]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zfs_vfsops.c
Illumos 5027 - zfs large block support
[mirror_zfs.git] / module / zfs / zfs_vfsops.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 */
25
26 /* Portions Copyright 2010 Robert Milkowski */
27
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/sysmacros.h>
32 #include <sys/kmem.h>
33 #include <sys/pathname.h>
34 #include <sys/vnode.h>
35 #include <sys/vfs.h>
36 #include <sys/vfs_opreg.h>
37 #include <sys/mntent.h>
38 #include <sys/mount.h>
39 #include <sys/cmn_err.h>
40 #include "fs/fs_subr.h"
41 #include <sys/zfs_znode.h>
42 #include <sys/zfs_vnops.h>
43 #include <sys/zfs_dir.h>
44 #include <sys/zil.h>
45 #include <sys/fs/zfs.h>
46 #include <sys/dmu.h>
47 #include <sys/dsl_prop.h>
48 #include <sys/dsl_dataset.h>
49 #include <sys/dsl_deleg.h>
50 #include <sys/spa.h>
51 #include <sys/zap.h>
52 #include <sys/sa.h>
53 #include <sys/sa_impl.h>
54 #include <sys/varargs.h>
55 #include <sys/policy.h>
56 #include <sys/atomic.h>
57 #include <sys/mkdev.h>
58 #include <sys/modctl.h>
59 #include <sys/refstr.h>
60 #include <sys/zfs_ioctl.h>
61 #include <sys/zfs_ctldir.h>
62 #include <sys/zfs_fuid.h>
63 #include <sys/bootconf.h>
64 #include <sys/sunddi.h>
65 #include <sys/dnlc.h>
66 #include <sys/dmu_objset.h>
67 #include <sys/spa_boot.h>
68 #include <sys/zpl.h>
69 #include "zfs_comutil.h"
70
71
72 /*ARGSUSED*/
73 int
74 zfs_sync(struct super_block *sb, int wait, cred_t *cr)
75 {
76 zfs_sb_t *zsb = sb->s_fs_info;
77
78 /*
79 * Data integrity is job one. We don't want a compromised kernel
80 * writing to the storage pool, so we never sync during panic.
81 */
82 if (unlikely(oops_in_progress))
83 return (0);
84
85 /*
86 * Semantically, the only requirement is that the sync be initiated.
87 * The DMU syncs out txgs frequently, so there's nothing to do.
88 */
89 if (!wait)
90 return (0);
91
92 if (zsb != NULL) {
93 /*
94 * Sync a specific filesystem.
95 */
96 dsl_pool_t *dp;
97
98 ZFS_ENTER(zsb);
99 dp = dmu_objset_pool(zsb->z_os);
100
101 /*
102 * If the system is shutting down, then skip any
103 * filesystems which may exist on a suspended pool.
104 */
105 if (spa_suspended(dp->dp_spa)) {
106 ZFS_EXIT(zsb);
107 return (0);
108 }
109
110 if (zsb->z_log != NULL)
111 zil_commit(zsb->z_log, 0);
112
113 ZFS_EXIT(zsb);
114 } else {
115 /*
116 * Sync all ZFS filesystems. This is what happens when you
117 * run sync(1M). Unlike other filesystems, ZFS honors the
118 * request by waiting for all pools to commit all dirty data.
119 */
120 spa_sync_allpools();
121 }
122
123 return (0);
124 }
125 EXPORT_SYMBOL(zfs_sync);
126
127 boolean_t
128 zfs_is_readonly(zfs_sb_t *zsb)
129 {
130 return (!!(zsb->z_sb->s_flags & MS_RDONLY));
131 }
132 EXPORT_SYMBOL(zfs_is_readonly);
133
134 static void
135 atime_changed_cb(void *arg, uint64_t newval)
136 {
137 ((zfs_sb_t *)arg)->z_atime = newval;
138 }
139
140 static void
141 relatime_changed_cb(void *arg, uint64_t newval)
142 {
143 ((zfs_sb_t *)arg)->z_relatime = newval;
144 }
145
146 static void
147 xattr_changed_cb(void *arg, uint64_t newval)
148 {
149 zfs_sb_t *zsb = arg;
150
151 if (newval == ZFS_XATTR_OFF) {
152 zsb->z_flags &= ~ZSB_XATTR;
153 } else {
154 zsb->z_flags |= ZSB_XATTR;
155
156 if (newval == ZFS_XATTR_SA)
157 zsb->z_xattr_sa = B_TRUE;
158 else
159 zsb->z_xattr_sa = B_FALSE;
160 }
161 }
162
163 static void
164 acltype_changed_cb(void *arg, uint64_t newval)
165 {
166 zfs_sb_t *zsb = arg;
167
168 switch (newval) {
169 case ZFS_ACLTYPE_OFF:
170 zsb->z_acl_type = ZFS_ACLTYPE_OFF;
171 zsb->z_sb->s_flags &= ~MS_POSIXACL;
172 break;
173 case ZFS_ACLTYPE_POSIXACL:
174 #ifdef CONFIG_FS_POSIX_ACL
175 zsb->z_acl_type = ZFS_ACLTYPE_POSIXACL;
176 zsb->z_sb->s_flags |= MS_POSIXACL;
177 #else
178 zsb->z_acl_type = ZFS_ACLTYPE_OFF;
179 zsb->z_sb->s_flags &= ~MS_POSIXACL;
180 #endif /* CONFIG_FS_POSIX_ACL */
181 break;
182 default:
183 break;
184 }
185 }
186
187 static void
188 blksz_changed_cb(void *arg, uint64_t newval)
189 {
190 zfs_sb_t *zsb = arg;
191 ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zsb->z_os)));
192 ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
193 ASSERT(ISP2(newval));
194
195 zsb->z_max_blksz = newval;
196 }
197
198 static void
199 readonly_changed_cb(void *arg, uint64_t newval)
200 {
201 zfs_sb_t *zsb = arg;
202 struct super_block *sb = zsb->z_sb;
203
204 if (sb == NULL)
205 return;
206
207 if (newval)
208 sb->s_flags |= MS_RDONLY;
209 else
210 sb->s_flags &= ~MS_RDONLY;
211 }
212
213 static void
214 devices_changed_cb(void *arg, uint64_t newval)
215 {
216 }
217
218 static void
219 setuid_changed_cb(void *arg, uint64_t newval)
220 {
221 }
222
223 static void
224 exec_changed_cb(void *arg, uint64_t newval)
225 {
226 }
227
228 static void
229 nbmand_changed_cb(void *arg, uint64_t newval)
230 {
231 zfs_sb_t *zsb = arg;
232 struct super_block *sb = zsb->z_sb;
233
234 if (sb == NULL)
235 return;
236
237 if (newval == TRUE)
238 sb->s_flags |= MS_MANDLOCK;
239 else
240 sb->s_flags &= ~MS_MANDLOCK;
241 }
242
243 static void
244 snapdir_changed_cb(void *arg, uint64_t newval)
245 {
246 ((zfs_sb_t *)arg)->z_show_ctldir = newval;
247 }
248
249 static void
250 vscan_changed_cb(void *arg, uint64_t newval)
251 {
252 ((zfs_sb_t *)arg)->z_vscan = newval;
253 }
254
255 static void
256 acl_inherit_changed_cb(void *arg, uint64_t newval)
257 {
258 ((zfs_sb_t *)arg)->z_acl_inherit = newval;
259 }
260
261 int
262 zfs_register_callbacks(zfs_sb_t *zsb)
263 {
264 struct dsl_dataset *ds = NULL;
265 objset_t *os = zsb->z_os;
266 boolean_t do_readonly = B_FALSE;
267 int error = 0;
268
269 if (zfs_is_readonly(zsb) || !spa_writeable(dmu_objset_spa(os)))
270 do_readonly = B_TRUE;
271
272 /*
273 * Register property callbacks.
274 *
275 * It would probably be fine to just check for i/o error from
276 * the first prop_register(), but I guess I like to go
277 * overboard...
278 */
279 ds = dmu_objset_ds(os);
280 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
281 error = dsl_prop_register(ds,
282 zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zsb);
283 error = error ? error : dsl_prop_register(ds,
284 zfs_prop_to_name(ZFS_PROP_RELATIME), relatime_changed_cb, zsb);
285 error = error ? error : dsl_prop_register(ds,
286 zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zsb);
287 error = error ? error : dsl_prop_register(ds,
288 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zsb);
289 error = error ? error : dsl_prop_register(ds,
290 zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zsb);
291 error = error ? error : dsl_prop_register(ds,
292 zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zsb);
293 error = error ? error : dsl_prop_register(ds,
294 zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zsb);
295 error = error ? error : dsl_prop_register(ds,
296 zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zsb);
297 error = error ? error : dsl_prop_register(ds,
298 zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zsb);
299 error = error ? error : dsl_prop_register(ds,
300 zfs_prop_to_name(ZFS_PROP_ACLTYPE), acltype_changed_cb, zsb);
301 error = error ? error : dsl_prop_register(ds,
302 zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb, zsb);
303 error = error ? error : dsl_prop_register(ds,
304 zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zsb);
305 error = error ? error : dsl_prop_register(ds,
306 zfs_prop_to_name(ZFS_PROP_NBMAND), nbmand_changed_cb, zsb);
307 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
308 if (error)
309 goto unregister;
310
311 if (do_readonly)
312 readonly_changed_cb(zsb, B_TRUE);
313
314 return (0);
315
316 unregister:
317 /*
318 * We may attempt to unregister some callbacks that are not
319 * registered, but this is OK; it will simply return ENOMSG,
320 * which we will ignore.
321 */
322 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ATIME),
323 atime_changed_cb, zsb);
324 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_RELATIME),
325 relatime_changed_cb, zsb);
326 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_XATTR),
327 xattr_changed_cb, zsb);
328 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
329 blksz_changed_cb, zsb);
330 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_READONLY),
331 readonly_changed_cb, zsb);
332 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_DEVICES),
333 devices_changed_cb, zsb);
334 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_SETUID),
335 setuid_changed_cb, zsb);
336 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_EXEC),
337 exec_changed_cb, zsb);
338 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_SNAPDIR),
339 snapdir_changed_cb, zsb);
340 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ACLTYPE),
341 acltype_changed_cb, zsb);
342 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ACLINHERIT),
343 acl_inherit_changed_cb, zsb);
344 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_VSCAN),
345 vscan_changed_cb, zsb);
346 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_NBMAND),
347 nbmand_changed_cb, zsb);
348
349 return (error);
350 }
351 EXPORT_SYMBOL(zfs_register_callbacks);
352
353 static int
354 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
355 uint64_t *userp, uint64_t *groupp)
356 {
357 /*
358 * Is it a valid type of object to track?
359 */
360 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
361 return (SET_ERROR(ENOENT));
362
363 /*
364 * If we have a NULL data pointer
365 * then assume the id's aren't changing and
366 * return EEXIST to the dmu to let it know to
367 * use the same ids
368 */
369 if (data == NULL)
370 return (SET_ERROR(EEXIST));
371
372 if (bonustype == DMU_OT_ZNODE) {
373 znode_phys_t *znp = data;
374 *userp = znp->zp_uid;
375 *groupp = znp->zp_gid;
376 } else {
377 int hdrsize;
378 sa_hdr_phys_t *sap = data;
379 sa_hdr_phys_t sa = *sap;
380 boolean_t swap = B_FALSE;
381
382 ASSERT(bonustype == DMU_OT_SA);
383
384 if (sa.sa_magic == 0) {
385 /*
386 * This should only happen for newly created
387 * files that haven't had the znode data filled
388 * in yet.
389 */
390 *userp = 0;
391 *groupp = 0;
392 return (0);
393 }
394 if (sa.sa_magic == BSWAP_32(SA_MAGIC)) {
395 sa.sa_magic = SA_MAGIC;
396 sa.sa_layout_info = BSWAP_16(sa.sa_layout_info);
397 swap = B_TRUE;
398 } else {
399 VERIFY3U(sa.sa_magic, ==, SA_MAGIC);
400 }
401
402 hdrsize = sa_hdrsize(&sa);
403 VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t));
404 *userp = *((uint64_t *)((uintptr_t)data + hdrsize +
405 SA_UID_OFFSET));
406 *groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
407 SA_GID_OFFSET));
408 if (swap) {
409 *userp = BSWAP_64(*userp);
410 *groupp = BSWAP_64(*groupp);
411 }
412 }
413 return (0);
414 }
415
416 static void
417 fuidstr_to_sid(zfs_sb_t *zsb, const char *fuidstr,
418 char *domainbuf, int buflen, uid_t *ridp)
419 {
420 uint64_t fuid;
421 const char *domain;
422
423 fuid = strtonum(fuidstr, NULL);
424
425 domain = zfs_fuid_find_by_idx(zsb, FUID_INDEX(fuid));
426 if (domain)
427 (void) strlcpy(domainbuf, domain, buflen);
428 else
429 domainbuf[0] = '\0';
430 *ridp = FUID_RID(fuid);
431 }
432
433 static uint64_t
434 zfs_userquota_prop_to_obj(zfs_sb_t *zsb, zfs_userquota_prop_t type)
435 {
436 switch (type) {
437 case ZFS_PROP_USERUSED:
438 return (DMU_USERUSED_OBJECT);
439 case ZFS_PROP_GROUPUSED:
440 return (DMU_GROUPUSED_OBJECT);
441 case ZFS_PROP_USERQUOTA:
442 return (zsb->z_userquota_obj);
443 case ZFS_PROP_GROUPQUOTA:
444 return (zsb->z_groupquota_obj);
445 default:
446 return (SET_ERROR(ENOTSUP));
447 }
448 return (0);
449 }
450
451 int
452 zfs_userspace_many(zfs_sb_t *zsb, zfs_userquota_prop_t type,
453 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
454 {
455 int error;
456 zap_cursor_t zc;
457 zap_attribute_t za;
458 zfs_useracct_t *buf = vbuf;
459 uint64_t obj;
460
461 if (!dmu_objset_userspace_present(zsb->z_os))
462 return (SET_ERROR(ENOTSUP));
463
464 obj = zfs_userquota_prop_to_obj(zsb, type);
465 if (obj == 0) {
466 *bufsizep = 0;
467 return (0);
468 }
469
470 for (zap_cursor_init_serialized(&zc, zsb->z_os, obj, *cookiep);
471 (error = zap_cursor_retrieve(&zc, &za)) == 0;
472 zap_cursor_advance(&zc)) {
473 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
474 *bufsizep)
475 break;
476
477 fuidstr_to_sid(zsb, za.za_name,
478 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
479
480 buf->zu_space = za.za_first_integer;
481 buf++;
482 }
483 if (error == ENOENT)
484 error = 0;
485
486 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
487 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
488 *cookiep = zap_cursor_serialize(&zc);
489 zap_cursor_fini(&zc);
490 return (error);
491 }
492 EXPORT_SYMBOL(zfs_userspace_many);
493
494 /*
495 * buf must be big enough (eg, 32 bytes)
496 */
497 static int
498 id_to_fuidstr(zfs_sb_t *zsb, const char *domain, uid_t rid,
499 char *buf, boolean_t addok)
500 {
501 uint64_t fuid;
502 int domainid = 0;
503
504 if (domain && domain[0]) {
505 domainid = zfs_fuid_find_by_domain(zsb, domain, NULL, addok);
506 if (domainid == -1)
507 return (SET_ERROR(ENOENT));
508 }
509 fuid = FUID_ENCODE(domainid, rid);
510 (void) sprintf(buf, "%llx", (longlong_t)fuid);
511 return (0);
512 }
513
514 int
515 zfs_userspace_one(zfs_sb_t *zsb, zfs_userquota_prop_t type,
516 const char *domain, uint64_t rid, uint64_t *valp)
517 {
518 char buf[32];
519 int err;
520 uint64_t obj;
521
522 *valp = 0;
523
524 if (!dmu_objset_userspace_present(zsb->z_os))
525 return (SET_ERROR(ENOTSUP));
526
527 obj = zfs_userquota_prop_to_obj(zsb, type);
528 if (obj == 0)
529 return (0);
530
531 err = id_to_fuidstr(zsb, domain, rid, buf, B_FALSE);
532 if (err)
533 return (err);
534
535 err = zap_lookup(zsb->z_os, obj, buf, 8, 1, valp);
536 if (err == ENOENT)
537 err = 0;
538 return (err);
539 }
540 EXPORT_SYMBOL(zfs_userspace_one);
541
542 int
543 zfs_set_userquota(zfs_sb_t *zsb, zfs_userquota_prop_t type,
544 const char *domain, uint64_t rid, uint64_t quota)
545 {
546 char buf[32];
547 int err;
548 dmu_tx_t *tx;
549 uint64_t *objp;
550 boolean_t fuid_dirtied;
551
552 if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
553 return (SET_ERROR(EINVAL));
554
555 if (zsb->z_version < ZPL_VERSION_USERSPACE)
556 return (SET_ERROR(ENOTSUP));
557
558 objp = (type == ZFS_PROP_USERQUOTA) ? &zsb->z_userquota_obj :
559 &zsb->z_groupquota_obj;
560
561 err = id_to_fuidstr(zsb, domain, rid, buf, B_TRUE);
562 if (err)
563 return (err);
564 fuid_dirtied = zsb->z_fuid_dirty;
565
566 tx = dmu_tx_create(zsb->z_os);
567 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
568 if (*objp == 0) {
569 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
570 zfs_userquota_prop_prefixes[type]);
571 }
572 if (fuid_dirtied)
573 zfs_fuid_txhold(zsb, tx);
574 err = dmu_tx_assign(tx, TXG_WAIT);
575 if (err) {
576 dmu_tx_abort(tx);
577 return (err);
578 }
579
580 mutex_enter(&zsb->z_lock);
581 if (*objp == 0) {
582 *objp = zap_create(zsb->z_os, DMU_OT_USERGROUP_QUOTA,
583 DMU_OT_NONE, 0, tx);
584 VERIFY(0 == zap_add(zsb->z_os, MASTER_NODE_OBJ,
585 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
586 }
587 mutex_exit(&zsb->z_lock);
588
589 if (quota == 0) {
590 err = zap_remove(zsb->z_os, *objp, buf, tx);
591 if (err == ENOENT)
592 err = 0;
593 } else {
594 err = zap_update(zsb->z_os, *objp, buf, 8, 1, &quota, tx);
595 }
596 ASSERT(err == 0);
597 if (fuid_dirtied)
598 zfs_fuid_sync(zsb, tx);
599 dmu_tx_commit(tx);
600 return (err);
601 }
602 EXPORT_SYMBOL(zfs_set_userquota);
603
604 boolean_t
605 zfs_fuid_overquota(zfs_sb_t *zsb, boolean_t isgroup, uint64_t fuid)
606 {
607 char buf[32];
608 uint64_t used, quota, usedobj, quotaobj;
609 int err;
610
611 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
612 quotaobj = isgroup ? zsb->z_groupquota_obj : zsb->z_userquota_obj;
613
614 if (quotaobj == 0 || zsb->z_replay)
615 return (B_FALSE);
616
617 (void) sprintf(buf, "%llx", (longlong_t)fuid);
618 err = zap_lookup(zsb->z_os, quotaobj, buf, 8, 1, &quota);
619 if (err != 0)
620 return (B_FALSE);
621
622 err = zap_lookup(zsb->z_os, usedobj, buf, 8, 1, &used);
623 if (err != 0)
624 return (B_FALSE);
625 return (used >= quota);
626 }
627 EXPORT_SYMBOL(zfs_fuid_overquota);
628
629 boolean_t
630 zfs_owner_overquota(zfs_sb_t *zsb, znode_t *zp, boolean_t isgroup)
631 {
632 uint64_t fuid;
633 uint64_t quotaobj;
634
635 quotaobj = isgroup ? zsb->z_groupquota_obj : zsb->z_userquota_obj;
636
637 fuid = isgroup ? zp->z_gid : zp->z_uid;
638
639 if (quotaobj == 0 || zsb->z_replay)
640 return (B_FALSE);
641
642 return (zfs_fuid_overquota(zsb, isgroup, fuid));
643 }
644 EXPORT_SYMBOL(zfs_owner_overquota);
645
646 int
647 zfs_sb_create(const char *osname, zfs_sb_t **zsbp)
648 {
649 objset_t *os;
650 zfs_sb_t *zsb;
651 uint64_t zval;
652 int i, error;
653 uint64_t sa_obj;
654
655 zsb = kmem_zalloc(sizeof (zfs_sb_t), KM_SLEEP);
656
657 /*
658 * We claim to always be readonly so we can open snapshots;
659 * other ZPL code will prevent us from writing to snapshots.
660 */
661 error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zsb, &os);
662 if (error) {
663 kmem_free(zsb, sizeof (zfs_sb_t));
664 return (error);
665 }
666
667 /*
668 * Initialize the zfs-specific filesystem structure.
669 * Should probably make this a kmem cache, shuffle fields,
670 * and just bzero up to z_hold_mtx[].
671 */
672 zsb->z_sb = NULL;
673 zsb->z_parent = zsb;
674 zsb->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
675 zsb->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
676 zsb->z_os = os;
677
678 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zsb->z_version);
679 if (error) {
680 goto out;
681 } else if (zsb->z_version > ZPL_VERSION) {
682 error = SET_ERROR(ENOTSUP);
683 goto out;
684 }
685 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
686 goto out;
687 zsb->z_norm = (int)zval;
688
689 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
690 goto out;
691 zsb->z_utf8 = (zval != 0);
692
693 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
694 goto out;
695 zsb->z_case = (uint_t)zval;
696
697 if ((error = zfs_get_zplprop(os, ZFS_PROP_ACLTYPE, &zval)) != 0)
698 goto out;
699 zsb->z_acl_type = (uint_t)zval;
700
701 /*
702 * Fold case on file systems that are always or sometimes case
703 * insensitive.
704 */
705 if (zsb->z_case == ZFS_CASE_INSENSITIVE ||
706 zsb->z_case == ZFS_CASE_MIXED)
707 zsb->z_norm |= U8_TEXTPREP_TOUPPER;
708
709 zsb->z_use_fuids = USE_FUIDS(zsb->z_version, zsb->z_os);
710 zsb->z_use_sa = USE_SA(zsb->z_version, zsb->z_os);
711
712 if (zsb->z_use_sa) {
713 /* should either have both of these objects or none */
714 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
715 &sa_obj);
716 if (error)
717 goto out;
718
719 error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &zval);
720 if ((error == 0) && (zval == ZFS_XATTR_SA))
721 zsb->z_xattr_sa = B_TRUE;
722 } else {
723 /*
724 * Pre SA versions file systems should never touch
725 * either the attribute registration or layout objects.
726 */
727 sa_obj = 0;
728 }
729
730 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
731 &zsb->z_attr_table);
732 if (error)
733 goto out;
734
735 if (zsb->z_version >= ZPL_VERSION_SA)
736 sa_register_update_callback(os, zfs_sa_upgrade);
737
738 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
739 &zsb->z_root);
740 if (error)
741 goto out;
742 ASSERT(zsb->z_root != 0);
743
744 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
745 &zsb->z_unlinkedobj);
746 if (error)
747 goto out;
748
749 error = zap_lookup(os, MASTER_NODE_OBJ,
750 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
751 8, 1, &zsb->z_userquota_obj);
752 if (error && error != ENOENT)
753 goto out;
754
755 error = zap_lookup(os, MASTER_NODE_OBJ,
756 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
757 8, 1, &zsb->z_groupquota_obj);
758 if (error && error != ENOENT)
759 goto out;
760
761 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
762 &zsb->z_fuid_obj);
763 if (error && error != ENOENT)
764 goto out;
765
766 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
767 &zsb->z_shares_dir);
768 if (error && error != ENOENT)
769 goto out;
770
771 mutex_init(&zsb->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
772 mutex_init(&zsb->z_lock, NULL, MUTEX_DEFAULT, NULL);
773 list_create(&zsb->z_all_znodes, sizeof (znode_t),
774 offsetof(znode_t, z_link_node));
775 rrw_init(&zsb->z_teardown_lock, B_FALSE);
776 rw_init(&zsb->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
777 rw_init(&zsb->z_fuid_lock, NULL, RW_DEFAULT, NULL);
778
779 zsb->z_hold_mtx = vmem_zalloc(sizeof (kmutex_t) * ZFS_OBJ_MTX_SZ,
780 KM_SLEEP);
781 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
782 mutex_init(&zsb->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
783
784 avl_create(&zsb->z_ctldir_snaps, snapentry_compare,
785 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t, se_node));
786 mutex_init(&zsb->z_ctldir_lock, NULL, MUTEX_DEFAULT, NULL);
787
788 *zsbp = zsb;
789 return (0);
790
791 out:
792 dmu_objset_disown(os, zsb);
793 *zsbp = NULL;
794
795 vmem_free(zsb->z_hold_mtx, sizeof (kmutex_t) * ZFS_OBJ_MTX_SZ);
796 kmem_free(zsb, sizeof (zfs_sb_t));
797 return (error);
798 }
799 EXPORT_SYMBOL(zfs_sb_create);
800
801 int
802 zfs_sb_setup(zfs_sb_t *zsb, boolean_t mounting)
803 {
804 int error;
805
806 error = zfs_register_callbacks(zsb);
807 if (error)
808 return (error);
809
810 /*
811 * Set the objset user_ptr to track its zsb.
812 */
813 mutex_enter(&zsb->z_os->os_user_ptr_lock);
814 dmu_objset_set_user(zsb->z_os, zsb);
815 mutex_exit(&zsb->z_os->os_user_ptr_lock);
816
817 zsb->z_log = zil_open(zsb->z_os, zfs_get_data);
818
819 /*
820 * If we are not mounting (ie: online recv), then we don't
821 * have to worry about replaying the log as we blocked all
822 * operations out since we closed the ZIL.
823 */
824 if (mounting) {
825 boolean_t readonly;
826
827 /*
828 * During replay we remove the read only flag to
829 * allow replays to succeed.
830 */
831 readonly = zfs_is_readonly(zsb);
832 if (readonly != 0)
833 readonly_changed_cb(zsb, B_FALSE);
834 else
835 zfs_unlinked_drain(zsb);
836
837 /*
838 * Parse and replay the intent log.
839 *
840 * Because of ziltest, this must be done after
841 * zfs_unlinked_drain(). (Further note: ziltest
842 * doesn't use readonly mounts, where
843 * zfs_unlinked_drain() isn't called.) This is because
844 * ziltest causes spa_sync() to think it's committed,
845 * but actually it is not, so the intent log contains
846 * many txg's worth of changes.
847 *
848 * In particular, if object N is in the unlinked set in
849 * the last txg to actually sync, then it could be
850 * actually freed in a later txg and then reallocated
851 * in a yet later txg. This would write a "create
852 * object N" record to the intent log. Normally, this
853 * would be fine because the spa_sync() would have
854 * written out the fact that object N is free, before
855 * we could write the "create object N" intent log
856 * record.
857 *
858 * But when we are in ziltest mode, we advance the "open
859 * txg" without actually spa_sync()-ing the changes to
860 * disk. So we would see that object N is still
861 * allocated and in the unlinked set, and there is an
862 * intent log record saying to allocate it.
863 */
864 if (spa_writeable(dmu_objset_spa(zsb->z_os))) {
865 if (zil_replay_disable) {
866 zil_destroy(zsb->z_log, B_FALSE);
867 } else {
868 zsb->z_replay = B_TRUE;
869 zil_replay(zsb->z_os, zsb,
870 zfs_replay_vector);
871 zsb->z_replay = B_FALSE;
872 }
873 }
874
875 /* restore readonly bit */
876 if (readonly != 0)
877 readonly_changed_cb(zsb, B_TRUE);
878 }
879
880 return (0);
881 }
882 EXPORT_SYMBOL(zfs_sb_setup);
883
884 void
885 zfs_sb_free(zfs_sb_t *zsb)
886 {
887 int i;
888
889 zfs_fuid_destroy(zsb);
890
891 mutex_destroy(&zsb->z_znodes_lock);
892 mutex_destroy(&zsb->z_lock);
893 list_destroy(&zsb->z_all_znodes);
894 rrw_destroy(&zsb->z_teardown_lock);
895 rw_destroy(&zsb->z_teardown_inactive_lock);
896 rw_destroy(&zsb->z_fuid_lock);
897 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
898 mutex_destroy(&zsb->z_hold_mtx[i]);
899 vmem_free(zsb->z_hold_mtx, sizeof (kmutex_t) * ZFS_OBJ_MTX_SZ);
900 mutex_destroy(&zsb->z_ctldir_lock);
901 avl_destroy(&zsb->z_ctldir_snaps);
902 kmem_free(zsb, sizeof (zfs_sb_t));
903 }
904 EXPORT_SYMBOL(zfs_sb_free);
905
906 static void
907 zfs_set_fuid_feature(zfs_sb_t *zsb)
908 {
909 zsb->z_use_fuids = USE_FUIDS(zsb->z_version, zsb->z_os);
910 zsb->z_use_sa = USE_SA(zsb->z_version, zsb->z_os);
911 }
912
913 void
914 zfs_unregister_callbacks(zfs_sb_t *zsb)
915 {
916 objset_t *os = zsb->z_os;
917 struct dsl_dataset *ds;
918
919 /*
920 * Unregister properties.
921 */
922 if (!dmu_objset_is_snapshot(os)) {
923 ds = dmu_objset_ds(os);
924 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
925 zsb) == 0);
926
927 VERIFY(dsl_prop_unregister(ds, "relatime", relatime_changed_cb,
928 zsb) == 0);
929
930 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
931 zsb) == 0);
932
933 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
934 zsb) == 0);
935
936 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
937 zsb) == 0);
938
939 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
940 zsb) == 0);
941
942 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
943 zsb) == 0);
944
945 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
946 zsb) == 0);
947
948 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
949 zsb) == 0);
950
951 VERIFY(dsl_prop_unregister(ds, "acltype", acltype_changed_cb,
952 zsb) == 0);
953
954 VERIFY(dsl_prop_unregister(ds, "aclinherit",
955 acl_inherit_changed_cb, zsb) == 0);
956
957 VERIFY(dsl_prop_unregister(ds, "vscan",
958 vscan_changed_cb, zsb) == 0);
959
960 VERIFY(dsl_prop_unregister(ds, "nbmand",
961 nbmand_changed_cb, zsb) == 0);
962 }
963 }
964 EXPORT_SYMBOL(zfs_unregister_callbacks);
965
966 #ifdef HAVE_MLSLABEL
967 /*
968 * Check that the hex label string is appropriate for the dataset being
969 * mounted into the global_zone proper.
970 *
971 * Return an error if the hex label string is not default or
972 * admin_low/admin_high. For admin_low labels, the corresponding
973 * dataset must be readonly.
974 */
975 int
976 zfs_check_global_label(const char *dsname, const char *hexsl)
977 {
978 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
979 return (0);
980 if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
981 return (0);
982 if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
983 /* must be readonly */
984 uint64_t rdonly;
985
986 if (dsl_prop_get_integer(dsname,
987 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
988 return (SET_ERROR(EACCES));
989 return (rdonly ? 0 : EACCES);
990 }
991 return (SET_ERROR(EACCES));
992 }
993 EXPORT_SYMBOL(zfs_check_global_label);
994 #endif /* HAVE_MLSLABEL */
995
996 int
997 zfs_statvfs(struct dentry *dentry, struct kstatfs *statp)
998 {
999 zfs_sb_t *zsb = dentry->d_sb->s_fs_info;
1000 uint64_t refdbytes, availbytes, usedobjs, availobjs;
1001 uint64_t fsid;
1002 uint32_t bshift;
1003
1004 ZFS_ENTER(zsb);
1005
1006 dmu_objset_space(zsb->z_os,
1007 &refdbytes, &availbytes, &usedobjs, &availobjs);
1008
1009 fsid = dmu_objset_fsid_guid(zsb->z_os);
1010 /*
1011 * The underlying storage pool actually uses multiple block
1012 * size. Under Solaris frsize (fragment size) is reported as
1013 * the smallest block size we support, and bsize (block size)
1014 * as the filesystem's maximum block size. Unfortunately,
1015 * under Linux the fragment size and block size are often used
1016 * interchangeably. Thus we are forced to report both of them
1017 * as the filesystem's maximum block size.
1018 */
1019 statp->f_frsize = zsb->z_max_blksz;
1020 statp->f_bsize = zsb->z_max_blksz;
1021 bshift = fls(statp->f_bsize) - 1;
1022
1023 /*
1024 * The following report "total" blocks of various kinds in
1025 * the file system, but reported in terms of f_bsize - the
1026 * "preferred" size.
1027 */
1028
1029 statp->f_blocks = (refdbytes + availbytes) >> bshift;
1030 statp->f_bfree = availbytes >> bshift;
1031 statp->f_bavail = statp->f_bfree; /* no root reservation */
1032
1033 /*
1034 * statvfs() should really be called statufs(), because it assumes
1035 * static metadata. ZFS doesn't preallocate files, so the best
1036 * we can do is report the max that could possibly fit in f_files,
1037 * and that minus the number actually used in f_ffree.
1038 * For f_ffree, report the smaller of the number of object available
1039 * and the number of blocks (each object will take at least a block).
1040 */
1041 statp->f_ffree = MIN(availobjs, availbytes >> DNODE_SHIFT);
1042 statp->f_files = statp->f_ffree + usedobjs;
1043 statp->f_fsid.val[0] = (uint32_t)fsid;
1044 statp->f_fsid.val[1] = (uint32_t)(fsid >> 32);
1045 statp->f_type = ZFS_SUPER_MAGIC;
1046 statp->f_namelen = ZFS_MAXNAMELEN;
1047
1048 /*
1049 * We have all of 40 characters to stuff a string here.
1050 * Is there anything useful we could/should provide?
1051 */
1052 bzero(statp->f_spare, sizeof (statp->f_spare));
1053
1054 ZFS_EXIT(zsb);
1055 return (0);
1056 }
1057 EXPORT_SYMBOL(zfs_statvfs);
1058
1059 int
1060 zfs_root(zfs_sb_t *zsb, struct inode **ipp)
1061 {
1062 znode_t *rootzp;
1063 int error;
1064
1065 ZFS_ENTER(zsb);
1066
1067 error = zfs_zget(zsb, zsb->z_root, &rootzp);
1068 if (error == 0)
1069 *ipp = ZTOI(rootzp);
1070
1071 ZFS_EXIT(zsb);
1072 return (error);
1073 }
1074 EXPORT_SYMBOL(zfs_root);
1075
1076 /*
1077 * The ARC has requested that the filesystem drop entries from the dentry
1078 * and inode caches. This can occur when the ARC needs to free meta data
1079 * blocks but can't because they are all pinned by entries in these caches.
1080 */
1081 int
1082 zfs_sb_prune(struct super_block *sb, unsigned long nr_to_scan, int *objects)
1083 {
1084 zfs_sb_t *zsb = sb->s_fs_info;
1085 int error = 0;
1086 #if defined(HAVE_SHRINK) || defined(HAVE_SPLIT_SHRINKER_CALLBACK)
1087 struct shrinker *shrinker = &sb->s_shrink;
1088 struct shrink_control sc = {
1089 .nr_to_scan = nr_to_scan,
1090 .gfp_mask = GFP_KERNEL,
1091 };
1092 #endif
1093
1094 ZFS_ENTER(zsb);
1095
1096 #if defined(HAVE_SPLIT_SHRINKER_CALLBACK)
1097 *objects = (*shrinker->scan_objects)(shrinker, &sc);
1098 #elif defined(HAVE_SHRINK)
1099 *objects = (*shrinker->shrink)(shrinker, &sc);
1100 #else
1101 /*
1102 * Linux kernels older than 3.1 do not support a per-filesystem
1103 * shrinker. Therefore, we must fall back to the only available
1104 * interface which is to discard all unused dentries and inodes.
1105 * This behavior clearly isn't ideal but it's required so the ARC
1106 * may free memory. The performance impact is mitigated by the
1107 * fact that the frequently accessed dentry and inode buffers will
1108 * still be in the ARC making them relatively cheap to recreate.
1109 */
1110 *objects = 0;
1111 shrink_dcache_parent(sb->s_root);
1112 #endif
1113 ZFS_EXIT(zsb);
1114
1115 dprintf_ds(zsb->z_os->os_dsl_dataset,
1116 "pruning, nr_to_scan=%lu objects=%d error=%d\n",
1117 nr_to_scan, *objects, error);
1118
1119 return (error);
1120 }
1121 EXPORT_SYMBOL(zfs_sb_prune);
1122
1123 /*
1124 * Teardown the zfs_sb_t.
1125 *
1126 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1127 * and 'z_teardown_inactive_lock' held.
1128 */
1129 int
1130 zfs_sb_teardown(zfs_sb_t *zsb, boolean_t unmounting)
1131 {
1132 znode_t *zp;
1133
1134 /*
1135 * If someone has not already unmounted this file system,
1136 * drain the iput_taskq to ensure all active references to the
1137 * zfs_sb_t have been handled only then can it be safely destroyed.
1138 */
1139 if (zsb->z_os) {
1140 /*
1141 * If we're unmounting we have to wait for the list to
1142 * drain completely.
1143 *
1144 * If we're not unmounting there's no guarantee the list
1145 * will drain completely, but iputs run from the taskq
1146 * may add the parents of dir-based xattrs to the taskq
1147 * so we want to wait for these.
1148 *
1149 * We can safely read z_nr_znodes without locking because the
1150 * VFS has already blocked operations which add to the
1151 * z_all_znodes list and thus increment z_nr_znodes.
1152 */
1153 int round = 0;
1154 while (zsb->z_nr_znodes > 0) {
1155 taskq_wait(dsl_pool_iput_taskq(dmu_objset_pool(
1156 zsb->z_os)));
1157 if (++round > 1 && !unmounting)
1158 break;
1159 }
1160 }
1161
1162 rrw_enter(&zsb->z_teardown_lock, RW_WRITER, FTAG);
1163
1164 if (!unmounting) {
1165 /*
1166 * We purge the parent filesystem's super block as the
1167 * parent filesystem and all of its snapshots have their
1168 * inode's super block set to the parent's filesystem's
1169 * super block. Note, 'z_parent' is self referential
1170 * for non-snapshots.
1171 */
1172 shrink_dcache_sb(zsb->z_parent->z_sb);
1173 }
1174
1175 /*
1176 * Close the zil. NB: Can't close the zil while zfs_inactive
1177 * threads are blocked as zil_close can call zfs_inactive.
1178 */
1179 if (zsb->z_log) {
1180 zil_close(zsb->z_log);
1181 zsb->z_log = NULL;
1182 }
1183
1184 rw_enter(&zsb->z_teardown_inactive_lock, RW_WRITER);
1185
1186 /*
1187 * If we are not unmounting (ie: online recv) and someone already
1188 * unmounted this file system while we were doing the switcheroo,
1189 * or a reopen of z_os failed then just bail out now.
1190 */
1191 if (!unmounting && (zsb->z_unmounted || zsb->z_os == NULL)) {
1192 rw_exit(&zsb->z_teardown_inactive_lock);
1193 rrw_exit(&zsb->z_teardown_lock, FTAG);
1194 return (SET_ERROR(EIO));
1195 }
1196
1197 /*
1198 * At this point there are no VFS ops active, and any new VFS ops
1199 * will fail with EIO since we have z_teardown_lock for writer (only
1200 * relevant for forced unmount).
1201 *
1202 * Release all holds on dbufs.
1203 */
1204 if (!unmounting) {
1205 mutex_enter(&zsb->z_znodes_lock);
1206 for (zp = list_head(&zsb->z_all_znodes); zp != NULL;
1207 zp = list_next(&zsb->z_all_znodes, zp)) {
1208 if (zp->z_sa_hdl)
1209 zfs_znode_dmu_fini(zp);
1210 }
1211 mutex_exit(&zsb->z_znodes_lock);
1212 }
1213
1214 /*
1215 * If we are unmounting, set the unmounted flag and let new VFS ops
1216 * unblock. zfs_inactive will have the unmounted behavior, and all
1217 * other VFS ops will fail with EIO.
1218 */
1219 if (unmounting) {
1220 zsb->z_unmounted = B_TRUE;
1221 rrw_exit(&zsb->z_teardown_lock, FTAG);
1222 rw_exit(&zsb->z_teardown_inactive_lock);
1223 }
1224
1225 /*
1226 * z_os will be NULL if there was an error in attempting to reopen
1227 * zsb, so just return as the properties had already been
1228 *
1229 * unregistered and cached data had been evicted before.
1230 */
1231 if (zsb->z_os == NULL)
1232 return (0);
1233
1234 /*
1235 * Unregister properties.
1236 */
1237 zfs_unregister_callbacks(zsb);
1238
1239 /*
1240 * Evict cached data
1241 */
1242 if (dsl_dataset_is_dirty(dmu_objset_ds(zsb->z_os)) &&
1243 !zfs_is_readonly(zsb))
1244 txg_wait_synced(dmu_objset_pool(zsb->z_os), 0);
1245 dmu_objset_evict_dbufs(zsb->z_os);
1246
1247 return (0);
1248 }
1249 EXPORT_SYMBOL(zfs_sb_teardown);
1250
1251 #if !defined(HAVE_2ARGS_BDI_SETUP_AND_REGISTER) && \
1252 !defined(HAVE_3ARGS_BDI_SETUP_AND_REGISTER)
1253 atomic_long_t zfs_bdi_seq = ATOMIC_LONG_INIT(0);
1254 #endif
1255
1256 int
1257 zfs_domount(struct super_block *sb, void *data, int silent)
1258 {
1259 zpl_mount_data_t *zmd = data;
1260 const char *osname = zmd->z_osname;
1261 zfs_sb_t *zsb;
1262 struct inode *root_inode;
1263 uint64_t recordsize;
1264 int error;
1265
1266 error = zfs_sb_create(osname, &zsb);
1267 if (error)
1268 return (error);
1269
1270 if ((error = dsl_prop_get_integer(osname, "recordsize",
1271 &recordsize, NULL)))
1272 goto out;
1273
1274 zsb->z_sb = sb;
1275 sb->s_fs_info = zsb;
1276 sb->s_magic = ZFS_SUPER_MAGIC;
1277 sb->s_maxbytes = MAX_LFS_FILESIZE;
1278 sb->s_time_gran = 1;
1279 sb->s_blocksize = recordsize;
1280 sb->s_blocksize_bits = ilog2(recordsize);
1281 zsb->z_bdi.ra_pages = 0;
1282 sb->s_bdi = &zsb->z_bdi;
1283
1284 error = -zpl_bdi_setup_and_register(&zsb->z_bdi, "zfs");
1285 if (error)
1286 goto out;
1287
1288 /* Set callback operations for the file system. */
1289 sb->s_op = &zpl_super_operations;
1290 sb->s_xattr = zpl_xattr_handlers;
1291 sb->s_export_op = &zpl_export_operations;
1292 #ifdef HAVE_S_D_OP
1293 sb->s_d_op = &zpl_dentry_operations;
1294 #endif /* HAVE_S_D_OP */
1295
1296 /* Set features for file system. */
1297 zfs_set_fuid_feature(zsb);
1298
1299 if (dmu_objset_is_snapshot(zsb->z_os)) {
1300 uint64_t pval;
1301
1302 atime_changed_cb(zsb, B_FALSE);
1303 readonly_changed_cb(zsb, B_TRUE);
1304 if ((error = dsl_prop_get_integer(osname,
1305 "xattr", &pval, NULL)))
1306 goto out;
1307 xattr_changed_cb(zsb, pval);
1308 if ((error = dsl_prop_get_integer(osname,
1309 "acltype", &pval, NULL)))
1310 goto out;
1311 acltype_changed_cb(zsb, pval);
1312 zsb->z_issnap = B_TRUE;
1313 zsb->z_os->os_sync = ZFS_SYNC_DISABLED;
1314
1315 mutex_enter(&zsb->z_os->os_user_ptr_lock);
1316 dmu_objset_set_user(zsb->z_os, zsb);
1317 mutex_exit(&zsb->z_os->os_user_ptr_lock);
1318 } else {
1319 error = zfs_sb_setup(zsb, B_TRUE);
1320 }
1321
1322 /* Allocate a root inode for the filesystem. */
1323 error = zfs_root(zsb, &root_inode);
1324 if (error) {
1325 (void) zfs_umount(sb);
1326 goto out;
1327 }
1328
1329 /* Allocate a root dentry for the filesystem */
1330 sb->s_root = d_make_root(root_inode);
1331 if (sb->s_root == NULL) {
1332 (void) zfs_umount(sb);
1333 error = SET_ERROR(ENOMEM);
1334 goto out;
1335 }
1336
1337 if (!zsb->z_issnap)
1338 zfsctl_create(zsb);
1339
1340 zsb->z_arc_prune = arc_add_prune_callback(zpl_prune_sb, sb);
1341 out:
1342 if (error) {
1343 dmu_objset_disown(zsb->z_os, zsb);
1344 zfs_sb_free(zsb);
1345 }
1346
1347 return (error);
1348 }
1349 EXPORT_SYMBOL(zfs_domount);
1350
1351 /*
1352 * Called when an unmount is requested and certain sanity checks have
1353 * already passed. At this point no dentries or inodes have been reclaimed
1354 * from their respective caches. We drop the extra reference on the .zfs
1355 * control directory to allow everything to be reclaimed. All snapshots
1356 * must already have been unmounted to reach this point.
1357 */
1358 void
1359 zfs_preumount(struct super_block *sb)
1360 {
1361 zfs_sb_t *zsb = sb->s_fs_info;
1362
1363 if (zsb != NULL && zsb->z_ctldir != NULL)
1364 zfsctl_destroy(zsb);
1365 }
1366 EXPORT_SYMBOL(zfs_preumount);
1367
1368 /*
1369 * Called once all other unmount released tear down has occurred.
1370 * It is our responsibility to release any remaining infrastructure.
1371 */
1372 /*ARGSUSED*/
1373 int
1374 zfs_umount(struct super_block *sb)
1375 {
1376 zfs_sb_t *zsb = sb->s_fs_info;
1377 objset_t *os;
1378
1379 arc_remove_prune_callback(zsb->z_arc_prune);
1380 VERIFY(zfs_sb_teardown(zsb, B_TRUE) == 0);
1381 os = zsb->z_os;
1382 bdi_destroy(sb->s_bdi);
1383
1384 /*
1385 * z_os will be NULL if there was an error in
1386 * attempting to reopen zsb.
1387 */
1388 if (os != NULL) {
1389 /*
1390 * Unset the objset user_ptr.
1391 */
1392 mutex_enter(&os->os_user_ptr_lock);
1393 dmu_objset_set_user(os, NULL);
1394 mutex_exit(&os->os_user_ptr_lock);
1395
1396 /*
1397 * Finally release the objset
1398 */
1399 dmu_objset_disown(os, zsb);
1400 }
1401
1402 zfs_sb_free(zsb);
1403 return (0);
1404 }
1405 EXPORT_SYMBOL(zfs_umount);
1406
1407 int
1408 zfs_remount(struct super_block *sb, int *flags, char *data)
1409 {
1410 /*
1411 * All namespace flags (MNT_*) and super block flags (MS_*) will
1412 * be handled by the Linux VFS. Only handle custom options here.
1413 */
1414 return (0);
1415 }
1416 EXPORT_SYMBOL(zfs_remount);
1417
1418 int
1419 zfs_vget(struct super_block *sb, struct inode **ipp, fid_t *fidp)
1420 {
1421 zfs_sb_t *zsb = sb->s_fs_info;
1422 znode_t *zp;
1423 uint64_t object = 0;
1424 uint64_t fid_gen = 0;
1425 uint64_t gen_mask;
1426 uint64_t zp_gen;
1427 int i, err;
1428
1429 *ipp = NULL;
1430
1431 ZFS_ENTER(zsb);
1432
1433 if (fidp->fid_len == LONG_FID_LEN) {
1434 zfid_long_t *zlfid = (zfid_long_t *)fidp;
1435 uint64_t objsetid = 0;
1436 uint64_t setgen = 0;
1437
1438 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1439 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1440
1441 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1442 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1443
1444 ZFS_EXIT(zsb);
1445
1446 err = zfsctl_lookup_objset(sb, objsetid, &zsb);
1447 if (err)
1448 return (SET_ERROR(EINVAL));
1449
1450 ZFS_ENTER(zsb);
1451 }
1452
1453 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1454 zfid_short_t *zfid = (zfid_short_t *)fidp;
1455
1456 for (i = 0; i < sizeof (zfid->zf_object); i++)
1457 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1458
1459 for (i = 0; i < sizeof (zfid->zf_gen); i++)
1460 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1461 } else {
1462 ZFS_EXIT(zsb);
1463 return (SET_ERROR(EINVAL));
1464 }
1465
1466 /* A zero fid_gen means we are in the .zfs control directories */
1467 if (fid_gen == 0 &&
1468 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1469 *ipp = zsb->z_ctldir;
1470 ASSERT(*ipp != NULL);
1471 if (object == ZFSCTL_INO_SNAPDIR) {
1472 VERIFY(zfsctl_root_lookup(*ipp, "snapshot", ipp,
1473 0, kcred, NULL, NULL) == 0);
1474 } else {
1475 igrab(*ipp);
1476 }
1477 ZFS_EXIT(zsb);
1478 return (0);
1479 }
1480
1481 gen_mask = -1ULL >> (64 - 8 * i);
1482
1483 dprintf("getting %llu [%llu mask %llx]\n", object, fid_gen, gen_mask);
1484 if ((err = zfs_zget(zsb, object, &zp))) {
1485 ZFS_EXIT(zsb);
1486 return (err);
1487 }
1488 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zsb), &zp_gen,
1489 sizeof (uint64_t));
1490 zp_gen = zp_gen & gen_mask;
1491 if (zp_gen == 0)
1492 zp_gen = 1;
1493 if (zp->z_unlinked || zp_gen != fid_gen) {
1494 dprintf("znode gen (%llu) != fid gen (%llu)\n", zp_gen,
1495 fid_gen);
1496 iput(ZTOI(zp));
1497 ZFS_EXIT(zsb);
1498 return (SET_ERROR(EINVAL));
1499 }
1500
1501 *ipp = ZTOI(zp);
1502 if (*ipp)
1503 zfs_inode_update(ITOZ(*ipp));
1504
1505 ZFS_EXIT(zsb);
1506 return (0);
1507 }
1508 EXPORT_SYMBOL(zfs_vget);
1509
1510 /*
1511 * Block out VFS ops and close zfs_sb_t
1512 *
1513 * Note, if successful, then we return with the 'z_teardown_lock' and
1514 * 'z_teardown_inactive_lock' write held. We leave ownership of the underlying
1515 * dataset and objset intact so that they can be atomically handed off during
1516 * a subsequent rollback or recv operation and the resume thereafter.
1517 */
1518 int
1519 zfs_suspend_fs(zfs_sb_t *zsb)
1520 {
1521 int error;
1522
1523 if ((error = zfs_sb_teardown(zsb, B_FALSE)) != 0)
1524 return (error);
1525
1526 return (0);
1527 }
1528 EXPORT_SYMBOL(zfs_suspend_fs);
1529
1530 /*
1531 * Reopen zfs_sb_t and release VFS ops.
1532 */
1533 int
1534 zfs_resume_fs(zfs_sb_t *zsb, const char *osname)
1535 {
1536 int err, err2;
1537 znode_t *zp;
1538 uint64_t sa_obj = 0;
1539
1540 ASSERT(RRW_WRITE_HELD(&zsb->z_teardown_lock));
1541 ASSERT(RW_WRITE_HELD(&zsb->z_teardown_inactive_lock));
1542
1543 /*
1544 * We already own this, so just hold and rele it to update the
1545 * objset_t, as the one we had before may have been evicted.
1546 */
1547 VERIFY0(dmu_objset_hold(osname, zsb, &zsb->z_os));
1548 VERIFY3P(zsb->z_os->os_dsl_dataset->ds_owner, ==, zsb);
1549 VERIFY(dsl_dataset_long_held(zsb->z_os->os_dsl_dataset));
1550 dmu_objset_rele(zsb->z_os, zsb);
1551
1552 /*
1553 * Make sure version hasn't changed
1554 */
1555
1556 err = zfs_get_zplprop(zsb->z_os, ZFS_PROP_VERSION,
1557 &zsb->z_version);
1558
1559 if (err)
1560 goto bail;
1561
1562 err = zap_lookup(zsb->z_os, MASTER_NODE_OBJ,
1563 ZFS_SA_ATTRS, 8, 1, &sa_obj);
1564
1565 if (err && zsb->z_version >= ZPL_VERSION_SA)
1566 goto bail;
1567
1568 if ((err = sa_setup(zsb->z_os, sa_obj,
1569 zfs_attr_table, ZPL_END, &zsb->z_attr_table)) != 0)
1570 goto bail;
1571
1572 if (zsb->z_version >= ZPL_VERSION_SA)
1573 sa_register_update_callback(zsb->z_os,
1574 zfs_sa_upgrade);
1575
1576 VERIFY(zfs_sb_setup(zsb, B_FALSE) == 0);
1577
1578 zfs_set_fuid_feature(zsb);
1579 zsb->z_rollback_time = jiffies;
1580
1581 /*
1582 * Attempt to re-establish all the active inodes with their
1583 * dbufs. If a zfs_rezget() fails, then we unhash the inode
1584 * and mark it stale. This prevents a collision if a new
1585 * inode/object is created which must use the same inode
1586 * number. The stale inode will be be released when the
1587 * VFS prunes the dentry holding the remaining references
1588 * on the stale inode.
1589 */
1590 mutex_enter(&zsb->z_znodes_lock);
1591 for (zp = list_head(&zsb->z_all_znodes); zp;
1592 zp = list_next(&zsb->z_all_znodes, zp)) {
1593 err2 = zfs_rezget(zp);
1594 if (err2) {
1595 remove_inode_hash(ZTOI(zp));
1596 zp->z_is_stale = B_TRUE;
1597 }
1598 }
1599 mutex_exit(&zsb->z_znodes_lock);
1600
1601 bail:
1602 /* release the VFS ops */
1603 rw_exit(&zsb->z_teardown_inactive_lock);
1604 rrw_exit(&zsb->z_teardown_lock, FTAG);
1605
1606 if (err) {
1607 /*
1608 * Since we couldn't setup the sa framework, try to force
1609 * unmount this file system.
1610 */
1611 if (zsb->z_os)
1612 (void) zfs_umount(zsb->z_sb);
1613 }
1614 return (err);
1615 }
1616 EXPORT_SYMBOL(zfs_resume_fs);
1617
1618 int
1619 zfs_set_version(zfs_sb_t *zsb, uint64_t newvers)
1620 {
1621 int error;
1622 objset_t *os = zsb->z_os;
1623 dmu_tx_t *tx;
1624
1625 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
1626 return (SET_ERROR(EINVAL));
1627
1628 if (newvers < zsb->z_version)
1629 return (SET_ERROR(EINVAL));
1630
1631 if (zfs_spa_version_map(newvers) >
1632 spa_version(dmu_objset_spa(zsb->z_os)))
1633 return (SET_ERROR(ENOTSUP));
1634
1635 tx = dmu_tx_create(os);
1636 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
1637 if (newvers >= ZPL_VERSION_SA && !zsb->z_use_sa) {
1638 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
1639 ZFS_SA_ATTRS);
1640 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1641 }
1642 error = dmu_tx_assign(tx, TXG_WAIT);
1643 if (error) {
1644 dmu_tx_abort(tx);
1645 return (error);
1646 }
1647
1648 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
1649 8, 1, &newvers, tx);
1650
1651 if (error) {
1652 dmu_tx_commit(tx);
1653 return (error);
1654 }
1655
1656 if (newvers >= ZPL_VERSION_SA && !zsb->z_use_sa) {
1657 uint64_t sa_obj;
1658
1659 ASSERT3U(spa_version(dmu_objset_spa(zsb->z_os)), >=,
1660 SPA_VERSION_SA);
1661 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
1662 DMU_OT_NONE, 0, tx);
1663
1664 error = zap_add(os, MASTER_NODE_OBJ,
1665 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
1666 ASSERT0(error);
1667
1668 VERIFY(0 == sa_set_sa_object(os, sa_obj));
1669 sa_register_update_callback(os, zfs_sa_upgrade);
1670 }
1671
1672 spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
1673 "from %llu to %llu", zsb->z_version, newvers);
1674
1675 dmu_tx_commit(tx);
1676
1677 zsb->z_version = newvers;
1678
1679 zfs_set_fuid_feature(zsb);
1680
1681 return (0);
1682 }
1683 EXPORT_SYMBOL(zfs_set_version);
1684
1685 /*
1686 * Read a property stored within the master node.
1687 */
1688 int
1689 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
1690 {
1691 const char *pname;
1692 int error = SET_ERROR(ENOENT);
1693
1694 /*
1695 * Look up the file system's value for the property. For the
1696 * version property, we look up a slightly different string.
1697 */
1698 if (prop == ZFS_PROP_VERSION)
1699 pname = ZPL_VERSION_STR;
1700 else
1701 pname = zfs_prop_to_name(prop);
1702
1703 if (os != NULL)
1704 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
1705
1706 if (error == ENOENT) {
1707 /* No value set, use the default value */
1708 switch (prop) {
1709 case ZFS_PROP_VERSION:
1710 *value = ZPL_VERSION;
1711 break;
1712 case ZFS_PROP_NORMALIZE:
1713 case ZFS_PROP_UTF8ONLY:
1714 *value = 0;
1715 break;
1716 case ZFS_PROP_CASE:
1717 *value = ZFS_CASE_SENSITIVE;
1718 break;
1719 case ZFS_PROP_ACLTYPE:
1720 *value = ZFS_ACLTYPE_OFF;
1721 break;
1722 default:
1723 return (error);
1724 }
1725 error = 0;
1726 }
1727 return (error);
1728 }
1729 EXPORT_SYMBOL(zfs_get_zplprop);
1730
1731 void
1732 zfs_init(void)
1733 {
1734 zfsctl_init();
1735 zfs_znode_init();
1736 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
1737 register_filesystem(&zpl_fs_type);
1738 }
1739
1740 void
1741 zfs_fini(void)
1742 {
1743 taskq_wait(system_taskq);
1744 unregister_filesystem(&zpl_fs_type);
1745 zfs_znode_fini();
1746 zfsctl_fini();
1747 }