]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zfs_vnops.c
ABD changes for vectorized RAIDZ
[mirror_zfs.git] / module / zfs / zfs_vnops.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
24 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26 */
27
28 /* Portions Copyright 2007 Jeremy Teo */
29 /* Portions Copyright 2010 Robert Milkowski */
30
31
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/time.h>
35 #include <sys/systm.h>
36 #include <sys/sysmacros.h>
37 #include <sys/resource.h>
38 #include <sys/vfs.h>
39 #include <sys/vfs_opreg.h>
40 #include <sys/file.h>
41 #include <sys/stat.h>
42 #include <sys/kmem.h>
43 #include <sys/taskq.h>
44 #include <sys/uio.h>
45 #include <sys/vmsystm.h>
46 #include <sys/atomic.h>
47 #include <vm/pvn.h>
48 #include <sys/pathname.h>
49 #include <sys/cmn_err.h>
50 #include <sys/errno.h>
51 #include <sys/unistd.h>
52 #include <sys/zfs_dir.h>
53 #include <sys/zfs_acl.h>
54 #include <sys/zfs_ioctl.h>
55 #include <sys/fs/zfs.h>
56 #include <sys/dmu.h>
57 #include <sys/dmu_objset.h>
58 #include <sys/spa.h>
59 #include <sys/txg.h>
60 #include <sys/dbuf.h>
61 #include <sys/zap.h>
62 #include <sys/sa.h>
63 #include <sys/dirent.h>
64 #include <sys/policy.h>
65 #include <sys/sunddi.h>
66 #include <sys/sid.h>
67 #include <sys/mode.h>
68 #include "fs/fs_subr.h"
69 #include <sys/zfs_ctldir.h>
70 #include <sys/zfs_fuid.h>
71 #include <sys/zfs_sa.h>
72 #include <sys/zfs_vnops.h>
73 #include <sys/dnlc.h>
74 #include <sys/zfs_rlock.h>
75 #include <sys/extdirent.h>
76 #include <sys/kidmap.h>
77 #include <sys/cred.h>
78 #include <sys/attr.h>
79 #include <sys/zpl.h>
80
81 /*
82 * Programming rules.
83 *
84 * Each vnode op performs some logical unit of work. To do this, the ZPL must
85 * properly lock its in-core state, create a DMU transaction, do the work,
86 * record this work in the intent log (ZIL), commit the DMU transaction,
87 * and wait for the intent log to commit if it is a synchronous operation.
88 * Moreover, the vnode ops must work in both normal and log replay context.
89 * The ordering of events is important to avoid deadlocks and references
90 * to freed memory. The example below illustrates the following Big Rules:
91 *
92 * (1) A check must be made in each zfs thread for a mounted file system.
93 * This is done avoiding races using ZFS_ENTER(zsb).
94 * A ZFS_EXIT(zsb) is needed before all returns. Any znodes
95 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros
96 * can return EIO from the calling function.
97 *
98 * (2) iput() should always be the last thing except for zil_commit()
99 * (if necessary) and ZFS_EXIT(). This is for 3 reasons:
100 * First, if it's the last reference, the vnode/znode
101 * can be freed, so the zp may point to freed memory. Second, the last
102 * reference will call zfs_zinactive(), which may induce a lot of work --
103 * pushing cached pages (which acquires range locks) and syncing out
104 * cached atime changes. Third, zfs_zinactive() may require a new tx,
105 * which could deadlock the system if you were already holding one.
106 * If you must call iput() within a tx then use zfs_iput_async().
107 *
108 * (3) All range locks must be grabbed before calling dmu_tx_assign(),
109 * as they can span dmu_tx_assign() calls.
110 *
111 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
112 * dmu_tx_assign(). This is critical because we don't want to block
113 * while holding locks.
114 *
115 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This
116 * reduces lock contention and CPU usage when we must wait (note that if
117 * throughput is constrained by the storage, nearly every transaction
118 * must wait).
119 *
120 * Note, in particular, that if a lock is sometimes acquired before
121 * the tx assigns, and sometimes after (e.g. z_lock), then failing
122 * to use a non-blocking assign can deadlock the system. The scenario:
123 *
124 * Thread A has grabbed a lock before calling dmu_tx_assign().
125 * Thread B is in an already-assigned tx, and blocks for this lock.
126 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
127 * forever, because the previous txg can't quiesce until B's tx commits.
128 *
129 * If dmu_tx_assign() returns ERESTART and zsb->z_assign is TXG_NOWAIT,
130 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent
131 * calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT,
132 * to indicate that this operation has already called dmu_tx_wait().
133 * This will ensure that we don't retry forever, waiting a short bit
134 * each time.
135 *
136 * (5) If the operation succeeded, generate the intent log entry for it
137 * before dropping locks. This ensures that the ordering of events
138 * in the intent log matches the order in which they actually occurred.
139 * During ZIL replay the zfs_log_* functions will update the sequence
140 * number to indicate the zil transaction has replayed.
141 *
142 * (6) At the end of each vnode op, the DMU tx must always commit,
143 * regardless of whether there were any errors.
144 *
145 * (7) After dropping all locks, invoke zil_commit(zilog, foid)
146 * to ensure that synchronous semantics are provided when necessary.
147 *
148 * In general, this is how things should be ordered in each vnode op:
149 *
150 * ZFS_ENTER(zsb); // exit if unmounted
151 * top:
152 * zfs_dirent_lock(&dl, ...) // lock directory entry (may igrab())
153 * rw_enter(...); // grab any other locks you need
154 * tx = dmu_tx_create(...); // get DMU tx
155 * dmu_tx_hold_*(); // hold each object you might modify
156 * error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
157 * if (error) {
158 * rw_exit(...); // drop locks
159 * zfs_dirent_unlock(dl); // unlock directory entry
160 * iput(...); // release held vnodes
161 * if (error == ERESTART) {
162 * waited = B_TRUE;
163 * dmu_tx_wait(tx);
164 * dmu_tx_abort(tx);
165 * goto top;
166 * }
167 * dmu_tx_abort(tx); // abort DMU tx
168 * ZFS_EXIT(zsb); // finished in zfs
169 * return (error); // really out of space
170 * }
171 * error = do_real_work(); // do whatever this VOP does
172 * if (error == 0)
173 * zfs_log_*(...); // on success, make ZIL entry
174 * dmu_tx_commit(tx); // commit DMU tx -- error or not
175 * rw_exit(...); // drop locks
176 * zfs_dirent_unlock(dl); // unlock directory entry
177 * iput(...); // release held vnodes
178 * zil_commit(zilog, foid); // synchronous when necessary
179 * ZFS_EXIT(zsb); // finished in zfs
180 * return (error); // done, report error
181 */
182
183 /*
184 * Virus scanning is unsupported. It would be possible to add a hook
185 * here to performance the required virus scan. This could be done
186 * entirely in the kernel or potentially as an update to invoke a
187 * scanning utility.
188 */
189 static int
190 zfs_vscan(struct inode *ip, cred_t *cr, int async)
191 {
192 return (0);
193 }
194
195 /* ARGSUSED */
196 int
197 zfs_open(struct inode *ip, int mode, int flag, cred_t *cr)
198 {
199 znode_t *zp = ITOZ(ip);
200 zfs_sb_t *zsb = ITOZSB(ip);
201
202 ZFS_ENTER(zsb);
203 ZFS_VERIFY_ZP(zp);
204
205 /* Honor ZFS_APPENDONLY file attribute */
206 if ((mode & FMODE_WRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
207 ((flag & O_APPEND) == 0)) {
208 ZFS_EXIT(zsb);
209 return (SET_ERROR(EPERM));
210 }
211
212 /* Virus scan eligible files on open */
213 if (!zfs_has_ctldir(zp) && zsb->z_vscan && S_ISREG(ip->i_mode) &&
214 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
215 if (zfs_vscan(ip, cr, 0) != 0) {
216 ZFS_EXIT(zsb);
217 return (SET_ERROR(EACCES));
218 }
219 }
220
221 /* Keep a count of the synchronous opens in the znode */
222 if (flag & O_SYNC)
223 atomic_inc_32(&zp->z_sync_cnt);
224
225 ZFS_EXIT(zsb);
226 return (0);
227 }
228 EXPORT_SYMBOL(zfs_open);
229
230 /* ARGSUSED */
231 int
232 zfs_close(struct inode *ip, int flag, cred_t *cr)
233 {
234 znode_t *zp = ITOZ(ip);
235 zfs_sb_t *zsb = ITOZSB(ip);
236
237 ZFS_ENTER(zsb);
238 ZFS_VERIFY_ZP(zp);
239
240 /* Decrement the synchronous opens in the znode */
241 if (flag & O_SYNC)
242 atomic_dec_32(&zp->z_sync_cnt);
243
244 if (!zfs_has_ctldir(zp) && zsb->z_vscan && S_ISREG(ip->i_mode) &&
245 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
246 VERIFY(zfs_vscan(ip, cr, 1) == 0);
247
248 ZFS_EXIT(zsb);
249 return (0);
250 }
251 EXPORT_SYMBOL(zfs_close);
252
253 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
254 /*
255 * Lseek support for finding holes (cmd == SEEK_HOLE) and
256 * data (cmd == SEEK_DATA). "off" is an in/out parameter.
257 */
258 static int
259 zfs_holey_common(struct inode *ip, int cmd, loff_t *off)
260 {
261 znode_t *zp = ITOZ(ip);
262 uint64_t noff = (uint64_t)*off; /* new offset */
263 uint64_t file_sz;
264 int error;
265 boolean_t hole;
266
267 file_sz = zp->z_size;
268 if (noff >= file_sz) {
269 return (SET_ERROR(ENXIO));
270 }
271
272 if (cmd == SEEK_HOLE)
273 hole = B_TRUE;
274 else
275 hole = B_FALSE;
276
277 error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);
278
279 if (error == ESRCH)
280 return (SET_ERROR(ENXIO));
281
282 /*
283 * We could find a hole that begins after the logical end-of-file,
284 * because dmu_offset_next() only works on whole blocks. If the
285 * EOF falls mid-block, then indicate that the "virtual hole"
286 * at the end of the file begins at the logical EOF, rather than
287 * at the end of the last block.
288 */
289 if (noff > file_sz) {
290 ASSERT(hole);
291 noff = file_sz;
292 }
293
294 if (noff < *off)
295 return (error);
296 *off = noff;
297 return (error);
298 }
299
300 int
301 zfs_holey(struct inode *ip, int cmd, loff_t *off)
302 {
303 znode_t *zp = ITOZ(ip);
304 zfs_sb_t *zsb = ITOZSB(ip);
305 int error;
306
307 ZFS_ENTER(zsb);
308 ZFS_VERIFY_ZP(zp);
309
310 error = zfs_holey_common(ip, cmd, off);
311
312 ZFS_EXIT(zsb);
313 return (error);
314 }
315 EXPORT_SYMBOL(zfs_holey);
316 #endif /* SEEK_HOLE && SEEK_DATA */
317
318 #if defined(_KERNEL)
319 /*
320 * When a file is memory mapped, we must keep the IO data synchronized
321 * between the DMU cache and the memory mapped pages. What this means:
322 *
323 * On Write: If we find a memory mapped page, we write to *both*
324 * the page and the dmu buffer.
325 */
326 static void
327 update_pages(struct inode *ip, int64_t start, int len,
328 objset_t *os, uint64_t oid)
329 {
330 struct address_space *mp = ip->i_mapping;
331 struct page *pp;
332 uint64_t nbytes;
333 int64_t off;
334 void *pb;
335
336 off = start & (PAGE_SIZE-1);
337 for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
338 nbytes = MIN(PAGE_SIZE - off, len);
339
340 pp = find_lock_page(mp, start >> PAGE_SHIFT);
341 if (pp) {
342 if (mapping_writably_mapped(mp))
343 flush_dcache_page(pp);
344
345 pb = kmap(pp);
346 (void) dmu_read(os, oid, start+off, nbytes, pb+off,
347 DMU_READ_PREFETCH);
348 kunmap(pp);
349
350 if (mapping_writably_mapped(mp))
351 flush_dcache_page(pp);
352
353 mark_page_accessed(pp);
354 SetPageUptodate(pp);
355 ClearPageError(pp);
356 unlock_page(pp);
357 put_page(pp);
358 }
359
360 len -= nbytes;
361 off = 0;
362 }
363 }
364
365 /*
366 * When a file is memory mapped, we must keep the IO data synchronized
367 * between the DMU cache and the memory mapped pages. What this means:
368 *
369 * On Read: We "read" preferentially from memory mapped pages,
370 * else we default from the dmu buffer.
371 *
372 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
373 * the file is memory mapped.
374 */
375 static int
376 mappedread(struct inode *ip, int nbytes, uio_t *uio)
377 {
378 struct address_space *mp = ip->i_mapping;
379 struct page *pp;
380 znode_t *zp = ITOZ(ip);
381 int64_t start, off;
382 uint64_t bytes;
383 int len = nbytes;
384 int error = 0;
385 void *pb;
386
387 start = uio->uio_loffset;
388 off = start & (PAGE_SIZE-1);
389 for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
390 bytes = MIN(PAGE_SIZE - off, len);
391
392 pp = find_lock_page(mp, start >> PAGE_SHIFT);
393 if (pp) {
394 ASSERT(PageUptodate(pp));
395
396 pb = kmap(pp);
397 error = uiomove(pb + off, bytes, UIO_READ, uio);
398 kunmap(pp);
399
400 if (mapping_writably_mapped(mp))
401 flush_dcache_page(pp);
402
403 mark_page_accessed(pp);
404 unlock_page(pp);
405 put_page(pp);
406 } else {
407 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
408 uio, bytes);
409 }
410
411 len -= bytes;
412 off = 0;
413 if (error)
414 break;
415 }
416 return (error);
417 }
418 #endif /* _KERNEL */
419
420 unsigned long zfs_read_chunk_size = 1024 * 1024; /* Tunable */
421 unsigned long zfs_delete_blocks = DMU_MAX_DELETEBLKCNT;
422
423 /*
424 * Read bytes from specified file into supplied buffer.
425 *
426 * IN: ip - inode of file to be read from.
427 * uio - structure supplying read location, range info,
428 * and return buffer.
429 * ioflag - FSYNC flags; used to provide FRSYNC semantics.
430 * O_DIRECT flag; used to bypass page cache.
431 * cr - credentials of caller.
432 *
433 * OUT: uio - updated offset and range, buffer filled.
434 *
435 * RETURN: 0 on success, error code on failure.
436 *
437 * Side Effects:
438 * inode - atime updated if byte count > 0
439 */
440 /* ARGSUSED */
441 int
442 zfs_read(struct inode *ip, uio_t *uio, int ioflag, cred_t *cr)
443 {
444 znode_t *zp = ITOZ(ip);
445 zfs_sb_t *zsb = ITOZSB(ip);
446 ssize_t n, nbytes;
447 int error = 0;
448 rl_t *rl;
449 #ifdef HAVE_UIO_ZEROCOPY
450 xuio_t *xuio = NULL;
451 #endif /* HAVE_UIO_ZEROCOPY */
452
453 ZFS_ENTER(zsb);
454 ZFS_VERIFY_ZP(zp);
455
456 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
457 ZFS_EXIT(zsb);
458 return (SET_ERROR(EACCES));
459 }
460
461 /*
462 * Validate file offset
463 */
464 if (uio->uio_loffset < (offset_t)0) {
465 ZFS_EXIT(zsb);
466 return (SET_ERROR(EINVAL));
467 }
468
469 /*
470 * Fasttrack empty reads
471 */
472 if (uio->uio_resid == 0) {
473 ZFS_EXIT(zsb);
474 return (0);
475 }
476
477 /*
478 * If we're in FRSYNC mode, sync out this znode before reading it.
479 */
480 if (ioflag & FRSYNC || zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
481 zil_commit(zsb->z_log, zp->z_id);
482
483 /*
484 * Lock the range against changes.
485 */
486 rl = zfs_range_lock(&zp->z_range_lock, uio->uio_loffset, uio->uio_resid,
487 RL_READER);
488
489 /*
490 * If we are reading past end-of-file we can skip
491 * to the end; but we might still need to set atime.
492 */
493 if (uio->uio_loffset >= zp->z_size) {
494 error = 0;
495 goto out;
496 }
497
498 ASSERT(uio->uio_loffset < zp->z_size);
499 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
500
501 #ifdef HAVE_UIO_ZEROCOPY
502 if ((uio->uio_extflg == UIO_XUIO) &&
503 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
504 int nblk;
505 int blksz = zp->z_blksz;
506 uint64_t offset = uio->uio_loffset;
507
508 xuio = (xuio_t *)uio;
509 if ((ISP2(blksz))) {
510 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
511 blksz)) / blksz;
512 } else {
513 ASSERT(offset + n <= blksz);
514 nblk = 1;
515 }
516 (void) dmu_xuio_init(xuio, nblk);
517
518 if (vn_has_cached_data(ip)) {
519 /*
520 * For simplicity, we always allocate a full buffer
521 * even if we only expect to read a portion of a block.
522 */
523 while (--nblk >= 0) {
524 (void) dmu_xuio_add(xuio,
525 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
526 blksz), 0, blksz);
527 }
528 }
529 }
530 #endif /* HAVE_UIO_ZEROCOPY */
531
532 while (n > 0) {
533 nbytes = MIN(n, zfs_read_chunk_size -
534 P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
535
536 if (zp->z_is_mapped && !(ioflag & O_DIRECT)) {
537 error = mappedread(ip, nbytes, uio);
538 } else {
539 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
540 uio, nbytes);
541 }
542
543 if (error) {
544 /* convert checksum errors into IO errors */
545 if (error == ECKSUM)
546 error = SET_ERROR(EIO);
547 break;
548 }
549
550 n -= nbytes;
551 }
552 out:
553 zfs_range_unlock(rl);
554
555 ZFS_EXIT(zsb);
556 return (error);
557 }
558 EXPORT_SYMBOL(zfs_read);
559
560 /*
561 * Write the bytes to a file.
562 *
563 * IN: ip - inode of file to be written to.
564 * uio - structure supplying write location, range info,
565 * and data buffer.
566 * ioflag - FAPPEND flag set if in append mode.
567 * O_DIRECT flag; used to bypass page cache.
568 * cr - credentials of caller.
569 *
570 * OUT: uio - updated offset and range.
571 *
572 * RETURN: 0 if success
573 * error code if failure
574 *
575 * Timestamps:
576 * ip - ctime|mtime updated if byte count > 0
577 */
578
579 /* ARGSUSED */
580 int
581 zfs_write(struct inode *ip, uio_t *uio, int ioflag, cred_t *cr)
582 {
583 znode_t *zp = ITOZ(ip);
584 rlim64_t limit = uio->uio_limit;
585 ssize_t start_resid = uio->uio_resid;
586 ssize_t tx_bytes;
587 uint64_t end_size;
588 dmu_tx_t *tx;
589 zfs_sb_t *zsb = ZTOZSB(zp);
590 zilog_t *zilog;
591 offset_t woff;
592 ssize_t n, nbytes;
593 rl_t *rl;
594 int max_blksz = zsb->z_max_blksz;
595 int error = 0;
596 arc_buf_t *abuf;
597 const iovec_t *aiov = NULL;
598 xuio_t *xuio = NULL;
599 int write_eof;
600 int count = 0;
601 sa_bulk_attr_t bulk[4];
602 uint64_t mtime[2], ctime[2];
603 uint32_t uid;
604 #ifdef HAVE_UIO_ZEROCOPY
605 int i_iov = 0;
606 const iovec_t *iovp = uio->uio_iov;
607 ASSERTV(int iovcnt = uio->uio_iovcnt);
608 #endif
609
610 /*
611 * Fasttrack empty write
612 */
613 n = start_resid;
614 if (n == 0)
615 return (0);
616
617 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
618 limit = MAXOFFSET_T;
619
620 ZFS_ENTER(zsb);
621 ZFS_VERIFY_ZP(zp);
622
623 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zsb), NULL, &mtime, 16);
624 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zsb), NULL, &ctime, 16);
625 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zsb), NULL, &zp->z_size, 8);
626 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zsb), NULL,
627 &zp->z_pflags, 8);
628
629 /*
630 * Callers might not be able to detect properly that we are read-only,
631 * so check it explicitly here.
632 */
633 if (zfs_is_readonly(zsb)) {
634 ZFS_EXIT(zsb);
635 return (SET_ERROR(EROFS));
636 }
637
638 /*
639 * If immutable or not appending then return EPERM
640 */
641 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
642 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
643 (uio->uio_loffset < zp->z_size))) {
644 ZFS_EXIT(zsb);
645 return (SET_ERROR(EPERM));
646 }
647
648 zilog = zsb->z_log;
649
650 /*
651 * Validate file offset
652 */
653 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
654 if (woff < 0) {
655 ZFS_EXIT(zsb);
656 return (SET_ERROR(EINVAL));
657 }
658
659 /*
660 * Pre-fault the pages to ensure slow (eg NFS) pages
661 * don't hold up txg.
662 * Skip this if uio contains loaned arc_buf.
663 */
664 #ifdef HAVE_UIO_ZEROCOPY
665 if ((uio->uio_extflg == UIO_XUIO) &&
666 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
667 xuio = (xuio_t *)uio;
668 else
669 #endif
670 uio_prefaultpages(MIN(n, max_blksz), uio);
671
672 /*
673 * If in append mode, set the io offset pointer to eof.
674 */
675 if (ioflag & FAPPEND) {
676 /*
677 * Obtain an appending range lock to guarantee file append
678 * semantics. We reset the write offset once we have the lock.
679 */
680 rl = zfs_range_lock(&zp->z_range_lock, 0, n, RL_APPEND);
681 woff = rl->r_off;
682 if (rl->r_len == UINT64_MAX) {
683 /*
684 * We overlocked the file because this write will cause
685 * the file block size to increase.
686 * Note that zp_size cannot change with this lock held.
687 */
688 woff = zp->z_size;
689 }
690 uio->uio_loffset = woff;
691 } else {
692 /*
693 * Note that if the file block size will change as a result of
694 * this write, then this range lock will lock the entire file
695 * so that we can re-write the block safely.
696 */
697 rl = zfs_range_lock(&zp->z_range_lock, woff, n, RL_WRITER);
698 }
699
700 if (woff >= limit) {
701 zfs_range_unlock(rl);
702 ZFS_EXIT(zsb);
703 return (SET_ERROR(EFBIG));
704 }
705
706 if ((woff + n) > limit || woff > (limit - n))
707 n = limit - woff;
708
709 /* Will this write extend the file length? */
710 write_eof = (woff + n > zp->z_size);
711
712 end_size = MAX(zp->z_size, woff + n);
713
714 /*
715 * Write the file in reasonable size chunks. Each chunk is written
716 * in a separate transaction; this keeps the intent log records small
717 * and allows us to do more fine-grained space accounting.
718 */
719 while (n > 0) {
720 abuf = NULL;
721 woff = uio->uio_loffset;
722 if (zfs_owner_overquota(zsb, zp, B_FALSE) ||
723 zfs_owner_overquota(zsb, zp, B_TRUE)) {
724 if (abuf != NULL)
725 dmu_return_arcbuf(abuf);
726 error = SET_ERROR(EDQUOT);
727 break;
728 }
729
730 if (xuio && abuf == NULL) {
731 #ifdef HAVE_UIO_ZEROCOPY
732 ASSERT(i_iov < iovcnt);
733 ASSERT3U(uio->uio_segflg, !=, UIO_BVEC);
734 aiov = &iovp[i_iov];
735 abuf = dmu_xuio_arcbuf(xuio, i_iov);
736 dmu_xuio_clear(xuio, i_iov);
737 ASSERT((aiov->iov_base == abuf->b_data) ||
738 ((char *)aiov->iov_base - (char *)abuf->b_data +
739 aiov->iov_len == arc_buf_size(abuf)));
740 i_iov++;
741 #endif
742 } else if (abuf == NULL && n >= max_blksz &&
743 woff >= zp->z_size &&
744 P2PHASE(woff, max_blksz) == 0 &&
745 zp->z_blksz == max_blksz) {
746 /*
747 * This write covers a full block. "Borrow" a buffer
748 * from the dmu so that we can fill it before we enter
749 * a transaction. This avoids the possibility of
750 * holding up the transaction if the data copy hangs
751 * up on a pagefault (e.g., from an NFS server mapping).
752 */
753 size_t cbytes;
754
755 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
756 max_blksz);
757 ASSERT(abuf != NULL);
758 ASSERT(arc_buf_size(abuf) == max_blksz);
759 if ((error = uiocopy(abuf->b_data, max_blksz,
760 UIO_WRITE, uio, &cbytes))) {
761 dmu_return_arcbuf(abuf);
762 break;
763 }
764 ASSERT(cbytes == max_blksz);
765 }
766
767 /*
768 * Start a transaction.
769 */
770 tx = dmu_tx_create(zsb->z_os);
771 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
772 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
773 zfs_sa_upgrade_txholds(tx, zp);
774 error = dmu_tx_assign(tx, TXG_WAIT);
775 if (error) {
776 dmu_tx_abort(tx);
777 if (abuf != NULL)
778 dmu_return_arcbuf(abuf);
779 break;
780 }
781
782 /*
783 * If zfs_range_lock() over-locked we grow the blocksize
784 * and then reduce the lock range. This will only happen
785 * on the first iteration since zfs_range_reduce() will
786 * shrink down r_len to the appropriate size.
787 */
788 if (rl->r_len == UINT64_MAX) {
789 uint64_t new_blksz;
790
791 if (zp->z_blksz > max_blksz) {
792 /*
793 * File's blocksize is already larger than the
794 * "recordsize" property. Only let it grow to
795 * the next power of 2.
796 */
797 ASSERT(!ISP2(zp->z_blksz));
798 new_blksz = MIN(end_size,
799 1 << highbit64(zp->z_blksz));
800 } else {
801 new_blksz = MIN(end_size, max_blksz);
802 }
803 zfs_grow_blocksize(zp, new_blksz, tx);
804 zfs_range_reduce(rl, woff, n);
805 }
806
807 /*
808 * XXX - should we really limit each write to z_max_blksz?
809 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
810 */
811 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
812
813 if (abuf == NULL) {
814 tx_bytes = uio->uio_resid;
815 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
816 uio, nbytes, tx);
817 tx_bytes -= uio->uio_resid;
818 } else {
819 tx_bytes = nbytes;
820 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
821 /*
822 * If this is not a full block write, but we are
823 * extending the file past EOF and this data starts
824 * block-aligned, use assign_arcbuf(). Otherwise,
825 * write via dmu_write().
826 */
827 if (tx_bytes < max_blksz && (!write_eof ||
828 aiov->iov_base != abuf->b_data)) {
829 ASSERT(xuio);
830 dmu_write(zsb->z_os, zp->z_id, woff,
831 aiov->iov_len, aiov->iov_base, tx);
832 dmu_return_arcbuf(abuf);
833 xuio_stat_wbuf_copied();
834 } else {
835 ASSERT(xuio || tx_bytes == max_blksz);
836 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
837 woff, abuf, tx);
838 }
839 ASSERT(tx_bytes <= uio->uio_resid);
840 uioskip(uio, tx_bytes);
841 }
842
843 if (tx_bytes && zp->z_is_mapped && !(ioflag & O_DIRECT))
844 update_pages(ip, woff, tx_bytes, zsb->z_os, zp->z_id);
845
846 /*
847 * If we made no progress, we're done. If we made even
848 * partial progress, update the znode and ZIL accordingly.
849 */
850 if (tx_bytes == 0) {
851 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zsb),
852 (void *)&zp->z_size, sizeof (uint64_t), tx);
853 dmu_tx_commit(tx);
854 ASSERT(error != 0);
855 break;
856 }
857
858 /*
859 * Clear Set-UID/Set-GID bits on successful write if not
860 * privileged and at least one of the excute bits is set.
861 *
862 * It would be nice to to this after all writes have
863 * been done, but that would still expose the ISUID/ISGID
864 * to another app after the partial write is committed.
865 *
866 * Note: we don't call zfs_fuid_map_id() here because
867 * user 0 is not an ephemeral uid.
868 */
869 mutex_enter(&zp->z_acl_lock);
870 uid = KUID_TO_SUID(ip->i_uid);
871 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
872 (S_IXUSR >> 6))) != 0 &&
873 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
874 secpolicy_vnode_setid_retain(cr,
875 ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) {
876 uint64_t newmode;
877 zp->z_mode &= ~(S_ISUID | S_ISGID);
878 ip->i_mode = newmode = zp->z_mode;
879 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zsb),
880 (void *)&newmode, sizeof (uint64_t), tx);
881 }
882 mutex_exit(&zp->z_acl_lock);
883
884 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
885
886 /*
887 * Update the file size (zp_size) if it has changed;
888 * account for possible concurrent updates.
889 */
890 while ((end_size = zp->z_size) < uio->uio_loffset) {
891 (void) atomic_cas_64(&zp->z_size, end_size,
892 uio->uio_loffset);
893 ASSERT(error == 0);
894 }
895 /*
896 * If we are replaying and eof is non zero then force
897 * the file size to the specified eof. Note, there's no
898 * concurrency during replay.
899 */
900 if (zsb->z_replay && zsb->z_replay_eof != 0)
901 zp->z_size = zsb->z_replay_eof;
902
903 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
904
905 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag,
906 NULL, NULL);
907 dmu_tx_commit(tx);
908
909 if (error != 0)
910 break;
911 ASSERT(tx_bytes == nbytes);
912 n -= nbytes;
913
914 if (!xuio && n > 0)
915 uio_prefaultpages(MIN(n, max_blksz), uio);
916 }
917
918 zfs_inode_update(zp);
919 zfs_range_unlock(rl);
920
921 /*
922 * If we're in replay mode, or we made no progress, return error.
923 * Otherwise, it's at least a partial write, so it's successful.
924 */
925 if (zsb->z_replay || uio->uio_resid == start_resid) {
926 ZFS_EXIT(zsb);
927 return (error);
928 }
929
930 if (ioflag & (FSYNC | FDSYNC) ||
931 zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
932 zil_commit(zilog, zp->z_id);
933
934 ZFS_EXIT(zsb);
935 return (0);
936 }
937 EXPORT_SYMBOL(zfs_write);
938
939 /*
940 * Drop a reference on the passed inode asynchronously. This ensures
941 * that the caller will never drop the last reference on an inode in
942 * the current context. Doing so while holding open a tx could result
943 * in a deadlock if iput_final() re-enters the filesystem code.
944 */
945 void
946 zfs_iput_async(struct inode *ip)
947 {
948 objset_t *os = ITOZSB(ip)->z_os;
949
950 ASSERT(atomic_read(&ip->i_count) > 0);
951 ASSERT(os != NULL);
952
953 if (atomic_read(&ip->i_count) == 1)
954 VERIFY(taskq_dispatch(dsl_pool_iput_taskq(dmu_objset_pool(os)),
955 (task_func_t *)iput, ip, TQ_SLEEP) != TASKQID_INVALID);
956 else
957 iput(ip);
958 }
959
960 void
961 zfs_get_done(zgd_t *zgd, int error)
962 {
963 znode_t *zp = zgd->zgd_private;
964
965 if (zgd->zgd_db)
966 dmu_buf_rele(zgd->zgd_db, zgd);
967
968 zfs_range_unlock(zgd->zgd_rl);
969
970 /*
971 * Release the vnode asynchronously as we currently have the
972 * txg stopped from syncing.
973 */
974 zfs_iput_async(ZTOI(zp));
975
976 if (error == 0 && zgd->zgd_bp)
977 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
978
979 kmem_free(zgd, sizeof (zgd_t));
980 }
981
982 #ifdef DEBUG
983 static int zil_fault_io = 0;
984 #endif
985
986 /*
987 * Get data to generate a TX_WRITE intent log record.
988 */
989 int
990 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
991 {
992 zfs_sb_t *zsb = arg;
993 objset_t *os = zsb->z_os;
994 znode_t *zp;
995 uint64_t object = lr->lr_foid;
996 uint64_t offset = lr->lr_offset;
997 uint64_t size = lr->lr_length;
998 blkptr_t *bp = &lr->lr_blkptr;
999 dmu_buf_t *db;
1000 zgd_t *zgd;
1001 int error = 0;
1002
1003 ASSERT(zio != NULL);
1004 ASSERT(size != 0);
1005
1006 /*
1007 * Nothing to do if the file has been removed
1008 */
1009 if (zfs_zget(zsb, object, &zp) != 0)
1010 return (SET_ERROR(ENOENT));
1011 if (zp->z_unlinked) {
1012 /*
1013 * Release the vnode asynchronously as we currently have the
1014 * txg stopped from syncing.
1015 */
1016 zfs_iput_async(ZTOI(zp));
1017 return (SET_ERROR(ENOENT));
1018 }
1019
1020 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1021 zgd->zgd_zilog = zsb->z_log;
1022 zgd->zgd_private = zp;
1023
1024 /*
1025 * Write records come in two flavors: immediate and indirect.
1026 * For small writes it's cheaper to store the data with the
1027 * log record (immediate); for large writes it's cheaper to
1028 * sync the data and get a pointer to it (indirect) so that
1029 * we don't have to write the data twice.
1030 */
1031 if (buf != NULL) { /* immediate write */
1032 zgd->zgd_rl = zfs_range_lock(&zp->z_range_lock, offset, size,
1033 RL_READER);
1034 /* test for truncation needs to be done while range locked */
1035 if (offset >= zp->z_size) {
1036 error = SET_ERROR(ENOENT);
1037 } else {
1038 error = dmu_read(os, object, offset, size, buf,
1039 DMU_READ_NO_PREFETCH);
1040 }
1041 ASSERT(error == 0 || error == ENOENT);
1042 } else { /* indirect write */
1043 /*
1044 * Have to lock the whole block to ensure when it's
1045 * written out and it's checksum is being calculated
1046 * that no one can change the data. We need to re-check
1047 * blocksize after we get the lock in case it's changed!
1048 */
1049 for (;;) {
1050 uint64_t blkoff;
1051 size = zp->z_blksz;
1052 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1053 offset -= blkoff;
1054 zgd->zgd_rl = zfs_range_lock(&zp->z_range_lock, offset,
1055 size, RL_READER);
1056 if (zp->z_blksz == size)
1057 break;
1058 offset += blkoff;
1059 zfs_range_unlock(zgd->zgd_rl);
1060 }
1061 /* test for truncation needs to be done while range locked */
1062 if (lr->lr_offset >= zp->z_size)
1063 error = SET_ERROR(ENOENT);
1064 #ifdef DEBUG
1065 if (zil_fault_io) {
1066 error = SET_ERROR(EIO);
1067 zil_fault_io = 0;
1068 }
1069 #endif
1070 if (error == 0)
1071 error = dmu_buf_hold(os, object, offset, zgd, &db,
1072 DMU_READ_NO_PREFETCH);
1073
1074 if (error == 0) {
1075 blkptr_t *obp = dmu_buf_get_blkptr(db);
1076 if (obp) {
1077 ASSERT(BP_IS_HOLE(bp));
1078 *bp = *obp;
1079 }
1080
1081 zgd->zgd_db = db;
1082 zgd->zgd_bp = bp;
1083
1084 ASSERT(db->db_offset == offset);
1085 ASSERT(db->db_size == size);
1086
1087 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1088 zfs_get_done, zgd);
1089 ASSERT(error || lr->lr_length <= zp->z_blksz);
1090
1091 /*
1092 * On success, we need to wait for the write I/O
1093 * initiated by dmu_sync() to complete before we can
1094 * release this dbuf. We will finish everything up
1095 * in the zfs_get_done() callback.
1096 */
1097 if (error == 0)
1098 return (0);
1099
1100 if (error == EALREADY) {
1101 lr->lr_common.lrc_txtype = TX_WRITE2;
1102 error = 0;
1103 }
1104 }
1105 }
1106
1107 zfs_get_done(zgd, error);
1108
1109 return (error);
1110 }
1111
1112 /*ARGSUSED*/
1113 int
1114 zfs_access(struct inode *ip, int mode, int flag, cred_t *cr)
1115 {
1116 znode_t *zp = ITOZ(ip);
1117 zfs_sb_t *zsb = ITOZSB(ip);
1118 int error;
1119
1120 ZFS_ENTER(zsb);
1121 ZFS_VERIFY_ZP(zp);
1122
1123 if (flag & V_ACE_MASK)
1124 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1125 else
1126 error = zfs_zaccess_rwx(zp, mode, flag, cr);
1127
1128 ZFS_EXIT(zsb);
1129 return (error);
1130 }
1131 EXPORT_SYMBOL(zfs_access);
1132
1133 /*
1134 * Lookup an entry in a directory, or an extended attribute directory.
1135 * If it exists, return a held inode reference for it.
1136 *
1137 * IN: dip - inode of directory to search.
1138 * nm - name of entry to lookup.
1139 * flags - LOOKUP_XATTR set if looking for an attribute.
1140 * cr - credentials of caller.
1141 * direntflags - directory lookup flags
1142 * realpnp - returned pathname.
1143 *
1144 * OUT: ipp - inode of located entry, NULL if not found.
1145 *
1146 * RETURN: 0 on success, error code on failure.
1147 *
1148 * Timestamps:
1149 * NA
1150 */
1151 /* ARGSUSED */
1152 int
1153 zfs_lookup(struct inode *dip, char *nm, struct inode **ipp, int flags,
1154 cred_t *cr, int *direntflags, pathname_t *realpnp)
1155 {
1156 znode_t *zdp = ITOZ(dip);
1157 zfs_sb_t *zsb = ITOZSB(dip);
1158 int error = 0;
1159
1160 /* fast path */
1161 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1162
1163 if (!S_ISDIR(dip->i_mode)) {
1164 return (SET_ERROR(ENOTDIR));
1165 } else if (zdp->z_sa_hdl == NULL) {
1166 return (SET_ERROR(EIO));
1167 }
1168
1169 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1170 error = zfs_fastaccesschk_execute(zdp, cr);
1171 if (!error) {
1172 *ipp = dip;
1173 igrab(*ipp);
1174 return (0);
1175 }
1176 return (error);
1177 #ifdef HAVE_DNLC
1178 } else {
1179 vnode_t *tvp = dnlc_lookup(dvp, nm);
1180
1181 if (tvp) {
1182 error = zfs_fastaccesschk_execute(zdp, cr);
1183 if (error) {
1184 iput(tvp);
1185 return (error);
1186 }
1187 if (tvp == DNLC_NO_VNODE) {
1188 iput(tvp);
1189 return (SET_ERROR(ENOENT));
1190 } else {
1191 *vpp = tvp;
1192 return (specvp_check(vpp, cr));
1193 }
1194 }
1195 #endif /* HAVE_DNLC */
1196 }
1197 }
1198
1199 ZFS_ENTER(zsb);
1200 ZFS_VERIFY_ZP(zdp);
1201
1202 *ipp = NULL;
1203
1204 if (flags & LOOKUP_XATTR) {
1205 /*
1206 * We don't allow recursive attributes..
1207 * Maybe someday we will.
1208 */
1209 if (zdp->z_pflags & ZFS_XATTR) {
1210 ZFS_EXIT(zsb);
1211 return (SET_ERROR(EINVAL));
1212 }
1213
1214 if ((error = zfs_get_xattrdir(zdp, ipp, cr, flags))) {
1215 ZFS_EXIT(zsb);
1216 return (error);
1217 }
1218
1219 /*
1220 * Do we have permission to get into attribute directory?
1221 */
1222
1223 if ((error = zfs_zaccess(ITOZ(*ipp), ACE_EXECUTE, 0,
1224 B_FALSE, cr))) {
1225 iput(*ipp);
1226 *ipp = NULL;
1227 }
1228
1229 ZFS_EXIT(zsb);
1230 return (error);
1231 }
1232
1233 if (!S_ISDIR(dip->i_mode)) {
1234 ZFS_EXIT(zsb);
1235 return (SET_ERROR(ENOTDIR));
1236 }
1237
1238 /*
1239 * Check accessibility of directory.
1240 */
1241
1242 if ((error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr))) {
1243 ZFS_EXIT(zsb);
1244 return (error);
1245 }
1246
1247 if (zsb->z_utf8 && u8_validate(nm, strlen(nm),
1248 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1249 ZFS_EXIT(zsb);
1250 return (SET_ERROR(EILSEQ));
1251 }
1252
1253 error = zfs_dirlook(zdp, nm, ipp, flags, direntflags, realpnp);
1254 if ((error == 0) && (*ipp))
1255 zfs_inode_update(ITOZ(*ipp));
1256
1257 ZFS_EXIT(zsb);
1258 return (error);
1259 }
1260 EXPORT_SYMBOL(zfs_lookup);
1261
1262 /*
1263 * Attempt to create a new entry in a directory. If the entry
1264 * already exists, truncate the file if permissible, else return
1265 * an error. Return the ip of the created or trunc'd file.
1266 *
1267 * IN: dip - inode of directory to put new file entry in.
1268 * name - name of new file entry.
1269 * vap - attributes of new file.
1270 * excl - flag indicating exclusive or non-exclusive mode.
1271 * mode - mode to open file with.
1272 * cr - credentials of caller.
1273 * flag - large file flag [UNUSED].
1274 * vsecp - ACL to be set
1275 *
1276 * OUT: ipp - inode of created or trunc'd entry.
1277 *
1278 * RETURN: 0 on success, error code on failure.
1279 *
1280 * Timestamps:
1281 * dip - ctime|mtime updated if new entry created
1282 * ip - ctime|mtime always, atime if new
1283 */
1284
1285 /* ARGSUSED */
1286 int
1287 zfs_create(struct inode *dip, char *name, vattr_t *vap, int excl,
1288 int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp)
1289 {
1290 znode_t *zp, *dzp = ITOZ(dip);
1291 zfs_sb_t *zsb = ITOZSB(dip);
1292 zilog_t *zilog;
1293 objset_t *os;
1294 zfs_dirlock_t *dl;
1295 dmu_tx_t *tx;
1296 int error;
1297 uid_t uid;
1298 gid_t gid;
1299 zfs_acl_ids_t acl_ids;
1300 boolean_t fuid_dirtied;
1301 boolean_t have_acl = B_FALSE;
1302 boolean_t waited = B_FALSE;
1303
1304 /*
1305 * If we have an ephemeral id, ACL, or XVATTR then
1306 * make sure file system is at proper version
1307 */
1308
1309 gid = crgetgid(cr);
1310 uid = crgetuid(cr);
1311
1312 if (zsb->z_use_fuids == B_FALSE &&
1313 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1314 return (SET_ERROR(EINVAL));
1315
1316 if (name == NULL)
1317 return (SET_ERROR(EINVAL));
1318
1319 ZFS_ENTER(zsb);
1320 ZFS_VERIFY_ZP(dzp);
1321 os = zsb->z_os;
1322 zilog = zsb->z_log;
1323
1324 if (zsb->z_utf8 && u8_validate(name, strlen(name),
1325 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1326 ZFS_EXIT(zsb);
1327 return (SET_ERROR(EILSEQ));
1328 }
1329
1330 if (vap->va_mask & ATTR_XVATTR) {
1331 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1332 crgetuid(cr), cr, vap->va_mode)) != 0) {
1333 ZFS_EXIT(zsb);
1334 return (error);
1335 }
1336 }
1337
1338 top:
1339 *ipp = NULL;
1340 if (*name == '\0') {
1341 /*
1342 * Null component name refers to the directory itself.
1343 */
1344 igrab(dip);
1345 zp = dzp;
1346 dl = NULL;
1347 error = 0;
1348 } else {
1349 /* possible igrab(zp) */
1350 int zflg = 0;
1351
1352 if (flag & FIGNORECASE)
1353 zflg |= ZCILOOK;
1354
1355 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1356 NULL, NULL);
1357 if (error) {
1358 if (have_acl)
1359 zfs_acl_ids_free(&acl_ids);
1360 if (strcmp(name, "..") == 0)
1361 error = SET_ERROR(EISDIR);
1362 ZFS_EXIT(zsb);
1363 return (error);
1364 }
1365 }
1366
1367 if (zp == NULL) {
1368 uint64_t txtype;
1369
1370 /*
1371 * Create a new file object and update the directory
1372 * to reference it.
1373 */
1374 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
1375 if (have_acl)
1376 zfs_acl_ids_free(&acl_ids);
1377 goto out;
1378 }
1379
1380 /*
1381 * We only support the creation of regular files in
1382 * extended attribute directories.
1383 */
1384
1385 if ((dzp->z_pflags & ZFS_XATTR) && !S_ISREG(vap->va_mode)) {
1386 if (have_acl)
1387 zfs_acl_ids_free(&acl_ids);
1388 error = SET_ERROR(EINVAL);
1389 goto out;
1390 }
1391
1392 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1393 cr, vsecp, &acl_ids)) != 0)
1394 goto out;
1395 have_acl = B_TRUE;
1396
1397 if (zfs_acl_ids_overquota(zsb, &acl_ids)) {
1398 zfs_acl_ids_free(&acl_ids);
1399 error = SET_ERROR(EDQUOT);
1400 goto out;
1401 }
1402
1403 tx = dmu_tx_create(os);
1404
1405 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1406 ZFS_SA_BASE_ATTR_SIZE);
1407
1408 fuid_dirtied = zsb->z_fuid_dirty;
1409 if (fuid_dirtied)
1410 zfs_fuid_txhold(zsb, tx);
1411 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1412 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1413 if (!zsb->z_use_sa &&
1414 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1415 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1416 0, acl_ids.z_aclp->z_acl_bytes);
1417 }
1418 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1419 if (error) {
1420 zfs_dirent_unlock(dl);
1421 if (error == ERESTART) {
1422 waited = B_TRUE;
1423 dmu_tx_wait(tx);
1424 dmu_tx_abort(tx);
1425 goto top;
1426 }
1427 zfs_acl_ids_free(&acl_ids);
1428 dmu_tx_abort(tx);
1429 ZFS_EXIT(zsb);
1430 return (error);
1431 }
1432 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1433
1434 if (fuid_dirtied)
1435 zfs_fuid_sync(zsb, tx);
1436
1437 (void) zfs_link_create(dl, zp, tx, ZNEW);
1438 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1439 if (flag & FIGNORECASE)
1440 txtype |= TX_CI;
1441 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1442 vsecp, acl_ids.z_fuidp, vap);
1443 zfs_acl_ids_free(&acl_ids);
1444 dmu_tx_commit(tx);
1445 } else {
1446 int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1447
1448 if (have_acl)
1449 zfs_acl_ids_free(&acl_ids);
1450 have_acl = B_FALSE;
1451
1452 /*
1453 * A directory entry already exists for this name.
1454 */
1455 /*
1456 * Can't truncate an existing file if in exclusive mode.
1457 */
1458 if (excl) {
1459 error = SET_ERROR(EEXIST);
1460 goto out;
1461 }
1462 /*
1463 * Can't open a directory for writing.
1464 */
1465 if (S_ISDIR(ZTOI(zp)->i_mode)) {
1466 error = SET_ERROR(EISDIR);
1467 goto out;
1468 }
1469 /*
1470 * Verify requested access to file.
1471 */
1472 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1473 goto out;
1474 }
1475
1476 mutex_enter(&dzp->z_lock);
1477 dzp->z_seq++;
1478 mutex_exit(&dzp->z_lock);
1479
1480 /*
1481 * Truncate regular files if requested.
1482 */
1483 if (S_ISREG(ZTOI(zp)->i_mode) &&
1484 (vap->va_mask & ATTR_SIZE) && (vap->va_size == 0)) {
1485 /* we can't hold any locks when calling zfs_freesp() */
1486 if (dl) {
1487 zfs_dirent_unlock(dl);
1488 dl = NULL;
1489 }
1490 error = zfs_freesp(zp, 0, 0, mode, TRUE);
1491 }
1492 }
1493 out:
1494
1495 if (dl)
1496 zfs_dirent_unlock(dl);
1497
1498 if (error) {
1499 if (zp)
1500 iput(ZTOI(zp));
1501 } else {
1502 zfs_inode_update(dzp);
1503 zfs_inode_update(zp);
1504 *ipp = ZTOI(zp);
1505 }
1506
1507 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
1508 zil_commit(zilog, 0);
1509
1510 ZFS_EXIT(zsb);
1511 return (error);
1512 }
1513 EXPORT_SYMBOL(zfs_create);
1514
1515 /* ARGSUSED */
1516 int
1517 zfs_tmpfile(struct inode *dip, vattr_t *vap, int excl,
1518 int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp)
1519 {
1520 znode_t *zp = NULL, *dzp = ITOZ(dip);
1521 zfs_sb_t *zsb = ITOZSB(dip);
1522 objset_t *os;
1523 dmu_tx_t *tx;
1524 int error;
1525 uid_t uid;
1526 gid_t gid;
1527 zfs_acl_ids_t acl_ids;
1528 boolean_t fuid_dirtied;
1529 boolean_t have_acl = B_FALSE;
1530 boolean_t waited = B_FALSE;
1531
1532 /*
1533 * If we have an ephemeral id, ACL, or XVATTR then
1534 * make sure file system is at proper version
1535 */
1536
1537 gid = crgetgid(cr);
1538 uid = crgetuid(cr);
1539
1540 if (zsb->z_use_fuids == B_FALSE &&
1541 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1542 return (SET_ERROR(EINVAL));
1543
1544 ZFS_ENTER(zsb);
1545 ZFS_VERIFY_ZP(dzp);
1546 os = zsb->z_os;
1547
1548 if (vap->va_mask & ATTR_XVATTR) {
1549 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1550 crgetuid(cr), cr, vap->va_mode)) != 0) {
1551 ZFS_EXIT(zsb);
1552 return (error);
1553 }
1554 }
1555
1556 top:
1557 *ipp = NULL;
1558
1559 /*
1560 * Create a new file object and update the directory
1561 * to reference it.
1562 */
1563 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
1564 if (have_acl)
1565 zfs_acl_ids_free(&acl_ids);
1566 goto out;
1567 }
1568
1569 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1570 cr, vsecp, &acl_ids)) != 0)
1571 goto out;
1572 have_acl = B_TRUE;
1573
1574 if (zfs_acl_ids_overquota(zsb, &acl_ids)) {
1575 zfs_acl_ids_free(&acl_ids);
1576 error = SET_ERROR(EDQUOT);
1577 goto out;
1578 }
1579
1580 tx = dmu_tx_create(os);
1581
1582 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1583 ZFS_SA_BASE_ATTR_SIZE);
1584 dmu_tx_hold_zap(tx, zsb->z_unlinkedobj, FALSE, NULL);
1585
1586 fuid_dirtied = zsb->z_fuid_dirty;
1587 if (fuid_dirtied)
1588 zfs_fuid_txhold(zsb, tx);
1589 if (!zsb->z_use_sa &&
1590 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1591 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1592 0, acl_ids.z_aclp->z_acl_bytes);
1593 }
1594 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1595 if (error) {
1596 if (error == ERESTART) {
1597 waited = B_TRUE;
1598 dmu_tx_wait(tx);
1599 dmu_tx_abort(tx);
1600 goto top;
1601 }
1602 zfs_acl_ids_free(&acl_ids);
1603 dmu_tx_abort(tx);
1604 ZFS_EXIT(zsb);
1605 return (error);
1606 }
1607 zfs_mknode(dzp, vap, tx, cr, IS_TMPFILE, &zp, &acl_ids);
1608
1609 if (fuid_dirtied)
1610 zfs_fuid_sync(zsb, tx);
1611
1612 /* Add to unlinked set */
1613 zp->z_unlinked = 1;
1614 zfs_unlinked_add(zp, tx);
1615 zfs_acl_ids_free(&acl_ids);
1616 dmu_tx_commit(tx);
1617 out:
1618
1619 if (error) {
1620 if (zp)
1621 iput(ZTOI(zp));
1622 } else {
1623 zfs_inode_update(dzp);
1624 zfs_inode_update(zp);
1625 *ipp = ZTOI(zp);
1626 }
1627
1628 ZFS_EXIT(zsb);
1629 return (error);
1630 }
1631
1632 /*
1633 * Remove an entry from a directory.
1634 *
1635 * IN: dip - inode of directory to remove entry from.
1636 * name - name of entry to remove.
1637 * cr - credentials of caller.
1638 *
1639 * RETURN: 0 if success
1640 * error code if failure
1641 *
1642 * Timestamps:
1643 * dip - ctime|mtime
1644 * ip - ctime (if nlink > 0)
1645 */
1646
1647 uint64_t null_xattr = 0;
1648
1649 /*ARGSUSED*/
1650 int
1651 zfs_remove(struct inode *dip, char *name, cred_t *cr, int flags)
1652 {
1653 znode_t *zp, *dzp = ITOZ(dip);
1654 znode_t *xzp;
1655 struct inode *ip;
1656 zfs_sb_t *zsb = ITOZSB(dip);
1657 zilog_t *zilog;
1658 uint64_t acl_obj, xattr_obj;
1659 uint64_t xattr_obj_unlinked = 0;
1660 uint64_t obj = 0;
1661 uint64_t links;
1662 zfs_dirlock_t *dl;
1663 dmu_tx_t *tx;
1664 boolean_t may_delete_now, delete_now = FALSE;
1665 boolean_t unlinked, toobig = FALSE;
1666 uint64_t txtype;
1667 pathname_t *realnmp = NULL;
1668 pathname_t realnm;
1669 int error;
1670 int zflg = ZEXISTS;
1671 boolean_t waited = B_FALSE;
1672
1673 if (name == NULL)
1674 return (SET_ERROR(EINVAL));
1675
1676 ZFS_ENTER(zsb);
1677 ZFS_VERIFY_ZP(dzp);
1678 zilog = zsb->z_log;
1679
1680 if (flags & FIGNORECASE) {
1681 zflg |= ZCILOOK;
1682 pn_alloc(&realnm);
1683 realnmp = &realnm;
1684 }
1685
1686 top:
1687 xattr_obj = 0;
1688 xzp = NULL;
1689 /*
1690 * Attempt to lock directory; fail if entry doesn't exist.
1691 */
1692 if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1693 NULL, realnmp))) {
1694 if (realnmp)
1695 pn_free(realnmp);
1696 ZFS_EXIT(zsb);
1697 return (error);
1698 }
1699
1700 ip = ZTOI(zp);
1701
1702 if ((error = zfs_zaccess_delete(dzp, zp, cr))) {
1703 goto out;
1704 }
1705
1706 /*
1707 * Need to use rmdir for removing directories.
1708 */
1709 if (S_ISDIR(ip->i_mode)) {
1710 error = SET_ERROR(EPERM);
1711 goto out;
1712 }
1713
1714 #ifdef HAVE_DNLC
1715 if (realnmp)
1716 dnlc_remove(dvp, realnmp->pn_buf);
1717 else
1718 dnlc_remove(dvp, name);
1719 #endif /* HAVE_DNLC */
1720
1721 mutex_enter(&zp->z_lock);
1722 may_delete_now = atomic_read(&ip->i_count) == 1 && !(zp->z_is_mapped);
1723 mutex_exit(&zp->z_lock);
1724
1725 /*
1726 * We may delete the znode now, or we may put it in the unlinked set;
1727 * it depends on whether we're the last link, and on whether there are
1728 * other holds on the inode. So we dmu_tx_hold() the right things to
1729 * allow for either case.
1730 */
1731 obj = zp->z_id;
1732 tx = dmu_tx_create(zsb->z_os);
1733 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1734 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1735 zfs_sa_upgrade_txholds(tx, zp);
1736 zfs_sa_upgrade_txholds(tx, dzp);
1737 if (may_delete_now) {
1738 toobig = zp->z_size > zp->z_blksz * zfs_delete_blocks;
1739 /* if the file is too big, only hold_free a token amount */
1740 dmu_tx_hold_free(tx, zp->z_id, 0,
1741 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1742 }
1743
1744 /* are there any extended attributes? */
1745 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zsb),
1746 &xattr_obj, sizeof (xattr_obj));
1747 if (error == 0 && xattr_obj) {
1748 error = zfs_zget(zsb, xattr_obj, &xzp);
1749 ASSERT0(error);
1750 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1751 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1752 }
1753
1754 mutex_enter(&zp->z_lock);
1755 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1756 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1757 mutex_exit(&zp->z_lock);
1758
1759 /* charge as an update -- would be nice not to charge at all */
1760 dmu_tx_hold_zap(tx, zsb->z_unlinkedobj, FALSE, NULL);
1761
1762 /*
1763 * Mark this transaction as typically resulting in a net free of space
1764 */
1765 dmu_tx_mark_netfree(tx);
1766
1767 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1768 if (error) {
1769 zfs_dirent_unlock(dl);
1770 iput(ip);
1771 if (xzp)
1772 iput(ZTOI(xzp));
1773 if (error == ERESTART) {
1774 waited = B_TRUE;
1775 dmu_tx_wait(tx);
1776 dmu_tx_abort(tx);
1777 goto top;
1778 }
1779 if (realnmp)
1780 pn_free(realnmp);
1781 dmu_tx_abort(tx);
1782 ZFS_EXIT(zsb);
1783 return (error);
1784 }
1785
1786 /*
1787 * Remove the directory entry.
1788 */
1789 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1790
1791 if (error) {
1792 dmu_tx_commit(tx);
1793 goto out;
1794 }
1795
1796 if (unlinked) {
1797 /*
1798 * Hold z_lock so that we can make sure that the ACL obj
1799 * hasn't changed. Could have been deleted due to
1800 * zfs_sa_upgrade().
1801 */
1802 mutex_enter(&zp->z_lock);
1803 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zsb),
1804 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1805 delete_now = may_delete_now && !toobig &&
1806 atomic_read(&ip->i_count) == 1 && !(zp->z_is_mapped) &&
1807 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1808 acl_obj;
1809 }
1810
1811 if (delete_now) {
1812 if (xattr_obj_unlinked) {
1813 ASSERT3U(ZTOI(xzp)->i_nlink, ==, 2);
1814 mutex_enter(&xzp->z_lock);
1815 xzp->z_unlinked = 1;
1816 clear_nlink(ZTOI(xzp));
1817 links = 0;
1818 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zsb),
1819 &links, sizeof (links), tx);
1820 ASSERT3U(error, ==, 0);
1821 mutex_exit(&xzp->z_lock);
1822 zfs_unlinked_add(xzp, tx);
1823
1824 if (zp->z_is_sa)
1825 error = sa_remove(zp->z_sa_hdl,
1826 SA_ZPL_XATTR(zsb), tx);
1827 else
1828 error = sa_update(zp->z_sa_hdl,
1829 SA_ZPL_XATTR(zsb), &null_xattr,
1830 sizeof (uint64_t), tx);
1831 ASSERT0(error);
1832 }
1833 /*
1834 * Add to the unlinked set because a new reference could be
1835 * taken concurrently resulting in a deferred destruction.
1836 */
1837 zfs_unlinked_add(zp, tx);
1838 mutex_exit(&zp->z_lock);
1839 zfs_inode_update(zp);
1840 iput(ip);
1841 } else if (unlinked) {
1842 mutex_exit(&zp->z_lock);
1843 zfs_unlinked_add(zp, tx);
1844 }
1845
1846 txtype = TX_REMOVE;
1847 if (flags & FIGNORECASE)
1848 txtype |= TX_CI;
1849 zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1850
1851 dmu_tx_commit(tx);
1852 out:
1853 if (realnmp)
1854 pn_free(realnmp);
1855
1856 zfs_dirent_unlock(dl);
1857 zfs_inode_update(dzp);
1858
1859 if (!delete_now) {
1860 zfs_inode_update(zp);
1861 zfs_iput_async(ip);
1862 }
1863
1864 if (xzp) {
1865 zfs_inode_update(xzp);
1866 zfs_iput_async(ZTOI(xzp));
1867 }
1868
1869 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
1870 zil_commit(zilog, 0);
1871
1872 ZFS_EXIT(zsb);
1873 return (error);
1874 }
1875 EXPORT_SYMBOL(zfs_remove);
1876
1877 /*
1878 * Create a new directory and insert it into dip using the name
1879 * provided. Return a pointer to the inserted directory.
1880 *
1881 * IN: dip - inode of directory to add subdir to.
1882 * dirname - name of new directory.
1883 * vap - attributes of new directory.
1884 * cr - credentials of caller.
1885 * vsecp - ACL to be set
1886 *
1887 * OUT: ipp - inode of created directory.
1888 *
1889 * RETURN: 0 if success
1890 * error code if failure
1891 *
1892 * Timestamps:
1893 * dip - ctime|mtime updated
1894 * ipp - ctime|mtime|atime updated
1895 */
1896 /*ARGSUSED*/
1897 int
1898 zfs_mkdir(struct inode *dip, char *dirname, vattr_t *vap, struct inode **ipp,
1899 cred_t *cr, int flags, vsecattr_t *vsecp)
1900 {
1901 znode_t *zp, *dzp = ITOZ(dip);
1902 zfs_sb_t *zsb = ITOZSB(dip);
1903 zilog_t *zilog;
1904 zfs_dirlock_t *dl;
1905 uint64_t txtype;
1906 dmu_tx_t *tx;
1907 int error;
1908 int zf = ZNEW;
1909 uid_t uid;
1910 gid_t gid = crgetgid(cr);
1911 zfs_acl_ids_t acl_ids;
1912 boolean_t fuid_dirtied;
1913 boolean_t waited = B_FALSE;
1914
1915 ASSERT(S_ISDIR(vap->va_mode));
1916
1917 /*
1918 * If we have an ephemeral id, ACL, or XVATTR then
1919 * make sure file system is at proper version
1920 */
1921
1922 uid = crgetuid(cr);
1923 if (zsb->z_use_fuids == B_FALSE &&
1924 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1925 return (SET_ERROR(EINVAL));
1926
1927 if (dirname == NULL)
1928 return (SET_ERROR(EINVAL));
1929
1930 ZFS_ENTER(zsb);
1931 ZFS_VERIFY_ZP(dzp);
1932 zilog = zsb->z_log;
1933
1934 if (dzp->z_pflags & ZFS_XATTR) {
1935 ZFS_EXIT(zsb);
1936 return (SET_ERROR(EINVAL));
1937 }
1938
1939 if (zsb->z_utf8 && u8_validate(dirname,
1940 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1941 ZFS_EXIT(zsb);
1942 return (SET_ERROR(EILSEQ));
1943 }
1944 if (flags & FIGNORECASE)
1945 zf |= ZCILOOK;
1946
1947 if (vap->va_mask & ATTR_XVATTR) {
1948 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1949 crgetuid(cr), cr, vap->va_mode)) != 0) {
1950 ZFS_EXIT(zsb);
1951 return (error);
1952 }
1953 }
1954
1955 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1956 vsecp, &acl_ids)) != 0) {
1957 ZFS_EXIT(zsb);
1958 return (error);
1959 }
1960 /*
1961 * First make sure the new directory doesn't exist.
1962 *
1963 * Existence is checked first to make sure we don't return
1964 * EACCES instead of EEXIST which can cause some applications
1965 * to fail.
1966 */
1967 top:
1968 *ipp = NULL;
1969
1970 if ((error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1971 NULL, NULL))) {
1972 zfs_acl_ids_free(&acl_ids);
1973 ZFS_EXIT(zsb);
1974 return (error);
1975 }
1976
1977 if ((error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr))) {
1978 zfs_acl_ids_free(&acl_ids);
1979 zfs_dirent_unlock(dl);
1980 ZFS_EXIT(zsb);
1981 return (error);
1982 }
1983
1984 if (zfs_acl_ids_overquota(zsb, &acl_ids)) {
1985 zfs_acl_ids_free(&acl_ids);
1986 zfs_dirent_unlock(dl);
1987 ZFS_EXIT(zsb);
1988 return (SET_ERROR(EDQUOT));
1989 }
1990
1991 /*
1992 * Add a new entry to the directory.
1993 */
1994 tx = dmu_tx_create(zsb->z_os);
1995 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1996 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1997 fuid_dirtied = zsb->z_fuid_dirty;
1998 if (fuid_dirtied)
1999 zfs_fuid_txhold(zsb, tx);
2000 if (!zsb->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2001 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
2002 acl_ids.z_aclp->z_acl_bytes);
2003 }
2004
2005 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
2006 ZFS_SA_BASE_ATTR_SIZE);
2007
2008 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2009 if (error) {
2010 zfs_dirent_unlock(dl);
2011 if (error == ERESTART) {
2012 waited = B_TRUE;
2013 dmu_tx_wait(tx);
2014 dmu_tx_abort(tx);
2015 goto top;
2016 }
2017 zfs_acl_ids_free(&acl_ids);
2018 dmu_tx_abort(tx);
2019 ZFS_EXIT(zsb);
2020 return (error);
2021 }
2022
2023 /*
2024 * Create new node.
2025 */
2026 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
2027
2028 if (fuid_dirtied)
2029 zfs_fuid_sync(zsb, tx);
2030
2031 /*
2032 * Now put new name in parent dir.
2033 */
2034 (void) zfs_link_create(dl, zp, tx, ZNEW);
2035
2036 *ipp = ZTOI(zp);
2037
2038 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2039 if (flags & FIGNORECASE)
2040 txtype |= TX_CI;
2041 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2042 acl_ids.z_fuidp, vap);
2043
2044 zfs_acl_ids_free(&acl_ids);
2045
2046 dmu_tx_commit(tx);
2047
2048 zfs_dirent_unlock(dl);
2049
2050 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
2051 zil_commit(zilog, 0);
2052
2053 zfs_inode_update(dzp);
2054 zfs_inode_update(zp);
2055 ZFS_EXIT(zsb);
2056 return (0);
2057 }
2058 EXPORT_SYMBOL(zfs_mkdir);
2059
2060 /*
2061 * Remove a directory subdir entry. If the current working
2062 * directory is the same as the subdir to be removed, the
2063 * remove will fail.
2064 *
2065 * IN: dip - inode of directory to remove from.
2066 * name - name of directory to be removed.
2067 * cwd - inode of current working directory.
2068 * cr - credentials of caller.
2069 * flags - case flags
2070 *
2071 * RETURN: 0 on success, error code on failure.
2072 *
2073 * Timestamps:
2074 * dip - ctime|mtime updated
2075 */
2076 /*ARGSUSED*/
2077 int
2078 zfs_rmdir(struct inode *dip, char *name, struct inode *cwd, cred_t *cr,
2079 int flags)
2080 {
2081 znode_t *dzp = ITOZ(dip);
2082 znode_t *zp;
2083 struct inode *ip;
2084 zfs_sb_t *zsb = ITOZSB(dip);
2085 zilog_t *zilog;
2086 zfs_dirlock_t *dl;
2087 dmu_tx_t *tx;
2088 int error;
2089 int zflg = ZEXISTS;
2090 boolean_t waited = B_FALSE;
2091
2092 if (name == NULL)
2093 return (SET_ERROR(EINVAL));
2094
2095 ZFS_ENTER(zsb);
2096 ZFS_VERIFY_ZP(dzp);
2097 zilog = zsb->z_log;
2098
2099 if (flags & FIGNORECASE)
2100 zflg |= ZCILOOK;
2101 top:
2102 zp = NULL;
2103
2104 /*
2105 * Attempt to lock directory; fail if entry doesn't exist.
2106 */
2107 if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2108 NULL, NULL))) {
2109 ZFS_EXIT(zsb);
2110 return (error);
2111 }
2112
2113 ip = ZTOI(zp);
2114
2115 if ((error = zfs_zaccess_delete(dzp, zp, cr))) {
2116 goto out;
2117 }
2118
2119 if (!S_ISDIR(ip->i_mode)) {
2120 error = SET_ERROR(ENOTDIR);
2121 goto out;
2122 }
2123
2124 if (ip == cwd) {
2125 error = SET_ERROR(EINVAL);
2126 goto out;
2127 }
2128
2129 /*
2130 * Grab a lock on the directory to make sure that noone is
2131 * trying to add (or lookup) entries while we are removing it.
2132 */
2133 rw_enter(&zp->z_name_lock, RW_WRITER);
2134
2135 /*
2136 * Grab a lock on the parent pointer to make sure we play well
2137 * with the treewalk and directory rename code.
2138 */
2139 rw_enter(&zp->z_parent_lock, RW_WRITER);
2140
2141 tx = dmu_tx_create(zsb->z_os);
2142 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2143 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2144 dmu_tx_hold_zap(tx, zsb->z_unlinkedobj, FALSE, NULL);
2145 zfs_sa_upgrade_txholds(tx, zp);
2146 zfs_sa_upgrade_txholds(tx, dzp);
2147 dmu_tx_mark_netfree(tx);
2148 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2149 if (error) {
2150 rw_exit(&zp->z_parent_lock);
2151 rw_exit(&zp->z_name_lock);
2152 zfs_dirent_unlock(dl);
2153 iput(ip);
2154 if (error == ERESTART) {
2155 waited = B_TRUE;
2156 dmu_tx_wait(tx);
2157 dmu_tx_abort(tx);
2158 goto top;
2159 }
2160 dmu_tx_abort(tx);
2161 ZFS_EXIT(zsb);
2162 return (error);
2163 }
2164
2165 error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2166
2167 if (error == 0) {
2168 uint64_t txtype = TX_RMDIR;
2169 if (flags & FIGNORECASE)
2170 txtype |= TX_CI;
2171 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2172 }
2173
2174 dmu_tx_commit(tx);
2175
2176 rw_exit(&zp->z_parent_lock);
2177 rw_exit(&zp->z_name_lock);
2178 out:
2179 zfs_dirent_unlock(dl);
2180
2181 zfs_inode_update(dzp);
2182 zfs_inode_update(zp);
2183 iput(ip);
2184
2185 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
2186 zil_commit(zilog, 0);
2187
2188 ZFS_EXIT(zsb);
2189 return (error);
2190 }
2191 EXPORT_SYMBOL(zfs_rmdir);
2192
2193 /*
2194 * Read as many directory entries as will fit into the provided
2195 * dirent buffer from the given directory cursor position.
2196 *
2197 * IN: ip - inode of directory to read.
2198 * dirent - buffer for directory entries.
2199 *
2200 * OUT: dirent - filler buffer of directory entries.
2201 *
2202 * RETURN: 0 if success
2203 * error code if failure
2204 *
2205 * Timestamps:
2206 * ip - atime updated
2207 *
2208 * Note that the low 4 bits of the cookie returned by zap is always zero.
2209 * This allows us to use the low range for "special" directory entries:
2210 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem,
2211 * we use the offset 2 for the '.zfs' directory.
2212 */
2213 /* ARGSUSED */
2214 int
2215 zfs_readdir(struct inode *ip, struct dir_context *ctx, cred_t *cr)
2216 {
2217 znode_t *zp = ITOZ(ip);
2218 zfs_sb_t *zsb = ITOZSB(ip);
2219 objset_t *os;
2220 zap_cursor_t zc;
2221 zap_attribute_t zap;
2222 int error;
2223 uint8_t prefetch;
2224 uint8_t type;
2225 int done = 0;
2226 uint64_t parent;
2227 uint64_t offset; /* must be unsigned; checks for < 1 */
2228
2229 ZFS_ENTER(zsb);
2230 ZFS_VERIFY_ZP(zp);
2231
2232 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zsb),
2233 &parent, sizeof (parent))) != 0)
2234 goto out;
2235
2236 /*
2237 * Quit if directory has been removed (posix)
2238 */
2239 if (zp->z_unlinked)
2240 goto out;
2241
2242 error = 0;
2243 os = zsb->z_os;
2244 offset = ctx->pos;
2245 prefetch = zp->z_zn_prefetch;
2246
2247 /*
2248 * Initialize the iterator cursor.
2249 */
2250 if (offset <= 3) {
2251 /*
2252 * Start iteration from the beginning of the directory.
2253 */
2254 zap_cursor_init(&zc, os, zp->z_id);
2255 } else {
2256 /*
2257 * The offset is a serialized cursor.
2258 */
2259 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2260 }
2261
2262 /*
2263 * Transform to file-system independent format
2264 */
2265 while (!done) {
2266 uint64_t objnum;
2267 /*
2268 * Special case `.', `..', and `.zfs'.
2269 */
2270 if (offset == 0) {
2271 (void) strcpy(zap.za_name, ".");
2272 zap.za_normalization_conflict = 0;
2273 objnum = zp->z_id;
2274 type = DT_DIR;
2275 } else if (offset == 1) {
2276 (void) strcpy(zap.za_name, "..");
2277 zap.za_normalization_conflict = 0;
2278 objnum = parent;
2279 type = DT_DIR;
2280 } else if (offset == 2 && zfs_show_ctldir(zp)) {
2281 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2282 zap.za_normalization_conflict = 0;
2283 objnum = ZFSCTL_INO_ROOT;
2284 type = DT_DIR;
2285 } else {
2286 /*
2287 * Grab next entry.
2288 */
2289 if ((error = zap_cursor_retrieve(&zc, &zap))) {
2290 if (error == ENOENT)
2291 break;
2292 else
2293 goto update;
2294 }
2295
2296 /*
2297 * Allow multiple entries provided the first entry is
2298 * the object id. Non-zpl consumers may safely make
2299 * use of the additional space.
2300 *
2301 * XXX: This should be a feature flag for compatibility
2302 */
2303 if (zap.za_integer_length != 8 ||
2304 zap.za_num_integers == 0) {
2305 cmn_err(CE_WARN, "zap_readdir: bad directory "
2306 "entry, obj = %lld, offset = %lld, "
2307 "length = %d, num = %lld\n",
2308 (u_longlong_t)zp->z_id,
2309 (u_longlong_t)offset,
2310 zap.za_integer_length,
2311 (u_longlong_t)zap.za_num_integers);
2312 error = SET_ERROR(ENXIO);
2313 goto update;
2314 }
2315
2316 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2317 type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2318 }
2319
2320 done = !dir_emit(ctx, zap.za_name, strlen(zap.za_name),
2321 objnum, type);
2322 if (done)
2323 break;
2324
2325 /* Prefetch znode */
2326 if (prefetch) {
2327 dmu_prefetch(os, objnum, 0, 0, 0,
2328 ZIO_PRIORITY_SYNC_READ);
2329 }
2330
2331 /*
2332 * Move to the next entry, fill in the previous offset.
2333 */
2334 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2335 zap_cursor_advance(&zc);
2336 offset = zap_cursor_serialize(&zc);
2337 } else {
2338 offset += 1;
2339 }
2340 ctx->pos = offset;
2341 }
2342 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2343
2344 update:
2345 zap_cursor_fini(&zc);
2346 if (error == ENOENT)
2347 error = 0;
2348 out:
2349 ZFS_EXIT(zsb);
2350
2351 return (error);
2352 }
2353 EXPORT_SYMBOL(zfs_readdir);
2354
2355 ulong_t zfs_fsync_sync_cnt = 4;
2356
2357 int
2358 zfs_fsync(struct inode *ip, int syncflag, cred_t *cr)
2359 {
2360 znode_t *zp = ITOZ(ip);
2361 zfs_sb_t *zsb = ITOZSB(ip);
2362
2363 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2364
2365 if (zsb->z_os->os_sync != ZFS_SYNC_DISABLED) {
2366 ZFS_ENTER(zsb);
2367 ZFS_VERIFY_ZP(zp);
2368 zil_commit(zsb->z_log, zp->z_id);
2369 ZFS_EXIT(zsb);
2370 }
2371 tsd_set(zfs_fsyncer_key, NULL);
2372
2373 return (0);
2374 }
2375 EXPORT_SYMBOL(zfs_fsync);
2376
2377
2378 /*
2379 * Get the requested file attributes and place them in the provided
2380 * vattr structure.
2381 *
2382 * IN: ip - inode of file.
2383 * vap - va_mask identifies requested attributes.
2384 * If ATTR_XVATTR set, then optional attrs are requested
2385 * flags - ATTR_NOACLCHECK (CIFS server context)
2386 * cr - credentials of caller.
2387 *
2388 * OUT: vap - attribute values.
2389 *
2390 * RETURN: 0 (always succeeds)
2391 */
2392 /* ARGSUSED */
2393 int
2394 zfs_getattr(struct inode *ip, vattr_t *vap, int flags, cred_t *cr)
2395 {
2396 znode_t *zp = ITOZ(ip);
2397 zfs_sb_t *zsb = ITOZSB(ip);
2398 int error = 0;
2399 uint64_t links;
2400 uint64_t atime[2], mtime[2], ctime[2];
2401 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2402 xoptattr_t *xoap = NULL;
2403 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2404 sa_bulk_attr_t bulk[3];
2405 int count = 0;
2406
2407 ZFS_ENTER(zsb);
2408 ZFS_VERIFY_ZP(zp);
2409
2410 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2411
2412 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zsb), NULL, &atime, 16);
2413 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zsb), NULL, &mtime, 16);
2414 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zsb), NULL, &ctime, 16);
2415
2416 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2417 ZFS_EXIT(zsb);
2418 return (error);
2419 }
2420
2421 /*
2422 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2423 * Also, if we are the owner don't bother, since owner should
2424 * always be allowed to read basic attributes of file.
2425 */
2426 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2427 (vap->va_uid != crgetuid(cr))) {
2428 if ((error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2429 skipaclchk, cr))) {
2430 ZFS_EXIT(zsb);
2431 return (error);
2432 }
2433 }
2434
2435 /*
2436 * Return all attributes. It's cheaper to provide the answer
2437 * than to determine whether we were asked the question.
2438 */
2439
2440 mutex_enter(&zp->z_lock);
2441 vap->va_type = vn_mode_to_vtype(zp->z_mode);
2442 vap->va_mode = zp->z_mode;
2443 vap->va_fsid = ZTOI(zp)->i_sb->s_dev;
2444 vap->va_nodeid = zp->z_id;
2445 if ((zp->z_id == zsb->z_root) && zfs_show_ctldir(zp))
2446 links = ZTOI(zp)->i_nlink + 1;
2447 else
2448 links = ZTOI(zp)->i_nlink;
2449 vap->va_nlink = MIN(links, ZFS_LINK_MAX);
2450 vap->va_size = i_size_read(ip);
2451 vap->va_rdev = ip->i_rdev;
2452 vap->va_seq = ip->i_generation;
2453
2454 /*
2455 * Add in any requested optional attributes and the create time.
2456 * Also set the corresponding bits in the returned attribute bitmap.
2457 */
2458 if ((xoap = xva_getxoptattr(xvap)) != NULL && zsb->z_use_fuids) {
2459 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2460 xoap->xoa_archive =
2461 ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2462 XVA_SET_RTN(xvap, XAT_ARCHIVE);
2463 }
2464
2465 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2466 xoap->xoa_readonly =
2467 ((zp->z_pflags & ZFS_READONLY) != 0);
2468 XVA_SET_RTN(xvap, XAT_READONLY);
2469 }
2470
2471 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2472 xoap->xoa_system =
2473 ((zp->z_pflags & ZFS_SYSTEM) != 0);
2474 XVA_SET_RTN(xvap, XAT_SYSTEM);
2475 }
2476
2477 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2478 xoap->xoa_hidden =
2479 ((zp->z_pflags & ZFS_HIDDEN) != 0);
2480 XVA_SET_RTN(xvap, XAT_HIDDEN);
2481 }
2482
2483 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2484 xoap->xoa_nounlink =
2485 ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2486 XVA_SET_RTN(xvap, XAT_NOUNLINK);
2487 }
2488
2489 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2490 xoap->xoa_immutable =
2491 ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2492 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2493 }
2494
2495 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2496 xoap->xoa_appendonly =
2497 ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2498 XVA_SET_RTN(xvap, XAT_APPENDONLY);
2499 }
2500
2501 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2502 xoap->xoa_nodump =
2503 ((zp->z_pflags & ZFS_NODUMP) != 0);
2504 XVA_SET_RTN(xvap, XAT_NODUMP);
2505 }
2506
2507 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2508 xoap->xoa_opaque =
2509 ((zp->z_pflags & ZFS_OPAQUE) != 0);
2510 XVA_SET_RTN(xvap, XAT_OPAQUE);
2511 }
2512
2513 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2514 xoap->xoa_av_quarantined =
2515 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2516 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2517 }
2518
2519 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2520 xoap->xoa_av_modified =
2521 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2522 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2523 }
2524
2525 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2526 S_ISREG(ip->i_mode)) {
2527 zfs_sa_get_scanstamp(zp, xvap);
2528 }
2529
2530 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2531 uint64_t times[2];
2532
2533 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zsb),
2534 times, sizeof (times));
2535 ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2536 XVA_SET_RTN(xvap, XAT_CREATETIME);
2537 }
2538
2539 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2540 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2541 XVA_SET_RTN(xvap, XAT_REPARSE);
2542 }
2543 if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2544 xoap->xoa_generation = ip->i_generation;
2545 XVA_SET_RTN(xvap, XAT_GEN);
2546 }
2547
2548 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2549 xoap->xoa_offline =
2550 ((zp->z_pflags & ZFS_OFFLINE) != 0);
2551 XVA_SET_RTN(xvap, XAT_OFFLINE);
2552 }
2553
2554 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2555 xoap->xoa_sparse =
2556 ((zp->z_pflags & ZFS_SPARSE) != 0);
2557 XVA_SET_RTN(xvap, XAT_SPARSE);
2558 }
2559 }
2560
2561 ZFS_TIME_DECODE(&vap->va_atime, atime);
2562 ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2563 ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2564
2565 mutex_exit(&zp->z_lock);
2566
2567 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2568
2569 if (zp->z_blksz == 0) {
2570 /*
2571 * Block size hasn't been set; suggest maximal I/O transfers.
2572 */
2573 vap->va_blksize = zsb->z_max_blksz;
2574 }
2575
2576 ZFS_EXIT(zsb);
2577 return (0);
2578 }
2579 EXPORT_SYMBOL(zfs_getattr);
2580
2581 /*
2582 * Get the basic file attributes and place them in the provided kstat
2583 * structure. The inode is assumed to be the authoritative source
2584 * for most of the attributes. However, the znode currently has the
2585 * authoritative atime, blksize, and block count.
2586 *
2587 * IN: ip - inode of file.
2588 *
2589 * OUT: sp - kstat values.
2590 *
2591 * RETURN: 0 (always succeeds)
2592 */
2593 /* ARGSUSED */
2594 int
2595 zfs_getattr_fast(struct inode *ip, struct kstat *sp)
2596 {
2597 znode_t *zp = ITOZ(ip);
2598 zfs_sb_t *zsb = ITOZSB(ip);
2599 uint32_t blksize;
2600 u_longlong_t nblocks;
2601
2602 ZFS_ENTER(zsb);
2603 ZFS_VERIFY_ZP(zp);
2604
2605 mutex_enter(&zp->z_lock);
2606
2607 generic_fillattr(ip, sp);
2608
2609 sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
2610 sp->blksize = blksize;
2611 sp->blocks = nblocks;
2612
2613 if (unlikely(zp->z_blksz == 0)) {
2614 /*
2615 * Block size hasn't been set; suggest maximal I/O transfers.
2616 */
2617 sp->blksize = zsb->z_max_blksz;
2618 }
2619
2620 mutex_exit(&zp->z_lock);
2621
2622 /*
2623 * Required to prevent NFS client from detecting different inode
2624 * numbers of snapshot root dentry before and after snapshot mount.
2625 */
2626 if (zsb->z_issnap) {
2627 if (ip->i_sb->s_root->d_inode == ip)
2628 sp->ino = ZFSCTL_INO_SNAPDIRS -
2629 dmu_objset_id(zsb->z_os);
2630 }
2631
2632 ZFS_EXIT(zsb);
2633
2634 return (0);
2635 }
2636 EXPORT_SYMBOL(zfs_getattr_fast);
2637
2638 /*
2639 * Set the file attributes to the values contained in the
2640 * vattr structure.
2641 *
2642 * IN: ip - inode of file to be modified.
2643 * vap - new attribute values.
2644 * If ATTR_XVATTR set, then optional attrs are being set
2645 * flags - ATTR_UTIME set if non-default time values provided.
2646 * - ATTR_NOACLCHECK (CIFS context only).
2647 * cr - credentials of caller.
2648 *
2649 * RETURN: 0 if success
2650 * error code if failure
2651 *
2652 * Timestamps:
2653 * ip - ctime updated, mtime updated if size changed.
2654 */
2655 /* ARGSUSED */
2656 int
2657 zfs_setattr(struct inode *ip, vattr_t *vap, int flags, cred_t *cr)
2658 {
2659 znode_t *zp = ITOZ(ip);
2660 zfs_sb_t *zsb = ITOZSB(ip);
2661 zilog_t *zilog;
2662 dmu_tx_t *tx;
2663 vattr_t oldva;
2664 xvattr_t *tmpxvattr;
2665 uint_t mask = vap->va_mask;
2666 uint_t saved_mask = 0;
2667 int trim_mask = 0;
2668 uint64_t new_mode;
2669 uint64_t new_kuid = 0, new_kgid = 0, new_uid, new_gid;
2670 uint64_t xattr_obj;
2671 uint64_t mtime[2], ctime[2], atime[2];
2672 znode_t *attrzp;
2673 int need_policy = FALSE;
2674 int err, err2;
2675 zfs_fuid_info_t *fuidp = NULL;
2676 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2677 xoptattr_t *xoap;
2678 zfs_acl_t *aclp;
2679 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2680 boolean_t fuid_dirtied = B_FALSE;
2681 sa_bulk_attr_t *bulk, *xattr_bulk;
2682 int count = 0, xattr_count = 0;
2683
2684 if (mask == 0)
2685 return (0);
2686
2687 ZFS_ENTER(zsb);
2688 ZFS_VERIFY_ZP(zp);
2689
2690 zilog = zsb->z_log;
2691
2692 /*
2693 * Make sure that if we have ephemeral uid/gid or xvattr specified
2694 * that file system is at proper version level
2695 */
2696
2697 if (zsb->z_use_fuids == B_FALSE &&
2698 (((mask & ATTR_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2699 ((mask & ATTR_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2700 (mask & ATTR_XVATTR))) {
2701 ZFS_EXIT(zsb);
2702 return (SET_ERROR(EINVAL));
2703 }
2704
2705 if (mask & ATTR_SIZE && S_ISDIR(ip->i_mode)) {
2706 ZFS_EXIT(zsb);
2707 return (SET_ERROR(EISDIR));
2708 }
2709
2710 if (mask & ATTR_SIZE && !S_ISREG(ip->i_mode) && !S_ISFIFO(ip->i_mode)) {
2711 ZFS_EXIT(zsb);
2712 return (SET_ERROR(EINVAL));
2713 }
2714
2715 /*
2716 * If this is an xvattr_t, then get a pointer to the structure of
2717 * optional attributes. If this is NULL, then we have a vattr_t.
2718 */
2719 xoap = xva_getxoptattr(xvap);
2720
2721 tmpxvattr = kmem_alloc(sizeof (xvattr_t), KM_SLEEP);
2722 xva_init(tmpxvattr);
2723
2724 bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * 7, KM_SLEEP);
2725 xattr_bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * 7, KM_SLEEP);
2726
2727 /*
2728 * Immutable files can only alter immutable bit and atime
2729 */
2730 if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2731 ((mask & (ATTR_SIZE|ATTR_UID|ATTR_GID|ATTR_MTIME|ATTR_MODE)) ||
2732 ((mask & ATTR_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2733 err = EPERM;
2734 goto out3;
2735 }
2736
2737 if ((mask & ATTR_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2738 err = EPERM;
2739 goto out3;
2740 }
2741
2742 /*
2743 * Verify timestamps doesn't overflow 32 bits.
2744 * ZFS can handle large timestamps, but 32bit syscalls can't
2745 * handle times greater than 2039. This check should be removed
2746 * once large timestamps are fully supported.
2747 */
2748 if (mask & (ATTR_ATIME | ATTR_MTIME)) {
2749 if (((mask & ATTR_ATIME) &&
2750 TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2751 ((mask & ATTR_MTIME) &&
2752 TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2753 err = EOVERFLOW;
2754 goto out3;
2755 }
2756 }
2757
2758 top:
2759 attrzp = NULL;
2760 aclp = NULL;
2761
2762 /* Can this be moved to before the top label? */
2763 if (zfs_is_readonly(zsb)) {
2764 err = EROFS;
2765 goto out3;
2766 }
2767
2768 /*
2769 * First validate permissions
2770 */
2771
2772 if (mask & ATTR_SIZE) {
2773 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2774 if (err)
2775 goto out3;
2776
2777 /*
2778 * XXX - Note, we are not providing any open
2779 * mode flags here (like FNDELAY), so we may
2780 * block if there are locks present... this
2781 * should be addressed in openat().
2782 */
2783 /* XXX - would it be OK to generate a log record here? */
2784 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2785 if (err)
2786 goto out3;
2787 }
2788
2789 if (mask & (ATTR_ATIME|ATTR_MTIME) ||
2790 ((mask & ATTR_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2791 XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2792 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2793 XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2794 XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2795 XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2796 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2797 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2798 skipaclchk, cr);
2799 }
2800
2801 if (mask & (ATTR_UID|ATTR_GID)) {
2802 int idmask = (mask & (ATTR_UID|ATTR_GID));
2803 int take_owner;
2804 int take_group;
2805
2806 /*
2807 * NOTE: even if a new mode is being set,
2808 * we may clear S_ISUID/S_ISGID bits.
2809 */
2810
2811 if (!(mask & ATTR_MODE))
2812 vap->va_mode = zp->z_mode;
2813
2814 /*
2815 * Take ownership or chgrp to group we are a member of
2816 */
2817
2818 take_owner = (mask & ATTR_UID) && (vap->va_uid == crgetuid(cr));
2819 take_group = (mask & ATTR_GID) &&
2820 zfs_groupmember(zsb, vap->va_gid, cr);
2821
2822 /*
2823 * If both ATTR_UID and ATTR_GID are set then take_owner and
2824 * take_group must both be set in order to allow taking
2825 * ownership.
2826 *
2827 * Otherwise, send the check through secpolicy_vnode_setattr()
2828 *
2829 */
2830
2831 if (((idmask == (ATTR_UID|ATTR_GID)) &&
2832 take_owner && take_group) ||
2833 ((idmask == ATTR_UID) && take_owner) ||
2834 ((idmask == ATTR_GID) && take_group)) {
2835 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2836 skipaclchk, cr) == 0) {
2837 /*
2838 * Remove setuid/setgid for non-privileged users
2839 */
2840 (void) secpolicy_setid_clear(vap, cr);
2841 trim_mask = (mask & (ATTR_UID|ATTR_GID));
2842 } else {
2843 need_policy = TRUE;
2844 }
2845 } else {
2846 need_policy = TRUE;
2847 }
2848 }
2849
2850 mutex_enter(&zp->z_lock);
2851 oldva.va_mode = zp->z_mode;
2852 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2853 if (mask & ATTR_XVATTR) {
2854 /*
2855 * Update xvattr mask to include only those attributes
2856 * that are actually changing.
2857 *
2858 * the bits will be restored prior to actually setting
2859 * the attributes so the caller thinks they were set.
2860 */
2861 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2862 if (xoap->xoa_appendonly !=
2863 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2864 need_policy = TRUE;
2865 } else {
2866 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2867 XVA_SET_REQ(tmpxvattr, XAT_APPENDONLY);
2868 }
2869 }
2870
2871 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2872 if (xoap->xoa_nounlink !=
2873 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2874 need_policy = TRUE;
2875 } else {
2876 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2877 XVA_SET_REQ(tmpxvattr, XAT_NOUNLINK);
2878 }
2879 }
2880
2881 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2882 if (xoap->xoa_immutable !=
2883 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2884 need_policy = TRUE;
2885 } else {
2886 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2887 XVA_SET_REQ(tmpxvattr, XAT_IMMUTABLE);
2888 }
2889 }
2890
2891 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2892 if (xoap->xoa_nodump !=
2893 ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2894 need_policy = TRUE;
2895 } else {
2896 XVA_CLR_REQ(xvap, XAT_NODUMP);
2897 XVA_SET_REQ(tmpxvattr, XAT_NODUMP);
2898 }
2899 }
2900
2901 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2902 if (xoap->xoa_av_modified !=
2903 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2904 need_policy = TRUE;
2905 } else {
2906 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2907 XVA_SET_REQ(tmpxvattr, XAT_AV_MODIFIED);
2908 }
2909 }
2910
2911 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2912 if ((!S_ISREG(ip->i_mode) &&
2913 xoap->xoa_av_quarantined) ||
2914 xoap->xoa_av_quarantined !=
2915 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2916 need_policy = TRUE;
2917 } else {
2918 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2919 XVA_SET_REQ(tmpxvattr, XAT_AV_QUARANTINED);
2920 }
2921 }
2922
2923 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2924 mutex_exit(&zp->z_lock);
2925 err = EPERM;
2926 goto out3;
2927 }
2928
2929 if (need_policy == FALSE &&
2930 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2931 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2932 need_policy = TRUE;
2933 }
2934 }
2935
2936 mutex_exit(&zp->z_lock);
2937
2938 if (mask & ATTR_MODE) {
2939 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2940 err = secpolicy_setid_setsticky_clear(ip, vap,
2941 &oldva, cr);
2942 if (err)
2943 goto out3;
2944
2945 trim_mask |= ATTR_MODE;
2946 } else {
2947 need_policy = TRUE;
2948 }
2949 }
2950
2951 if (need_policy) {
2952 /*
2953 * If trim_mask is set then take ownership
2954 * has been granted or write_acl is present and user
2955 * has the ability to modify mode. In that case remove
2956 * UID|GID and or MODE from mask so that
2957 * secpolicy_vnode_setattr() doesn't revoke it.
2958 */
2959
2960 if (trim_mask) {
2961 saved_mask = vap->va_mask;
2962 vap->va_mask &= ~trim_mask;
2963 }
2964 err = secpolicy_vnode_setattr(cr, ip, vap, &oldva, flags,
2965 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2966 if (err)
2967 goto out3;
2968
2969 if (trim_mask)
2970 vap->va_mask |= saved_mask;
2971 }
2972
2973 /*
2974 * secpolicy_vnode_setattr, or take ownership may have
2975 * changed va_mask
2976 */
2977 mask = vap->va_mask;
2978
2979 if ((mask & (ATTR_UID | ATTR_GID))) {
2980 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zsb),
2981 &xattr_obj, sizeof (xattr_obj));
2982
2983 if (err == 0 && xattr_obj) {
2984 err = zfs_zget(ZTOZSB(zp), xattr_obj, &attrzp);
2985 if (err)
2986 goto out2;
2987 }
2988 if (mask & ATTR_UID) {
2989 new_kuid = zfs_fuid_create(zsb,
2990 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2991 if (new_kuid != KUID_TO_SUID(ZTOI(zp)->i_uid) &&
2992 zfs_fuid_overquota(zsb, B_FALSE, new_kuid)) {
2993 if (attrzp)
2994 iput(ZTOI(attrzp));
2995 err = EDQUOT;
2996 goto out2;
2997 }
2998 }
2999
3000 if (mask & ATTR_GID) {
3001 new_kgid = zfs_fuid_create(zsb, (uint64_t)vap->va_gid,
3002 cr, ZFS_GROUP, &fuidp);
3003 if (new_kgid != KGID_TO_SGID(ZTOI(zp)->i_gid) &&
3004 zfs_fuid_overquota(zsb, B_TRUE, new_kgid)) {
3005 if (attrzp)
3006 iput(ZTOI(attrzp));
3007 err = EDQUOT;
3008 goto out2;
3009 }
3010 }
3011 }
3012 tx = dmu_tx_create(zsb->z_os);
3013
3014 if (mask & ATTR_MODE) {
3015 uint64_t pmode = zp->z_mode;
3016 uint64_t acl_obj;
3017 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3018
3019 zfs_acl_chmod_setattr(zp, &aclp, new_mode);
3020
3021 mutex_enter(&zp->z_lock);
3022 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3023 /*
3024 * Are we upgrading ACL from old V0 format
3025 * to V1 format?
3026 */
3027 if (zsb->z_version >= ZPL_VERSION_FUID &&
3028 zfs_znode_acl_version(zp) ==
3029 ZFS_ACL_VERSION_INITIAL) {
3030 dmu_tx_hold_free(tx, acl_obj, 0,
3031 DMU_OBJECT_END);
3032 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3033 0, aclp->z_acl_bytes);
3034 } else {
3035 dmu_tx_hold_write(tx, acl_obj, 0,
3036 aclp->z_acl_bytes);
3037 }
3038 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3039 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3040 0, aclp->z_acl_bytes);
3041 }
3042 mutex_exit(&zp->z_lock);
3043 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3044 } else {
3045 if ((mask & ATTR_XVATTR) &&
3046 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3047 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3048 else
3049 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3050 }
3051
3052 if (attrzp) {
3053 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3054 }
3055
3056 fuid_dirtied = zsb->z_fuid_dirty;
3057 if (fuid_dirtied)
3058 zfs_fuid_txhold(zsb, tx);
3059
3060 zfs_sa_upgrade_txholds(tx, zp);
3061
3062 err = dmu_tx_assign(tx, TXG_WAIT);
3063 if (err)
3064 goto out;
3065
3066 count = 0;
3067 /*
3068 * Set each attribute requested.
3069 * We group settings according to the locks they need to acquire.
3070 *
3071 * Note: you cannot set ctime directly, although it will be
3072 * updated as a side-effect of calling this function.
3073 */
3074
3075
3076 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
3077 mutex_enter(&zp->z_acl_lock);
3078 mutex_enter(&zp->z_lock);
3079
3080 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zsb), NULL,
3081 &zp->z_pflags, sizeof (zp->z_pflags));
3082
3083 if (attrzp) {
3084 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
3085 mutex_enter(&attrzp->z_acl_lock);
3086 mutex_enter(&attrzp->z_lock);
3087 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3088 SA_ZPL_FLAGS(zsb), NULL, &attrzp->z_pflags,
3089 sizeof (attrzp->z_pflags));
3090 }
3091
3092 if (mask & (ATTR_UID|ATTR_GID)) {
3093
3094 if (mask & ATTR_UID) {
3095 ZTOI(zp)->i_uid = SUID_TO_KUID(new_kuid);
3096 new_uid = zfs_uid_read(ZTOI(zp));
3097 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zsb), NULL,
3098 &new_uid, sizeof (new_uid));
3099 if (attrzp) {
3100 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3101 SA_ZPL_UID(zsb), NULL, &new_uid,
3102 sizeof (new_uid));
3103 ZTOI(attrzp)->i_uid = SUID_TO_KUID(new_uid);
3104 }
3105 }
3106
3107 if (mask & ATTR_GID) {
3108 ZTOI(zp)->i_gid = SGID_TO_KGID(new_kgid);
3109 new_gid = zfs_gid_read(ZTOI(zp));
3110 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zsb),
3111 NULL, &new_gid, sizeof (new_gid));
3112 if (attrzp) {
3113 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3114 SA_ZPL_GID(zsb), NULL, &new_gid,
3115 sizeof (new_gid));
3116 ZTOI(attrzp)->i_gid = SGID_TO_KGID(new_kgid);
3117 }
3118 }
3119 if (!(mask & ATTR_MODE)) {
3120 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zsb),
3121 NULL, &new_mode, sizeof (new_mode));
3122 new_mode = zp->z_mode;
3123 }
3124 err = zfs_acl_chown_setattr(zp);
3125 ASSERT(err == 0);
3126 if (attrzp) {
3127 err = zfs_acl_chown_setattr(attrzp);
3128 ASSERT(err == 0);
3129 }
3130 }
3131
3132 if (mask & ATTR_MODE) {
3133 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zsb), NULL,
3134 &new_mode, sizeof (new_mode));
3135 zp->z_mode = ZTOI(zp)->i_mode = new_mode;
3136 ASSERT3P(aclp, !=, NULL);
3137 err = zfs_aclset_common(zp, aclp, cr, tx);
3138 ASSERT0(err);
3139 if (zp->z_acl_cached)
3140 zfs_acl_free(zp->z_acl_cached);
3141 zp->z_acl_cached = aclp;
3142 aclp = NULL;
3143 }
3144
3145 if ((mask & ATTR_ATIME) || zp->z_atime_dirty) {
3146 zp->z_atime_dirty = 0;
3147 ZFS_TIME_ENCODE(&ip->i_atime, atime);
3148 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zsb), NULL,
3149 &atime, sizeof (atime));
3150 }
3151
3152 if (mask & ATTR_MTIME) {
3153 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3154 ZTOI(zp)->i_mtime = timespec_trunc(vap->va_mtime,
3155 ZTOI(zp)->i_sb->s_time_gran);
3156
3157 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zsb), NULL,
3158 mtime, sizeof (mtime));
3159 }
3160
3161 if (mask & ATTR_CTIME) {
3162 ZFS_TIME_ENCODE(&vap->va_ctime, ctime);
3163 ZTOI(zp)->i_ctime = timespec_trunc(vap->va_ctime,
3164 ZTOI(zp)->i_sb->s_time_gran);
3165 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zsb), NULL,
3166 ctime, sizeof (ctime));
3167 }
3168
3169 if (attrzp && mask) {
3170 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3171 SA_ZPL_CTIME(zsb), NULL, &ctime,
3172 sizeof (ctime));
3173 }
3174
3175 /*
3176 * Do this after setting timestamps to prevent timestamp
3177 * update from toggling bit
3178 */
3179
3180 if (xoap && (mask & ATTR_XVATTR)) {
3181
3182 /*
3183 * restore trimmed off masks
3184 * so that return masks can be set for caller.
3185 */
3186
3187 if (XVA_ISSET_REQ(tmpxvattr, XAT_APPENDONLY)) {
3188 XVA_SET_REQ(xvap, XAT_APPENDONLY);
3189 }
3190 if (XVA_ISSET_REQ(tmpxvattr, XAT_NOUNLINK)) {
3191 XVA_SET_REQ(xvap, XAT_NOUNLINK);
3192 }
3193 if (XVA_ISSET_REQ(tmpxvattr, XAT_IMMUTABLE)) {
3194 XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3195 }
3196 if (XVA_ISSET_REQ(tmpxvattr, XAT_NODUMP)) {
3197 XVA_SET_REQ(xvap, XAT_NODUMP);
3198 }
3199 if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_MODIFIED)) {
3200 XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3201 }
3202 if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_QUARANTINED)) {
3203 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3204 }
3205
3206 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3207 ASSERT(S_ISREG(ip->i_mode));
3208
3209 zfs_xvattr_set(zp, xvap, tx);
3210 }
3211
3212 if (fuid_dirtied)
3213 zfs_fuid_sync(zsb, tx);
3214
3215 if (mask != 0)
3216 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3217
3218 mutex_exit(&zp->z_lock);
3219 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
3220 mutex_exit(&zp->z_acl_lock);
3221
3222 if (attrzp) {
3223 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
3224 mutex_exit(&attrzp->z_acl_lock);
3225 mutex_exit(&attrzp->z_lock);
3226 }
3227 out:
3228 if (err == 0 && attrzp) {
3229 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3230 xattr_count, tx);
3231 ASSERT(err2 == 0);
3232 }
3233
3234 if (attrzp)
3235 iput(ZTOI(attrzp));
3236 if (aclp)
3237 zfs_acl_free(aclp);
3238
3239 if (fuidp) {
3240 zfs_fuid_info_free(fuidp);
3241 fuidp = NULL;
3242 }
3243
3244 if (err) {
3245 dmu_tx_abort(tx);
3246 if (err == ERESTART)
3247 goto top;
3248 } else {
3249 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3250 dmu_tx_commit(tx);
3251 zfs_inode_update(zp);
3252 }
3253
3254 out2:
3255 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
3256 zil_commit(zilog, 0);
3257
3258 out3:
3259 kmem_free(xattr_bulk, sizeof (sa_bulk_attr_t) * 7);
3260 kmem_free(bulk, sizeof (sa_bulk_attr_t) * 7);
3261 kmem_free(tmpxvattr, sizeof (xvattr_t));
3262 ZFS_EXIT(zsb);
3263 return (err);
3264 }
3265 EXPORT_SYMBOL(zfs_setattr);
3266
3267 typedef struct zfs_zlock {
3268 krwlock_t *zl_rwlock; /* lock we acquired */
3269 znode_t *zl_znode; /* znode we held */
3270 struct zfs_zlock *zl_next; /* next in list */
3271 } zfs_zlock_t;
3272
3273 /*
3274 * Drop locks and release vnodes that were held by zfs_rename_lock().
3275 */
3276 static void
3277 zfs_rename_unlock(zfs_zlock_t **zlpp)
3278 {
3279 zfs_zlock_t *zl;
3280
3281 while ((zl = *zlpp) != NULL) {
3282 if (zl->zl_znode != NULL)
3283 iput(ZTOI(zl->zl_znode));
3284 rw_exit(zl->zl_rwlock);
3285 *zlpp = zl->zl_next;
3286 kmem_free(zl, sizeof (*zl));
3287 }
3288 }
3289
3290 /*
3291 * Search back through the directory tree, using the ".." entries.
3292 * Lock each directory in the chain to prevent concurrent renames.
3293 * Fail any attempt to move a directory into one of its own descendants.
3294 * XXX - z_parent_lock can overlap with map or grow locks
3295 */
3296 static int
3297 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3298 {
3299 zfs_zlock_t *zl;
3300 znode_t *zp = tdzp;
3301 uint64_t rootid = ZTOZSB(zp)->z_root;
3302 uint64_t oidp = zp->z_id;
3303 krwlock_t *rwlp = &szp->z_parent_lock;
3304 krw_t rw = RW_WRITER;
3305
3306 /*
3307 * First pass write-locks szp and compares to zp->z_id.
3308 * Later passes read-lock zp and compare to zp->z_parent.
3309 */
3310 do {
3311 if (!rw_tryenter(rwlp, rw)) {
3312 /*
3313 * Another thread is renaming in this path.
3314 * Note that if we are a WRITER, we don't have any
3315 * parent_locks held yet.
3316 */
3317 if (rw == RW_READER && zp->z_id > szp->z_id) {
3318 /*
3319 * Drop our locks and restart
3320 */
3321 zfs_rename_unlock(&zl);
3322 *zlpp = NULL;
3323 zp = tdzp;
3324 oidp = zp->z_id;
3325 rwlp = &szp->z_parent_lock;
3326 rw = RW_WRITER;
3327 continue;
3328 } else {
3329 /*
3330 * Wait for other thread to drop its locks
3331 */
3332 rw_enter(rwlp, rw);
3333 }
3334 }
3335
3336 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3337 zl->zl_rwlock = rwlp;
3338 zl->zl_znode = NULL;
3339 zl->zl_next = *zlpp;
3340 *zlpp = zl;
3341
3342 if (oidp == szp->z_id) /* We're a descendant of szp */
3343 return (SET_ERROR(EINVAL));
3344
3345 if (oidp == rootid) /* We've hit the top */
3346 return (0);
3347
3348 if (rw == RW_READER) { /* i.e. not the first pass */
3349 int error = zfs_zget(ZTOZSB(zp), oidp, &zp);
3350 if (error)
3351 return (error);
3352 zl->zl_znode = zp;
3353 }
3354 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(ZTOZSB(zp)),
3355 &oidp, sizeof (oidp));
3356 rwlp = &zp->z_parent_lock;
3357 rw = RW_READER;
3358
3359 } while (zp->z_id != sdzp->z_id);
3360
3361 return (0);
3362 }
3363
3364 /*
3365 * Move an entry from the provided source directory to the target
3366 * directory. Change the entry name as indicated.
3367 *
3368 * IN: sdip - Source directory containing the "old entry".
3369 * snm - Old entry name.
3370 * tdip - Target directory to contain the "new entry".
3371 * tnm - New entry name.
3372 * cr - credentials of caller.
3373 * flags - case flags
3374 *
3375 * RETURN: 0 on success, error code on failure.
3376 *
3377 * Timestamps:
3378 * sdip,tdip - ctime|mtime updated
3379 */
3380 /*ARGSUSED*/
3381 int
3382 zfs_rename(struct inode *sdip, char *snm, struct inode *tdip, char *tnm,
3383 cred_t *cr, int flags)
3384 {
3385 znode_t *tdzp, *szp, *tzp;
3386 znode_t *sdzp = ITOZ(sdip);
3387 zfs_sb_t *zsb = ITOZSB(sdip);
3388 zilog_t *zilog;
3389 zfs_dirlock_t *sdl, *tdl;
3390 dmu_tx_t *tx;
3391 zfs_zlock_t *zl;
3392 int cmp, serr, terr;
3393 int error = 0;
3394 int zflg = 0;
3395 boolean_t waited = B_FALSE;
3396
3397 if (snm == NULL || tnm == NULL)
3398 return (SET_ERROR(EINVAL));
3399
3400 ZFS_ENTER(zsb);
3401 ZFS_VERIFY_ZP(sdzp);
3402 zilog = zsb->z_log;
3403
3404 tdzp = ITOZ(tdip);
3405 ZFS_VERIFY_ZP(tdzp);
3406
3407 /*
3408 * We check i_sb because snapshots and the ctldir must have different
3409 * super blocks.
3410 */
3411 if (tdip->i_sb != sdip->i_sb || zfsctl_is_node(tdip)) {
3412 ZFS_EXIT(zsb);
3413 return (SET_ERROR(EXDEV));
3414 }
3415
3416 if (zsb->z_utf8 && u8_validate(tnm,
3417 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3418 ZFS_EXIT(zsb);
3419 return (SET_ERROR(EILSEQ));
3420 }
3421
3422 if (flags & FIGNORECASE)
3423 zflg |= ZCILOOK;
3424
3425 top:
3426 szp = NULL;
3427 tzp = NULL;
3428 zl = NULL;
3429
3430 /*
3431 * This is to prevent the creation of links into attribute space
3432 * by renaming a linked file into/outof an attribute directory.
3433 * See the comment in zfs_link() for why this is considered bad.
3434 */
3435 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3436 ZFS_EXIT(zsb);
3437 return (SET_ERROR(EINVAL));
3438 }
3439
3440 /*
3441 * Lock source and target directory entries. To prevent deadlock,
3442 * a lock ordering must be defined. We lock the directory with
3443 * the smallest object id first, or if it's a tie, the one with
3444 * the lexically first name.
3445 */
3446 if (sdzp->z_id < tdzp->z_id) {
3447 cmp = -1;
3448 } else if (sdzp->z_id > tdzp->z_id) {
3449 cmp = 1;
3450 } else {
3451 /*
3452 * First compare the two name arguments without
3453 * considering any case folding.
3454 */
3455 int nofold = (zsb->z_norm & ~U8_TEXTPREP_TOUPPER);
3456
3457 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3458 ASSERT(error == 0 || !zsb->z_utf8);
3459 if (cmp == 0) {
3460 /*
3461 * POSIX: "If the old argument and the new argument
3462 * both refer to links to the same existing file,
3463 * the rename() function shall return successfully
3464 * and perform no other action."
3465 */
3466 ZFS_EXIT(zsb);
3467 return (0);
3468 }
3469 /*
3470 * If the file system is case-folding, then we may
3471 * have some more checking to do. A case-folding file
3472 * system is either supporting mixed case sensitivity
3473 * access or is completely case-insensitive. Note
3474 * that the file system is always case preserving.
3475 *
3476 * In mixed sensitivity mode case sensitive behavior
3477 * is the default. FIGNORECASE must be used to
3478 * explicitly request case insensitive behavior.
3479 *
3480 * If the source and target names provided differ only
3481 * by case (e.g., a request to rename 'tim' to 'Tim'),
3482 * we will treat this as a special case in the
3483 * case-insensitive mode: as long as the source name
3484 * is an exact match, we will allow this to proceed as
3485 * a name-change request.
3486 */
3487 if ((zsb->z_case == ZFS_CASE_INSENSITIVE ||
3488 (zsb->z_case == ZFS_CASE_MIXED &&
3489 flags & FIGNORECASE)) &&
3490 u8_strcmp(snm, tnm, 0, zsb->z_norm, U8_UNICODE_LATEST,
3491 &error) == 0) {
3492 /*
3493 * case preserving rename request, require exact
3494 * name matches
3495 */
3496 zflg |= ZCIEXACT;
3497 zflg &= ~ZCILOOK;
3498 }
3499 }
3500
3501 /*
3502 * If the source and destination directories are the same, we should
3503 * grab the z_name_lock of that directory only once.
3504 */
3505 if (sdzp == tdzp) {
3506 zflg |= ZHAVELOCK;
3507 rw_enter(&sdzp->z_name_lock, RW_READER);
3508 }
3509
3510 if (cmp < 0) {
3511 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3512 ZEXISTS | zflg, NULL, NULL);
3513 terr = zfs_dirent_lock(&tdl,
3514 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3515 } else {
3516 terr = zfs_dirent_lock(&tdl,
3517 tdzp, tnm, &tzp, zflg, NULL, NULL);
3518 serr = zfs_dirent_lock(&sdl,
3519 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3520 NULL, NULL);
3521 }
3522
3523 if (serr) {
3524 /*
3525 * Source entry invalid or not there.
3526 */
3527 if (!terr) {
3528 zfs_dirent_unlock(tdl);
3529 if (tzp)
3530 iput(ZTOI(tzp));
3531 }
3532
3533 if (sdzp == tdzp)
3534 rw_exit(&sdzp->z_name_lock);
3535
3536 if (strcmp(snm, "..") == 0)
3537 serr = EINVAL;
3538 ZFS_EXIT(zsb);
3539 return (serr);
3540 }
3541 if (terr) {
3542 zfs_dirent_unlock(sdl);
3543 iput(ZTOI(szp));
3544
3545 if (sdzp == tdzp)
3546 rw_exit(&sdzp->z_name_lock);
3547
3548 if (strcmp(tnm, "..") == 0)
3549 terr = EINVAL;
3550 ZFS_EXIT(zsb);
3551 return (terr);
3552 }
3553
3554 /*
3555 * Must have write access at the source to remove the old entry
3556 * and write access at the target to create the new entry.
3557 * Note that if target and source are the same, this can be
3558 * done in a single check.
3559 */
3560
3561 if ((error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)))
3562 goto out;
3563
3564 if (S_ISDIR(ZTOI(szp)->i_mode)) {
3565 /*
3566 * Check to make sure rename is valid.
3567 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3568 */
3569 if ((error = zfs_rename_lock(szp, tdzp, sdzp, &zl)))
3570 goto out;
3571 }
3572
3573 /*
3574 * Does target exist?
3575 */
3576 if (tzp) {
3577 /*
3578 * Source and target must be the same type.
3579 */
3580 if (S_ISDIR(ZTOI(szp)->i_mode)) {
3581 if (!S_ISDIR(ZTOI(tzp)->i_mode)) {
3582 error = SET_ERROR(ENOTDIR);
3583 goto out;
3584 }
3585 } else {
3586 if (S_ISDIR(ZTOI(tzp)->i_mode)) {
3587 error = SET_ERROR(EISDIR);
3588 goto out;
3589 }
3590 }
3591 /*
3592 * POSIX dictates that when the source and target
3593 * entries refer to the same file object, rename
3594 * must do nothing and exit without error.
3595 */
3596 if (szp->z_id == tzp->z_id) {
3597 error = 0;
3598 goto out;
3599 }
3600 }
3601
3602 tx = dmu_tx_create(zsb->z_os);
3603 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3604 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3605 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3606 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3607 if (sdzp != tdzp) {
3608 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3609 zfs_sa_upgrade_txholds(tx, tdzp);
3610 }
3611 if (tzp) {
3612 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3613 zfs_sa_upgrade_txholds(tx, tzp);
3614 }
3615
3616 zfs_sa_upgrade_txholds(tx, szp);
3617 dmu_tx_hold_zap(tx, zsb->z_unlinkedobj, FALSE, NULL);
3618 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3619 if (error) {
3620 if (zl != NULL)
3621 zfs_rename_unlock(&zl);
3622 zfs_dirent_unlock(sdl);
3623 zfs_dirent_unlock(tdl);
3624
3625 if (sdzp == tdzp)
3626 rw_exit(&sdzp->z_name_lock);
3627
3628 iput(ZTOI(szp));
3629 if (tzp)
3630 iput(ZTOI(tzp));
3631 if (error == ERESTART) {
3632 waited = B_TRUE;
3633 dmu_tx_wait(tx);
3634 dmu_tx_abort(tx);
3635 goto top;
3636 }
3637 dmu_tx_abort(tx);
3638 ZFS_EXIT(zsb);
3639 return (error);
3640 }
3641
3642 if (tzp) /* Attempt to remove the existing target */
3643 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3644
3645 if (error == 0) {
3646 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3647 if (error == 0) {
3648 szp->z_pflags |= ZFS_AV_MODIFIED;
3649
3650 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zsb),
3651 (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3652 ASSERT0(error);
3653
3654 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3655 if (error == 0) {
3656 zfs_log_rename(zilog, tx, TX_RENAME |
3657 (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3658 sdl->dl_name, tdzp, tdl->dl_name, szp);
3659 } else {
3660 /*
3661 * At this point, we have successfully created
3662 * the target name, but have failed to remove
3663 * the source name. Since the create was done
3664 * with the ZRENAMING flag, there are
3665 * complications; for one, the link count is
3666 * wrong. The easiest way to deal with this
3667 * is to remove the newly created target, and
3668 * return the original error. This must
3669 * succeed; fortunately, it is very unlikely to
3670 * fail, since we just created it.
3671 */
3672 VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3673 ZRENAMING, NULL), ==, 0);
3674 }
3675 }
3676 }
3677
3678 dmu_tx_commit(tx);
3679 out:
3680 if (zl != NULL)
3681 zfs_rename_unlock(&zl);
3682
3683 zfs_dirent_unlock(sdl);
3684 zfs_dirent_unlock(tdl);
3685
3686 zfs_inode_update(sdzp);
3687 if (sdzp == tdzp)
3688 rw_exit(&sdzp->z_name_lock);
3689
3690 if (sdzp != tdzp)
3691 zfs_inode_update(tdzp);
3692
3693 zfs_inode_update(szp);
3694 iput(ZTOI(szp));
3695 if (tzp) {
3696 zfs_inode_update(tzp);
3697 iput(ZTOI(tzp));
3698 }
3699
3700 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
3701 zil_commit(zilog, 0);
3702
3703 ZFS_EXIT(zsb);
3704 return (error);
3705 }
3706 EXPORT_SYMBOL(zfs_rename);
3707
3708 /*
3709 * Insert the indicated symbolic reference entry into the directory.
3710 *
3711 * IN: dip - Directory to contain new symbolic link.
3712 * link - Name for new symlink entry.
3713 * vap - Attributes of new entry.
3714 * target - Target path of new symlink.
3715 *
3716 * cr - credentials of caller.
3717 * flags - case flags
3718 *
3719 * RETURN: 0 on success, error code on failure.
3720 *
3721 * Timestamps:
3722 * dip - ctime|mtime updated
3723 */
3724 /*ARGSUSED*/
3725 int
3726 zfs_symlink(struct inode *dip, char *name, vattr_t *vap, char *link,
3727 struct inode **ipp, cred_t *cr, int flags)
3728 {
3729 znode_t *zp, *dzp = ITOZ(dip);
3730 zfs_dirlock_t *dl;
3731 dmu_tx_t *tx;
3732 zfs_sb_t *zsb = ITOZSB(dip);
3733 zilog_t *zilog;
3734 uint64_t len = strlen(link);
3735 int error;
3736 int zflg = ZNEW;
3737 zfs_acl_ids_t acl_ids;
3738 boolean_t fuid_dirtied;
3739 uint64_t txtype = TX_SYMLINK;
3740 boolean_t waited = B_FALSE;
3741
3742 ASSERT(S_ISLNK(vap->va_mode));
3743
3744 if (name == NULL)
3745 return (SET_ERROR(EINVAL));
3746
3747 ZFS_ENTER(zsb);
3748 ZFS_VERIFY_ZP(dzp);
3749 zilog = zsb->z_log;
3750
3751 if (zsb->z_utf8 && u8_validate(name, strlen(name),
3752 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3753 ZFS_EXIT(zsb);
3754 return (SET_ERROR(EILSEQ));
3755 }
3756 if (flags & FIGNORECASE)
3757 zflg |= ZCILOOK;
3758
3759 if (len > MAXPATHLEN) {
3760 ZFS_EXIT(zsb);
3761 return (SET_ERROR(ENAMETOOLONG));
3762 }
3763
3764 if ((error = zfs_acl_ids_create(dzp, 0,
3765 vap, cr, NULL, &acl_ids)) != 0) {
3766 ZFS_EXIT(zsb);
3767 return (error);
3768 }
3769 top:
3770 *ipp = NULL;
3771
3772 /*
3773 * Attempt to lock directory; fail if entry already exists.
3774 */
3775 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3776 if (error) {
3777 zfs_acl_ids_free(&acl_ids);
3778 ZFS_EXIT(zsb);
3779 return (error);
3780 }
3781
3782 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
3783 zfs_acl_ids_free(&acl_ids);
3784 zfs_dirent_unlock(dl);
3785 ZFS_EXIT(zsb);
3786 return (error);
3787 }
3788
3789 if (zfs_acl_ids_overquota(zsb, &acl_ids)) {
3790 zfs_acl_ids_free(&acl_ids);
3791 zfs_dirent_unlock(dl);
3792 ZFS_EXIT(zsb);
3793 return (SET_ERROR(EDQUOT));
3794 }
3795 tx = dmu_tx_create(zsb->z_os);
3796 fuid_dirtied = zsb->z_fuid_dirty;
3797 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3798 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3799 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3800 ZFS_SA_BASE_ATTR_SIZE + len);
3801 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3802 if (!zsb->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3803 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3804 acl_ids.z_aclp->z_acl_bytes);
3805 }
3806 if (fuid_dirtied)
3807 zfs_fuid_txhold(zsb, tx);
3808 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3809 if (error) {
3810 zfs_dirent_unlock(dl);
3811 if (error == ERESTART) {
3812 waited = B_TRUE;
3813 dmu_tx_wait(tx);
3814 dmu_tx_abort(tx);
3815 goto top;
3816 }
3817 zfs_acl_ids_free(&acl_ids);
3818 dmu_tx_abort(tx);
3819 ZFS_EXIT(zsb);
3820 return (error);
3821 }
3822
3823 /*
3824 * Create a new object for the symlink.
3825 * for version 4 ZPL datsets the symlink will be an SA attribute
3826 */
3827 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3828
3829 if (fuid_dirtied)
3830 zfs_fuid_sync(zsb, tx);
3831
3832 mutex_enter(&zp->z_lock);
3833 if (zp->z_is_sa)
3834 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zsb),
3835 link, len, tx);
3836 else
3837 zfs_sa_symlink(zp, link, len, tx);
3838 mutex_exit(&zp->z_lock);
3839
3840 zp->z_size = len;
3841 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zsb),
3842 &zp->z_size, sizeof (zp->z_size), tx);
3843 /*
3844 * Insert the new object into the directory.
3845 */
3846 (void) zfs_link_create(dl, zp, tx, ZNEW);
3847
3848 if (flags & FIGNORECASE)
3849 txtype |= TX_CI;
3850 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3851
3852 zfs_inode_update(dzp);
3853 zfs_inode_update(zp);
3854
3855 zfs_acl_ids_free(&acl_ids);
3856
3857 dmu_tx_commit(tx);
3858
3859 zfs_dirent_unlock(dl);
3860
3861 *ipp = ZTOI(zp);
3862
3863 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
3864 zil_commit(zilog, 0);
3865
3866 ZFS_EXIT(zsb);
3867 return (error);
3868 }
3869 EXPORT_SYMBOL(zfs_symlink);
3870
3871 /*
3872 * Return, in the buffer contained in the provided uio structure,
3873 * the symbolic path referred to by ip.
3874 *
3875 * IN: ip - inode of symbolic link
3876 * uio - structure to contain the link path.
3877 * cr - credentials of caller.
3878 *
3879 * RETURN: 0 if success
3880 * error code if failure
3881 *
3882 * Timestamps:
3883 * ip - atime updated
3884 */
3885 /* ARGSUSED */
3886 int
3887 zfs_readlink(struct inode *ip, uio_t *uio, cred_t *cr)
3888 {
3889 znode_t *zp = ITOZ(ip);
3890 zfs_sb_t *zsb = ITOZSB(ip);
3891 int error;
3892
3893 ZFS_ENTER(zsb);
3894 ZFS_VERIFY_ZP(zp);
3895
3896 mutex_enter(&zp->z_lock);
3897 if (zp->z_is_sa)
3898 error = sa_lookup_uio(zp->z_sa_hdl,
3899 SA_ZPL_SYMLINK(zsb), uio);
3900 else
3901 error = zfs_sa_readlink(zp, uio);
3902 mutex_exit(&zp->z_lock);
3903
3904 ZFS_EXIT(zsb);
3905 return (error);
3906 }
3907 EXPORT_SYMBOL(zfs_readlink);
3908
3909 /*
3910 * Insert a new entry into directory tdip referencing sip.
3911 *
3912 * IN: tdip - Directory to contain new entry.
3913 * sip - inode of new entry.
3914 * name - name of new entry.
3915 * cr - credentials of caller.
3916 *
3917 * RETURN: 0 if success
3918 * error code if failure
3919 *
3920 * Timestamps:
3921 * tdip - ctime|mtime updated
3922 * sip - ctime updated
3923 */
3924 /* ARGSUSED */
3925 int
3926 zfs_link(struct inode *tdip, struct inode *sip, char *name, cred_t *cr,
3927 int flags)
3928 {
3929 znode_t *dzp = ITOZ(tdip);
3930 znode_t *tzp, *szp;
3931 zfs_sb_t *zsb = ITOZSB(tdip);
3932 zilog_t *zilog;
3933 zfs_dirlock_t *dl;
3934 dmu_tx_t *tx;
3935 int error;
3936 int zf = ZNEW;
3937 uint64_t parent;
3938 uid_t owner;
3939 boolean_t waited = B_FALSE;
3940 boolean_t is_tmpfile = 0;
3941 uint64_t txg;
3942 #ifdef HAVE_TMPFILE
3943 is_tmpfile = (sip->i_nlink == 0 && (sip->i_state & I_LINKABLE));
3944 #endif
3945 ASSERT(S_ISDIR(tdip->i_mode));
3946
3947 if (name == NULL)
3948 return (SET_ERROR(EINVAL));
3949
3950 ZFS_ENTER(zsb);
3951 ZFS_VERIFY_ZP(dzp);
3952 zilog = zsb->z_log;
3953
3954 /*
3955 * POSIX dictates that we return EPERM here.
3956 * Better choices include ENOTSUP or EISDIR.
3957 */
3958 if (S_ISDIR(sip->i_mode)) {
3959 ZFS_EXIT(zsb);
3960 return (SET_ERROR(EPERM));
3961 }
3962
3963 szp = ITOZ(sip);
3964 ZFS_VERIFY_ZP(szp);
3965
3966 /*
3967 * We check i_sb because snapshots and the ctldir must have different
3968 * super blocks.
3969 */
3970 if (sip->i_sb != tdip->i_sb || zfsctl_is_node(sip)) {
3971 ZFS_EXIT(zsb);
3972 return (SET_ERROR(EXDEV));
3973 }
3974
3975 /* Prevent links to .zfs/shares files */
3976
3977 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zsb),
3978 &parent, sizeof (uint64_t))) != 0) {
3979 ZFS_EXIT(zsb);
3980 return (error);
3981 }
3982 if (parent == zsb->z_shares_dir) {
3983 ZFS_EXIT(zsb);
3984 return (SET_ERROR(EPERM));
3985 }
3986
3987 if (zsb->z_utf8 && u8_validate(name,
3988 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3989 ZFS_EXIT(zsb);
3990 return (SET_ERROR(EILSEQ));
3991 }
3992 if (flags & FIGNORECASE)
3993 zf |= ZCILOOK;
3994
3995 /*
3996 * We do not support links between attributes and non-attributes
3997 * because of the potential security risk of creating links
3998 * into "normal" file space in order to circumvent restrictions
3999 * imposed in attribute space.
4000 */
4001 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4002 ZFS_EXIT(zsb);
4003 return (SET_ERROR(EINVAL));
4004 }
4005
4006 owner = zfs_fuid_map_id(zsb, KUID_TO_SUID(sip->i_uid), cr, ZFS_OWNER);
4007 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
4008 ZFS_EXIT(zsb);
4009 return (SET_ERROR(EPERM));
4010 }
4011
4012 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
4013 ZFS_EXIT(zsb);
4014 return (error);
4015 }
4016
4017 top:
4018 /*
4019 * Attempt to lock directory; fail if entry already exists.
4020 */
4021 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4022 if (error) {
4023 ZFS_EXIT(zsb);
4024 return (error);
4025 }
4026
4027 tx = dmu_tx_create(zsb->z_os);
4028 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4029 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4030 if (is_tmpfile)
4031 dmu_tx_hold_zap(tx, zsb->z_unlinkedobj, FALSE, NULL);
4032
4033 zfs_sa_upgrade_txholds(tx, szp);
4034 zfs_sa_upgrade_txholds(tx, dzp);
4035 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4036 if (error) {
4037 zfs_dirent_unlock(dl);
4038 if (error == ERESTART) {
4039 waited = B_TRUE;
4040 dmu_tx_wait(tx);
4041 dmu_tx_abort(tx);
4042 goto top;
4043 }
4044 dmu_tx_abort(tx);
4045 ZFS_EXIT(zsb);
4046 return (error);
4047 }
4048 /* unmark z_unlinked so zfs_link_create will not reject */
4049 if (is_tmpfile)
4050 szp->z_unlinked = 0;
4051 error = zfs_link_create(dl, szp, tx, 0);
4052
4053 if (error == 0) {
4054 uint64_t txtype = TX_LINK;
4055 /*
4056 * tmpfile is created to be in z_unlinkedobj, so remove it.
4057 * Also, we don't log in ZIL, be cause all previous file
4058 * operation on the tmpfile are ignored by ZIL. Instead we
4059 * always wait for txg to sync to make sure all previous
4060 * operation are sync safe.
4061 */
4062 if (is_tmpfile) {
4063 VERIFY(zap_remove_int(zsb->z_os, zsb->z_unlinkedobj,
4064 szp->z_id, tx) == 0);
4065 } else {
4066 if (flags & FIGNORECASE)
4067 txtype |= TX_CI;
4068 zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4069 }
4070 } else if (is_tmpfile) {
4071 /* restore z_unlinked since when linking failed */
4072 szp->z_unlinked = 1;
4073 }
4074 txg = dmu_tx_get_txg(tx);
4075 dmu_tx_commit(tx);
4076
4077 zfs_dirent_unlock(dl);
4078
4079 if (!is_tmpfile && zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
4080 zil_commit(zilog, 0);
4081
4082 if (is_tmpfile)
4083 txg_wait_synced(dmu_objset_pool(zsb->z_os), txg);
4084
4085 zfs_inode_update(dzp);
4086 zfs_inode_update(szp);
4087 ZFS_EXIT(zsb);
4088 return (error);
4089 }
4090 EXPORT_SYMBOL(zfs_link);
4091
4092 static void
4093 zfs_putpage_commit_cb(void *arg)
4094 {
4095 struct page *pp = arg;
4096
4097 ClearPageError(pp);
4098 end_page_writeback(pp);
4099 }
4100
4101 /*
4102 * Push a page out to disk, once the page is on stable storage the
4103 * registered commit callback will be run as notification of completion.
4104 *
4105 * IN: ip - page mapped for inode.
4106 * pp - page to push (page is locked)
4107 * wbc - writeback control data
4108 *
4109 * RETURN: 0 if success
4110 * error code if failure
4111 *
4112 * Timestamps:
4113 * ip - ctime|mtime updated
4114 */
4115 /* ARGSUSED */
4116 int
4117 zfs_putpage(struct inode *ip, struct page *pp, struct writeback_control *wbc)
4118 {
4119 znode_t *zp = ITOZ(ip);
4120 zfs_sb_t *zsb = ITOZSB(ip);
4121 loff_t offset;
4122 loff_t pgoff;
4123 unsigned int pglen;
4124 rl_t *rl;
4125 dmu_tx_t *tx;
4126 caddr_t va;
4127 int err = 0;
4128 uint64_t mtime[2], ctime[2];
4129 sa_bulk_attr_t bulk[3];
4130 int cnt = 0;
4131 struct address_space *mapping;
4132
4133 ZFS_ENTER(zsb);
4134 ZFS_VERIFY_ZP(zp);
4135
4136 ASSERT(PageLocked(pp));
4137
4138 pgoff = page_offset(pp); /* Page byte-offset in file */
4139 offset = i_size_read(ip); /* File length in bytes */
4140 pglen = MIN(PAGE_SIZE, /* Page length in bytes */
4141 P2ROUNDUP(offset, PAGE_SIZE)-pgoff);
4142
4143 /* Page is beyond end of file */
4144 if (pgoff >= offset) {
4145 unlock_page(pp);
4146 ZFS_EXIT(zsb);
4147 return (0);
4148 }
4149
4150 /* Truncate page length to end of file */
4151 if (pgoff + pglen > offset)
4152 pglen = offset - pgoff;
4153
4154 #if 0
4155 /*
4156 * FIXME: Allow mmap writes past its quota. The correct fix
4157 * is to register a page_mkwrite() handler to count the page
4158 * against its quota when it is about to be dirtied.
4159 */
4160 if (zfs_owner_overquota(zsb, zp, B_FALSE) ||
4161 zfs_owner_overquota(zsb, zp, B_TRUE)) {
4162 err = EDQUOT;
4163 }
4164 #endif
4165
4166 /*
4167 * The ordering here is critical and must adhere to the following
4168 * rules in order to avoid deadlocking in either zfs_read() or
4169 * zfs_free_range() due to a lock inversion.
4170 *
4171 * 1) The page must be unlocked prior to acquiring the range lock.
4172 * This is critical because zfs_read() calls find_lock_page()
4173 * which may block on the page lock while holding the range lock.
4174 *
4175 * 2) Before setting or clearing write back on a page the range lock
4176 * must be held in order to prevent a lock inversion with the
4177 * zfs_free_range() function.
4178 *
4179 * This presents a problem because upon entering this function the
4180 * page lock is already held. To safely acquire the range lock the
4181 * page lock must be dropped. This creates a window where another
4182 * process could truncate, invalidate, dirty, or write out the page.
4183 *
4184 * Therefore, after successfully reacquiring the range and page locks
4185 * the current page state is checked. In the common case everything
4186 * will be as is expected and it can be written out. However, if
4187 * the page state has changed it must be handled accordingly.
4188 */
4189 mapping = pp->mapping;
4190 redirty_page_for_writepage(wbc, pp);
4191 unlock_page(pp);
4192
4193 rl = zfs_range_lock(&zp->z_range_lock, pgoff, pglen, RL_WRITER);
4194 lock_page(pp);
4195
4196 /* Page mapping changed or it was no longer dirty, we're done */
4197 if (unlikely((mapping != pp->mapping) || !PageDirty(pp))) {
4198 unlock_page(pp);
4199 zfs_range_unlock(rl);
4200 ZFS_EXIT(zsb);
4201 return (0);
4202 }
4203
4204 /* Another process started write block if required */
4205 if (PageWriteback(pp)) {
4206 unlock_page(pp);
4207 zfs_range_unlock(rl);
4208
4209 if (wbc->sync_mode != WB_SYNC_NONE)
4210 wait_on_page_writeback(pp);
4211
4212 ZFS_EXIT(zsb);
4213 return (0);
4214 }
4215
4216 /* Clear the dirty flag the required locks are held */
4217 if (!clear_page_dirty_for_io(pp)) {
4218 unlock_page(pp);
4219 zfs_range_unlock(rl);
4220 ZFS_EXIT(zsb);
4221 return (0);
4222 }
4223
4224 /*
4225 * Counterpart for redirty_page_for_writepage() above. This page
4226 * was in fact not skipped and should not be counted as if it were.
4227 */
4228 wbc->pages_skipped--;
4229 set_page_writeback(pp);
4230 unlock_page(pp);
4231
4232 tx = dmu_tx_create(zsb->z_os);
4233 dmu_tx_hold_write(tx, zp->z_id, pgoff, pglen);
4234 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4235 zfs_sa_upgrade_txholds(tx, zp);
4236
4237 err = dmu_tx_assign(tx, TXG_NOWAIT);
4238 if (err != 0) {
4239 if (err == ERESTART)
4240 dmu_tx_wait(tx);
4241
4242 dmu_tx_abort(tx);
4243 __set_page_dirty_nobuffers(pp);
4244 ClearPageError(pp);
4245 end_page_writeback(pp);
4246 zfs_range_unlock(rl);
4247 ZFS_EXIT(zsb);
4248 return (err);
4249 }
4250
4251 va = kmap(pp);
4252 ASSERT3U(pglen, <=, PAGE_SIZE);
4253 dmu_write(zsb->z_os, zp->z_id, pgoff, pglen, va, tx);
4254 kunmap(pp);
4255
4256 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zsb), NULL, &mtime, 16);
4257 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zsb), NULL, &ctime, 16);
4258 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_FLAGS(zsb), NULL, &zp->z_pflags, 8);
4259
4260 /* Preserve the mtime and ctime provided by the inode */
4261 ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
4262 ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
4263 zp->z_atime_dirty = 0;
4264 zp->z_seq++;
4265
4266 err = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
4267
4268 zfs_log_write(zsb->z_log, tx, TX_WRITE, zp, pgoff, pglen, 0,
4269 zfs_putpage_commit_cb, pp);
4270 dmu_tx_commit(tx);
4271
4272 zfs_range_unlock(rl);
4273
4274 if (wbc->sync_mode != WB_SYNC_NONE) {
4275 /*
4276 * Note that this is rarely called under writepages(), because
4277 * writepages() normally handles the entire commit for
4278 * performance reasons.
4279 */
4280 zil_commit(zsb->z_log, zp->z_id);
4281 }
4282
4283 ZFS_EXIT(zsb);
4284 return (err);
4285 }
4286
4287 /*
4288 * Update the system attributes when the inode has been dirtied. For the
4289 * moment we only update the mode, atime, mtime, and ctime.
4290 */
4291 int
4292 zfs_dirty_inode(struct inode *ip, int flags)
4293 {
4294 znode_t *zp = ITOZ(ip);
4295 zfs_sb_t *zsb = ITOZSB(ip);
4296 dmu_tx_t *tx;
4297 uint64_t mode, atime[2], mtime[2], ctime[2];
4298 sa_bulk_attr_t bulk[4];
4299 int error = 0;
4300 int cnt = 0;
4301
4302 if (zfs_is_readonly(zsb) || dmu_objset_is_snapshot(zsb->z_os))
4303 return (0);
4304
4305 ZFS_ENTER(zsb);
4306 ZFS_VERIFY_ZP(zp);
4307
4308 #ifdef I_DIRTY_TIME
4309 /*
4310 * This is the lazytime semantic indroduced in Linux 4.0
4311 * This flag will only be called from update_time when lazytime is set.
4312 * (Note, I_DIRTY_SYNC will also set if not lazytime)
4313 * Fortunately mtime and ctime are managed within ZFS itself, so we
4314 * only need to dirty atime.
4315 */
4316 if (flags == I_DIRTY_TIME) {
4317 zp->z_atime_dirty = 1;
4318 goto out;
4319 }
4320 #endif
4321
4322 tx = dmu_tx_create(zsb->z_os);
4323
4324 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4325 zfs_sa_upgrade_txholds(tx, zp);
4326
4327 error = dmu_tx_assign(tx, TXG_WAIT);
4328 if (error) {
4329 dmu_tx_abort(tx);
4330 goto out;
4331 }
4332
4333 mutex_enter(&zp->z_lock);
4334 zp->z_atime_dirty = 0;
4335
4336 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MODE(zsb), NULL, &mode, 8);
4337 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_ATIME(zsb), NULL, &atime, 16);
4338 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zsb), NULL, &mtime, 16);
4339 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zsb), NULL, &ctime, 16);
4340
4341 /* Preserve the mode, mtime and ctime provided by the inode */
4342 ZFS_TIME_ENCODE(&ip->i_atime, atime);
4343 ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
4344 ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
4345 mode = ip->i_mode;
4346
4347 zp->z_mode = mode;
4348
4349 error = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
4350 mutex_exit(&zp->z_lock);
4351
4352 dmu_tx_commit(tx);
4353 out:
4354 ZFS_EXIT(zsb);
4355 return (error);
4356 }
4357 EXPORT_SYMBOL(zfs_dirty_inode);
4358
4359 /*ARGSUSED*/
4360 void
4361 zfs_inactive(struct inode *ip)
4362 {
4363 znode_t *zp = ITOZ(ip);
4364 zfs_sb_t *zsb = ITOZSB(ip);
4365 uint64_t atime[2];
4366 int error;
4367 int need_unlock = 0;
4368
4369 /* Only read lock if we haven't already write locked, e.g. rollback */
4370 if (!RW_WRITE_HELD(&zsb->z_teardown_inactive_lock)) {
4371 need_unlock = 1;
4372 rw_enter(&zsb->z_teardown_inactive_lock, RW_READER);
4373 }
4374 if (zp->z_sa_hdl == NULL) {
4375 if (need_unlock)
4376 rw_exit(&zsb->z_teardown_inactive_lock);
4377 return;
4378 }
4379
4380 if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4381 dmu_tx_t *tx = dmu_tx_create(zsb->z_os);
4382
4383 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4384 zfs_sa_upgrade_txholds(tx, zp);
4385 error = dmu_tx_assign(tx, TXG_WAIT);
4386 if (error) {
4387 dmu_tx_abort(tx);
4388 } else {
4389 ZFS_TIME_ENCODE(&ip->i_atime, atime);
4390 mutex_enter(&zp->z_lock);
4391 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zsb),
4392 (void *)&atime, sizeof (atime), tx);
4393 zp->z_atime_dirty = 0;
4394 mutex_exit(&zp->z_lock);
4395 dmu_tx_commit(tx);
4396 }
4397 }
4398
4399 zfs_zinactive(zp);
4400 if (need_unlock)
4401 rw_exit(&zsb->z_teardown_inactive_lock);
4402 }
4403 EXPORT_SYMBOL(zfs_inactive);
4404
4405 /*
4406 * Bounds-check the seek operation.
4407 *
4408 * IN: ip - inode seeking within
4409 * ooff - old file offset
4410 * noffp - pointer to new file offset
4411 * ct - caller context
4412 *
4413 * RETURN: 0 if success
4414 * EINVAL if new offset invalid
4415 */
4416 /* ARGSUSED */
4417 int
4418 zfs_seek(struct inode *ip, offset_t ooff, offset_t *noffp)
4419 {
4420 if (S_ISDIR(ip->i_mode))
4421 return (0);
4422 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4423 }
4424 EXPORT_SYMBOL(zfs_seek);
4425
4426 /*
4427 * Fill pages with data from the disk.
4428 */
4429 static int
4430 zfs_fillpage(struct inode *ip, struct page *pl[], int nr_pages)
4431 {
4432 znode_t *zp = ITOZ(ip);
4433 zfs_sb_t *zsb = ITOZSB(ip);
4434 objset_t *os;
4435 struct page *cur_pp;
4436 u_offset_t io_off, total;
4437 size_t io_len;
4438 loff_t i_size;
4439 unsigned page_idx;
4440 int err;
4441
4442 os = zsb->z_os;
4443 io_len = nr_pages << PAGE_SHIFT;
4444 i_size = i_size_read(ip);
4445 io_off = page_offset(pl[0]);
4446
4447 if (io_off + io_len > i_size)
4448 io_len = i_size - io_off;
4449
4450 /*
4451 * Iterate over list of pages and read each page individually.
4452 */
4453 page_idx = 0;
4454 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4455 caddr_t va;
4456
4457 cur_pp = pl[page_idx++];
4458 va = kmap(cur_pp);
4459 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4460 DMU_READ_PREFETCH);
4461 kunmap(cur_pp);
4462 if (err) {
4463 /* convert checksum errors into IO errors */
4464 if (err == ECKSUM)
4465 err = SET_ERROR(EIO);
4466 return (err);
4467 }
4468 }
4469
4470 return (0);
4471 }
4472
4473 /*
4474 * Uses zfs_fillpage to read data from the file and fill the pages.
4475 *
4476 * IN: ip - inode of file to get data from.
4477 * pl - list of pages to read
4478 * nr_pages - number of pages to read
4479 *
4480 * RETURN: 0 on success, error code on failure.
4481 *
4482 * Timestamps:
4483 * vp - atime updated
4484 */
4485 /* ARGSUSED */
4486 int
4487 zfs_getpage(struct inode *ip, struct page *pl[], int nr_pages)
4488 {
4489 znode_t *zp = ITOZ(ip);
4490 zfs_sb_t *zsb = ITOZSB(ip);
4491 int err;
4492
4493 if (pl == NULL)
4494 return (0);
4495
4496 ZFS_ENTER(zsb);
4497 ZFS_VERIFY_ZP(zp);
4498
4499 err = zfs_fillpage(ip, pl, nr_pages);
4500
4501 ZFS_EXIT(zsb);
4502 return (err);
4503 }
4504 EXPORT_SYMBOL(zfs_getpage);
4505
4506 /*
4507 * Check ZFS specific permissions to memory map a section of a file.
4508 *
4509 * IN: ip - inode of the file to mmap
4510 * off - file offset
4511 * addrp - start address in memory region
4512 * len - length of memory region
4513 * vm_flags- address flags
4514 *
4515 * RETURN: 0 if success
4516 * error code if failure
4517 */
4518 /*ARGSUSED*/
4519 int
4520 zfs_map(struct inode *ip, offset_t off, caddr_t *addrp, size_t len,
4521 unsigned long vm_flags)
4522 {
4523 znode_t *zp = ITOZ(ip);
4524 zfs_sb_t *zsb = ITOZSB(ip);
4525
4526 ZFS_ENTER(zsb);
4527 ZFS_VERIFY_ZP(zp);
4528
4529 if ((vm_flags & VM_WRITE) && (zp->z_pflags &
4530 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4531 ZFS_EXIT(zsb);
4532 return (SET_ERROR(EPERM));
4533 }
4534
4535 if ((vm_flags & (VM_READ | VM_EXEC)) &&
4536 (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4537 ZFS_EXIT(zsb);
4538 return (SET_ERROR(EACCES));
4539 }
4540
4541 if (off < 0 || len > MAXOFFSET_T - off) {
4542 ZFS_EXIT(zsb);
4543 return (SET_ERROR(ENXIO));
4544 }
4545
4546 ZFS_EXIT(zsb);
4547 return (0);
4548 }
4549 EXPORT_SYMBOL(zfs_map);
4550
4551 /*
4552 * convoff - converts the given data (start, whence) to the
4553 * given whence.
4554 */
4555 int
4556 convoff(struct inode *ip, flock64_t *lckdat, int whence, offset_t offset)
4557 {
4558 vattr_t vap;
4559 int error;
4560
4561 if ((lckdat->l_whence == 2) || (whence == 2)) {
4562 if ((error = zfs_getattr(ip, &vap, 0, CRED()) != 0))
4563 return (error);
4564 }
4565
4566 switch (lckdat->l_whence) {
4567 case 1:
4568 lckdat->l_start += offset;
4569 break;
4570 case 2:
4571 lckdat->l_start += vap.va_size;
4572 /* FALLTHRU */
4573 case 0:
4574 break;
4575 default:
4576 return (SET_ERROR(EINVAL));
4577 }
4578
4579 if (lckdat->l_start < 0)
4580 return (SET_ERROR(EINVAL));
4581
4582 switch (whence) {
4583 case 1:
4584 lckdat->l_start -= offset;
4585 break;
4586 case 2:
4587 lckdat->l_start -= vap.va_size;
4588 /* FALLTHRU */
4589 case 0:
4590 break;
4591 default:
4592 return (SET_ERROR(EINVAL));
4593 }
4594
4595 lckdat->l_whence = (short)whence;
4596 return (0);
4597 }
4598
4599 /*
4600 * Free or allocate space in a file. Currently, this function only
4601 * supports the `F_FREESP' command. However, this command is somewhat
4602 * misnamed, as its functionality includes the ability to allocate as
4603 * well as free space.
4604 *
4605 * IN: ip - inode of file to free data in.
4606 * cmd - action to take (only F_FREESP supported).
4607 * bfp - section of file to free/alloc.
4608 * flag - current file open mode flags.
4609 * offset - current file offset.
4610 * cr - credentials of caller [UNUSED].
4611 *
4612 * RETURN: 0 on success, error code on failure.
4613 *
4614 * Timestamps:
4615 * ip - ctime|mtime updated
4616 */
4617 /* ARGSUSED */
4618 int
4619 zfs_space(struct inode *ip, int cmd, flock64_t *bfp, int flag,
4620 offset_t offset, cred_t *cr)
4621 {
4622 znode_t *zp = ITOZ(ip);
4623 zfs_sb_t *zsb = ITOZSB(ip);
4624 uint64_t off, len;
4625 int error;
4626
4627 ZFS_ENTER(zsb);
4628 ZFS_VERIFY_ZP(zp);
4629
4630 if (cmd != F_FREESP) {
4631 ZFS_EXIT(zsb);
4632 return (SET_ERROR(EINVAL));
4633 }
4634
4635 /*
4636 * Callers might not be able to detect properly that we are read-only,
4637 * so check it explicitly here.
4638 */
4639 if (zfs_is_readonly(zsb)) {
4640 ZFS_EXIT(zsb);
4641 return (SET_ERROR(EROFS));
4642 }
4643
4644 if ((error = convoff(ip, bfp, 0, offset))) {
4645 ZFS_EXIT(zsb);
4646 return (error);
4647 }
4648
4649 if (bfp->l_len < 0) {
4650 ZFS_EXIT(zsb);
4651 return (SET_ERROR(EINVAL));
4652 }
4653
4654 /*
4655 * Permissions aren't checked on Solaris because on this OS
4656 * zfs_space() can only be called with an opened file handle.
4657 * On Linux we can get here through truncate_range() which
4658 * operates directly on inodes, so we need to check access rights.
4659 */
4660 if ((error = zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr))) {
4661 ZFS_EXIT(zsb);
4662 return (error);
4663 }
4664
4665 off = bfp->l_start;
4666 len = bfp->l_len; /* 0 means from off to end of file */
4667
4668 error = zfs_freesp(zp, off, len, flag, TRUE);
4669
4670 ZFS_EXIT(zsb);
4671 return (error);
4672 }
4673 EXPORT_SYMBOL(zfs_space);
4674
4675 /*ARGSUSED*/
4676 int
4677 zfs_fid(struct inode *ip, fid_t *fidp)
4678 {
4679 znode_t *zp = ITOZ(ip);
4680 zfs_sb_t *zsb = ITOZSB(ip);
4681 uint32_t gen;
4682 uint64_t gen64;
4683 uint64_t object = zp->z_id;
4684 zfid_short_t *zfid;
4685 int size, i, error;
4686
4687 ZFS_ENTER(zsb);
4688 ZFS_VERIFY_ZP(zp);
4689
4690 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zsb),
4691 &gen64, sizeof (uint64_t))) != 0) {
4692 ZFS_EXIT(zsb);
4693 return (error);
4694 }
4695
4696 gen = (uint32_t)gen64;
4697
4698 size = (zsb->z_parent != zsb) ? LONG_FID_LEN : SHORT_FID_LEN;
4699 if (fidp->fid_len < size) {
4700 fidp->fid_len = size;
4701 ZFS_EXIT(zsb);
4702 return (SET_ERROR(ENOSPC));
4703 }
4704
4705 zfid = (zfid_short_t *)fidp;
4706
4707 zfid->zf_len = size;
4708
4709 for (i = 0; i < sizeof (zfid->zf_object); i++)
4710 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4711
4712 /* Must have a non-zero generation number to distinguish from .zfs */
4713 if (gen == 0)
4714 gen = 1;
4715 for (i = 0; i < sizeof (zfid->zf_gen); i++)
4716 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4717
4718 if (size == LONG_FID_LEN) {
4719 uint64_t objsetid = dmu_objset_id(zsb->z_os);
4720 zfid_long_t *zlfid;
4721
4722 zlfid = (zfid_long_t *)fidp;
4723
4724 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4725 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4726
4727 /* XXX - this should be the generation number for the objset */
4728 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4729 zlfid->zf_setgen[i] = 0;
4730 }
4731
4732 ZFS_EXIT(zsb);
4733 return (0);
4734 }
4735 EXPORT_SYMBOL(zfs_fid);
4736
4737 /*ARGSUSED*/
4738 int
4739 zfs_getsecattr(struct inode *ip, vsecattr_t *vsecp, int flag, cred_t *cr)
4740 {
4741 znode_t *zp = ITOZ(ip);
4742 zfs_sb_t *zsb = ITOZSB(ip);
4743 int error;
4744 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4745
4746 ZFS_ENTER(zsb);
4747 ZFS_VERIFY_ZP(zp);
4748 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
4749 ZFS_EXIT(zsb);
4750
4751 return (error);
4752 }
4753 EXPORT_SYMBOL(zfs_getsecattr);
4754
4755 /*ARGSUSED*/
4756 int
4757 zfs_setsecattr(struct inode *ip, vsecattr_t *vsecp, int flag, cred_t *cr)
4758 {
4759 znode_t *zp = ITOZ(ip);
4760 zfs_sb_t *zsb = ITOZSB(ip);
4761 int error;
4762 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4763 zilog_t *zilog = zsb->z_log;
4764
4765 ZFS_ENTER(zsb);
4766 ZFS_VERIFY_ZP(zp);
4767
4768 error = zfs_setacl(zp, vsecp, skipaclchk, cr);
4769
4770 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
4771 zil_commit(zilog, 0);
4772
4773 ZFS_EXIT(zsb);
4774 return (error);
4775 }
4776 EXPORT_SYMBOL(zfs_setsecattr);
4777
4778 #ifdef HAVE_UIO_ZEROCOPY
4779 /*
4780 * Tunable, both must be a power of 2.
4781 *
4782 * zcr_blksz_min: the smallest read we may consider to loan out an arcbuf
4783 * zcr_blksz_max: if set to less than the file block size, allow loaning out of
4784 * an arcbuf for a partial block read
4785 */
4786 int zcr_blksz_min = (1 << 10); /* 1K */
4787 int zcr_blksz_max = (1 << 17); /* 128K */
4788
4789 /*ARGSUSED*/
4790 static int
4791 zfs_reqzcbuf(struct inode *ip, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr)
4792 {
4793 znode_t *zp = ITOZ(ip);
4794 zfs_sb_t *zsb = ITOZSB(ip);
4795 int max_blksz = zsb->z_max_blksz;
4796 uio_t *uio = &xuio->xu_uio;
4797 ssize_t size = uio->uio_resid;
4798 offset_t offset = uio->uio_loffset;
4799 int blksz;
4800 int fullblk, i;
4801 arc_buf_t *abuf;
4802 ssize_t maxsize;
4803 int preamble, postamble;
4804
4805 if (xuio->xu_type != UIOTYPE_ZEROCOPY)
4806 return (SET_ERROR(EINVAL));
4807
4808 ZFS_ENTER(zsb);
4809 ZFS_VERIFY_ZP(zp);
4810 switch (ioflag) {
4811 case UIO_WRITE:
4812 /*
4813 * Loan out an arc_buf for write if write size is bigger than
4814 * max_blksz, and the file's block size is also max_blksz.
4815 */
4816 blksz = max_blksz;
4817 if (size < blksz || zp->z_blksz != blksz) {
4818 ZFS_EXIT(zsb);
4819 return (SET_ERROR(EINVAL));
4820 }
4821 /*
4822 * Caller requests buffers for write before knowing where the
4823 * write offset might be (e.g. NFS TCP write).
4824 */
4825 if (offset == -1) {
4826 preamble = 0;
4827 } else {
4828 preamble = P2PHASE(offset, blksz);
4829 if (preamble) {
4830 preamble = blksz - preamble;
4831 size -= preamble;
4832 }
4833 }
4834
4835 postamble = P2PHASE(size, blksz);
4836 size -= postamble;
4837
4838 fullblk = size / blksz;
4839 (void) dmu_xuio_init(xuio,
4840 (preamble != 0) + fullblk + (postamble != 0));
4841
4842 /*
4843 * Have to fix iov base/len for partial buffers. They
4844 * currently represent full arc_buf's.
4845 */
4846 if (preamble) {
4847 /* data begins in the middle of the arc_buf */
4848 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4849 blksz);
4850 ASSERT(abuf);
4851 (void) dmu_xuio_add(xuio, abuf,
4852 blksz - preamble, preamble);
4853 }
4854
4855 for (i = 0; i < fullblk; i++) {
4856 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4857 blksz);
4858 ASSERT(abuf);
4859 (void) dmu_xuio_add(xuio, abuf, 0, blksz);
4860 }
4861
4862 if (postamble) {
4863 /* data ends in the middle of the arc_buf */
4864 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4865 blksz);
4866 ASSERT(abuf);
4867 (void) dmu_xuio_add(xuio, abuf, 0, postamble);
4868 }
4869 break;
4870 case UIO_READ:
4871 /*
4872 * Loan out an arc_buf for read if the read size is larger than
4873 * the current file block size. Block alignment is not
4874 * considered. Partial arc_buf will be loaned out for read.
4875 */
4876 blksz = zp->z_blksz;
4877 if (blksz < zcr_blksz_min)
4878 blksz = zcr_blksz_min;
4879 if (blksz > zcr_blksz_max)
4880 blksz = zcr_blksz_max;
4881 /* avoid potential complexity of dealing with it */
4882 if (blksz > max_blksz) {
4883 ZFS_EXIT(zsb);
4884 return (SET_ERROR(EINVAL));
4885 }
4886
4887 maxsize = zp->z_size - uio->uio_loffset;
4888 if (size > maxsize)
4889 size = maxsize;
4890
4891 if (size < blksz) {
4892 ZFS_EXIT(zsb);
4893 return (SET_ERROR(EINVAL));
4894 }
4895 break;
4896 default:
4897 ZFS_EXIT(zsb);
4898 return (SET_ERROR(EINVAL));
4899 }
4900
4901 uio->uio_extflg = UIO_XUIO;
4902 XUIO_XUZC_RW(xuio) = ioflag;
4903 ZFS_EXIT(zsb);
4904 return (0);
4905 }
4906
4907 /*ARGSUSED*/
4908 static int
4909 zfs_retzcbuf(struct inode *ip, xuio_t *xuio, cred_t *cr)
4910 {
4911 int i;
4912 arc_buf_t *abuf;
4913 int ioflag = XUIO_XUZC_RW(xuio);
4914
4915 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
4916
4917 i = dmu_xuio_cnt(xuio);
4918 while (i-- > 0) {
4919 abuf = dmu_xuio_arcbuf(xuio, i);
4920 /*
4921 * if abuf == NULL, it must be a write buffer
4922 * that has been returned in zfs_write().
4923 */
4924 if (abuf)
4925 dmu_return_arcbuf(abuf);
4926 ASSERT(abuf || ioflag == UIO_WRITE);
4927 }
4928
4929 dmu_xuio_fini(xuio);
4930 return (0);
4931 }
4932 #endif /* HAVE_UIO_ZEROCOPY */
4933
4934 #if defined(_KERNEL) && defined(HAVE_SPL)
4935 module_param(zfs_delete_blocks, ulong, 0644);
4936 MODULE_PARM_DESC(zfs_delete_blocks, "Delete files larger than N blocks async");
4937 module_param(zfs_read_chunk_size, long, 0644);
4938 MODULE_PARM_DESC(zfs_read_chunk_size, "Bytes to read per chunk");
4939 #endif