2001 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2002 return (error);
2003 dmu_objset_disown(zfsvfs->z_os, zfsvfs);
2004
2005 return (0);
2006 }
2007
2008 /*
2009 * Reopen zfsvfs_t::z_os and release VOPs.
2010 */
2011 int
2012 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
2013 {
2014 int err, err2;
2015
2016 ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock));
2017 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2018
2019 err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs,
2020 &zfsvfs->z_os);
2021 if (err) {
2022 zfsvfs->z_os = NULL;
2023 } else {
2024 znode_t *zp;
2025 uint64_t sa_obj = 0;
2026
2027 err2 = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
2028 ZFS_SA_ATTRS, 8, 1, &sa_obj);
2029
2030 if ((err || err2) && zfsvfs->z_version >= ZPL_VERSION_SA)
2031 goto bail;
2032
2033
2034 if ((err = sa_setup(zfsvfs->z_os, sa_obj,
2035 zfs_attr_table, ZPL_END, &zfsvfs->z_attr_table)) != 0)
2036 goto bail;
2037
2038 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2039
2040 /*
2041 * Attempt to re-establish all the active znodes with
2042 * their dbufs. If a zfs_rezget() fails, then we'll let
2043 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2044 * when they try to use their znode.
2045 */
2046 mutex_enter(&zfsvfs->z_znodes_lock);
2047 for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2048 zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2049 (void) zfs_rezget(zp);
2050 }
2051 mutex_exit(&zfsvfs->z_znodes_lock);
2052
2053 }
2054
2055 bail:
2056 /* release the VOPs */
2057 rw_exit(&zfsvfs->z_teardown_inactive_lock);
2058 rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
2059
2060 if (err) {
2061 /*
2062 * Since we couldn't reopen zfsvfs::z_os, force
2063 * unmount this file system.
2064 */
2065 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
2066 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED());
2067 }
2068 return (err);
2069 }
2070
2071 static void
2072 zfs_freevfs(vfs_t *vfsp)
2073 {
2074 zfsvfs_t *zfsvfs = vfsp->vfs_data;
2075
2076 /*
2077 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2078 * from zfs_mount(). Release it here. If we came through
2079 * zfs_mountroot() instead, we didn't grab an extra hold, so
2080 * skip the VFS_RELE for rootvfs.
2081 */
2082 if (zfsvfs->z_issnap && (vfsp != rootvfs))
2083 VFS_RELE(zfsvfs->z_parent->z_vfs);
2084
2085 zfsvfs_free(zfsvfs);
2086
2087 atomic_add_32(&zfs_active_fs_count, -1);
2088 }
2089
2090 /*
2091 * VFS_INIT() initialization. Note that there is no VFS_FINI(),
2092 * so we can't safely do any non-idempotent initialization here.
2093 * Leave that to zfs_init() and zfs_fini(), which are called
2094 * from the module's _init() and _fini() entry points.
2095 */
2096 /*ARGSUSED*/
2097 static int
2098 zfs_vfsinit(int fstype, char *name)
2099 {
2100 int error;
2101
2102 zfsfstype = fstype;
2103
2104 /*
2105 * Setup vfsops and vnodeops tables.
2106 */
2107 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops);
2108 if (error != 0) {
2109 cmn_err(CE_WARN, "zfs: bad vfs ops template");
2110 }
2111
2112 error = zfs_create_op_tables();
2113 if (error) {
2114 zfs_remove_op_tables();
2115 cmn_err(CE_WARN, "zfs: bad vnode ops template");
2116 (void) vfs_freevfsops_by_type(zfsfstype);
2117 return (error);
2118 }
2119
2120 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
2121
2122 /*
2123 * Unique major number for all zfs mounts.
2124 * If we run out of 32-bit minors, we'll getudev() another major.
2125 */
2126 zfs_major = ddi_name_to_major(ZFS_DRIVER);
2127 zfs_minor = ZFS_MIN_MINOR;
2128
2129 return (0);
2130 }
2131 #endif /* HAVE_ZPL */
2132
2133 void
2134 zfs_init(void)
2135 {
2136 #ifdef HAVE_ZPL
2137 /*
2138 * Initialize .zfs directory structures
2139 */
2140 zfsctl_init();
2141
2142 /*
2143 * Initialize znode cache, vnode ops, etc...
2144 */
2145 zfs_znode_init();
2146
2147 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2148 #endif /* HAVE_ZPL */
2149 }
2150
2151 void
2152 zfs_fini(void)
2153 {
2154 #ifdef HAVE_ZPL
2155 zfsctl_fini();
2156 zfs_znode_fini();
2157 #endif /* HAVE_ZPL */
2158 }
2159
2160 #ifdef HAVE_ZPL
2161 int
2162 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2163 {
2164 int error;
2165 objset_t *os = zfsvfs->z_os;
2166 dmu_tx_t *tx;
2167
2168 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2169 return (EINVAL);
2170
2171 if (newvers < zfsvfs->z_version)
2172 return (EINVAL);
2173
2174 if (zfs_spa_version_map(newvers) >
2175 spa_version(dmu_objset_spa(zfsvfs->z_os)))
2176 return (ENOTSUP);
2177
2178 tx = dmu_tx_create(os);
2179 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2180 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2181 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2182 ZFS_SA_ATTRS);
2183 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2184 }
2185 error = dmu_tx_assign(tx, TXG_WAIT);
2186 if (error) {
2187 dmu_tx_abort(tx);
2188 return (error);
2189 }
2190
2191 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2192 8, 1, &newvers, tx);
2193
2194 if (error) {
2195 dmu_tx_commit(tx);
2196 return (error);
2197 }
2198
2199 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2200 uint64_t sa_obj;
2201
2202 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2203 SPA_VERSION_SA);
2204 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2205 DMU_OT_NONE, 0, tx);
2206
2207 error = zap_add(os, MASTER_NODE_OBJ,
2208 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2209 ASSERT3U(error, ==, 0);
2210
2211 VERIFY(0 == sa_set_sa_object(os, sa_obj));
2212 sa_register_update_callback(os, zfs_sa_upgrade);
2213 }
2214
2215 spa_history_log_internal(LOG_DS_UPGRADE,
2216 dmu_objset_spa(os), tx, "oldver=%llu newver=%llu dataset = %llu",
2217 zfsvfs->z_version, newvers, dmu_objset_id(os));
2218
2219 dmu_tx_commit(tx);
2220
2221 zfsvfs->z_version = newvers;
2222
2223 if (zfsvfs->z_version >= ZPL_VERSION_FUID)
2224 zfs_set_fuid_feature(zfsvfs);
2225
2226 return (0);
2227 }
2228 #endif /* HAVE_ZPL */
2229
2230 /*
2231 * Read a property stored within the master node.
2232 */
2233 int
2234 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2235 {
2236 const char *pname;
2237 int error = ENOENT;
2238
2239 /*
2240 * Look up the file system's value for the property. For the
2241 * version property, we look up a slightly different string.
2242 */
2243 if (prop == ZFS_PROP_VERSION)
2244 pname = ZPL_VERSION_STR;
2245 else
2246 pname = zfs_prop_to_name(prop);
2247
2248 if (os != NULL)
2249 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2250
2251 if (error == ENOENT) {
2252 /* No value set, use the default value */
2253 switch (prop) {
2254 case ZFS_PROP_VERSION:
2255 *value = ZPL_VERSION;
2256 break;
2257 case ZFS_PROP_NORMALIZE:
2258 case ZFS_PROP_UTF8ONLY:
2259 *value = 0;
2260 break;
2261 case ZFS_PROP_CASE:
2262 *value = ZFS_CASE_SENSITIVE;
2263 break;
2264 default:
2265 return (error);
2266 }
2267 error = 0;
2268 }
2269 return (error);
2270 }
2271
2272 #ifdef HAVE_ZPL
2273 static vfsdef_t vfw = {
2274 VFSDEF_VERSION,
2275 MNTTYPE_ZFS,
2276 zfs_vfsinit,
2277 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS|
2278 VSW_XID|VSW_ZMOUNT,
2279 &zfs_mntopts
2280 };
2281
2282 struct modlfs zfs_modlfs = {
2283 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw
2284 };
2285 #endif /* HAVE_ZPL */