]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zfs_vfsops.c
Merge branch 'dracut'
[mirror_zfs.git] / module / zfs / zfs_vfsops.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 /* Portions Copyright 2010 Robert Milkowski */
26
27 #include <sys/types.h>
28 #include <sys/param.h>
29 #include <sys/systm.h>
30 #include <sys/sysmacros.h>
31 #include <sys/kmem.h>
32 #include <sys/pathname.h>
33 #include <sys/vnode.h>
34 #include <sys/vfs.h>
35 #include <sys/vfs_opreg.h>
36 #include <sys/mntent.h>
37 #include <sys/mount.h>
38 #include <sys/cmn_err.h>
39 #include "fs/fs_subr.h"
40 #include <sys/zfs_znode.h>
41 #include <sys/zfs_vnops.h>
42 #include <sys/zfs_dir.h>
43 #include <sys/zil.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/dmu.h>
46 #include <sys/dsl_prop.h>
47 #include <sys/dsl_dataset.h>
48 #include <sys/dsl_deleg.h>
49 #include <sys/spa.h>
50 #include <sys/zap.h>
51 #include <sys/sa.h>
52 #include <sys/varargs.h>
53 #include <sys/policy.h>
54 #include <sys/atomic.h>
55 #include <sys/mkdev.h>
56 #include <sys/modctl.h>
57 #include <sys/refstr.h>
58 #include <sys/zfs_ioctl.h>
59 #include <sys/zfs_fuid.h>
60 #include <sys/bootconf.h>
61 #include <sys/sunddi.h>
62 #include <sys/dnlc.h>
63 #include <sys/dmu_objset.h>
64 #include <sys/spa_boot.h>
65 #include <sys/sa.h>
66 #include <sys/zpl.h>
67 #include "zfs_comutil.h"
68
69
70 /*ARGSUSED*/
71 int
72 zfs_sync(struct super_block *sb, int wait, cred_t *cr)
73 {
74 zfs_sb_t *zsb = sb->s_fs_info;
75
76 /*
77 * Data integrity is job one. We don't want a compromised kernel
78 * writing to the storage pool, so we never sync during panic.
79 */
80 if (unlikely(oops_in_progress))
81 return (0);
82
83 /*
84 * Semantically, the only requirement is that the sync be initiated.
85 * The DMU syncs out txgs frequently, so there's nothing to do.
86 */
87 if (!wait)
88 return (0);
89
90 if (zsb != NULL) {
91 /*
92 * Sync a specific filesystem.
93 */
94 dsl_pool_t *dp;
95
96 ZFS_ENTER(zsb);
97 dp = dmu_objset_pool(zsb->z_os);
98
99 /*
100 * If the system is shutting down, then skip any
101 * filesystems which may exist on a suspended pool.
102 */
103 if (spa_suspended(dp->dp_spa)) {
104 ZFS_EXIT(zsb);
105 return (0);
106 }
107
108 if (zsb->z_log != NULL)
109 zil_commit(zsb->z_log, 0);
110
111 ZFS_EXIT(zsb);
112 } else {
113 /*
114 * Sync all ZFS filesystems. This is what happens when you
115 * run sync(1M). Unlike other filesystems, ZFS honors the
116 * request by waiting for all pools to commit all dirty data.
117 */
118 spa_sync_allpools();
119 }
120
121 return (0);
122 }
123 EXPORT_SYMBOL(zfs_sync);
124
125 static void
126 atime_changed_cb(void *arg, uint64_t newval)
127 {
128 zfs_sb_t *zsb = arg;
129 struct super_block *sb = zsb->z_sb;
130 struct vfsmount *vfs = zsb->z_vfs;
131
132 if (newval == TRUE) {
133 vfs->mnt_flags &= ~MNT_NOATIME;
134 sb->s_flags &= ~MS_NOATIME;
135 zsb->z_atime = TRUE;
136 } else {
137 vfs->mnt_flags |= MNT_NOATIME;
138 sb->s_flags |= MS_NOATIME;
139 zsb->z_atime = FALSE;
140 }
141 }
142
143 static void
144 xattr_changed_cb(void *arg, uint64_t newval)
145 {
146 zfs_sb_t *zsb = arg;
147
148 if (newval == TRUE) {
149 zsb->z_flags |= ZSB_XATTR_USER;
150 } else {
151 zsb->z_flags &= ~ZSB_XATTR_USER;
152 }
153 }
154
155 static void
156 blksz_changed_cb(void *arg, uint64_t newval)
157 {
158 zfs_sb_t *zsb = arg;
159
160 if (newval < SPA_MINBLOCKSIZE ||
161 newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
162 newval = SPA_MAXBLOCKSIZE;
163
164 zsb->z_max_blksz = newval;
165 }
166
167 static void
168 readonly_changed_cb(void *arg, uint64_t newval)
169 {
170 zfs_sb_t *zsb = arg;
171 struct super_block *sb = zsb->z_sb;
172 struct vfsmount *vfs = zsb->z_vfs;
173
174 if (newval) {
175 vfs->mnt_flags |= MNT_READONLY;
176 sb->s_flags |= MS_RDONLY;
177 } else {
178 vfs->mnt_flags &= ~MNT_READONLY;
179 sb->s_flags &= ~MS_RDONLY;
180 }
181 }
182
183 static void
184 devices_changed_cb(void *arg, uint64_t newval)
185 {
186 zfs_sb_t *zsb = arg;
187 struct super_block *sb = zsb->z_sb;
188 struct vfsmount *vfs = zsb->z_vfs;
189
190 if (newval == FALSE) {
191 vfs->mnt_flags |= MNT_NODEV;
192 sb->s_flags |= MS_NODEV;
193 } else {
194 vfs->mnt_flags &= ~MNT_NODEV;
195 sb->s_flags &= ~MS_NODEV;
196 }
197 }
198
199 static void
200 setuid_changed_cb(void *arg, uint64_t newval)
201 {
202 zfs_sb_t *zsb = arg;
203 struct super_block *sb = zsb->z_sb;
204 struct vfsmount *vfs = zsb->z_vfs;
205
206 if (newval == FALSE) {
207 vfs->mnt_flags |= MNT_NOSUID;
208 sb->s_flags |= MS_NOSUID;
209 } else {
210 vfs->mnt_flags &= ~MNT_NOSUID;
211 sb->s_flags &= ~MS_NOSUID;
212 }
213 }
214
215 static void
216 exec_changed_cb(void *arg, uint64_t newval)
217 {
218 zfs_sb_t *zsb = arg;
219 struct super_block *sb = zsb->z_sb;
220 struct vfsmount *vfs = zsb->z_vfs;
221
222 if (newval == FALSE) {
223 vfs->mnt_flags |= MNT_NOEXEC;
224 sb->s_flags |= MS_NOEXEC;
225 } else {
226 vfs->mnt_flags &= ~MNT_NOEXEC;
227 sb->s_flags &= ~MS_NOEXEC;
228 }
229 }
230
231 /*
232 * The nbmand mount option can be changed at mount time.
233 * We can't allow it to be toggled on live file systems or incorrect
234 * behavior may be seen from cifs clients
235 *
236 * This property isn't registered via dsl_prop_register(), but this callback
237 * will be called when a file system is first mounted
238 */
239 static void
240 nbmand_changed_cb(void *arg, uint64_t newval)
241 {
242 zfs_sb_t *zsb = arg;
243 struct super_block *sb = zsb->z_sb;
244
245 if (newval == TRUE) {
246 sb->s_flags |= MS_MANDLOCK;
247 } else {
248 sb->s_flags &= ~MS_MANDLOCK;
249 }
250 }
251
252 static void
253 snapdir_changed_cb(void *arg, uint64_t newval)
254 {
255 ((zfs_sb_t *)arg)->z_show_ctldir = newval;
256 }
257
258 static void
259 vscan_changed_cb(void *arg, uint64_t newval)
260 {
261 ((zfs_sb_t *)arg)->z_vscan = newval;
262 }
263
264 static void
265 acl_inherit_changed_cb(void *arg, uint64_t newval)
266 {
267 ((zfs_sb_t *)arg)->z_acl_inherit = newval;
268 }
269
270 int
271 zfs_register_callbacks(zfs_sb_t *zsb)
272 {
273 struct vfsmount *vfsp = zsb->z_vfs;
274 struct dsl_dataset *ds = NULL;
275 objset_t *os = zsb->z_os;
276 uint64_t nbmand;
277 boolean_t readonly = B_FALSE;
278 boolean_t setuid = B_TRUE;
279 boolean_t exec = B_TRUE;
280 boolean_t devices = B_TRUE;
281 boolean_t xattr = B_TRUE;
282 boolean_t atime = B_TRUE;
283 char osname[MAXNAMELEN];
284 int error = 0;
285
286 /*
287 * While Linux allows multiple vfs mounts per super block we have
288 * limited it artificially to one in zfs_fill_super. Thus it is
289 * safe for us to modify the vfs mount fails through the callbacks.
290 */
291 if ((vfsp->mnt_flags & MNT_READONLY) ||
292 !spa_writeable(dmu_objset_spa(os)))
293 readonly = B_TRUE;
294
295 if (vfsp->mnt_flags & MNT_NOSUID) {
296 devices = B_FALSE;
297 setuid = B_FALSE;
298 } else {
299 if (vfsp->mnt_flags & MNT_NODEV)
300 devices = B_FALSE;
301 }
302
303 if (vfsp->mnt_flags & MNT_NOEXEC)
304 exec = B_FALSE;
305
306 if (vfsp->mnt_flags & MNT_NOATIME)
307 atime = B_FALSE;
308
309 /*
310 * nbmand is a special property which may only be changed at
311 * mount time. Unfortunately, Linux does not have a VFS mount
312 * flag instead this is a super block flag. So setting this
313 * option at mount time will have to wait until we can parse
314 * the mount option string. For now we rely on the nbmand
315 * value stored with the object set. Additional mount option
316 * string to be handled:
317 *
318 * case: sensitive|insensitive|mixed
319 * zerocopy: on|off
320 */
321
322 dmu_objset_name(os, osname);
323 if ((error = dsl_prop_get_integer(osname, "nbmand", &nbmand, NULL)))
324 return (error);
325
326 /*
327 * Register property callbacks.
328 *
329 * It would probably be fine to just check for i/o error from
330 * the first prop_register(), but I guess I like to go
331 * overboard...
332 */
333 ds = dmu_objset_ds(os);
334 error = dsl_prop_register(ds,
335 "atime", atime_changed_cb, zsb);
336 error = error ? error : dsl_prop_register(ds,
337 "xattr", xattr_changed_cb, zsb);
338 error = error ? error : dsl_prop_register(ds,
339 "recordsize", blksz_changed_cb, zsb);
340 error = error ? error : dsl_prop_register(ds,
341 "readonly", readonly_changed_cb, zsb);
342 error = error ? error : dsl_prop_register(ds,
343 "devices", devices_changed_cb, zsb);
344 error = error ? error : dsl_prop_register(ds,
345 "setuid", setuid_changed_cb, zsb);
346 error = error ? error : dsl_prop_register(ds,
347 "exec", exec_changed_cb, zsb);
348 error = error ? error : dsl_prop_register(ds,
349 "snapdir", snapdir_changed_cb, zsb);
350 error = error ? error : dsl_prop_register(ds,
351 "aclinherit", acl_inherit_changed_cb, zsb);
352 error = error ? error : dsl_prop_register(ds,
353 "vscan", vscan_changed_cb, zsb);
354 if (error)
355 goto unregister;
356
357 /*
358 * Invoke our callbacks to set required flags.
359 */
360 readonly_changed_cb(zsb, readonly);
361 setuid_changed_cb(zsb, setuid);
362 exec_changed_cb(zsb, exec);
363 devices_changed_cb(zsb, devices);
364 xattr_changed_cb(zsb, xattr);
365 atime_changed_cb(zsb, atime);
366 nbmand_changed_cb(zsb, nbmand);
367
368 return (0);
369
370 unregister:
371 /*
372 * We may attempt to unregister some callbacks that are not
373 * registered, but this is OK; it will simply return ENOMSG,
374 * which we will ignore.
375 */
376 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zsb);
377 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zsb);
378 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zsb);
379 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zsb);
380 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zsb);
381 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zsb);
382 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zsb);
383 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zsb);
384 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
385 zsb);
386 (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zsb);
387
388 return (error);
389 }
390 EXPORT_SYMBOL(zfs_register_callbacks);
391
392 static int
393 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
394 uint64_t *userp, uint64_t *groupp)
395 {
396 znode_phys_t *znp = data;
397 int error = 0;
398
399 /*
400 * Is it a valid type of object to track?
401 */
402 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
403 return (ENOENT);
404
405 /*
406 * If we have a NULL data pointer
407 * then assume the id's aren't changing and
408 * return EEXIST to the dmu to let it know to
409 * use the same ids
410 */
411 if (data == NULL)
412 return (EEXIST);
413
414 if (bonustype == DMU_OT_ZNODE) {
415 *userp = znp->zp_uid;
416 *groupp = znp->zp_gid;
417 } else {
418 int hdrsize;
419
420 ASSERT(bonustype == DMU_OT_SA);
421 hdrsize = sa_hdrsize(data);
422
423 if (hdrsize != 0) {
424 *userp = *((uint64_t *)((uintptr_t)data + hdrsize +
425 SA_UID_OFFSET));
426 *groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
427 SA_GID_OFFSET));
428 } else {
429 /*
430 * This should only happen for newly created
431 * files that haven't had the znode data filled
432 * in yet.
433 */
434 *userp = 0;
435 *groupp = 0;
436 }
437 }
438 return (error);
439 }
440
441 static void
442 fuidstr_to_sid(zfs_sb_t *zsb, const char *fuidstr,
443 char *domainbuf, int buflen, uid_t *ridp)
444 {
445 uint64_t fuid;
446 const char *domain;
447
448 fuid = strtonum(fuidstr, NULL);
449
450 domain = zfs_fuid_find_by_idx(zsb, FUID_INDEX(fuid));
451 if (domain)
452 (void) strlcpy(domainbuf, domain, buflen);
453 else
454 domainbuf[0] = '\0';
455 *ridp = FUID_RID(fuid);
456 }
457
458 static uint64_t
459 zfs_userquota_prop_to_obj(zfs_sb_t *zsb, zfs_userquota_prop_t type)
460 {
461 switch (type) {
462 case ZFS_PROP_USERUSED:
463 return (DMU_USERUSED_OBJECT);
464 case ZFS_PROP_GROUPUSED:
465 return (DMU_GROUPUSED_OBJECT);
466 case ZFS_PROP_USERQUOTA:
467 return (zsb->z_userquota_obj);
468 case ZFS_PROP_GROUPQUOTA:
469 return (zsb->z_groupquota_obj);
470 default:
471 return (ENOTSUP);
472 }
473 return (0);
474 }
475
476 int
477 zfs_userspace_many(zfs_sb_t *zsb, zfs_userquota_prop_t type,
478 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
479 {
480 int error;
481 zap_cursor_t zc;
482 zap_attribute_t za;
483 zfs_useracct_t *buf = vbuf;
484 uint64_t obj;
485
486 if (!dmu_objset_userspace_present(zsb->z_os))
487 return (ENOTSUP);
488
489 obj = zfs_userquota_prop_to_obj(zsb, type);
490 if (obj == 0) {
491 *bufsizep = 0;
492 return (0);
493 }
494
495 for (zap_cursor_init_serialized(&zc, zsb->z_os, obj, *cookiep);
496 (error = zap_cursor_retrieve(&zc, &za)) == 0;
497 zap_cursor_advance(&zc)) {
498 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
499 *bufsizep)
500 break;
501
502 fuidstr_to_sid(zsb, za.za_name,
503 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
504
505 buf->zu_space = za.za_first_integer;
506 buf++;
507 }
508 if (error == ENOENT)
509 error = 0;
510
511 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
512 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
513 *cookiep = zap_cursor_serialize(&zc);
514 zap_cursor_fini(&zc);
515 return (error);
516 }
517 EXPORT_SYMBOL(zfs_userspace_many);
518
519 /*
520 * buf must be big enough (eg, 32 bytes)
521 */
522 static int
523 id_to_fuidstr(zfs_sb_t *zsb, const char *domain, uid_t rid,
524 char *buf, boolean_t addok)
525 {
526 uint64_t fuid;
527 int domainid = 0;
528
529 if (domain && domain[0]) {
530 domainid = zfs_fuid_find_by_domain(zsb, domain, NULL, addok);
531 if (domainid == -1)
532 return (ENOENT);
533 }
534 fuid = FUID_ENCODE(domainid, rid);
535 (void) sprintf(buf, "%llx", (longlong_t)fuid);
536 return (0);
537 }
538
539 int
540 zfs_userspace_one(zfs_sb_t *zsb, zfs_userquota_prop_t type,
541 const char *domain, uint64_t rid, uint64_t *valp)
542 {
543 char buf[32];
544 int err;
545 uint64_t obj;
546
547 *valp = 0;
548
549 if (!dmu_objset_userspace_present(zsb->z_os))
550 return (ENOTSUP);
551
552 obj = zfs_userquota_prop_to_obj(zsb, type);
553 if (obj == 0)
554 return (0);
555
556 err = id_to_fuidstr(zsb, domain, rid, buf, B_FALSE);
557 if (err)
558 return (err);
559
560 err = zap_lookup(zsb->z_os, obj, buf, 8, 1, valp);
561 if (err == ENOENT)
562 err = 0;
563 return (err);
564 }
565 EXPORT_SYMBOL(zfs_userspace_one);
566
567 int
568 zfs_set_userquota(zfs_sb_t *zsb, zfs_userquota_prop_t type,
569 const char *domain, uint64_t rid, uint64_t quota)
570 {
571 char buf[32];
572 int err;
573 dmu_tx_t *tx;
574 uint64_t *objp;
575 boolean_t fuid_dirtied;
576
577 if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
578 return (EINVAL);
579
580 if (zsb->z_version < ZPL_VERSION_USERSPACE)
581 return (ENOTSUP);
582
583 objp = (type == ZFS_PROP_USERQUOTA) ? &zsb->z_userquota_obj :
584 &zsb->z_groupquota_obj;
585
586 err = id_to_fuidstr(zsb, domain, rid, buf, B_TRUE);
587 if (err)
588 return (err);
589 fuid_dirtied = zsb->z_fuid_dirty;
590
591 tx = dmu_tx_create(zsb->z_os);
592 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
593 if (*objp == 0) {
594 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
595 zfs_userquota_prop_prefixes[type]);
596 }
597 if (fuid_dirtied)
598 zfs_fuid_txhold(zsb, tx);
599 err = dmu_tx_assign(tx, TXG_WAIT);
600 if (err) {
601 dmu_tx_abort(tx);
602 return (err);
603 }
604
605 mutex_enter(&zsb->z_lock);
606 if (*objp == 0) {
607 *objp = zap_create(zsb->z_os, DMU_OT_USERGROUP_QUOTA,
608 DMU_OT_NONE, 0, tx);
609 VERIFY(0 == zap_add(zsb->z_os, MASTER_NODE_OBJ,
610 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
611 }
612 mutex_exit(&zsb->z_lock);
613
614 if (quota == 0) {
615 err = zap_remove(zsb->z_os, *objp, buf, tx);
616 if (err == ENOENT)
617 err = 0;
618 } else {
619 err = zap_update(zsb->z_os, *objp, buf, 8, 1, &quota, tx);
620 }
621 ASSERT(err == 0);
622 if (fuid_dirtied)
623 zfs_fuid_sync(zsb, tx);
624 dmu_tx_commit(tx);
625 return (err);
626 }
627 EXPORT_SYMBOL(zfs_set_userquota);
628
629 boolean_t
630 zfs_fuid_overquota(zfs_sb_t *zsb, boolean_t isgroup, uint64_t fuid)
631 {
632 char buf[32];
633 uint64_t used, quota, usedobj, quotaobj;
634 int err;
635
636 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
637 quotaobj = isgroup ? zsb->z_groupquota_obj : zsb->z_userquota_obj;
638
639 if (quotaobj == 0 || zsb->z_replay)
640 return (B_FALSE);
641
642 (void) sprintf(buf, "%llx", (longlong_t)fuid);
643 err = zap_lookup(zsb->z_os, quotaobj, buf, 8, 1, &quota);
644 if (err != 0)
645 return (B_FALSE);
646
647 err = zap_lookup(zsb->z_os, usedobj, buf, 8, 1, &used);
648 if (err != 0)
649 return (B_FALSE);
650 return (used >= quota);
651 }
652 EXPORT_SYMBOL(zfs_fuid_overquota);
653
654 boolean_t
655 zfs_owner_overquota(zfs_sb_t *zsb, znode_t *zp, boolean_t isgroup)
656 {
657 uint64_t fuid;
658 uint64_t quotaobj;
659
660 quotaobj = isgroup ? zsb->z_groupquota_obj : zsb->z_userquota_obj;
661
662 fuid = isgroup ? zp->z_gid : zp->z_uid;
663
664 if (quotaobj == 0 || zsb->z_replay)
665 return (B_FALSE);
666
667 return (zfs_fuid_overquota(zsb, isgroup, fuid));
668 }
669 EXPORT_SYMBOL(zfs_owner_overquota);
670
671 int
672 zfs_sb_create(const char *osname, zfs_sb_t **zsbp)
673 {
674 objset_t *os;
675 zfs_sb_t *zsb;
676 uint64_t zval;
677 int i, error;
678 uint64_t sa_obj;
679
680 zsb = kmem_zalloc(sizeof (zfs_sb_t), KM_SLEEP);
681
682 /*
683 * We claim to always be readonly so we can open snapshots;
684 * other ZPL code will prevent us from writing to snapshots.
685 */
686 error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zsb, &os);
687 if (error) {
688 kmem_free(zsb, sizeof (zfs_sb_t));
689 return (error);
690 }
691
692 /*
693 * Initialize the zfs-specific filesystem structure.
694 * Should probably make this a kmem cache, shuffle fields,
695 * and just bzero up to z_hold_mtx[].
696 */
697 zsb->z_vfs = NULL;
698 zsb->z_parent = zsb;
699 zsb->z_max_blksz = SPA_MAXBLOCKSIZE;
700 zsb->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
701 zsb->z_os = os;
702
703 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zsb->z_version);
704 if (error) {
705 goto out;
706 } else if (zsb->z_version >
707 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
708 (void) printk("Can't mount a version %lld file system "
709 "on a version %lld pool\n. Pool must be upgraded to mount "
710 "this file system.", (u_longlong_t)zsb->z_version,
711 (u_longlong_t)spa_version(dmu_objset_spa(os)));
712 error = ENOTSUP;
713 goto out;
714 }
715 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
716 goto out;
717 zsb->z_norm = (int)zval;
718
719 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
720 goto out;
721 zsb->z_utf8 = (zval != 0);
722
723 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
724 goto out;
725 zsb->z_case = (uint_t)zval;
726
727 /*
728 * Fold case on file systems that are always or sometimes case
729 * insensitive.
730 */
731 if (zsb->z_case == ZFS_CASE_INSENSITIVE ||
732 zsb->z_case == ZFS_CASE_MIXED)
733 zsb->z_norm |= U8_TEXTPREP_TOUPPER;
734
735 zsb->z_use_fuids = USE_FUIDS(zsb->z_version, zsb->z_os);
736 zsb->z_use_sa = USE_SA(zsb->z_version, zsb->z_os);
737
738 if (zsb->z_use_sa) {
739 /* should either have both of these objects or none */
740 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
741 &sa_obj);
742 if (error)
743 return (error);
744 } else {
745 /*
746 * Pre SA versions file systems should never touch
747 * either the attribute registration or layout objects.
748 */
749 sa_obj = 0;
750 }
751
752 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
753 &zsb->z_attr_table);
754 if (error)
755 goto out;
756
757 if (zsb->z_version >= ZPL_VERSION_SA)
758 sa_register_update_callback(os, zfs_sa_upgrade);
759
760 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
761 &zsb->z_root);
762 if (error)
763 goto out;
764 ASSERT(zsb->z_root != 0);
765
766 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
767 &zsb->z_unlinkedobj);
768 if (error)
769 goto out;
770
771 error = zap_lookup(os, MASTER_NODE_OBJ,
772 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
773 8, 1, &zsb->z_userquota_obj);
774 if (error && error != ENOENT)
775 goto out;
776
777 error = zap_lookup(os, MASTER_NODE_OBJ,
778 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
779 8, 1, &zsb->z_groupquota_obj);
780 if (error && error != ENOENT)
781 goto out;
782
783 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
784 &zsb->z_fuid_obj);
785 if (error && error != ENOENT)
786 goto out;
787
788 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
789 &zsb->z_shares_dir);
790 if (error && error != ENOENT)
791 goto out;
792
793 mutex_init(&zsb->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
794 mutex_init(&zsb->z_lock, NULL, MUTEX_DEFAULT, NULL);
795 list_create(&zsb->z_all_znodes, sizeof (znode_t),
796 offsetof(znode_t, z_link_node));
797 rrw_init(&zsb->z_teardown_lock);
798 rw_init(&zsb->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
799 rw_init(&zsb->z_fuid_lock, NULL, RW_DEFAULT, NULL);
800 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
801 mutex_init(&zsb->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
802
803 *zsbp = zsb;
804 return (0);
805
806 out:
807 dmu_objset_disown(os, zsb);
808 *zsbp = NULL;
809 kmem_free(zsb, sizeof (zfs_sb_t));
810 return (error);
811 }
812
813 static int
814 zfs_sb_setup(zfs_sb_t *zsb, boolean_t mounting)
815 {
816 int error;
817
818 error = zfs_register_callbacks(zsb);
819 if (error)
820 return (error);
821
822 /*
823 * Set the objset user_ptr to track its zsb.
824 */
825 mutex_enter(&zsb->z_os->os_user_ptr_lock);
826 dmu_objset_set_user(zsb->z_os, zsb);
827 mutex_exit(&zsb->z_os->os_user_ptr_lock);
828
829 zsb->z_log = zil_open(zsb->z_os, zfs_get_data);
830
831 /*
832 * If we are not mounting (ie: online recv), then we don't
833 * have to worry about replaying the log as we blocked all
834 * operations out since we closed the ZIL.
835 */
836 if (mounting) {
837 boolean_t readonly;
838
839 /*
840 * During replay we remove the read only flag to
841 * allow replays to succeed.
842 */
843 readonly = zsb->z_vfs->mnt_flags & MNT_READONLY;
844 if (readonly != 0)
845 zsb->z_vfs->mnt_flags &= ~MNT_READONLY;
846 else
847 zfs_unlinked_drain(zsb);
848
849 /*
850 * Parse and replay the intent log.
851 *
852 * Because of ziltest, this must be done after
853 * zfs_unlinked_drain(). (Further note: ziltest
854 * doesn't use readonly mounts, where
855 * zfs_unlinked_drain() isn't called.) This is because
856 * ziltest causes spa_sync() to think it's committed,
857 * but actually it is not, so the intent log contains
858 * many txg's worth of changes.
859 *
860 * In particular, if object N is in the unlinked set in
861 * the last txg to actually sync, then it could be
862 * actually freed in a later txg and then reallocated
863 * in a yet later txg. This would write a "create
864 * object N" record to the intent log. Normally, this
865 * would be fine because the spa_sync() would have
866 * written out the fact that object N is free, before
867 * we could write the "create object N" intent log
868 * record.
869 *
870 * But when we are in ziltest mode, we advance the "open
871 * txg" without actually spa_sync()-ing the changes to
872 * disk. So we would see that object N is still
873 * allocated and in the unlinked set, and there is an
874 * intent log record saying to allocate it.
875 */
876 if (spa_writeable(dmu_objset_spa(zsb->z_os))) {
877 if (zil_replay_disable) {
878 zil_destroy(zsb->z_log, B_FALSE);
879 } else {
880 zsb->z_replay = B_TRUE;
881 zil_replay(zsb->z_os, zsb,
882 zfs_replay_vector);
883 zsb->z_replay = B_FALSE;
884 }
885 }
886 zsb->z_vfs->mnt_flags |= readonly; /* restore readonly bit */
887 }
888
889 return (0);
890 }
891
892 void
893 zfs_sb_free(zfs_sb_t *zsb)
894 {
895 int i;
896
897 zfs_fuid_destroy(zsb);
898
899 mutex_destroy(&zsb->z_znodes_lock);
900 mutex_destroy(&zsb->z_lock);
901 list_destroy(&zsb->z_all_znodes);
902 rrw_destroy(&zsb->z_teardown_lock);
903 rw_destroy(&zsb->z_teardown_inactive_lock);
904 rw_destroy(&zsb->z_fuid_lock);
905 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
906 mutex_destroy(&zsb->z_hold_mtx[i]);
907 kmem_free(zsb, sizeof (zfs_sb_t));
908 }
909
910 static void
911 zfs_set_fuid_feature(zfs_sb_t *zsb)
912 {
913 zsb->z_use_fuids = USE_FUIDS(zsb->z_version, zsb->z_os);
914 zsb->z_use_sa = USE_SA(zsb->z_version, zsb->z_os);
915 }
916
917 void
918 zfs_unregister_callbacks(zfs_sb_t *zsb)
919 {
920 objset_t *os = zsb->z_os;
921 struct dsl_dataset *ds;
922
923 /*
924 * Unregister properties.
925 */
926 if (!dmu_objset_is_snapshot(os)) {
927 ds = dmu_objset_ds(os);
928 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
929 zsb) == 0);
930
931 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
932 zsb) == 0);
933
934 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
935 zsb) == 0);
936
937 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
938 zsb) == 0);
939
940 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
941 zsb) == 0);
942
943 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
944 zsb) == 0);
945
946 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
947 zsb) == 0);
948
949 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
950 zsb) == 0);
951
952 VERIFY(dsl_prop_unregister(ds, "aclinherit",
953 acl_inherit_changed_cb, zsb) == 0);
954
955 VERIFY(dsl_prop_unregister(ds, "vscan",
956 vscan_changed_cb, zsb) == 0);
957 }
958 }
959 EXPORT_SYMBOL(zfs_unregister_callbacks);
960
961 #ifdef HAVE_MLSLABEL
962 /*
963 * zfs_check_global_label:
964 * Check that the hex label string is appropriate for the dataset
965 * being mounted into the global_zone proper.
966 *
967 * Return an error if the hex label string is not default or
968 * admin_low/admin_high. For admin_low labels, the corresponding
969 * dataset must be readonly.
970 */
971 int
972 zfs_check_global_label(const char *dsname, const char *hexsl)
973 {
974 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
975 return (0);
976 if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
977 return (0);
978 if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
979 /* must be readonly */
980 uint64_t rdonly;
981
982 if (dsl_prop_get_integer(dsname,
983 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
984 return (EACCES);
985 return (rdonly ? 0 : EACCES);
986 }
987 return (EACCES);
988 }
989 #endif /* HAVE_MLSLABEL */
990
991 int
992 zfs_statvfs(struct dentry *dentry, struct kstatfs *statp)
993 {
994 zfs_sb_t *zsb = dentry->d_sb->s_fs_info;
995 uint64_t refdbytes, availbytes, usedobjs, availobjs;
996 uint32_t bshift;
997
998 ZFS_ENTER(zsb);
999
1000 dmu_objset_space(zsb->z_os,
1001 &refdbytes, &availbytes, &usedobjs, &availobjs);
1002
1003 /*
1004 * The underlying storage pool actually uses multiple block
1005 * size. Under Solaris frsize (fragment size) is reported as
1006 * the smallest block size we support, and bsize (block size)
1007 * as the filesystem's maximum block size. Unfortunately,
1008 * under Linux the fragment size and block size are often used
1009 * interchangeably. Thus we are forced to report both of them
1010 * as the filesystem's maximum block size.
1011 */
1012 statp->f_frsize = zsb->z_max_blksz;
1013 statp->f_bsize = zsb->z_max_blksz;
1014 bshift = fls(statp->f_bsize) - 1;
1015
1016 /*
1017 * The following report "total" blocks of various kinds in
1018 * the file system, but reported in terms of f_bsize - the
1019 * "preferred" size.
1020 */
1021
1022 statp->f_blocks = (refdbytes + availbytes) >> bshift;
1023 statp->f_bfree = availbytes >> bshift;
1024 statp->f_bavail = statp->f_bfree; /* no root reservation */
1025
1026 /*
1027 * statvfs() should really be called statufs(), because it assumes
1028 * static metadata. ZFS doesn't preallocate files, so the best
1029 * we can do is report the max that could possibly fit in f_files,
1030 * and that minus the number actually used in f_ffree.
1031 * For f_ffree, report the smaller of the number of object available
1032 * and the number of blocks (each object will take at least a block).
1033 */
1034 statp->f_ffree = MIN(availobjs, statp->f_bfree);
1035 statp->f_files = statp->f_ffree + usedobjs;
1036 statp->f_fsid.val[0] = dentry->d_sb->s_dev;
1037 statp->f_fsid.val[1] = 0;
1038 statp->f_type = ZFS_SUPER_MAGIC;
1039 statp->f_namelen = ZFS_MAXNAMELEN;
1040
1041 /*
1042 * We have all of 40 characters to stuff a string here.
1043 * Is there anything useful we could/should provide?
1044 */
1045 bzero(statp->f_spare, sizeof (statp->f_spare));
1046
1047 ZFS_EXIT(zsb);
1048 return (0);
1049 }
1050 EXPORT_SYMBOL(zfs_statvfs);
1051
1052 int
1053 zfs_root(zfs_sb_t *zsb, struct inode **ipp)
1054 {
1055 znode_t *rootzp;
1056 int error;
1057
1058 ZFS_ENTER(zsb);
1059
1060 error = zfs_zget(zsb, zsb->z_root, &rootzp);
1061 if (error == 0)
1062 *ipp = ZTOI(rootzp);
1063
1064 ZFS_EXIT(zsb);
1065 return (error);
1066 }
1067 EXPORT_SYMBOL(zfs_root);
1068
1069 /*
1070 * Teardown the zfs_sb_t::z_os.
1071 *
1072 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1073 * and 'z_teardown_inactive_lock' held.
1074 */
1075 int
1076 zfsvfs_teardown(zfs_sb_t *zsb, boolean_t unmounting)
1077 {
1078 znode_t *zp;
1079
1080 rrw_enter(&zsb->z_teardown_lock, RW_WRITER, FTAG);
1081
1082 if (!unmounting) {
1083 /*
1084 * We purge the parent filesystem's super block as the
1085 * parent filesystem and all of its snapshots have their
1086 * inode's super block set to the parent's filesystem's
1087 * super block. Note, 'z_parent' is self referential
1088 * for non-snapshots.
1089 */
1090 shrink_dcache_sb(zsb->z_parent->z_sb);
1091 invalidate_inodes(zsb->z_parent->z_sb);
1092 }
1093
1094 /*
1095 * Close the zil. NB: Can't close the zil while zfs_inactive
1096 * threads are blocked as zil_close can call zfs_inactive.
1097 */
1098 if (zsb->z_log) {
1099 zil_close(zsb->z_log);
1100 zsb->z_log = NULL;
1101 }
1102
1103 rw_enter(&zsb->z_teardown_inactive_lock, RW_WRITER);
1104
1105 /*
1106 * If we are not unmounting (ie: online recv) and someone already
1107 * unmounted this file system while we were doing the switcheroo,
1108 * or a reopen of z_os failed then just bail out now.
1109 */
1110 if (!unmounting && (zsb->z_unmounted || zsb->z_os == NULL)) {
1111 rw_exit(&zsb->z_teardown_inactive_lock);
1112 rrw_exit(&zsb->z_teardown_lock, FTAG);
1113 return (EIO);
1114 }
1115
1116 /*
1117 * At this point there are no vops active, and any new vops will
1118 * fail with EIO since we have z_teardown_lock for writer (only
1119 * relavent for forced unmount).
1120 *
1121 * Release all holds on dbufs.
1122 */
1123 mutex_enter(&zsb->z_znodes_lock);
1124 for (zp = list_head(&zsb->z_all_znodes); zp != NULL;
1125 zp = list_next(&zsb->z_all_znodes, zp))
1126 if (zp->z_sa_hdl) {
1127 ASSERT(atomic_read(&ZTOI(zp)->i_count) > 0);
1128 zfs_znode_dmu_fini(zp);
1129 }
1130 mutex_exit(&zsb->z_znodes_lock);
1131
1132 /*
1133 * If we are unmounting, set the unmounted flag and let new vops
1134 * unblock. zfs_inactive will have the unmounted behavior, and all
1135 * other vops will fail with EIO.
1136 */
1137 if (unmounting) {
1138 zsb->z_unmounted = B_TRUE;
1139 rrw_exit(&zsb->z_teardown_lock, FTAG);
1140 rw_exit(&zsb->z_teardown_inactive_lock);
1141 }
1142
1143 /*
1144 * z_os will be NULL if there was an error in attempting to reopen
1145 * zsb, so just return as the properties had already been
1146 *
1147 * unregistered and cached data had been evicted before.
1148 */
1149 if (zsb->z_os == NULL)
1150 return (0);
1151
1152 /*
1153 * Unregister properties.
1154 */
1155 zfs_unregister_callbacks(zsb);
1156
1157 /*
1158 * Evict cached data
1159 */
1160 if (dmu_objset_is_dirty_anywhere(zsb->z_os))
1161 if (!(zsb->z_vfs->mnt_flags & MNT_READONLY))
1162 txg_wait_synced(dmu_objset_pool(zsb->z_os), 0);
1163 (void) dmu_objset_evict_dbufs(zsb->z_os);
1164
1165 return (0);
1166 }
1167
1168 int
1169 zfs_domount(struct super_block *sb, void *data, int silent)
1170 {
1171 zpl_mount_data_t *zmd = data;
1172 const char *osname = zmd->z_osname;
1173 zfs_sb_t *zsb;
1174 struct inode *root_inode;
1175 uint64_t recordsize;
1176 int error;
1177
1178 /*
1179 * Linux allows multiple vfs mounts per super block. However, the
1180 * zfs_sb_t only contains a pointer for a single vfs mount. This
1181 * back reference in the long term could be extended to a list of
1182 * vfs mounts if a hook were added to the kernel to notify us when
1183 * a vfsmount is destroyed. Until then we must limit the number
1184 * of mounts per super block to one.
1185 */
1186 if (atomic_read(&sb->s_active) > 1)
1187 return (EBUSY);
1188
1189 error = zfs_sb_create(osname, &zsb);
1190 if (error)
1191 return (error);
1192
1193 if ((error = dsl_prop_get_integer(osname, "recordsize",
1194 &recordsize, NULL)))
1195 goto out;
1196
1197 zsb->z_sb = sb;
1198 zsb->z_vfs = zmd->z_vfs;
1199 sb->s_fs_info = zsb;
1200 sb->s_magic = ZFS_SUPER_MAGIC;
1201 sb->s_maxbytes = MAX_LFS_FILESIZE;
1202 sb->s_time_gran = 1;
1203 sb->s_blocksize = recordsize;
1204 sb->s_blocksize_bits = ilog2(recordsize);
1205
1206 /* Set callback operations for the file system. */
1207 sb->s_op = &zpl_super_operations;
1208 sb->s_xattr = zpl_xattr_handlers;
1209 #ifdef HAVE_EXPORTS
1210 sb->s_export_op = &zpl_export_operations;
1211 #endif /* HAVE_EXPORTS */
1212
1213 /* Set features for file system. */
1214 zfs_set_fuid_feature(zsb);
1215
1216 if (dmu_objset_is_snapshot(zsb->z_os)) {
1217 uint64_t pval;
1218
1219 atime_changed_cb(zsb, B_FALSE);
1220 readonly_changed_cb(zsb, B_TRUE);
1221 if ((error = dsl_prop_get_integer(osname,"xattr",&pval,NULL)))
1222 goto out;
1223 xattr_changed_cb(zsb, pval);
1224 zsb->z_issnap = B_TRUE;
1225 zsb->z_os->os_sync = ZFS_SYNC_DISABLED;
1226
1227 mutex_enter(&zsb->z_os->os_user_ptr_lock);
1228 dmu_objset_set_user(zsb->z_os, zsb);
1229 mutex_exit(&zsb->z_os->os_user_ptr_lock);
1230 } else {
1231 error = zfs_sb_setup(zsb, B_TRUE);
1232 #ifdef HAVE_SNAPSHOT
1233 (void) zfs_snap_create(zsb);
1234 #endif /* HAVE_SNAPSHOT */
1235 }
1236
1237 /* Allocate a root inode for the filesystem. */
1238 error = zfs_root(zsb, &root_inode);
1239 if (error) {
1240 (void) zfs_umount(sb);
1241 goto out;
1242 }
1243
1244 /* Allocate a root dentry for the filesystem */
1245 sb->s_root = d_alloc_root(root_inode);
1246 if (sb->s_root == NULL) {
1247 (void) zfs_umount(sb);
1248 error = ENOMEM;
1249 goto out;
1250 }
1251 out:
1252 if (error) {
1253 dmu_objset_disown(zsb->z_os, zsb);
1254 zfs_sb_free(zsb);
1255 }
1256
1257 return (error);
1258 }
1259 EXPORT_SYMBOL(zfs_domount);
1260
1261 /*ARGSUSED*/
1262 int
1263 zfs_umount(struct super_block *sb)
1264 {
1265 zfs_sb_t *zsb = sb->s_fs_info;
1266 objset_t *os;
1267
1268 VERIFY(zfsvfs_teardown(zsb, B_TRUE) == 0);
1269 os = zsb->z_os;
1270
1271 /*
1272 * z_os will be NULL if there was an error in
1273 * attempting to reopen zsb.
1274 */
1275 if (os != NULL) {
1276 /*
1277 * Unset the objset user_ptr.
1278 */
1279 mutex_enter(&os->os_user_ptr_lock);
1280 dmu_objset_set_user(os, NULL);
1281 mutex_exit(&os->os_user_ptr_lock);
1282
1283 /*
1284 * Finally release the objset
1285 */
1286 dmu_objset_disown(os, zsb);
1287 }
1288
1289 zfs_sb_free(zsb);
1290 return (0);
1291 }
1292 EXPORT_SYMBOL(zfs_umount);
1293
1294 int
1295 zfs_remount(struct super_block *sb, int *flags, char *data)
1296 {
1297 zfs_sb_t *zsb = sb->s_fs_info;
1298 boolean_t readonly = B_FALSE;
1299 boolean_t setuid = B_TRUE;
1300 boolean_t exec = B_TRUE;
1301 boolean_t devices = B_TRUE;
1302 boolean_t atime = B_TRUE;
1303
1304 if (*flags & MS_RDONLY)
1305 readonly = B_TRUE;
1306
1307 if (*flags & MS_NOSUID) {
1308 devices = B_FALSE;
1309 setuid = B_FALSE;
1310 } else {
1311 if (*flags & MS_NODEV)
1312 devices = B_FALSE;
1313 }
1314
1315 if (*flags & MS_NOEXEC)
1316 exec = B_FALSE;
1317
1318 if (*flags & MS_NOATIME)
1319 atime = B_FALSE;
1320
1321 /*
1322 * Invoke our callbacks to set required flags.
1323 */
1324 readonly_changed_cb(zsb, readonly);
1325 setuid_changed_cb(zsb, setuid);
1326 exec_changed_cb(zsb, exec);
1327 devices_changed_cb(zsb, devices);
1328 atime_changed_cb(zsb, atime);
1329
1330 return (0);
1331 }
1332 EXPORT_SYMBOL(zfs_remount);
1333
1334 int
1335 zfs_vget(struct vfsmount *vfsp, struct inode **ipp, fid_t *fidp)
1336 {
1337 zfs_sb_t *zsb = VTOZSB(vfsp);
1338 znode_t *zp;
1339 uint64_t object = 0;
1340 uint64_t fid_gen = 0;
1341 uint64_t gen_mask;
1342 uint64_t zp_gen;
1343 int i, err;
1344
1345 *ipp = NULL;
1346
1347 ZFS_ENTER(zsb);
1348
1349 if (fidp->fid_len == LONG_FID_LEN) {
1350 zfid_long_t *zlfid = (zfid_long_t *)fidp;
1351 uint64_t objsetid = 0;
1352 uint64_t setgen = 0;
1353
1354 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1355 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1356
1357 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1358 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1359
1360 ZFS_EXIT(zsb);
1361
1362 #ifdef HAVE_SNAPSHOT
1363 err = zfsctl_lookup_objset(vfsp, objsetid, &zsb);
1364 if (err)
1365 return (EINVAL);
1366 #endif /* HAVE_SNAPSHOT */
1367 ZFS_ENTER(zsb);
1368 }
1369
1370 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1371 zfid_short_t *zfid = (zfid_short_t *)fidp;
1372
1373 for (i = 0; i < sizeof (zfid->zf_object); i++)
1374 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1375
1376 for (i = 0; i < sizeof (zfid->zf_gen); i++)
1377 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1378 } else {
1379 ZFS_EXIT(zsb);
1380 return (EINVAL);
1381 }
1382
1383 #ifdef HAVE_SNAPSHOT
1384 /* A zero fid_gen means we are in the .zfs control directories */
1385 if (fid_gen == 0 &&
1386 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1387 *ipp = zsb->z_ctldir;
1388 ASSERT(*ipp != NULL);
1389 if (object == ZFSCTL_INO_SNAPDIR) {
1390 VERIFY(zfsctl_root_lookup(*ipp, "snapshot", ipp, NULL,
1391 0, NULL, NULL, NULL, NULL, NULL) == 0);
1392 } else {
1393 igrab(*ipp);
1394 }
1395 ZFS_EXIT(zsb);
1396 return (0);
1397 }
1398 #endif /* HAVE_SNAPSHOT */
1399
1400 gen_mask = -1ULL >> (64 - 8 * i);
1401
1402 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
1403 if ((err = zfs_zget(zsb, object, &zp))) {
1404 ZFS_EXIT(zsb);
1405 return (err);
1406 }
1407 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zsb), &zp_gen,
1408 sizeof (uint64_t));
1409 zp_gen = zp_gen & gen_mask;
1410 if (zp_gen == 0)
1411 zp_gen = 1;
1412 if (zp->z_unlinked || zp_gen != fid_gen) {
1413 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
1414 iput(ZTOI(zp));
1415 ZFS_EXIT(zsb);
1416 return (EINVAL);
1417 }
1418
1419 *ipp = ZTOI(zp);
1420 if (*ipp)
1421 zfs_inode_update(ITOZ(*ipp));
1422
1423 ZFS_EXIT(zsb);
1424 return (0);
1425 }
1426 EXPORT_SYMBOL(zfs_vget);
1427
1428 /*
1429 * Block out VOPs and close zfs_sb_t::z_os
1430 *
1431 * Note, if successful, then we return with the 'z_teardown_lock' and
1432 * 'z_teardown_inactive_lock' write held.
1433 */
1434 int
1435 zfs_suspend_fs(zfs_sb_t *zsb)
1436 {
1437 int error;
1438
1439 if ((error = zfsvfs_teardown(zsb, B_FALSE)) != 0)
1440 return (error);
1441 dmu_objset_disown(zsb->z_os, zsb);
1442
1443 return (0);
1444 }
1445 EXPORT_SYMBOL(zfs_suspend_fs);
1446
1447 /*
1448 * Reopen zfs_sb_t::z_os and release VOPs.
1449 */
1450 int
1451 zfs_resume_fs(zfs_sb_t *zsb, const char *osname)
1452 {
1453 int err, err2;
1454
1455 ASSERT(RRW_WRITE_HELD(&zsb->z_teardown_lock));
1456 ASSERT(RW_WRITE_HELD(&zsb->z_teardown_inactive_lock));
1457
1458 err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zsb, &zsb->z_os);
1459 if (err) {
1460 zsb->z_os = NULL;
1461 } else {
1462 znode_t *zp;
1463 uint64_t sa_obj = 0;
1464
1465 err2 = zap_lookup(zsb->z_os, MASTER_NODE_OBJ,
1466 ZFS_SA_ATTRS, 8, 1, &sa_obj);
1467
1468 if ((err || err2) && zsb->z_version >= ZPL_VERSION_SA)
1469 goto bail;
1470
1471
1472 if ((err = sa_setup(zsb->z_os, sa_obj,
1473 zfs_attr_table, ZPL_END, &zsb->z_attr_table)) != 0)
1474 goto bail;
1475
1476 VERIFY(zfs_sb_setup(zsb, B_FALSE) == 0);
1477
1478 /*
1479 * Attempt to re-establish all the active znodes with
1480 * their dbufs. If a zfs_rezget() fails, then we'll let
1481 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
1482 * when they try to use their znode.
1483 */
1484 mutex_enter(&zsb->z_znodes_lock);
1485 for (zp = list_head(&zsb->z_all_znodes); zp;
1486 zp = list_next(&zsb->z_all_znodes, zp)) {
1487 (void) zfs_rezget(zp);
1488 }
1489 mutex_exit(&zsb->z_znodes_lock);
1490
1491 }
1492
1493 bail:
1494 /* release the VOPs */
1495 rw_exit(&zsb->z_teardown_inactive_lock);
1496 rrw_exit(&zsb->z_teardown_lock, FTAG);
1497
1498 if (err) {
1499 /*
1500 * Since we couldn't reopen zfs_sb_t::z_os, force
1501 * unmount this file system.
1502 */
1503 (void) zfs_umount(zsb->z_sb);
1504 }
1505 return (err);
1506 }
1507 EXPORT_SYMBOL(zfs_resume_fs);
1508
1509 int
1510 zfs_set_version(zfs_sb_t *zsb, uint64_t newvers)
1511 {
1512 int error;
1513 objset_t *os = zsb->z_os;
1514 dmu_tx_t *tx;
1515
1516 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
1517 return (EINVAL);
1518
1519 if (newvers < zsb->z_version)
1520 return (EINVAL);
1521
1522 if (zfs_spa_version_map(newvers) >
1523 spa_version(dmu_objset_spa(zsb->z_os)))
1524 return (ENOTSUP);
1525
1526 tx = dmu_tx_create(os);
1527 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
1528 if (newvers >= ZPL_VERSION_SA && !zsb->z_use_sa) {
1529 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
1530 ZFS_SA_ATTRS);
1531 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1532 }
1533 error = dmu_tx_assign(tx, TXG_WAIT);
1534 if (error) {
1535 dmu_tx_abort(tx);
1536 return (error);
1537 }
1538
1539 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
1540 8, 1, &newvers, tx);
1541
1542 if (error) {
1543 dmu_tx_commit(tx);
1544 return (error);
1545 }
1546
1547 if (newvers >= ZPL_VERSION_SA && !zsb->z_use_sa) {
1548 uint64_t sa_obj;
1549
1550 ASSERT3U(spa_version(dmu_objset_spa(zsb->z_os)), >=,
1551 SPA_VERSION_SA);
1552 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
1553 DMU_OT_NONE, 0, tx);
1554
1555 error = zap_add(os, MASTER_NODE_OBJ,
1556 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
1557 ASSERT3U(error, ==, 0);
1558
1559 VERIFY(0 == sa_set_sa_object(os, sa_obj));
1560 sa_register_update_callback(os, zfs_sa_upgrade);
1561 }
1562
1563 spa_history_log_internal(LOG_DS_UPGRADE,
1564 dmu_objset_spa(os), tx, "oldver=%llu newver=%llu dataset = %llu",
1565 zsb->z_version, newvers, dmu_objset_id(os));
1566
1567 dmu_tx_commit(tx);
1568
1569 zsb->z_version = newvers;
1570
1571 if (zsb->z_version >= ZPL_VERSION_FUID)
1572 zfs_set_fuid_feature(zsb);
1573
1574 return (0);
1575 }
1576 EXPORT_SYMBOL(zfs_set_version);
1577
1578 /*
1579 * Read a property stored within the master node.
1580 */
1581 int
1582 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
1583 {
1584 const char *pname;
1585 int error = ENOENT;
1586
1587 /*
1588 * Look up the file system's value for the property. For the
1589 * version property, we look up a slightly different string.
1590 */
1591 if (prop == ZFS_PROP_VERSION)
1592 pname = ZPL_VERSION_STR;
1593 else
1594 pname = zfs_prop_to_name(prop);
1595
1596 if (os != NULL)
1597 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
1598
1599 if (error == ENOENT) {
1600 /* No value set, use the default value */
1601 switch (prop) {
1602 case ZFS_PROP_VERSION:
1603 *value = ZPL_VERSION;
1604 break;
1605 case ZFS_PROP_NORMALIZE:
1606 case ZFS_PROP_UTF8ONLY:
1607 *value = 0;
1608 break;
1609 case ZFS_PROP_CASE:
1610 *value = ZFS_CASE_SENSITIVE;
1611 break;
1612 default:
1613 return (error);
1614 }
1615 error = 0;
1616 }
1617 return (error);
1618 }
1619
1620 void
1621 zfs_init(void)
1622 {
1623 zfs_znode_init();
1624 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
1625 register_filesystem(&zpl_fs_type);
1626 }
1627
1628 void
1629 zfs_fini(void)
1630 {
1631 unregister_filesystem(&zpl_fs_type);
1632 zfs_znode_fini();
1633 }