]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zfs_vnops.c
Add zfs_iput_async() interface
[mirror_zfs.git] / module / zfs / zfs_vnops.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 */
25
26 /* Portions Copyright 2007 Jeremy Teo */
27 /* Portions Copyright 2010 Robert Milkowski */
28
29
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/time.h>
33 #include <sys/systm.h>
34 #include <sys/sysmacros.h>
35 #include <sys/resource.h>
36 #include <sys/vfs.h>
37 #include <sys/vfs_opreg.h>
38 #include <sys/file.h>
39 #include <sys/stat.h>
40 #include <sys/kmem.h>
41 #include <sys/taskq.h>
42 #include <sys/uio.h>
43 #include <sys/vmsystm.h>
44 #include <sys/atomic.h>
45 #include <vm/pvn.h>
46 #include <sys/pathname.h>
47 #include <sys/cmn_err.h>
48 #include <sys/errno.h>
49 #include <sys/unistd.h>
50 #include <sys/zfs_dir.h>
51 #include <sys/zfs_acl.h>
52 #include <sys/zfs_ioctl.h>
53 #include <sys/fs/zfs.h>
54 #include <sys/dmu.h>
55 #include <sys/dmu_objset.h>
56 #include <sys/spa.h>
57 #include <sys/txg.h>
58 #include <sys/dbuf.h>
59 #include <sys/zap.h>
60 #include <sys/sa.h>
61 #include <sys/dirent.h>
62 #include <sys/policy.h>
63 #include <sys/sunddi.h>
64 #include <sys/sid.h>
65 #include <sys/mode.h>
66 #include "fs/fs_subr.h"
67 #include <sys/zfs_ctldir.h>
68 #include <sys/zfs_fuid.h>
69 #include <sys/zfs_sa.h>
70 #include <sys/zfs_vnops.h>
71 #include <sys/dnlc.h>
72 #include <sys/zfs_rlock.h>
73 #include <sys/extdirent.h>
74 #include <sys/kidmap.h>
75 #include <sys/cred.h>
76 #include <sys/attr.h>
77 #include <sys/zpl.h>
78
79 /*
80 * Programming rules.
81 *
82 * Each vnode op performs some logical unit of work. To do this, the ZPL must
83 * properly lock its in-core state, create a DMU transaction, do the work,
84 * record this work in the intent log (ZIL), commit the DMU transaction,
85 * and wait for the intent log to commit if it is a synchronous operation.
86 * Moreover, the vnode ops must work in both normal and log replay context.
87 * The ordering of events is important to avoid deadlocks and references
88 * to freed memory. The example below illustrates the following Big Rules:
89 *
90 * (1) A check must be made in each zfs thread for a mounted file system.
91 * This is done avoiding races using ZFS_ENTER(zsb).
92 * A ZFS_EXIT(zsb) is needed before all returns. Any znodes
93 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros
94 * can return EIO from the calling function.
95 *
96 * (2) iput() should always be the last thing except for zil_commit()
97 * (if necessary) and ZFS_EXIT(). This is for 3 reasons:
98 * First, if it's the last reference, the vnode/znode
99 * can be freed, so the zp may point to freed memory. Second, the last
100 * reference will call zfs_zinactive(), which may induce a lot of work --
101 * pushing cached pages (which acquires range locks) and syncing out
102 * cached atime changes. Third, zfs_zinactive() may require a new tx,
103 * which could deadlock the system if you were already holding one.
104 * If you must call iput() within a tx then use zfs_iput_async().
105 *
106 * (3) All range locks must be grabbed before calling dmu_tx_assign(),
107 * as they can span dmu_tx_assign() calls.
108 *
109 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
110 * dmu_tx_assign(). This is critical because we don't want to block
111 * while holding locks.
112 *
113 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This
114 * reduces lock contention and CPU usage when we must wait (note that if
115 * throughput is constrained by the storage, nearly every transaction
116 * must wait).
117 *
118 * Note, in particular, that if a lock is sometimes acquired before
119 * the tx assigns, and sometimes after (e.g. z_lock), then failing
120 * to use a non-blocking assign can deadlock the system. The scenario:
121 *
122 * Thread A has grabbed a lock before calling dmu_tx_assign().
123 * Thread B is in an already-assigned tx, and blocks for this lock.
124 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
125 * forever, because the previous txg can't quiesce until B's tx commits.
126 *
127 * If dmu_tx_assign() returns ERESTART and zsb->z_assign is TXG_NOWAIT,
128 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent
129 * calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT,
130 * to indicate that this operation has already called dmu_tx_wait().
131 * This will ensure that we don't retry forever, waiting a short bit
132 * each time.
133 *
134 * (5) If the operation succeeded, generate the intent log entry for it
135 * before dropping locks. This ensures that the ordering of events
136 * in the intent log matches the order in which they actually occurred.
137 * During ZIL replay the zfs_log_* functions will update the sequence
138 * number to indicate the zil transaction has replayed.
139 *
140 * (6) At the end of each vnode op, the DMU tx must always commit,
141 * regardless of whether there were any errors.
142 *
143 * (7) After dropping all locks, invoke zil_commit(zilog, foid)
144 * to ensure that synchronous semantics are provided when necessary.
145 *
146 * In general, this is how things should be ordered in each vnode op:
147 *
148 * ZFS_ENTER(zsb); // exit if unmounted
149 * top:
150 * zfs_dirent_lock(&dl, ...) // lock directory entry (may igrab())
151 * rw_enter(...); // grab any other locks you need
152 * tx = dmu_tx_create(...); // get DMU tx
153 * dmu_tx_hold_*(); // hold each object you might modify
154 * error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
155 * if (error) {
156 * rw_exit(...); // drop locks
157 * zfs_dirent_unlock(dl); // unlock directory entry
158 * iput(...); // release held vnodes
159 * if (error == ERESTART) {
160 * waited = B_TRUE;
161 * dmu_tx_wait(tx);
162 * dmu_tx_abort(tx);
163 * goto top;
164 * }
165 * dmu_tx_abort(tx); // abort DMU tx
166 * ZFS_EXIT(zsb); // finished in zfs
167 * return (error); // really out of space
168 * }
169 * error = do_real_work(); // do whatever this VOP does
170 * if (error == 0)
171 * zfs_log_*(...); // on success, make ZIL entry
172 * dmu_tx_commit(tx); // commit DMU tx -- error or not
173 * rw_exit(...); // drop locks
174 * zfs_dirent_unlock(dl); // unlock directory entry
175 * iput(...); // release held vnodes
176 * zil_commit(zilog, foid); // synchronous when necessary
177 * ZFS_EXIT(zsb); // finished in zfs
178 * return (error); // done, report error
179 */
180
181 /*
182 * Virus scanning is unsupported. It would be possible to add a hook
183 * here to performance the required virus scan. This could be done
184 * entirely in the kernel or potentially as an update to invoke a
185 * scanning utility.
186 */
187 static int
188 zfs_vscan(struct inode *ip, cred_t *cr, int async)
189 {
190 return (0);
191 }
192
193 /* ARGSUSED */
194 int
195 zfs_open(struct inode *ip, int mode, int flag, cred_t *cr)
196 {
197 znode_t *zp = ITOZ(ip);
198 zfs_sb_t *zsb = ITOZSB(ip);
199
200 ZFS_ENTER(zsb);
201 ZFS_VERIFY_ZP(zp);
202
203 /* Honor ZFS_APPENDONLY file attribute */
204 if ((mode & FMODE_WRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
205 ((flag & O_APPEND) == 0)) {
206 ZFS_EXIT(zsb);
207 return (SET_ERROR(EPERM));
208 }
209
210 /* Virus scan eligible files on open */
211 if (!zfs_has_ctldir(zp) && zsb->z_vscan && S_ISREG(ip->i_mode) &&
212 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
213 if (zfs_vscan(ip, cr, 0) != 0) {
214 ZFS_EXIT(zsb);
215 return (SET_ERROR(EACCES));
216 }
217 }
218
219 /* Keep a count of the synchronous opens in the znode */
220 if (flag & O_SYNC)
221 atomic_inc_32(&zp->z_sync_cnt);
222
223 ZFS_EXIT(zsb);
224 return (0);
225 }
226 EXPORT_SYMBOL(zfs_open);
227
228 /* ARGSUSED */
229 int
230 zfs_close(struct inode *ip, int flag, cred_t *cr)
231 {
232 znode_t *zp = ITOZ(ip);
233 zfs_sb_t *zsb = ITOZSB(ip);
234
235 ZFS_ENTER(zsb);
236 ZFS_VERIFY_ZP(zp);
237
238 /* Decrement the synchronous opens in the znode */
239 if (flag & O_SYNC)
240 atomic_dec_32(&zp->z_sync_cnt);
241
242 if (!zfs_has_ctldir(zp) && zsb->z_vscan && S_ISREG(ip->i_mode) &&
243 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
244 VERIFY(zfs_vscan(ip, cr, 1) == 0);
245
246 ZFS_EXIT(zsb);
247 return (0);
248 }
249 EXPORT_SYMBOL(zfs_close);
250
251 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
252 /*
253 * Lseek support for finding holes (cmd == SEEK_HOLE) and
254 * data (cmd == SEEK_DATA). "off" is an in/out parameter.
255 */
256 static int
257 zfs_holey_common(struct inode *ip, int cmd, loff_t *off)
258 {
259 znode_t *zp = ITOZ(ip);
260 uint64_t noff = (uint64_t)*off; /* new offset */
261 uint64_t file_sz;
262 int error;
263 boolean_t hole;
264
265 file_sz = zp->z_size;
266 if (noff >= file_sz) {
267 return (SET_ERROR(ENXIO));
268 }
269
270 if (cmd == SEEK_HOLE)
271 hole = B_TRUE;
272 else
273 hole = B_FALSE;
274
275 error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);
276
277 /* end of file? */
278 if ((error == ESRCH) || (noff > file_sz)) {
279 /*
280 * Handle the virtual hole at the end of file.
281 */
282 if (hole) {
283 *off = file_sz;
284 return (0);
285 }
286 return (SET_ERROR(ENXIO));
287 }
288
289 if (noff < *off)
290 return (error);
291 *off = noff;
292 return (error);
293 }
294
295 int
296 zfs_holey(struct inode *ip, int cmd, loff_t *off)
297 {
298 znode_t *zp = ITOZ(ip);
299 zfs_sb_t *zsb = ITOZSB(ip);
300 int error;
301
302 ZFS_ENTER(zsb);
303 ZFS_VERIFY_ZP(zp);
304
305 error = zfs_holey_common(ip, cmd, off);
306
307 ZFS_EXIT(zsb);
308 return (error);
309 }
310 EXPORT_SYMBOL(zfs_holey);
311 #endif /* SEEK_HOLE && SEEK_DATA */
312
313 #if defined(_KERNEL)
314 /*
315 * When a file is memory mapped, we must keep the IO data synchronized
316 * between the DMU cache and the memory mapped pages. What this means:
317 *
318 * On Write: If we find a memory mapped page, we write to *both*
319 * the page and the dmu buffer.
320 */
321 static void
322 update_pages(struct inode *ip, int64_t start, int len,
323 objset_t *os, uint64_t oid)
324 {
325 struct address_space *mp = ip->i_mapping;
326 struct page *pp;
327 uint64_t nbytes;
328 int64_t off;
329 void *pb;
330
331 off = start & (PAGE_CACHE_SIZE-1);
332 for (start &= PAGE_CACHE_MASK; len > 0; start += PAGE_CACHE_SIZE) {
333 nbytes = MIN(PAGE_CACHE_SIZE - off, len);
334
335 pp = find_lock_page(mp, start >> PAGE_CACHE_SHIFT);
336 if (pp) {
337 if (mapping_writably_mapped(mp))
338 flush_dcache_page(pp);
339
340 pb = kmap(pp);
341 (void) dmu_read(os, oid, start+off, nbytes, pb+off,
342 DMU_READ_PREFETCH);
343 kunmap(pp);
344
345 if (mapping_writably_mapped(mp))
346 flush_dcache_page(pp);
347
348 mark_page_accessed(pp);
349 SetPageUptodate(pp);
350 ClearPageError(pp);
351 unlock_page(pp);
352 page_cache_release(pp);
353 }
354
355 len -= nbytes;
356 off = 0;
357 }
358 }
359
360 /*
361 * When a file is memory mapped, we must keep the IO data synchronized
362 * between the DMU cache and the memory mapped pages. What this means:
363 *
364 * On Read: We "read" preferentially from memory mapped pages,
365 * else we default from the dmu buffer.
366 *
367 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
368 * the file is memory mapped.
369 */
370 static int
371 mappedread(struct inode *ip, int nbytes, uio_t *uio)
372 {
373 struct address_space *mp = ip->i_mapping;
374 struct page *pp;
375 znode_t *zp = ITOZ(ip);
376 objset_t *os = ITOZSB(ip)->z_os;
377 int64_t start, off;
378 uint64_t bytes;
379 int len = nbytes;
380 int error = 0;
381 void *pb;
382
383 start = uio->uio_loffset;
384 off = start & (PAGE_CACHE_SIZE-1);
385 for (start &= PAGE_CACHE_MASK; len > 0; start += PAGE_CACHE_SIZE) {
386 bytes = MIN(PAGE_CACHE_SIZE - off, len);
387
388 pp = find_lock_page(mp, start >> PAGE_CACHE_SHIFT);
389 if (pp) {
390 ASSERT(PageUptodate(pp));
391
392 pb = kmap(pp);
393 error = uiomove(pb + off, bytes, UIO_READ, uio);
394 kunmap(pp);
395
396 if (mapping_writably_mapped(mp))
397 flush_dcache_page(pp);
398
399 mark_page_accessed(pp);
400 unlock_page(pp);
401 page_cache_release(pp);
402 } else {
403 error = dmu_read_uio(os, zp->z_id, uio, bytes);
404 }
405
406 len -= bytes;
407 off = 0;
408 if (error)
409 break;
410 }
411 return (error);
412 }
413 #endif /* _KERNEL */
414
415 unsigned long zfs_read_chunk_size = 1024 * 1024; /* Tunable */
416
417 /*
418 * Read bytes from specified file into supplied buffer.
419 *
420 * IN: ip - inode of file to be read from.
421 * uio - structure supplying read location, range info,
422 * and return buffer.
423 * ioflag - FSYNC flags; used to provide FRSYNC semantics.
424 * O_DIRECT flag; used to bypass page cache.
425 * cr - credentials of caller.
426 *
427 * OUT: uio - updated offset and range, buffer filled.
428 *
429 * RETURN: 0 on success, error code on failure.
430 *
431 * Side Effects:
432 * inode - atime updated if byte count > 0
433 */
434 /* ARGSUSED */
435 int
436 zfs_read(struct inode *ip, uio_t *uio, int ioflag, cred_t *cr)
437 {
438 znode_t *zp = ITOZ(ip);
439 zfs_sb_t *zsb = ITOZSB(ip);
440 objset_t *os;
441 ssize_t n, nbytes;
442 int error = 0;
443 rl_t *rl;
444 #ifdef HAVE_UIO_ZEROCOPY
445 xuio_t *xuio = NULL;
446 #endif /* HAVE_UIO_ZEROCOPY */
447
448 ZFS_ENTER(zsb);
449 ZFS_VERIFY_ZP(zp);
450 os = zsb->z_os;
451
452 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
453 ZFS_EXIT(zsb);
454 return (SET_ERROR(EACCES));
455 }
456
457 /*
458 * Validate file offset
459 */
460 if (uio->uio_loffset < (offset_t)0) {
461 ZFS_EXIT(zsb);
462 return (SET_ERROR(EINVAL));
463 }
464
465 /*
466 * Fasttrack empty reads
467 */
468 if (uio->uio_resid == 0) {
469 ZFS_EXIT(zsb);
470 return (0);
471 }
472
473 /*
474 * Check for mandatory locks
475 */
476 if (mandatory_lock(ip) &&
477 !lock_may_read(ip, uio->uio_loffset, uio->uio_resid)) {
478 ZFS_EXIT(zsb);
479 return (SET_ERROR(EAGAIN));
480 }
481
482 /*
483 * If we're in FRSYNC mode, sync out this znode before reading it.
484 */
485 if (ioflag & FRSYNC || zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
486 zil_commit(zsb->z_log, zp->z_id);
487
488 /*
489 * Lock the range against changes.
490 */
491 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
492
493 /*
494 * If we are reading past end-of-file we can skip
495 * to the end; but we might still need to set atime.
496 */
497 if (uio->uio_loffset >= zp->z_size) {
498 error = 0;
499 goto out;
500 }
501
502 ASSERT(uio->uio_loffset < zp->z_size);
503 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
504
505 #ifdef HAVE_UIO_ZEROCOPY
506 if ((uio->uio_extflg == UIO_XUIO) &&
507 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
508 int nblk;
509 int blksz = zp->z_blksz;
510 uint64_t offset = uio->uio_loffset;
511
512 xuio = (xuio_t *)uio;
513 if ((ISP2(blksz))) {
514 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
515 blksz)) / blksz;
516 } else {
517 ASSERT(offset + n <= blksz);
518 nblk = 1;
519 }
520 (void) dmu_xuio_init(xuio, nblk);
521
522 if (vn_has_cached_data(ip)) {
523 /*
524 * For simplicity, we always allocate a full buffer
525 * even if we only expect to read a portion of a block.
526 */
527 while (--nblk >= 0) {
528 (void) dmu_xuio_add(xuio,
529 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
530 blksz), 0, blksz);
531 }
532 }
533 }
534 #endif /* HAVE_UIO_ZEROCOPY */
535
536 while (n > 0) {
537 nbytes = MIN(n, zfs_read_chunk_size -
538 P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
539
540 if (zp->z_is_mapped && !(ioflag & O_DIRECT))
541 error = mappedread(ip, nbytes, uio);
542 else
543 error = dmu_read_uio(os, zp->z_id, uio, nbytes);
544
545 if (error) {
546 /* convert checksum errors into IO errors */
547 if (error == ECKSUM)
548 error = SET_ERROR(EIO);
549 break;
550 }
551
552 n -= nbytes;
553 }
554 out:
555 zfs_range_unlock(rl);
556
557 ZFS_ACCESSTIME_STAMP(zsb, zp);
558 ZFS_EXIT(zsb);
559 return (error);
560 }
561 EXPORT_SYMBOL(zfs_read);
562
563 /*
564 * Write the bytes to a file.
565 *
566 * IN: ip - inode of file to be written to.
567 * uio - structure supplying write location, range info,
568 * and data buffer.
569 * ioflag - FAPPEND flag set if in append mode.
570 * O_DIRECT flag; used to bypass page cache.
571 * cr - credentials of caller.
572 *
573 * OUT: uio - updated offset and range.
574 *
575 * RETURN: 0 if success
576 * error code if failure
577 *
578 * Timestamps:
579 * ip - ctime|mtime updated if byte count > 0
580 */
581
582 /* ARGSUSED */
583 int
584 zfs_write(struct inode *ip, uio_t *uio, int ioflag, cred_t *cr)
585 {
586 znode_t *zp = ITOZ(ip);
587 rlim64_t limit = uio->uio_limit;
588 ssize_t start_resid = uio->uio_resid;
589 ssize_t tx_bytes;
590 uint64_t end_size;
591 dmu_tx_t *tx;
592 zfs_sb_t *zsb = ZTOZSB(zp);
593 zilog_t *zilog;
594 offset_t woff;
595 ssize_t n, nbytes;
596 rl_t *rl;
597 int max_blksz = zsb->z_max_blksz;
598 int error = 0;
599 arc_buf_t *abuf;
600 iovec_t *aiov = NULL;
601 xuio_t *xuio = NULL;
602 int i_iov = 0;
603 iovec_t *iovp = uio->uio_iov;
604 int write_eof;
605 int count = 0;
606 sa_bulk_attr_t bulk[4];
607 uint64_t mtime[2], ctime[2];
608 ASSERTV(int iovcnt = uio->uio_iovcnt);
609
610 /*
611 * Fasttrack empty write
612 */
613 n = start_resid;
614 if (n == 0)
615 return (0);
616
617 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
618 limit = MAXOFFSET_T;
619
620 ZFS_ENTER(zsb);
621 ZFS_VERIFY_ZP(zp);
622
623 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zsb), NULL, &mtime, 16);
624 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zsb), NULL, &ctime, 16);
625 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zsb), NULL, &zp->z_size, 8);
626 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zsb), NULL,
627 &zp->z_pflags, 8);
628
629 /*
630 * If immutable or not appending then return EPERM
631 */
632 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
633 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
634 (uio->uio_loffset < zp->z_size))) {
635 ZFS_EXIT(zsb);
636 return (SET_ERROR(EPERM));
637 }
638
639 zilog = zsb->z_log;
640
641 /*
642 * Validate file offset
643 */
644 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
645 if (woff < 0) {
646 ZFS_EXIT(zsb);
647 return (SET_ERROR(EINVAL));
648 }
649
650 /*
651 * Check for mandatory locks before calling zfs_range_lock()
652 * in order to prevent a deadlock with locks set via fcntl().
653 */
654 if (mandatory_lock(ip) && !lock_may_write(ip, woff, n)) {
655 ZFS_EXIT(zsb);
656 return (SET_ERROR(EAGAIN));
657 }
658
659 /*
660 * Pre-fault the pages to ensure slow (eg NFS) pages
661 * don't hold up txg.
662 * Skip this if uio contains loaned arc_buf.
663 */
664 #ifdef HAVE_UIO_ZEROCOPY
665 if ((uio->uio_extflg == UIO_XUIO) &&
666 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
667 xuio = (xuio_t *)uio;
668 else
669 #endif
670 uio_prefaultpages(MIN(n, max_blksz), uio);
671
672 /*
673 * If in append mode, set the io offset pointer to eof.
674 */
675 if (ioflag & FAPPEND) {
676 /*
677 * Obtain an appending range lock to guarantee file append
678 * semantics. We reset the write offset once we have the lock.
679 */
680 rl = zfs_range_lock(zp, 0, n, RL_APPEND);
681 woff = rl->r_off;
682 if (rl->r_len == UINT64_MAX) {
683 /*
684 * We overlocked the file because this write will cause
685 * the file block size to increase.
686 * Note that zp_size cannot change with this lock held.
687 */
688 woff = zp->z_size;
689 }
690 uio->uio_loffset = woff;
691 } else {
692 /*
693 * Note that if the file block size will change as a result of
694 * this write, then this range lock will lock the entire file
695 * so that we can re-write the block safely.
696 */
697 rl = zfs_range_lock(zp, woff, n, RL_WRITER);
698 }
699
700 if (woff >= limit) {
701 zfs_range_unlock(rl);
702 ZFS_EXIT(zsb);
703 return (SET_ERROR(EFBIG));
704 }
705
706 if ((woff + n) > limit || woff > (limit - n))
707 n = limit - woff;
708
709 /* Will this write extend the file length? */
710 write_eof = (woff + n > zp->z_size);
711
712 end_size = MAX(zp->z_size, woff + n);
713
714 /*
715 * Write the file in reasonable size chunks. Each chunk is written
716 * in a separate transaction; this keeps the intent log records small
717 * and allows us to do more fine-grained space accounting.
718 */
719 while (n > 0) {
720 abuf = NULL;
721 woff = uio->uio_loffset;
722 if (zfs_owner_overquota(zsb, zp, B_FALSE) ||
723 zfs_owner_overquota(zsb, zp, B_TRUE)) {
724 if (abuf != NULL)
725 dmu_return_arcbuf(abuf);
726 error = SET_ERROR(EDQUOT);
727 break;
728 }
729
730 if (xuio && abuf == NULL) {
731 ASSERT(i_iov < iovcnt);
732 aiov = &iovp[i_iov];
733 abuf = dmu_xuio_arcbuf(xuio, i_iov);
734 dmu_xuio_clear(xuio, i_iov);
735 ASSERT((aiov->iov_base == abuf->b_data) ||
736 ((char *)aiov->iov_base - (char *)abuf->b_data +
737 aiov->iov_len == arc_buf_size(abuf)));
738 i_iov++;
739 } else if (abuf == NULL && n >= max_blksz &&
740 woff >= zp->z_size &&
741 P2PHASE(woff, max_blksz) == 0 &&
742 zp->z_blksz == max_blksz) {
743 /*
744 * This write covers a full block. "Borrow" a buffer
745 * from the dmu so that we can fill it before we enter
746 * a transaction. This avoids the possibility of
747 * holding up the transaction if the data copy hangs
748 * up on a pagefault (e.g., from an NFS server mapping).
749 */
750 size_t cbytes;
751
752 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
753 max_blksz);
754 ASSERT(abuf != NULL);
755 ASSERT(arc_buf_size(abuf) == max_blksz);
756 if ((error = uiocopy(abuf->b_data, max_blksz,
757 UIO_WRITE, uio, &cbytes))) {
758 dmu_return_arcbuf(abuf);
759 break;
760 }
761 ASSERT(cbytes == max_blksz);
762 }
763
764 /*
765 * Start a transaction.
766 */
767 tx = dmu_tx_create(zsb->z_os);
768 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
769 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
770 zfs_sa_upgrade_txholds(tx, zp);
771 error = dmu_tx_assign(tx, TXG_WAIT);
772 if (error) {
773 dmu_tx_abort(tx);
774 if (abuf != NULL)
775 dmu_return_arcbuf(abuf);
776 break;
777 }
778
779 /*
780 * If zfs_range_lock() over-locked we grow the blocksize
781 * and then reduce the lock range. This will only happen
782 * on the first iteration since zfs_range_reduce() will
783 * shrink down r_len to the appropriate size.
784 */
785 if (rl->r_len == UINT64_MAX) {
786 uint64_t new_blksz;
787
788 if (zp->z_blksz > max_blksz) {
789 ASSERT(!ISP2(zp->z_blksz));
790 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE);
791 } else {
792 new_blksz = MIN(end_size, max_blksz);
793 }
794 zfs_grow_blocksize(zp, new_blksz, tx);
795 zfs_range_reduce(rl, woff, n);
796 }
797
798 /*
799 * XXX - should we really limit each write to z_max_blksz?
800 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
801 */
802 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
803
804 if (abuf == NULL) {
805 tx_bytes = uio->uio_resid;
806 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
807 uio, nbytes, tx);
808 tx_bytes -= uio->uio_resid;
809 } else {
810 tx_bytes = nbytes;
811 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
812 /*
813 * If this is not a full block write, but we are
814 * extending the file past EOF and this data starts
815 * block-aligned, use assign_arcbuf(). Otherwise,
816 * write via dmu_write().
817 */
818 if (tx_bytes < max_blksz && (!write_eof ||
819 aiov->iov_base != abuf->b_data)) {
820 ASSERT(xuio);
821 dmu_write(zsb->z_os, zp->z_id, woff,
822 aiov->iov_len, aiov->iov_base, tx);
823 dmu_return_arcbuf(abuf);
824 xuio_stat_wbuf_copied();
825 } else {
826 ASSERT(xuio || tx_bytes == max_blksz);
827 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
828 woff, abuf, tx);
829 }
830 ASSERT(tx_bytes <= uio->uio_resid);
831 uioskip(uio, tx_bytes);
832 }
833
834 if (tx_bytes && zp->z_is_mapped && !(ioflag & O_DIRECT))
835 update_pages(ip, woff, tx_bytes, zsb->z_os, zp->z_id);
836
837 /*
838 * If we made no progress, we're done. If we made even
839 * partial progress, update the znode and ZIL accordingly.
840 */
841 if (tx_bytes == 0) {
842 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zsb),
843 (void *)&zp->z_size, sizeof (uint64_t), tx);
844 dmu_tx_commit(tx);
845 ASSERT(error != 0);
846 break;
847 }
848
849 /*
850 * Clear Set-UID/Set-GID bits on successful write if not
851 * privileged and at least one of the excute bits is set.
852 *
853 * It would be nice to to this after all writes have
854 * been done, but that would still expose the ISUID/ISGID
855 * to another app after the partial write is committed.
856 *
857 * Note: we don't call zfs_fuid_map_id() here because
858 * user 0 is not an ephemeral uid.
859 */
860 mutex_enter(&zp->z_acl_lock);
861 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
862 (S_IXUSR >> 6))) != 0 &&
863 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
864 secpolicy_vnode_setid_retain(cr,
865 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
866 uint64_t newmode;
867 zp->z_mode &= ~(S_ISUID | S_ISGID);
868 newmode = zp->z_mode;
869 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zsb),
870 (void *)&newmode, sizeof (uint64_t), tx);
871 }
872 mutex_exit(&zp->z_acl_lock);
873
874 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
875 B_TRUE);
876
877 /*
878 * Update the file size (zp_size) if it has changed;
879 * account for possible concurrent updates.
880 */
881 while ((end_size = zp->z_size) < uio->uio_loffset) {
882 (void) atomic_cas_64(&zp->z_size, end_size,
883 uio->uio_loffset);
884 ASSERT(error == 0);
885 }
886 /*
887 * If we are replaying and eof is non zero then force
888 * the file size to the specified eof. Note, there's no
889 * concurrency during replay.
890 */
891 if (zsb->z_replay && zsb->z_replay_eof != 0)
892 zp->z_size = zsb->z_replay_eof;
893
894 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
895
896 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag,
897 NULL, NULL);
898 dmu_tx_commit(tx);
899
900 if (error != 0)
901 break;
902 ASSERT(tx_bytes == nbytes);
903 n -= nbytes;
904
905 if (!xuio && n > 0)
906 uio_prefaultpages(MIN(n, max_blksz), uio);
907 }
908
909 zfs_range_unlock(rl);
910
911 /*
912 * If we're in replay mode, or we made no progress, return error.
913 * Otherwise, it's at least a partial write, so it's successful.
914 */
915 if (zsb->z_replay || uio->uio_resid == start_resid) {
916 ZFS_EXIT(zsb);
917 return (error);
918 }
919
920 if (ioflag & (FSYNC | FDSYNC) ||
921 zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
922 zil_commit(zilog, zp->z_id);
923
924 zfs_inode_update(zp);
925 ZFS_EXIT(zsb);
926 return (0);
927 }
928 EXPORT_SYMBOL(zfs_write);
929
930 void
931 zfs_iput_async(struct inode *ip)
932 {
933 objset_t *os = ITOZSB(ip)->z_os;
934
935 ASSERT(atomic_read(&ip->i_count) > 0);
936 ASSERT(os != NULL);
937
938 if (atomic_read(&ip->i_count) == 1)
939 taskq_dispatch(dsl_pool_iput_taskq(dmu_objset_pool(os)),
940 (task_func_t *)iput, ip, TQ_PUSHPAGE);
941 else
942 iput(ip);
943 }
944
945 void
946 zfs_get_done(zgd_t *zgd, int error)
947 {
948 znode_t *zp = zgd->zgd_private;
949
950 if (zgd->zgd_db)
951 dmu_buf_rele(zgd->zgd_db, zgd);
952
953 zfs_range_unlock(zgd->zgd_rl);
954
955 /*
956 * Release the vnode asynchronously as we currently have the
957 * txg stopped from syncing.
958 */
959 zfs_iput_async(ZTOI(zp));
960
961 if (error == 0 && zgd->zgd_bp)
962 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
963
964 kmem_free(zgd, sizeof (zgd_t));
965 }
966
967 #ifdef DEBUG
968 static int zil_fault_io = 0;
969 #endif
970
971 /*
972 * Get data to generate a TX_WRITE intent log record.
973 */
974 int
975 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
976 {
977 zfs_sb_t *zsb = arg;
978 objset_t *os = zsb->z_os;
979 znode_t *zp;
980 uint64_t object = lr->lr_foid;
981 uint64_t offset = lr->lr_offset;
982 uint64_t size = lr->lr_length;
983 blkptr_t *bp = &lr->lr_blkptr;
984 dmu_buf_t *db;
985 zgd_t *zgd;
986 int error = 0;
987
988 ASSERT(zio != NULL);
989 ASSERT(size != 0);
990
991 /*
992 * Nothing to do if the file has been removed
993 */
994 if (zfs_zget(zsb, object, &zp) != 0)
995 return (SET_ERROR(ENOENT));
996 if (zp->z_unlinked) {
997 /*
998 * Release the vnode asynchronously as we currently have the
999 * txg stopped from syncing.
1000 */
1001 zfs_iput_async(ZTOI(zp));
1002 return (SET_ERROR(ENOENT));
1003 }
1004
1005 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_PUSHPAGE);
1006 zgd->zgd_zilog = zsb->z_log;
1007 zgd->zgd_private = zp;
1008
1009 /*
1010 * Write records come in two flavors: immediate and indirect.
1011 * For small writes it's cheaper to store the data with the
1012 * log record (immediate); for large writes it's cheaper to
1013 * sync the data and get a pointer to it (indirect) so that
1014 * we don't have to write the data twice.
1015 */
1016 if (buf != NULL) { /* immediate write */
1017 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1018 /* test for truncation needs to be done while range locked */
1019 if (offset >= zp->z_size) {
1020 error = SET_ERROR(ENOENT);
1021 } else {
1022 error = dmu_read(os, object, offset, size, buf,
1023 DMU_READ_NO_PREFETCH);
1024 }
1025 ASSERT(error == 0 || error == ENOENT);
1026 } else { /* indirect write */
1027 /*
1028 * Have to lock the whole block to ensure when it's
1029 * written out and it's checksum is being calculated
1030 * that no one can change the data. We need to re-check
1031 * blocksize after we get the lock in case it's changed!
1032 */
1033 for (;;) {
1034 uint64_t blkoff;
1035 size = zp->z_blksz;
1036 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1037 offset -= blkoff;
1038 zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1039 RL_READER);
1040 if (zp->z_blksz == size)
1041 break;
1042 offset += blkoff;
1043 zfs_range_unlock(zgd->zgd_rl);
1044 }
1045 /* test for truncation needs to be done while range locked */
1046 if (lr->lr_offset >= zp->z_size)
1047 error = SET_ERROR(ENOENT);
1048 #ifdef DEBUG
1049 if (zil_fault_io) {
1050 error = SET_ERROR(EIO);
1051 zil_fault_io = 0;
1052 }
1053 #endif
1054 if (error == 0)
1055 error = dmu_buf_hold(os, object, offset, zgd, &db,
1056 DMU_READ_NO_PREFETCH);
1057
1058 if (error == 0) {
1059 blkptr_t *obp = dmu_buf_get_blkptr(db);
1060 if (obp) {
1061 ASSERT(BP_IS_HOLE(bp));
1062 *bp = *obp;
1063 }
1064
1065 zgd->zgd_db = db;
1066 zgd->zgd_bp = bp;
1067
1068 ASSERT(db->db_offset == offset);
1069 ASSERT(db->db_size == size);
1070
1071 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1072 zfs_get_done, zgd);
1073 ASSERT(error || lr->lr_length <= zp->z_blksz);
1074
1075 /*
1076 * On success, we need to wait for the write I/O
1077 * initiated by dmu_sync() to complete before we can
1078 * release this dbuf. We will finish everything up
1079 * in the zfs_get_done() callback.
1080 */
1081 if (error == 0)
1082 return (0);
1083
1084 if (error == EALREADY) {
1085 lr->lr_common.lrc_txtype = TX_WRITE2;
1086 error = 0;
1087 }
1088 }
1089 }
1090
1091 zfs_get_done(zgd, error);
1092
1093 return (error);
1094 }
1095
1096 /*ARGSUSED*/
1097 int
1098 zfs_access(struct inode *ip, int mode, int flag, cred_t *cr)
1099 {
1100 znode_t *zp = ITOZ(ip);
1101 zfs_sb_t *zsb = ITOZSB(ip);
1102 int error;
1103
1104 ZFS_ENTER(zsb);
1105 ZFS_VERIFY_ZP(zp);
1106
1107 if (flag & V_ACE_MASK)
1108 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1109 else
1110 error = zfs_zaccess_rwx(zp, mode, flag, cr);
1111
1112 ZFS_EXIT(zsb);
1113 return (error);
1114 }
1115 EXPORT_SYMBOL(zfs_access);
1116
1117 /*
1118 * Lookup an entry in a directory, or an extended attribute directory.
1119 * If it exists, return a held inode reference for it.
1120 *
1121 * IN: dip - inode of directory to search.
1122 * nm - name of entry to lookup.
1123 * flags - LOOKUP_XATTR set if looking for an attribute.
1124 * cr - credentials of caller.
1125 * direntflags - directory lookup flags
1126 * realpnp - returned pathname.
1127 *
1128 * OUT: ipp - inode of located entry, NULL if not found.
1129 *
1130 * RETURN: 0 on success, error code on failure.
1131 *
1132 * Timestamps:
1133 * NA
1134 */
1135 /* ARGSUSED */
1136 int
1137 zfs_lookup(struct inode *dip, char *nm, struct inode **ipp, int flags,
1138 cred_t *cr, int *direntflags, pathname_t *realpnp)
1139 {
1140 znode_t *zdp = ITOZ(dip);
1141 zfs_sb_t *zsb = ITOZSB(dip);
1142 int error = 0;
1143
1144 /* fast path */
1145 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1146
1147 if (!S_ISDIR(dip->i_mode)) {
1148 return (SET_ERROR(ENOTDIR));
1149 } else if (zdp->z_sa_hdl == NULL) {
1150 return (SET_ERROR(EIO));
1151 }
1152
1153 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1154 error = zfs_fastaccesschk_execute(zdp, cr);
1155 if (!error) {
1156 *ipp = dip;
1157 igrab(*ipp);
1158 return (0);
1159 }
1160 return (error);
1161 #ifdef HAVE_DNLC
1162 } else {
1163 vnode_t *tvp = dnlc_lookup(dvp, nm);
1164
1165 if (tvp) {
1166 error = zfs_fastaccesschk_execute(zdp, cr);
1167 if (error) {
1168 iput(tvp);
1169 return (error);
1170 }
1171 if (tvp == DNLC_NO_VNODE) {
1172 iput(tvp);
1173 return (SET_ERROR(ENOENT));
1174 } else {
1175 *vpp = tvp;
1176 return (specvp_check(vpp, cr));
1177 }
1178 }
1179 #endif /* HAVE_DNLC */
1180 }
1181 }
1182
1183 ZFS_ENTER(zsb);
1184 ZFS_VERIFY_ZP(zdp);
1185
1186 *ipp = NULL;
1187
1188 if (flags & LOOKUP_XATTR) {
1189 /*
1190 * We don't allow recursive attributes..
1191 * Maybe someday we will.
1192 */
1193 if (zdp->z_pflags & ZFS_XATTR) {
1194 ZFS_EXIT(zsb);
1195 return (SET_ERROR(EINVAL));
1196 }
1197
1198 if ((error = zfs_get_xattrdir(zdp, ipp, cr, flags))) {
1199 ZFS_EXIT(zsb);
1200 return (error);
1201 }
1202
1203 /*
1204 * Do we have permission to get into attribute directory?
1205 */
1206
1207 if ((error = zfs_zaccess(ITOZ(*ipp), ACE_EXECUTE, 0,
1208 B_FALSE, cr))) {
1209 iput(*ipp);
1210 *ipp = NULL;
1211 }
1212
1213 ZFS_EXIT(zsb);
1214 return (error);
1215 }
1216
1217 if (!S_ISDIR(dip->i_mode)) {
1218 ZFS_EXIT(zsb);
1219 return (SET_ERROR(ENOTDIR));
1220 }
1221
1222 /*
1223 * Check accessibility of directory.
1224 */
1225
1226 if ((error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr))) {
1227 ZFS_EXIT(zsb);
1228 return (error);
1229 }
1230
1231 if (zsb->z_utf8 && u8_validate(nm, strlen(nm),
1232 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1233 ZFS_EXIT(zsb);
1234 return (SET_ERROR(EILSEQ));
1235 }
1236
1237 error = zfs_dirlook(zdp, nm, ipp, flags, direntflags, realpnp);
1238 if ((error == 0) && (*ipp))
1239 zfs_inode_update(ITOZ(*ipp));
1240
1241 ZFS_EXIT(zsb);
1242 return (error);
1243 }
1244 EXPORT_SYMBOL(zfs_lookup);
1245
1246 /*
1247 * Attempt to create a new entry in a directory. If the entry
1248 * already exists, truncate the file if permissible, else return
1249 * an error. Return the ip of the created or trunc'd file.
1250 *
1251 * IN: dip - inode of directory to put new file entry in.
1252 * name - name of new file entry.
1253 * vap - attributes of new file.
1254 * excl - flag indicating exclusive or non-exclusive mode.
1255 * mode - mode to open file with.
1256 * cr - credentials of caller.
1257 * flag - large file flag [UNUSED].
1258 * vsecp - ACL to be set
1259 *
1260 * OUT: ipp - inode of created or trunc'd entry.
1261 *
1262 * RETURN: 0 on success, error code on failure.
1263 *
1264 * Timestamps:
1265 * dip - ctime|mtime updated if new entry created
1266 * ip - ctime|mtime always, atime if new
1267 */
1268
1269 /* ARGSUSED */
1270 int
1271 zfs_create(struct inode *dip, char *name, vattr_t *vap, int excl,
1272 int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp)
1273 {
1274 znode_t *zp, *dzp = ITOZ(dip);
1275 zfs_sb_t *zsb = ITOZSB(dip);
1276 zilog_t *zilog;
1277 objset_t *os;
1278 zfs_dirlock_t *dl;
1279 dmu_tx_t *tx;
1280 int error;
1281 uid_t uid;
1282 gid_t gid;
1283 zfs_acl_ids_t acl_ids;
1284 boolean_t fuid_dirtied;
1285 boolean_t have_acl = B_FALSE;
1286 boolean_t waited = B_FALSE;
1287
1288 /*
1289 * If we have an ephemeral id, ACL, or XVATTR then
1290 * make sure file system is at proper version
1291 */
1292
1293 gid = crgetgid(cr);
1294 uid = crgetuid(cr);
1295
1296 if (zsb->z_use_fuids == B_FALSE &&
1297 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1298 return (SET_ERROR(EINVAL));
1299
1300 ZFS_ENTER(zsb);
1301 ZFS_VERIFY_ZP(dzp);
1302 os = zsb->z_os;
1303 zilog = zsb->z_log;
1304
1305 if (zsb->z_utf8 && u8_validate(name, strlen(name),
1306 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1307 ZFS_EXIT(zsb);
1308 return (SET_ERROR(EILSEQ));
1309 }
1310
1311 if (vap->va_mask & ATTR_XVATTR) {
1312 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1313 crgetuid(cr), cr, vap->va_mode)) != 0) {
1314 ZFS_EXIT(zsb);
1315 return (error);
1316 }
1317 }
1318
1319 top:
1320 *ipp = NULL;
1321 if (*name == '\0') {
1322 /*
1323 * Null component name refers to the directory itself.
1324 */
1325 igrab(dip);
1326 zp = dzp;
1327 dl = NULL;
1328 error = 0;
1329 } else {
1330 /* possible igrab(zp) */
1331 int zflg = 0;
1332
1333 if (flag & FIGNORECASE)
1334 zflg |= ZCILOOK;
1335
1336 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1337 NULL, NULL);
1338 if (error) {
1339 if (have_acl)
1340 zfs_acl_ids_free(&acl_ids);
1341 if (strcmp(name, "..") == 0)
1342 error = SET_ERROR(EISDIR);
1343 ZFS_EXIT(zsb);
1344 return (error);
1345 }
1346 }
1347
1348 if (zp == NULL) {
1349 uint64_t txtype;
1350
1351 /*
1352 * Create a new file object and update the directory
1353 * to reference it.
1354 */
1355 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
1356 if (have_acl)
1357 zfs_acl_ids_free(&acl_ids);
1358 goto out;
1359 }
1360
1361 /*
1362 * We only support the creation of regular files in
1363 * extended attribute directories.
1364 */
1365
1366 if ((dzp->z_pflags & ZFS_XATTR) && !S_ISREG(vap->va_mode)) {
1367 if (have_acl)
1368 zfs_acl_ids_free(&acl_ids);
1369 error = SET_ERROR(EINVAL);
1370 goto out;
1371 }
1372
1373 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1374 cr, vsecp, &acl_ids)) != 0)
1375 goto out;
1376 have_acl = B_TRUE;
1377
1378 if (zfs_acl_ids_overquota(zsb, &acl_ids)) {
1379 zfs_acl_ids_free(&acl_ids);
1380 error = SET_ERROR(EDQUOT);
1381 goto out;
1382 }
1383
1384 tx = dmu_tx_create(os);
1385
1386 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1387 ZFS_SA_BASE_ATTR_SIZE);
1388
1389 fuid_dirtied = zsb->z_fuid_dirty;
1390 if (fuid_dirtied)
1391 zfs_fuid_txhold(zsb, tx);
1392 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1393 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1394 if (!zsb->z_use_sa &&
1395 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1396 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1397 0, acl_ids.z_aclp->z_acl_bytes);
1398 }
1399 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1400 if (error) {
1401 zfs_dirent_unlock(dl);
1402 if (error == ERESTART) {
1403 waited = B_TRUE;
1404 dmu_tx_wait(tx);
1405 dmu_tx_abort(tx);
1406 goto top;
1407 }
1408 zfs_acl_ids_free(&acl_ids);
1409 dmu_tx_abort(tx);
1410 ZFS_EXIT(zsb);
1411 return (error);
1412 }
1413 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1414
1415 if (fuid_dirtied)
1416 zfs_fuid_sync(zsb, tx);
1417
1418 (void) zfs_link_create(dl, zp, tx, ZNEW);
1419 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1420 if (flag & FIGNORECASE)
1421 txtype |= TX_CI;
1422 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1423 vsecp, acl_ids.z_fuidp, vap);
1424 zfs_acl_ids_free(&acl_ids);
1425 dmu_tx_commit(tx);
1426 } else {
1427 int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1428
1429 if (have_acl)
1430 zfs_acl_ids_free(&acl_ids);
1431 have_acl = B_FALSE;
1432
1433 /*
1434 * A directory entry already exists for this name.
1435 */
1436 /*
1437 * Can't truncate an existing file if in exclusive mode.
1438 */
1439 if (excl) {
1440 error = SET_ERROR(EEXIST);
1441 goto out;
1442 }
1443 /*
1444 * Can't open a directory for writing.
1445 */
1446 if (S_ISDIR(ZTOI(zp)->i_mode)) {
1447 error = SET_ERROR(EISDIR);
1448 goto out;
1449 }
1450 /*
1451 * Verify requested access to file.
1452 */
1453 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1454 goto out;
1455 }
1456
1457 mutex_enter(&dzp->z_lock);
1458 dzp->z_seq++;
1459 mutex_exit(&dzp->z_lock);
1460
1461 /*
1462 * Truncate regular files if requested.
1463 */
1464 if (S_ISREG(ZTOI(zp)->i_mode) &&
1465 (vap->va_mask & ATTR_SIZE) && (vap->va_size == 0)) {
1466 /* we can't hold any locks when calling zfs_freesp() */
1467 zfs_dirent_unlock(dl);
1468 dl = NULL;
1469 error = zfs_freesp(zp, 0, 0, mode, TRUE);
1470 }
1471 }
1472 out:
1473
1474 if (dl)
1475 zfs_dirent_unlock(dl);
1476
1477 if (error) {
1478 if (zp)
1479 iput(ZTOI(zp));
1480 } else {
1481 zfs_inode_update(dzp);
1482 zfs_inode_update(zp);
1483 *ipp = ZTOI(zp);
1484 }
1485
1486 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
1487 zil_commit(zilog, 0);
1488
1489 ZFS_EXIT(zsb);
1490 return (error);
1491 }
1492 EXPORT_SYMBOL(zfs_create);
1493
1494 /*
1495 * Remove an entry from a directory.
1496 *
1497 * IN: dip - inode of directory to remove entry from.
1498 * name - name of entry to remove.
1499 * cr - credentials of caller.
1500 *
1501 * RETURN: 0 if success
1502 * error code if failure
1503 *
1504 * Timestamps:
1505 * dip - ctime|mtime
1506 * ip - ctime (if nlink > 0)
1507 */
1508
1509 uint64_t null_xattr = 0;
1510
1511 /*ARGSUSED*/
1512 int
1513 zfs_remove(struct inode *dip, char *name, cred_t *cr)
1514 {
1515 znode_t *zp, *dzp = ITOZ(dip);
1516 znode_t *xzp;
1517 struct inode *ip;
1518 zfs_sb_t *zsb = ITOZSB(dip);
1519 zilog_t *zilog;
1520 uint64_t xattr_obj;
1521 uint64_t xattr_obj_unlinked = 0;
1522 uint64_t obj = 0;
1523 zfs_dirlock_t *dl;
1524 dmu_tx_t *tx;
1525 boolean_t unlinked;
1526 uint64_t txtype;
1527 pathname_t *realnmp = NULL;
1528 #ifdef HAVE_PN_UTILS
1529 pathname_t realnm;
1530 #endif /* HAVE_PN_UTILS */
1531 int error;
1532 int zflg = ZEXISTS;
1533 boolean_t waited = B_FALSE;
1534
1535 ZFS_ENTER(zsb);
1536 ZFS_VERIFY_ZP(dzp);
1537 zilog = zsb->z_log;
1538
1539 #ifdef HAVE_PN_UTILS
1540 if (flags & FIGNORECASE) {
1541 zflg |= ZCILOOK;
1542 pn_alloc(&realnm);
1543 realnmp = &realnm;
1544 }
1545 #endif /* HAVE_PN_UTILS */
1546
1547 top:
1548 xattr_obj = 0;
1549 xzp = NULL;
1550 /*
1551 * Attempt to lock directory; fail if entry doesn't exist.
1552 */
1553 if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1554 NULL, realnmp))) {
1555 #ifdef HAVE_PN_UTILS
1556 if (realnmp)
1557 pn_free(realnmp);
1558 #endif /* HAVE_PN_UTILS */
1559 ZFS_EXIT(zsb);
1560 return (error);
1561 }
1562
1563 ip = ZTOI(zp);
1564
1565 if ((error = zfs_zaccess_delete(dzp, zp, cr))) {
1566 goto out;
1567 }
1568
1569 /*
1570 * Need to use rmdir for removing directories.
1571 */
1572 if (S_ISDIR(ip->i_mode)) {
1573 error = SET_ERROR(EPERM);
1574 goto out;
1575 }
1576
1577 #ifdef HAVE_DNLC
1578 if (realnmp)
1579 dnlc_remove(dvp, realnmp->pn_buf);
1580 else
1581 dnlc_remove(dvp, name);
1582 #endif /* HAVE_DNLC */
1583
1584 /*
1585 * We never delete the znode and always place it in the unlinked
1586 * set. The dentry cache will always hold the last reference and
1587 * is responsible for safely freeing the znode.
1588 */
1589 obj = zp->z_id;
1590 tx = dmu_tx_create(zsb->z_os);
1591 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1592 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1593 zfs_sa_upgrade_txholds(tx, zp);
1594 zfs_sa_upgrade_txholds(tx, dzp);
1595
1596 /* are there any extended attributes? */
1597 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zsb),
1598 &xattr_obj, sizeof (xattr_obj));
1599 if (error == 0 && xattr_obj) {
1600 error = zfs_zget(zsb, xattr_obj, &xzp);
1601 ASSERT0(error);
1602 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1603 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1604 }
1605
1606 /* charge as an update -- would be nice not to charge at all */
1607 dmu_tx_hold_zap(tx, zsb->z_unlinkedobj, FALSE, NULL);
1608
1609 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1610 if (error) {
1611 zfs_dirent_unlock(dl);
1612 iput(ip);
1613 if (xzp)
1614 iput(ZTOI(xzp));
1615 if (error == ERESTART) {
1616 waited = B_TRUE;
1617 dmu_tx_wait(tx);
1618 dmu_tx_abort(tx);
1619 goto top;
1620 }
1621 #ifdef HAVE_PN_UTILS
1622 if (realnmp)
1623 pn_free(realnmp);
1624 #endif /* HAVE_PN_UTILS */
1625 dmu_tx_abort(tx);
1626 ZFS_EXIT(zsb);
1627 return (error);
1628 }
1629
1630 /*
1631 * Remove the directory entry.
1632 */
1633 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1634
1635 if (error) {
1636 dmu_tx_commit(tx);
1637 goto out;
1638 }
1639
1640 if (unlinked) {
1641 /*
1642 * Hold z_lock so that we can make sure that the ACL obj
1643 * hasn't changed. Could have been deleted due to
1644 * zfs_sa_upgrade().
1645 */
1646 mutex_enter(&zp->z_lock);
1647 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zsb),
1648 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1649 mutex_exit(&zp->z_lock);
1650 zfs_unlinked_add(zp, tx);
1651 }
1652
1653 txtype = TX_REMOVE;
1654 #ifdef HAVE_PN_UTILS
1655 if (flags & FIGNORECASE)
1656 txtype |= TX_CI;
1657 #endif /* HAVE_PN_UTILS */
1658 zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1659
1660 dmu_tx_commit(tx);
1661 out:
1662 #ifdef HAVE_PN_UTILS
1663 if (realnmp)
1664 pn_free(realnmp);
1665 #endif /* HAVE_PN_UTILS */
1666
1667 zfs_dirent_unlock(dl);
1668 zfs_inode_update(dzp);
1669 zfs_inode_update(zp);
1670 if (xzp)
1671 zfs_inode_update(xzp);
1672
1673 iput(ip);
1674 if (xzp)
1675 iput(ZTOI(xzp));
1676
1677 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
1678 zil_commit(zilog, 0);
1679
1680 ZFS_EXIT(zsb);
1681 return (error);
1682 }
1683 EXPORT_SYMBOL(zfs_remove);
1684
1685 /*
1686 * Create a new directory and insert it into dip using the name
1687 * provided. Return a pointer to the inserted directory.
1688 *
1689 * IN: dip - inode of directory to add subdir to.
1690 * dirname - name of new directory.
1691 * vap - attributes of new directory.
1692 * cr - credentials of caller.
1693 * vsecp - ACL to be set
1694 *
1695 * OUT: ipp - inode of created directory.
1696 *
1697 * RETURN: 0 if success
1698 * error code if failure
1699 *
1700 * Timestamps:
1701 * dip - ctime|mtime updated
1702 * ipp - ctime|mtime|atime updated
1703 */
1704 /*ARGSUSED*/
1705 int
1706 zfs_mkdir(struct inode *dip, char *dirname, vattr_t *vap, struct inode **ipp,
1707 cred_t *cr, int flags, vsecattr_t *vsecp)
1708 {
1709 znode_t *zp, *dzp = ITOZ(dip);
1710 zfs_sb_t *zsb = ITOZSB(dip);
1711 zilog_t *zilog;
1712 zfs_dirlock_t *dl;
1713 uint64_t txtype;
1714 dmu_tx_t *tx;
1715 int error;
1716 int zf = ZNEW;
1717 uid_t uid;
1718 gid_t gid = crgetgid(cr);
1719 zfs_acl_ids_t acl_ids;
1720 boolean_t fuid_dirtied;
1721 boolean_t waited = B_FALSE;
1722
1723 ASSERT(S_ISDIR(vap->va_mode));
1724
1725 /*
1726 * If we have an ephemeral id, ACL, or XVATTR then
1727 * make sure file system is at proper version
1728 */
1729
1730 uid = crgetuid(cr);
1731 if (zsb->z_use_fuids == B_FALSE &&
1732 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1733 return (SET_ERROR(EINVAL));
1734
1735 ZFS_ENTER(zsb);
1736 ZFS_VERIFY_ZP(dzp);
1737 zilog = zsb->z_log;
1738
1739 if (dzp->z_pflags & ZFS_XATTR) {
1740 ZFS_EXIT(zsb);
1741 return (SET_ERROR(EINVAL));
1742 }
1743
1744 if (zsb->z_utf8 && u8_validate(dirname,
1745 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1746 ZFS_EXIT(zsb);
1747 return (SET_ERROR(EILSEQ));
1748 }
1749 if (flags & FIGNORECASE)
1750 zf |= ZCILOOK;
1751
1752 if (vap->va_mask & ATTR_XVATTR) {
1753 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1754 crgetuid(cr), cr, vap->va_mode)) != 0) {
1755 ZFS_EXIT(zsb);
1756 return (error);
1757 }
1758 }
1759
1760 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1761 vsecp, &acl_ids)) != 0) {
1762 ZFS_EXIT(zsb);
1763 return (error);
1764 }
1765 /*
1766 * First make sure the new directory doesn't exist.
1767 *
1768 * Existence is checked first to make sure we don't return
1769 * EACCES instead of EEXIST which can cause some applications
1770 * to fail.
1771 */
1772 top:
1773 *ipp = NULL;
1774
1775 if ((error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1776 NULL, NULL))) {
1777 zfs_acl_ids_free(&acl_ids);
1778 ZFS_EXIT(zsb);
1779 return (error);
1780 }
1781
1782 if ((error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr))) {
1783 zfs_acl_ids_free(&acl_ids);
1784 zfs_dirent_unlock(dl);
1785 ZFS_EXIT(zsb);
1786 return (error);
1787 }
1788
1789 if (zfs_acl_ids_overquota(zsb, &acl_ids)) {
1790 zfs_acl_ids_free(&acl_ids);
1791 zfs_dirent_unlock(dl);
1792 ZFS_EXIT(zsb);
1793 return (SET_ERROR(EDQUOT));
1794 }
1795
1796 /*
1797 * Add a new entry to the directory.
1798 */
1799 tx = dmu_tx_create(zsb->z_os);
1800 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1801 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1802 fuid_dirtied = zsb->z_fuid_dirty;
1803 if (fuid_dirtied)
1804 zfs_fuid_txhold(zsb, tx);
1805 if (!zsb->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1806 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1807 acl_ids.z_aclp->z_acl_bytes);
1808 }
1809
1810 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1811 ZFS_SA_BASE_ATTR_SIZE);
1812
1813 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1814 if (error) {
1815 zfs_dirent_unlock(dl);
1816 if (error == ERESTART) {
1817 waited = B_TRUE;
1818 dmu_tx_wait(tx);
1819 dmu_tx_abort(tx);
1820 goto top;
1821 }
1822 zfs_acl_ids_free(&acl_ids);
1823 dmu_tx_abort(tx);
1824 ZFS_EXIT(zsb);
1825 return (error);
1826 }
1827
1828 /*
1829 * Create new node.
1830 */
1831 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1832
1833 if (fuid_dirtied)
1834 zfs_fuid_sync(zsb, tx);
1835
1836 /*
1837 * Now put new name in parent dir.
1838 */
1839 (void) zfs_link_create(dl, zp, tx, ZNEW);
1840
1841 *ipp = ZTOI(zp);
1842
1843 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1844 if (flags & FIGNORECASE)
1845 txtype |= TX_CI;
1846 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1847 acl_ids.z_fuidp, vap);
1848
1849 zfs_acl_ids_free(&acl_ids);
1850
1851 dmu_tx_commit(tx);
1852
1853 zfs_dirent_unlock(dl);
1854
1855 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
1856 zil_commit(zilog, 0);
1857
1858 zfs_inode_update(dzp);
1859 zfs_inode_update(zp);
1860 ZFS_EXIT(zsb);
1861 return (0);
1862 }
1863 EXPORT_SYMBOL(zfs_mkdir);
1864
1865 /*
1866 * Remove a directory subdir entry. If the current working
1867 * directory is the same as the subdir to be removed, the
1868 * remove will fail.
1869 *
1870 * IN: dip - inode of directory to remove from.
1871 * name - name of directory to be removed.
1872 * cwd - inode of current working directory.
1873 * cr - credentials of caller.
1874 * flags - case flags
1875 *
1876 * RETURN: 0 on success, error code on failure.
1877 *
1878 * Timestamps:
1879 * dip - ctime|mtime updated
1880 */
1881 /*ARGSUSED*/
1882 int
1883 zfs_rmdir(struct inode *dip, char *name, struct inode *cwd, cred_t *cr,
1884 int flags)
1885 {
1886 znode_t *dzp = ITOZ(dip);
1887 znode_t *zp;
1888 struct inode *ip;
1889 zfs_sb_t *zsb = ITOZSB(dip);
1890 zilog_t *zilog;
1891 zfs_dirlock_t *dl;
1892 dmu_tx_t *tx;
1893 int error;
1894 int zflg = ZEXISTS;
1895 boolean_t waited = B_FALSE;
1896
1897 ZFS_ENTER(zsb);
1898 ZFS_VERIFY_ZP(dzp);
1899 zilog = zsb->z_log;
1900
1901 if (flags & FIGNORECASE)
1902 zflg |= ZCILOOK;
1903 top:
1904 zp = NULL;
1905
1906 /*
1907 * Attempt to lock directory; fail if entry doesn't exist.
1908 */
1909 if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1910 NULL, NULL))) {
1911 ZFS_EXIT(zsb);
1912 return (error);
1913 }
1914
1915 ip = ZTOI(zp);
1916
1917 if ((error = zfs_zaccess_delete(dzp, zp, cr))) {
1918 goto out;
1919 }
1920
1921 if (!S_ISDIR(ip->i_mode)) {
1922 error = SET_ERROR(ENOTDIR);
1923 goto out;
1924 }
1925
1926 if (ip == cwd) {
1927 error = SET_ERROR(EINVAL);
1928 goto out;
1929 }
1930
1931 /*
1932 * Grab a lock on the directory to make sure that noone is
1933 * trying to add (or lookup) entries while we are removing it.
1934 */
1935 rw_enter(&zp->z_name_lock, RW_WRITER);
1936
1937 /*
1938 * Grab a lock on the parent pointer to make sure we play well
1939 * with the treewalk and directory rename code.
1940 */
1941 rw_enter(&zp->z_parent_lock, RW_WRITER);
1942
1943 tx = dmu_tx_create(zsb->z_os);
1944 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1945 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1946 dmu_tx_hold_zap(tx, zsb->z_unlinkedobj, FALSE, NULL);
1947 zfs_sa_upgrade_txholds(tx, zp);
1948 zfs_sa_upgrade_txholds(tx, dzp);
1949 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1950 if (error) {
1951 rw_exit(&zp->z_parent_lock);
1952 rw_exit(&zp->z_name_lock);
1953 zfs_dirent_unlock(dl);
1954 iput(ip);
1955 if (error == ERESTART) {
1956 waited = B_TRUE;
1957 dmu_tx_wait(tx);
1958 dmu_tx_abort(tx);
1959 goto top;
1960 }
1961 dmu_tx_abort(tx);
1962 ZFS_EXIT(zsb);
1963 return (error);
1964 }
1965
1966 error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
1967
1968 if (error == 0) {
1969 uint64_t txtype = TX_RMDIR;
1970 if (flags & FIGNORECASE)
1971 txtype |= TX_CI;
1972 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
1973 }
1974
1975 dmu_tx_commit(tx);
1976
1977 rw_exit(&zp->z_parent_lock);
1978 rw_exit(&zp->z_name_lock);
1979 out:
1980 zfs_dirent_unlock(dl);
1981
1982 zfs_inode_update(dzp);
1983 zfs_inode_update(zp);
1984 iput(ip);
1985
1986 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
1987 zil_commit(zilog, 0);
1988
1989 ZFS_EXIT(zsb);
1990 return (error);
1991 }
1992 EXPORT_SYMBOL(zfs_rmdir);
1993
1994 /*
1995 * Read as many directory entries as will fit into the provided
1996 * dirent buffer from the given directory cursor position.
1997 *
1998 * IN: ip - inode of directory to read.
1999 * dirent - buffer for directory entries.
2000 *
2001 * OUT: dirent - filler buffer of directory entries.
2002 *
2003 * RETURN: 0 if success
2004 * error code if failure
2005 *
2006 * Timestamps:
2007 * ip - atime updated
2008 *
2009 * Note that the low 4 bits of the cookie returned by zap is always zero.
2010 * This allows us to use the low range for "special" directory entries:
2011 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem,
2012 * we use the offset 2 for the '.zfs' directory.
2013 */
2014 /* ARGSUSED */
2015 int
2016 zfs_readdir(struct inode *ip, struct dir_context *ctx, cred_t *cr)
2017 {
2018 znode_t *zp = ITOZ(ip);
2019 zfs_sb_t *zsb = ITOZSB(ip);
2020 objset_t *os;
2021 zap_cursor_t zc;
2022 zap_attribute_t zap;
2023 int error;
2024 uint8_t prefetch;
2025 uint8_t type;
2026 int done = 0;
2027 uint64_t parent;
2028 uint64_t offset; /* must be unsigned; checks for < 1 */
2029
2030 ZFS_ENTER(zsb);
2031 ZFS_VERIFY_ZP(zp);
2032
2033 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zsb),
2034 &parent, sizeof (parent))) != 0)
2035 goto out;
2036
2037 /*
2038 * Quit if directory has been removed (posix)
2039 */
2040 if (zp->z_unlinked)
2041 goto out;
2042
2043 error = 0;
2044 os = zsb->z_os;
2045 offset = ctx->pos;
2046 prefetch = zp->z_zn_prefetch;
2047
2048 /*
2049 * Initialize the iterator cursor.
2050 */
2051 if (offset <= 3) {
2052 /*
2053 * Start iteration from the beginning of the directory.
2054 */
2055 zap_cursor_init(&zc, os, zp->z_id);
2056 } else {
2057 /*
2058 * The offset is a serialized cursor.
2059 */
2060 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2061 }
2062
2063 /*
2064 * Transform to file-system independent format
2065 */
2066 while (!done) {
2067 uint64_t objnum;
2068 /*
2069 * Special case `.', `..', and `.zfs'.
2070 */
2071 if (offset == 0) {
2072 (void) strcpy(zap.za_name, ".");
2073 zap.za_normalization_conflict = 0;
2074 objnum = zp->z_id;
2075 type = DT_DIR;
2076 } else if (offset == 1) {
2077 (void) strcpy(zap.za_name, "..");
2078 zap.za_normalization_conflict = 0;
2079 objnum = parent;
2080 type = DT_DIR;
2081 } else if (offset == 2 && zfs_show_ctldir(zp)) {
2082 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2083 zap.za_normalization_conflict = 0;
2084 objnum = ZFSCTL_INO_ROOT;
2085 type = DT_DIR;
2086 } else {
2087 /*
2088 * Grab next entry.
2089 */
2090 if ((error = zap_cursor_retrieve(&zc, &zap))) {
2091 if (error == ENOENT)
2092 break;
2093 else
2094 goto update;
2095 }
2096
2097 /*
2098 * Allow multiple entries provided the first entry is
2099 * the object id. Non-zpl consumers may safely make
2100 * use of the additional space.
2101 *
2102 * XXX: This should be a feature flag for compatibility
2103 */
2104 if (zap.za_integer_length != 8 ||
2105 zap.za_num_integers == 0) {
2106 cmn_err(CE_WARN, "zap_readdir: bad directory "
2107 "entry, obj = %lld, offset = %lld, "
2108 "length = %d, num = %lld\n",
2109 (u_longlong_t)zp->z_id,
2110 (u_longlong_t)offset,
2111 zap.za_integer_length,
2112 (u_longlong_t)zap.za_num_integers);
2113 error = SET_ERROR(ENXIO);
2114 goto update;
2115 }
2116
2117 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2118 type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2119 }
2120
2121 done = !dir_emit(ctx, zap.za_name, strlen(zap.za_name),
2122 objnum, type);
2123 if (done)
2124 break;
2125
2126 /* Prefetch znode */
2127 if (prefetch) {
2128 dmu_prefetch(os, objnum, 0, 0);
2129 }
2130
2131 /*
2132 * Move to the next entry, fill in the previous offset.
2133 */
2134 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2135 zap_cursor_advance(&zc);
2136 offset = zap_cursor_serialize(&zc);
2137 } else {
2138 offset += 1;
2139 }
2140 ctx->pos = offset;
2141 }
2142 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2143
2144 update:
2145 zap_cursor_fini(&zc);
2146 if (error == ENOENT)
2147 error = 0;
2148
2149 ZFS_ACCESSTIME_STAMP(zsb, zp);
2150
2151 out:
2152 ZFS_EXIT(zsb);
2153
2154 return (error);
2155 }
2156 EXPORT_SYMBOL(zfs_readdir);
2157
2158 ulong_t zfs_fsync_sync_cnt = 4;
2159
2160 int
2161 zfs_fsync(struct inode *ip, int syncflag, cred_t *cr)
2162 {
2163 znode_t *zp = ITOZ(ip);
2164 zfs_sb_t *zsb = ITOZSB(ip);
2165
2166 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2167
2168 if (zsb->z_os->os_sync != ZFS_SYNC_DISABLED) {
2169 ZFS_ENTER(zsb);
2170 ZFS_VERIFY_ZP(zp);
2171 zil_commit(zsb->z_log, zp->z_id);
2172 ZFS_EXIT(zsb);
2173 }
2174 return (0);
2175 }
2176 EXPORT_SYMBOL(zfs_fsync);
2177
2178
2179 /*
2180 * Get the requested file attributes and place them in the provided
2181 * vattr structure.
2182 *
2183 * IN: ip - inode of file.
2184 * vap - va_mask identifies requested attributes.
2185 * If ATTR_XVATTR set, then optional attrs are requested
2186 * flags - ATTR_NOACLCHECK (CIFS server context)
2187 * cr - credentials of caller.
2188 *
2189 * OUT: vap - attribute values.
2190 *
2191 * RETURN: 0 (always succeeds)
2192 */
2193 /* ARGSUSED */
2194 int
2195 zfs_getattr(struct inode *ip, vattr_t *vap, int flags, cred_t *cr)
2196 {
2197 znode_t *zp = ITOZ(ip);
2198 zfs_sb_t *zsb = ITOZSB(ip);
2199 int error = 0;
2200 uint64_t links;
2201 uint64_t mtime[2], ctime[2];
2202 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2203 xoptattr_t *xoap = NULL;
2204 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2205 sa_bulk_attr_t bulk[2];
2206 int count = 0;
2207
2208 ZFS_ENTER(zsb);
2209 ZFS_VERIFY_ZP(zp);
2210
2211 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2212
2213 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zsb), NULL, &mtime, 16);
2214 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zsb), NULL, &ctime, 16);
2215
2216 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2217 ZFS_EXIT(zsb);
2218 return (error);
2219 }
2220
2221 /*
2222 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2223 * Also, if we are the owner don't bother, since owner should
2224 * always be allowed to read basic attributes of file.
2225 */
2226 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2227 (vap->va_uid != crgetuid(cr))) {
2228 if ((error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2229 skipaclchk, cr))) {
2230 ZFS_EXIT(zsb);
2231 return (error);
2232 }
2233 }
2234
2235 /*
2236 * Return all attributes. It's cheaper to provide the answer
2237 * than to determine whether we were asked the question.
2238 */
2239
2240 mutex_enter(&zp->z_lock);
2241 vap->va_type = vn_mode_to_vtype(zp->z_mode);
2242 vap->va_mode = zp->z_mode;
2243 vap->va_fsid = ZTOI(zp)->i_sb->s_dev;
2244 vap->va_nodeid = zp->z_id;
2245 if ((zp->z_id == zsb->z_root) && zfs_show_ctldir(zp))
2246 links = zp->z_links + 1;
2247 else
2248 links = zp->z_links;
2249 vap->va_nlink = MIN(links, ZFS_LINK_MAX);
2250 vap->va_size = i_size_read(ip);
2251 vap->va_rdev = ip->i_rdev;
2252 vap->va_seq = ip->i_generation;
2253
2254 /*
2255 * Add in any requested optional attributes and the create time.
2256 * Also set the corresponding bits in the returned attribute bitmap.
2257 */
2258 if ((xoap = xva_getxoptattr(xvap)) != NULL && zsb->z_use_fuids) {
2259 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2260 xoap->xoa_archive =
2261 ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2262 XVA_SET_RTN(xvap, XAT_ARCHIVE);
2263 }
2264
2265 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2266 xoap->xoa_readonly =
2267 ((zp->z_pflags & ZFS_READONLY) != 0);
2268 XVA_SET_RTN(xvap, XAT_READONLY);
2269 }
2270
2271 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2272 xoap->xoa_system =
2273 ((zp->z_pflags & ZFS_SYSTEM) != 0);
2274 XVA_SET_RTN(xvap, XAT_SYSTEM);
2275 }
2276
2277 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2278 xoap->xoa_hidden =
2279 ((zp->z_pflags & ZFS_HIDDEN) != 0);
2280 XVA_SET_RTN(xvap, XAT_HIDDEN);
2281 }
2282
2283 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2284 xoap->xoa_nounlink =
2285 ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2286 XVA_SET_RTN(xvap, XAT_NOUNLINK);
2287 }
2288
2289 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2290 xoap->xoa_immutable =
2291 ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2292 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2293 }
2294
2295 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2296 xoap->xoa_appendonly =
2297 ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2298 XVA_SET_RTN(xvap, XAT_APPENDONLY);
2299 }
2300
2301 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2302 xoap->xoa_nodump =
2303 ((zp->z_pflags & ZFS_NODUMP) != 0);
2304 XVA_SET_RTN(xvap, XAT_NODUMP);
2305 }
2306
2307 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2308 xoap->xoa_opaque =
2309 ((zp->z_pflags & ZFS_OPAQUE) != 0);
2310 XVA_SET_RTN(xvap, XAT_OPAQUE);
2311 }
2312
2313 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2314 xoap->xoa_av_quarantined =
2315 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2316 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2317 }
2318
2319 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2320 xoap->xoa_av_modified =
2321 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2322 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2323 }
2324
2325 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2326 S_ISREG(ip->i_mode)) {
2327 zfs_sa_get_scanstamp(zp, xvap);
2328 }
2329
2330 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2331 uint64_t times[2];
2332
2333 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zsb),
2334 times, sizeof (times));
2335 ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2336 XVA_SET_RTN(xvap, XAT_CREATETIME);
2337 }
2338
2339 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2340 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2341 XVA_SET_RTN(xvap, XAT_REPARSE);
2342 }
2343 if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2344 xoap->xoa_generation = zp->z_gen;
2345 XVA_SET_RTN(xvap, XAT_GEN);
2346 }
2347
2348 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2349 xoap->xoa_offline =
2350 ((zp->z_pflags & ZFS_OFFLINE) != 0);
2351 XVA_SET_RTN(xvap, XAT_OFFLINE);
2352 }
2353
2354 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2355 xoap->xoa_sparse =
2356 ((zp->z_pflags & ZFS_SPARSE) != 0);
2357 XVA_SET_RTN(xvap, XAT_SPARSE);
2358 }
2359 }
2360
2361 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2362 ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2363 ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2364
2365 mutex_exit(&zp->z_lock);
2366
2367 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2368
2369 if (zp->z_blksz == 0) {
2370 /*
2371 * Block size hasn't been set; suggest maximal I/O transfers.
2372 */
2373 vap->va_blksize = zsb->z_max_blksz;
2374 }
2375
2376 ZFS_EXIT(zsb);
2377 return (0);
2378 }
2379 EXPORT_SYMBOL(zfs_getattr);
2380
2381 /*
2382 * Get the basic file attributes and place them in the provided kstat
2383 * structure. The inode is assumed to be the authoritative source
2384 * for most of the attributes. However, the znode currently has the
2385 * authoritative atime, blksize, and block count.
2386 *
2387 * IN: ip - inode of file.
2388 *
2389 * OUT: sp - kstat values.
2390 *
2391 * RETURN: 0 (always succeeds)
2392 */
2393 /* ARGSUSED */
2394 int
2395 zfs_getattr_fast(struct inode *ip, struct kstat *sp)
2396 {
2397 znode_t *zp = ITOZ(ip);
2398 zfs_sb_t *zsb = ITOZSB(ip);
2399 uint32_t blksize;
2400 u_longlong_t nblocks;
2401
2402 ZFS_ENTER(zsb);
2403 ZFS_VERIFY_ZP(zp);
2404
2405 mutex_enter(&zp->z_lock);
2406
2407 generic_fillattr(ip, sp);
2408 ZFS_TIME_DECODE(&sp->atime, zp->z_atime);
2409
2410 sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
2411 sp->blksize = blksize;
2412 sp->blocks = nblocks;
2413
2414 if (unlikely(zp->z_blksz == 0)) {
2415 /*
2416 * Block size hasn't been set; suggest maximal I/O transfers.
2417 */
2418 sp->blksize = zsb->z_max_blksz;
2419 }
2420
2421 mutex_exit(&zp->z_lock);
2422
2423 ZFS_EXIT(zsb);
2424
2425 return (0);
2426 }
2427 EXPORT_SYMBOL(zfs_getattr_fast);
2428
2429 /*
2430 * Set the file attributes to the values contained in the
2431 * vattr structure.
2432 *
2433 * IN: ip - inode of file to be modified.
2434 * vap - new attribute values.
2435 * If ATTR_XVATTR set, then optional attrs are being set
2436 * flags - ATTR_UTIME set if non-default time values provided.
2437 * - ATTR_NOACLCHECK (CIFS context only).
2438 * cr - credentials of caller.
2439 *
2440 * RETURN: 0 if success
2441 * error code if failure
2442 *
2443 * Timestamps:
2444 * ip - ctime updated, mtime updated if size changed.
2445 */
2446 /* ARGSUSED */
2447 int
2448 zfs_setattr(struct inode *ip, vattr_t *vap, int flags, cred_t *cr)
2449 {
2450 znode_t *zp = ITOZ(ip);
2451 zfs_sb_t *zsb = ITOZSB(ip);
2452 zilog_t *zilog;
2453 dmu_tx_t *tx;
2454 vattr_t oldva;
2455 xvattr_t *tmpxvattr;
2456 uint_t mask = vap->va_mask;
2457 uint_t saved_mask = 0;
2458 int trim_mask = 0;
2459 uint64_t new_mode;
2460 uint64_t new_uid, new_gid;
2461 uint64_t xattr_obj;
2462 uint64_t mtime[2], ctime[2];
2463 znode_t *attrzp;
2464 int need_policy = FALSE;
2465 int err, err2;
2466 zfs_fuid_info_t *fuidp = NULL;
2467 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2468 xoptattr_t *xoap;
2469 zfs_acl_t *aclp;
2470 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2471 boolean_t fuid_dirtied = B_FALSE;
2472 sa_bulk_attr_t *bulk, *xattr_bulk;
2473 int count = 0, xattr_count = 0;
2474
2475 if (mask == 0)
2476 return (0);
2477
2478 ZFS_ENTER(zsb);
2479 ZFS_VERIFY_ZP(zp);
2480
2481 zilog = zsb->z_log;
2482
2483 /*
2484 * Make sure that if we have ephemeral uid/gid or xvattr specified
2485 * that file system is at proper version level
2486 */
2487
2488 if (zsb->z_use_fuids == B_FALSE &&
2489 (((mask & ATTR_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2490 ((mask & ATTR_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2491 (mask & ATTR_XVATTR))) {
2492 ZFS_EXIT(zsb);
2493 return (SET_ERROR(EINVAL));
2494 }
2495
2496 if (mask & ATTR_SIZE && S_ISDIR(ip->i_mode)) {
2497 ZFS_EXIT(zsb);
2498 return (SET_ERROR(EISDIR));
2499 }
2500
2501 if (mask & ATTR_SIZE && !S_ISREG(ip->i_mode) && !S_ISFIFO(ip->i_mode)) {
2502 ZFS_EXIT(zsb);
2503 return (SET_ERROR(EINVAL));
2504 }
2505
2506 /*
2507 * If this is an xvattr_t, then get a pointer to the structure of
2508 * optional attributes. If this is NULL, then we have a vattr_t.
2509 */
2510 xoap = xva_getxoptattr(xvap);
2511
2512 tmpxvattr = kmem_alloc(sizeof (xvattr_t), KM_SLEEP);
2513 xva_init(tmpxvattr);
2514
2515 bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * 7, KM_SLEEP);
2516 xattr_bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * 7, KM_SLEEP);
2517
2518 /*
2519 * Immutable files can only alter immutable bit and atime
2520 */
2521 if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2522 ((mask & (ATTR_SIZE|ATTR_UID|ATTR_GID|ATTR_MTIME|ATTR_MODE)) ||
2523 ((mask & ATTR_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2524 err = EPERM;
2525 goto out3;
2526 }
2527
2528 if ((mask & ATTR_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2529 err = EPERM;
2530 goto out3;
2531 }
2532
2533 /*
2534 * Verify timestamps doesn't overflow 32 bits.
2535 * ZFS can handle large timestamps, but 32bit syscalls can't
2536 * handle times greater than 2039. This check should be removed
2537 * once large timestamps are fully supported.
2538 */
2539 if (mask & (ATTR_ATIME | ATTR_MTIME)) {
2540 if (((mask & ATTR_ATIME) &&
2541 TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2542 ((mask & ATTR_MTIME) &&
2543 TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2544 err = EOVERFLOW;
2545 goto out3;
2546 }
2547 }
2548
2549 top:
2550 attrzp = NULL;
2551 aclp = NULL;
2552
2553 /* Can this be moved to before the top label? */
2554 if (zfs_is_readonly(zsb)) {
2555 err = EROFS;
2556 goto out3;
2557 }
2558
2559 /*
2560 * First validate permissions
2561 */
2562
2563 if (mask & ATTR_SIZE) {
2564 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2565 if (err)
2566 goto out3;
2567
2568 truncate_setsize(ip, vap->va_size);
2569
2570 /*
2571 * XXX - Note, we are not providing any open
2572 * mode flags here (like FNDELAY), so we may
2573 * block if there are locks present... this
2574 * should be addressed in openat().
2575 */
2576 /* XXX - would it be OK to generate a log record here? */
2577 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2578 if (err)
2579 goto out3;
2580 }
2581
2582 if (mask & (ATTR_ATIME|ATTR_MTIME) ||
2583 ((mask & ATTR_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2584 XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2585 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2586 XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2587 XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2588 XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2589 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2590 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2591 skipaclchk, cr);
2592 }
2593
2594 if (mask & (ATTR_UID|ATTR_GID)) {
2595 int idmask = (mask & (ATTR_UID|ATTR_GID));
2596 int take_owner;
2597 int take_group;
2598
2599 /*
2600 * NOTE: even if a new mode is being set,
2601 * we may clear S_ISUID/S_ISGID bits.
2602 */
2603
2604 if (!(mask & ATTR_MODE))
2605 vap->va_mode = zp->z_mode;
2606
2607 /*
2608 * Take ownership or chgrp to group we are a member of
2609 */
2610
2611 take_owner = (mask & ATTR_UID) && (vap->va_uid == crgetuid(cr));
2612 take_group = (mask & ATTR_GID) &&
2613 zfs_groupmember(zsb, vap->va_gid, cr);
2614
2615 /*
2616 * If both ATTR_UID and ATTR_GID are set then take_owner and
2617 * take_group must both be set in order to allow taking
2618 * ownership.
2619 *
2620 * Otherwise, send the check through secpolicy_vnode_setattr()
2621 *
2622 */
2623
2624 if (((idmask == (ATTR_UID|ATTR_GID)) &&
2625 take_owner && take_group) ||
2626 ((idmask == ATTR_UID) && take_owner) ||
2627 ((idmask == ATTR_GID) && take_group)) {
2628 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2629 skipaclchk, cr) == 0) {
2630 /*
2631 * Remove setuid/setgid for non-privileged users
2632 */
2633 (void) secpolicy_setid_clear(vap, cr);
2634 trim_mask = (mask & (ATTR_UID|ATTR_GID));
2635 } else {
2636 need_policy = TRUE;
2637 }
2638 } else {
2639 need_policy = TRUE;
2640 }
2641 }
2642
2643 mutex_enter(&zp->z_lock);
2644 oldva.va_mode = zp->z_mode;
2645 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2646 if (mask & ATTR_XVATTR) {
2647 /*
2648 * Update xvattr mask to include only those attributes
2649 * that are actually changing.
2650 *
2651 * the bits will be restored prior to actually setting
2652 * the attributes so the caller thinks they were set.
2653 */
2654 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2655 if (xoap->xoa_appendonly !=
2656 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2657 need_policy = TRUE;
2658 } else {
2659 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2660 XVA_SET_REQ(tmpxvattr, XAT_APPENDONLY);
2661 }
2662 }
2663
2664 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2665 if (xoap->xoa_nounlink !=
2666 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2667 need_policy = TRUE;
2668 } else {
2669 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2670 XVA_SET_REQ(tmpxvattr, XAT_NOUNLINK);
2671 }
2672 }
2673
2674 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2675 if (xoap->xoa_immutable !=
2676 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2677 need_policy = TRUE;
2678 } else {
2679 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2680 XVA_SET_REQ(tmpxvattr, XAT_IMMUTABLE);
2681 }
2682 }
2683
2684 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2685 if (xoap->xoa_nodump !=
2686 ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2687 need_policy = TRUE;
2688 } else {
2689 XVA_CLR_REQ(xvap, XAT_NODUMP);
2690 XVA_SET_REQ(tmpxvattr, XAT_NODUMP);
2691 }
2692 }
2693
2694 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2695 if (xoap->xoa_av_modified !=
2696 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2697 need_policy = TRUE;
2698 } else {
2699 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2700 XVA_SET_REQ(tmpxvattr, XAT_AV_MODIFIED);
2701 }
2702 }
2703
2704 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2705 if ((!S_ISREG(ip->i_mode) &&
2706 xoap->xoa_av_quarantined) ||
2707 xoap->xoa_av_quarantined !=
2708 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2709 need_policy = TRUE;
2710 } else {
2711 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2712 XVA_SET_REQ(tmpxvattr, XAT_AV_QUARANTINED);
2713 }
2714 }
2715
2716 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2717 mutex_exit(&zp->z_lock);
2718 err = EPERM;
2719 goto out3;
2720 }
2721
2722 if (need_policy == FALSE &&
2723 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2724 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2725 need_policy = TRUE;
2726 }
2727 }
2728
2729 mutex_exit(&zp->z_lock);
2730
2731 if (mask & ATTR_MODE) {
2732 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2733 err = secpolicy_setid_setsticky_clear(ip, vap,
2734 &oldva, cr);
2735 if (err)
2736 goto out3;
2737
2738 trim_mask |= ATTR_MODE;
2739 } else {
2740 need_policy = TRUE;
2741 }
2742 }
2743
2744 if (need_policy) {
2745 /*
2746 * If trim_mask is set then take ownership
2747 * has been granted or write_acl is present and user
2748 * has the ability to modify mode. In that case remove
2749 * UID|GID and or MODE from mask so that
2750 * secpolicy_vnode_setattr() doesn't revoke it.
2751 */
2752
2753 if (trim_mask) {
2754 saved_mask = vap->va_mask;
2755 vap->va_mask &= ~trim_mask;
2756 }
2757 err = secpolicy_vnode_setattr(cr, ip, vap, &oldva, flags,
2758 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2759 if (err)
2760 goto out3;
2761
2762 if (trim_mask)
2763 vap->va_mask |= saved_mask;
2764 }
2765
2766 /*
2767 * secpolicy_vnode_setattr, or take ownership may have
2768 * changed va_mask
2769 */
2770 mask = vap->va_mask;
2771
2772 if ((mask & (ATTR_UID | ATTR_GID))) {
2773 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zsb),
2774 &xattr_obj, sizeof (xattr_obj));
2775
2776 if (err == 0 && xattr_obj) {
2777 err = zfs_zget(ZTOZSB(zp), xattr_obj, &attrzp);
2778 if (err)
2779 goto out2;
2780 }
2781 if (mask & ATTR_UID) {
2782 new_uid = zfs_fuid_create(zsb,
2783 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2784 if (new_uid != zp->z_uid &&
2785 zfs_fuid_overquota(zsb, B_FALSE, new_uid)) {
2786 if (attrzp)
2787 iput(ZTOI(attrzp));
2788 err = EDQUOT;
2789 goto out2;
2790 }
2791 }
2792
2793 if (mask & ATTR_GID) {
2794 new_gid = zfs_fuid_create(zsb, (uint64_t)vap->va_gid,
2795 cr, ZFS_GROUP, &fuidp);
2796 if (new_gid != zp->z_gid &&
2797 zfs_fuid_overquota(zsb, B_TRUE, new_gid)) {
2798 if (attrzp)
2799 iput(ZTOI(attrzp));
2800 err = EDQUOT;
2801 goto out2;
2802 }
2803 }
2804 }
2805 tx = dmu_tx_create(zsb->z_os);
2806
2807 if (mask & ATTR_MODE) {
2808 uint64_t pmode = zp->z_mode;
2809 uint64_t acl_obj;
2810 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2811
2812 zfs_acl_chmod_setattr(zp, &aclp, new_mode);
2813
2814 mutex_enter(&zp->z_lock);
2815 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
2816 /*
2817 * Are we upgrading ACL from old V0 format
2818 * to V1 format?
2819 */
2820 if (zsb->z_version >= ZPL_VERSION_FUID &&
2821 zfs_znode_acl_version(zp) ==
2822 ZFS_ACL_VERSION_INITIAL) {
2823 dmu_tx_hold_free(tx, acl_obj, 0,
2824 DMU_OBJECT_END);
2825 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2826 0, aclp->z_acl_bytes);
2827 } else {
2828 dmu_tx_hold_write(tx, acl_obj, 0,
2829 aclp->z_acl_bytes);
2830 }
2831 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2832 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2833 0, aclp->z_acl_bytes);
2834 }
2835 mutex_exit(&zp->z_lock);
2836 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2837 } else {
2838 if ((mask & ATTR_XVATTR) &&
2839 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
2840 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2841 else
2842 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2843 }
2844
2845 if (attrzp) {
2846 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
2847 }
2848
2849 fuid_dirtied = zsb->z_fuid_dirty;
2850 if (fuid_dirtied)
2851 zfs_fuid_txhold(zsb, tx);
2852
2853 zfs_sa_upgrade_txholds(tx, zp);
2854
2855 err = dmu_tx_assign(tx, TXG_WAIT);
2856 if (err)
2857 goto out;
2858
2859 count = 0;
2860 /*
2861 * Set each attribute requested.
2862 * We group settings according to the locks they need to acquire.
2863 *
2864 * Note: you cannot set ctime directly, although it will be
2865 * updated as a side-effect of calling this function.
2866 */
2867
2868
2869 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2870 mutex_enter(&zp->z_acl_lock);
2871 mutex_enter(&zp->z_lock);
2872
2873 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zsb), NULL,
2874 &zp->z_pflags, sizeof (zp->z_pflags));
2875
2876 if (attrzp) {
2877 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2878 mutex_enter(&attrzp->z_acl_lock);
2879 mutex_enter(&attrzp->z_lock);
2880 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2881 SA_ZPL_FLAGS(zsb), NULL, &attrzp->z_pflags,
2882 sizeof (attrzp->z_pflags));
2883 }
2884
2885 if (mask & (ATTR_UID|ATTR_GID)) {
2886
2887 if (mask & ATTR_UID) {
2888 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zsb), NULL,
2889 &new_uid, sizeof (new_uid));
2890 zp->z_uid = new_uid;
2891 if (attrzp) {
2892 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2893 SA_ZPL_UID(zsb), NULL, &new_uid,
2894 sizeof (new_uid));
2895 attrzp->z_uid = new_uid;
2896 }
2897 }
2898
2899 if (mask & ATTR_GID) {
2900 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zsb),
2901 NULL, &new_gid, sizeof (new_gid));
2902 zp->z_gid = new_gid;
2903 if (attrzp) {
2904 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2905 SA_ZPL_GID(zsb), NULL, &new_gid,
2906 sizeof (new_gid));
2907 attrzp->z_gid = new_gid;
2908 }
2909 }
2910 if (!(mask & ATTR_MODE)) {
2911 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zsb),
2912 NULL, &new_mode, sizeof (new_mode));
2913 new_mode = zp->z_mode;
2914 }
2915 err = zfs_acl_chown_setattr(zp);
2916 ASSERT(err == 0);
2917 if (attrzp) {
2918 err = zfs_acl_chown_setattr(attrzp);
2919 ASSERT(err == 0);
2920 }
2921 }
2922
2923 if (mask & ATTR_MODE) {
2924 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zsb), NULL,
2925 &new_mode, sizeof (new_mode));
2926 zp->z_mode = new_mode;
2927 ASSERT3P(aclp, !=, NULL);
2928 err = zfs_aclset_common(zp, aclp, cr, tx);
2929 ASSERT0(err);
2930 if (zp->z_acl_cached)
2931 zfs_acl_free(zp->z_acl_cached);
2932 zp->z_acl_cached = aclp;
2933 aclp = NULL;
2934 }
2935
2936
2937 if (mask & ATTR_ATIME) {
2938 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
2939 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zsb), NULL,
2940 &zp->z_atime, sizeof (zp->z_atime));
2941 }
2942
2943 if (mask & ATTR_MTIME) {
2944 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
2945 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zsb), NULL,
2946 mtime, sizeof (mtime));
2947 }
2948
2949 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
2950 if (mask & ATTR_SIZE && !(mask & ATTR_MTIME)) {
2951 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zsb),
2952 NULL, mtime, sizeof (mtime));
2953 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zsb), NULL,
2954 &ctime, sizeof (ctime));
2955 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
2956 B_TRUE);
2957 } else if (mask != 0) {
2958 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zsb), NULL,
2959 &ctime, sizeof (ctime));
2960 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
2961 B_TRUE);
2962 if (attrzp) {
2963 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2964 SA_ZPL_CTIME(zsb), NULL,
2965 &ctime, sizeof (ctime));
2966 zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
2967 mtime, ctime, B_TRUE);
2968 }
2969 }
2970 /*
2971 * Do this after setting timestamps to prevent timestamp
2972 * update from toggling bit
2973 */
2974
2975 if (xoap && (mask & ATTR_XVATTR)) {
2976
2977 /*
2978 * restore trimmed off masks
2979 * so that return masks can be set for caller.
2980 */
2981
2982 if (XVA_ISSET_REQ(tmpxvattr, XAT_APPENDONLY)) {
2983 XVA_SET_REQ(xvap, XAT_APPENDONLY);
2984 }
2985 if (XVA_ISSET_REQ(tmpxvattr, XAT_NOUNLINK)) {
2986 XVA_SET_REQ(xvap, XAT_NOUNLINK);
2987 }
2988 if (XVA_ISSET_REQ(tmpxvattr, XAT_IMMUTABLE)) {
2989 XVA_SET_REQ(xvap, XAT_IMMUTABLE);
2990 }
2991 if (XVA_ISSET_REQ(tmpxvattr, XAT_NODUMP)) {
2992 XVA_SET_REQ(xvap, XAT_NODUMP);
2993 }
2994 if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_MODIFIED)) {
2995 XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
2996 }
2997 if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_QUARANTINED)) {
2998 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
2999 }
3000
3001 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3002 ASSERT(S_ISREG(ip->i_mode));
3003
3004 zfs_xvattr_set(zp, xvap, tx);
3005 }
3006
3007 if (fuid_dirtied)
3008 zfs_fuid_sync(zsb, tx);
3009
3010 if (mask != 0)
3011 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3012
3013 mutex_exit(&zp->z_lock);
3014 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
3015 mutex_exit(&zp->z_acl_lock);
3016
3017 if (attrzp) {
3018 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
3019 mutex_exit(&attrzp->z_acl_lock);
3020 mutex_exit(&attrzp->z_lock);
3021 }
3022 out:
3023 if (err == 0 && attrzp) {
3024 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3025 xattr_count, tx);
3026 ASSERT(err2 == 0);
3027 }
3028
3029 if (attrzp)
3030 iput(ZTOI(attrzp));
3031 if (aclp)
3032 zfs_acl_free(aclp);
3033
3034 if (fuidp) {
3035 zfs_fuid_info_free(fuidp);
3036 fuidp = NULL;
3037 }
3038
3039 if (err) {
3040 dmu_tx_abort(tx);
3041 if (err == ERESTART)
3042 goto top;
3043 } else {
3044 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3045 dmu_tx_commit(tx);
3046 zfs_inode_update(zp);
3047 }
3048
3049 out2:
3050 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
3051 zil_commit(zilog, 0);
3052
3053 out3:
3054 kmem_free(xattr_bulk, sizeof (sa_bulk_attr_t) * 7);
3055 kmem_free(bulk, sizeof (sa_bulk_attr_t) * 7);
3056 kmem_free(tmpxvattr, sizeof (xvattr_t));
3057 ZFS_EXIT(zsb);
3058 return (err);
3059 }
3060 EXPORT_SYMBOL(zfs_setattr);
3061
3062 typedef struct zfs_zlock {
3063 krwlock_t *zl_rwlock; /* lock we acquired */
3064 znode_t *zl_znode; /* znode we held */
3065 struct zfs_zlock *zl_next; /* next in list */
3066 } zfs_zlock_t;
3067
3068 /*
3069 * Drop locks and release vnodes that were held by zfs_rename_lock().
3070 */
3071 static void
3072 zfs_rename_unlock(zfs_zlock_t **zlpp)
3073 {
3074 zfs_zlock_t *zl;
3075
3076 while ((zl = *zlpp) != NULL) {
3077 if (zl->zl_znode != NULL)
3078 iput(ZTOI(zl->zl_znode));
3079 rw_exit(zl->zl_rwlock);
3080 *zlpp = zl->zl_next;
3081 kmem_free(zl, sizeof (*zl));
3082 }
3083 }
3084
3085 /*
3086 * Search back through the directory tree, using the ".." entries.
3087 * Lock each directory in the chain to prevent concurrent renames.
3088 * Fail any attempt to move a directory into one of its own descendants.
3089 * XXX - z_parent_lock can overlap with map or grow locks
3090 */
3091 static int
3092 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3093 {
3094 zfs_zlock_t *zl;
3095 znode_t *zp = tdzp;
3096 uint64_t rootid = ZTOZSB(zp)->z_root;
3097 uint64_t oidp = zp->z_id;
3098 krwlock_t *rwlp = &szp->z_parent_lock;
3099 krw_t rw = RW_WRITER;
3100
3101 /*
3102 * First pass write-locks szp and compares to zp->z_id.
3103 * Later passes read-lock zp and compare to zp->z_parent.
3104 */
3105 do {
3106 if (!rw_tryenter(rwlp, rw)) {
3107 /*
3108 * Another thread is renaming in this path.
3109 * Note that if we are a WRITER, we don't have any
3110 * parent_locks held yet.
3111 */
3112 if (rw == RW_READER && zp->z_id > szp->z_id) {
3113 /*
3114 * Drop our locks and restart
3115 */
3116 zfs_rename_unlock(&zl);
3117 *zlpp = NULL;
3118 zp = tdzp;
3119 oidp = zp->z_id;
3120 rwlp = &szp->z_parent_lock;
3121 rw = RW_WRITER;
3122 continue;
3123 } else {
3124 /*
3125 * Wait for other thread to drop its locks
3126 */
3127 rw_enter(rwlp, rw);
3128 }
3129 }
3130
3131 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3132 zl->zl_rwlock = rwlp;
3133 zl->zl_znode = NULL;
3134 zl->zl_next = *zlpp;
3135 *zlpp = zl;
3136
3137 if (oidp == szp->z_id) /* We're a descendant of szp */
3138 return (SET_ERROR(EINVAL));
3139
3140 if (oidp == rootid) /* We've hit the top */
3141 return (0);
3142
3143 if (rw == RW_READER) { /* i.e. not the first pass */
3144 int error = zfs_zget(ZTOZSB(zp), oidp, &zp);
3145 if (error)
3146 return (error);
3147 zl->zl_znode = zp;
3148 }
3149 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(ZTOZSB(zp)),
3150 &oidp, sizeof (oidp));
3151 rwlp = &zp->z_parent_lock;
3152 rw = RW_READER;
3153
3154 } while (zp->z_id != sdzp->z_id);
3155
3156 return (0);
3157 }
3158
3159 /*
3160 * Move an entry from the provided source directory to the target
3161 * directory. Change the entry name as indicated.
3162 *
3163 * IN: sdip - Source directory containing the "old entry".
3164 * snm - Old entry name.
3165 * tdip - Target directory to contain the "new entry".
3166 * tnm - New entry name.
3167 * cr - credentials of caller.
3168 * flags - case flags
3169 *
3170 * RETURN: 0 on success, error code on failure.
3171 *
3172 * Timestamps:
3173 * sdip,tdip - ctime|mtime updated
3174 */
3175 /*ARGSUSED*/
3176 int
3177 zfs_rename(struct inode *sdip, char *snm, struct inode *tdip, char *tnm,
3178 cred_t *cr, int flags)
3179 {
3180 znode_t *tdzp, *szp, *tzp;
3181 znode_t *sdzp = ITOZ(sdip);
3182 zfs_sb_t *zsb = ITOZSB(sdip);
3183 zilog_t *zilog;
3184 zfs_dirlock_t *sdl, *tdl;
3185 dmu_tx_t *tx;
3186 zfs_zlock_t *zl;
3187 int cmp, serr, terr;
3188 int error = 0;
3189 int zflg = 0;
3190 boolean_t waited = B_FALSE;
3191
3192 ZFS_ENTER(zsb);
3193 ZFS_VERIFY_ZP(sdzp);
3194 zilog = zsb->z_log;
3195
3196 if (tdip->i_sb != sdip->i_sb || zfsctl_is_node(tdip)) {
3197 ZFS_EXIT(zsb);
3198 return (SET_ERROR(EXDEV));
3199 }
3200
3201 tdzp = ITOZ(tdip);
3202 ZFS_VERIFY_ZP(tdzp);
3203 if (zsb->z_utf8 && u8_validate(tnm,
3204 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3205 ZFS_EXIT(zsb);
3206 return (SET_ERROR(EILSEQ));
3207 }
3208
3209 if (flags & FIGNORECASE)
3210 zflg |= ZCILOOK;
3211
3212 top:
3213 szp = NULL;
3214 tzp = NULL;
3215 zl = NULL;
3216
3217 /*
3218 * This is to prevent the creation of links into attribute space
3219 * by renaming a linked file into/outof an attribute directory.
3220 * See the comment in zfs_link() for why this is considered bad.
3221 */
3222 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3223 ZFS_EXIT(zsb);
3224 return (SET_ERROR(EINVAL));
3225 }
3226
3227 /*
3228 * Lock source and target directory entries. To prevent deadlock,
3229 * a lock ordering must be defined. We lock the directory with
3230 * the smallest object id first, or if it's a tie, the one with
3231 * the lexically first name.
3232 */
3233 if (sdzp->z_id < tdzp->z_id) {
3234 cmp = -1;
3235 } else if (sdzp->z_id > tdzp->z_id) {
3236 cmp = 1;
3237 } else {
3238 /*
3239 * First compare the two name arguments without
3240 * considering any case folding.
3241 */
3242 int nofold = (zsb->z_norm & ~U8_TEXTPREP_TOUPPER);
3243
3244 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3245 ASSERT(error == 0 || !zsb->z_utf8);
3246 if (cmp == 0) {
3247 /*
3248 * POSIX: "If the old argument and the new argument
3249 * both refer to links to the same existing file,
3250 * the rename() function shall return successfully
3251 * and perform no other action."
3252 */
3253 ZFS_EXIT(zsb);
3254 return (0);
3255 }
3256 /*
3257 * If the file system is case-folding, then we may
3258 * have some more checking to do. A case-folding file
3259 * system is either supporting mixed case sensitivity
3260 * access or is completely case-insensitive. Note
3261 * that the file system is always case preserving.
3262 *
3263 * In mixed sensitivity mode case sensitive behavior
3264 * is the default. FIGNORECASE must be used to
3265 * explicitly request case insensitive behavior.
3266 *
3267 * If the source and target names provided differ only
3268 * by case (e.g., a request to rename 'tim' to 'Tim'),
3269 * we will treat this as a special case in the
3270 * case-insensitive mode: as long as the source name
3271 * is an exact match, we will allow this to proceed as
3272 * a name-change request.
3273 */
3274 if ((zsb->z_case == ZFS_CASE_INSENSITIVE ||
3275 (zsb->z_case == ZFS_CASE_MIXED &&
3276 flags & FIGNORECASE)) &&
3277 u8_strcmp(snm, tnm, 0, zsb->z_norm, U8_UNICODE_LATEST,
3278 &error) == 0) {
3279 /*
3280 * case preserving rename request, require exact
3281 * name matches
3282 */
3283 zflg |= ZCIEXACT;
3284 zflg &= ~ZCILOOK;
3285 }
3286 }
3287
3288 /*
3289 * If the source and destination directories are the same, we should
3290 * grab the z_name_lock of that directory only once.
3291 */
3292 if (sdzp == tdzp) {
3293 zflg |= ZHAVELOCK;
3294 rw_enter(&sdzp->z_name_lock, RW_READER);
3295 }
3296
3297 if (cmp < 0) {
3298 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3299 ZEXISTS | zflg, NULL, NULL);
3300 terr = zfs_dirent_lock(&tdl,
3301 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3302 } else {
3303 terr = zfs_dirent_lock(&tdl,
3304 tdzp, tnm, &tzp, zflg, NULL, NULL);
3305 serr = zfs_dirent_lock(&sdl,
3306 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3307 NULL, NULL);
3308 }
3309
3310 if (serr) {
3311 /*
3312 * Source entry invalid or not there.
3313 */
3314 if (!terr) {
3315 zfs_dirent_unlock(tdl);
3316 if (tzp)
3317 iput(ZTOI(tzp));
3318 }
3319
3320 if (sdzp == tdzp)
3321 rw_exit(&sdzp->z_name_lock);
3322
3323 if (strcmp(snm, "..") == 0)
3324 serr = EINVAL;
3325 ZFS_EXIT(zsb);
3326 return (serr);
3327 }
3328 if (terr) {
3329 zfs_dirent_unlock(sdl);
3330 iput(ZTOI(szp));
3331
3332 if (sdzp == tdzp)
3333 rw_exit(&sdzp->z_name_lock);
3334
3335 if (strcmp(tnm, "..") == 0)
3336 terr = EINVAL;
3337 ZFS_EXIT(zsb);
3338 return (terr);
3339 }
3340
3341 /*
3342 * Must have write access at the source to remove the old entry
3343 * and write access at the target to create the new entry.
3344 * Note that if target and source are the same, this can be
3345 * done in a single check.
3346 */
3347
3348 if ((error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)))
3349 goto out;
3350
3351 if (S_ISDIR(ZTOI(szp)->i_mode)) {
3352 /*
3353 * Check to make sure rename is valid.
3354 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3355 */
3356 if ((error = zfs_rename_lock(szp, tdzp, sdzp, &zl)))
3357 goto out;
3358 }
3359
3360 /*
3361 * Does target exist?
3362 */
3363 if (tzp) {
3364 /*
3365 * Source and target must be the same type.
3366 */
3367 if (S_ISDIR(ZTOI(szp)->i_mode)) {
3368 if (!S_ISDIR(ZTOI(tzp)->i_mode)) {
3369 error = SET_ERROR(ENOTDIR);
3370 goto out;
3371 }
3372 } else {
3373 if (S_ISDIR(ZTOI(tzp)->i_mode)) {
3374 error = SET_ERROR(EISDIR);
3375 goto out;
3376 }
3377 }
3378 /*
3379 * POSIX dictates that when the source and target
3380 * entries refer to the same file object, rename
3381 * must do nothing and exit without error.
3382 */
3383 if (szp->z_id == tzp->z_id) {
3384 error = 0;
3385 goto out;
3386 }
3387 }
3388
3389 tx = dmu_tx_create(zsb->z_os);
3390 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3391 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3392 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3393 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3394 if (sdzp != tdzp) {
3395 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3396 zfs_sa_upgrade_txholds(tx, tdzp);
3397 }
3398 if (tzp) {
3399 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3400 zfs_sa_upgrade_txholds(tx, tzp);
3401 }
3402
3403 zfs_sa_upgrade_txholds(tx, szp);
3404 dmu_tx_hold_zap(tx, zsb->z_unlinkedobj, FALSE, NULL);
3405 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3406 if (error) {
3407 if (zl != NULL)
3408 zfs_rename_unlock(&zl);
3409 zfs_dirent_unlock(sdl);
3410 zfs_dirent_unlock(tdl);
3411
3412 if (sdzp == tdzp)
3413 rw_exit(&sdzp->z_name_lock);
3414
3415 iput(ZTOI(szp));
3416 if (tzp)
3417 iput(ZTOI(tzp));
3418 if (error == ERESTART) {
3419 waited = B_TRUE;
3420 dmu_tx_wait(tx);
3421 dmu_tx_abort(tx);
3422 goto top;
3423 }
3424 dmu_tx_abort(tx);
3425 ZFS_EXIT(zsb);
3426 return (error);
3427 }
3428
3429 if (tzp) /* Attempt to remove the existing target */
3430 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3431
3432 if (error == 0) {
3433 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3434 if (error == 0) {
3435 szp->z_pflags |= ZFS_AV_MODIFIED;
3436
3437 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zsb),
3438 (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3439 ASSERT0(error);
3440
3441 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3442 if (error == 0) {
3443 zfs_log_rename(zilog, tx, TX_RENAME |
3444 (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3445 sdl->dl_name, tdzp, tdl->dl_name, szp);
3446 } else {
3447 /*
3448 * At this point, we have successfully created
3449 * the target name, but have failed to remove
3450 * the source name. Since the create was done
3451 * with the ZRENAMING flag, there are
3452 * complications; for one, the link count is
3453 * wrong. The easiest way to deal with this
3454 * is to remove the newly created target, and
3455 * return the original error. This must
3456 * succeed; fortunately, it is very unlikely to
3457 * fail, since we just created it.
3458 */
3459 VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3460 ZRENAMING, NULL), ==, 0);
3461 }
3462 }
3463 }
3464
3465 dmu_tx_commit(tx);
3466 out:
3467 if (zl != NULL)
3468 zfs_rename_unlock(&zl);
3469
3470 zfs_dirent_unlock(sdl);
3471 zfs_dirent_unlock(tdl);
3472
3473 zfs_inode_update(sdzp);
3474 if (sdzp == tdzp)
3475 rw_exit(&sdzp->z_name_lock);
3476
3477 if (sdzp != tdzp)
3478 zfs_inode_update(tdzp);
3479
3480 zfs_inode_update(szp);
3481 iput(ZTOI(szp));
3482 if (tzp) {
3483 zfs_inode_update(tzp);
3484 iput(ZTOI(tzp));
3485 }
3486
3487 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
3488 zil_commit(zilog, 0);
3489
3490 ZFS_EXIT(zsb);
3491 return (error);
3492 }
3493 EXPORT_SYMBOL(zfs_rename);
3494
3495 /*
3496 * Insert the indicated symbolic reference entry into the directory.
3497 *
3498 * IN: dip - Directory to contain new symbolic link.
3499 * link - Name for new symlink entry.
3500 * vap - Attributes of new entry.
3501 * target - Target path of new symlink.
3502 *
3503 * cr - credentials of caller.
3504 * flags - case flags
3505 *
3506 * RETURN: 0 on success, error code on failure.
3507 *
3508 * Timestamps:
3509 * dip - ctime|mtime updated
3510 */
3511 /*ARGSUSED*/
3512 int
3513 zfs_symlink(struct inode *dip, char *name, vattr_t *vap, char *link,
3514 struct inode **ipp, cred_t *cr, int flags)
3515 {
3516 znode_t *zp, *dzp = ITOZ(dip);
3517 zfs_dirlock_t *dl;
3518 dmu_tx_t *tx;
3519 zfs_sb_t *zsb = ITOZSB(dip);
3520 zilog_t *zilog;
3521 uint64_t len = strlen(link);
3522 int error;
3523 int zflg = ZNEW;
3524 zfs_acl_ids_t acl_ids;
3525 boolean_t fuid_dirtied;
3526 uint64_t txtype = TX_SYMLINK;
3527 boolean_t waited = B_FALSE;
3528
3529 ASSERT(S_ISLNK(vap->va_mode));
3530
3531 ZFS_ENTER(zsb);
3532 ZFS_VERIFY_ZP(dzp);
3533 zilog = zsb->z_log;
3534
3535 if (zsb->z_utf8 && u8_validate(name, strlen(name),
3536 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3537 ZFS_EXIT(zsb);
3538 return (SET_ERROR(EILSEQ));
3539 }
3540 if (flags & FIGNORECASE)
3541 zflg |= ZCILOOK;
3542
3543 if (len > MAXPATHLEN) {
3544 ZFS_EXIT(zsb);
3545 return (SET_ERROR(ENAMETOOLONG));
3546 }
3547
3548 if ((error = zfs_acl_ids_create(dzp, 0,
3549 vap, cr, NULL, &acl_ids)) != 0) {
3550 ZFS_EXIT(zsb);
3551 return (error);
3552 }
3553 top:
3554 *ipp = NULL;
3555
3556 /*
3557 * Attempt to lock directory; fail if entry already exists.
3558 */
3559 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3560 if (error) {
3561 zfs_acl_ids_free(&acl_ids);
3562 ZFS_EXIT(zsb);
3563 return (error);
3564 }
3565
3566 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
3567 zfs_acl_ids_free(&acl_ids);
3568 zfs_dirent_unlock(dl);
3569 ZFS_EXIT(zsb);
3570 return (error);
3571 }
3572
3573 if (zfs_acl_ids_overquota(zsb, &acl_ids)) {
3574 zfs_acl_ids_free(&acl_ids);
3575 zfs_dirent_unlock(dl);
3576 ZFS_EXIT(zsb);
3577 return (SET_ERROR(EDQUOT));
3578 }
3579 tx = dmu_tx_create(zsb->z_os);
3580 fuid_dirtied = zsb->z_fuid_dirty;
3581 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3582 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3583 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3584 ZFS_SA_BASE_ATTR_SIZE + len);
3585 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3586 if (!zsb->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3587 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3588 acl_ids.z_aclp->z_acl_bytes);
3589 }
3590 if (fuid_dirtied)
3591 zfs_fuid_txhold(zsb, tx);
3592 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3593 if (error) {
3594 zfs_dirent_unlock(dl);
3595 if (error == ERESTART) {
3596 waited = B_TRUE;
3597 dmu_tx_wait(tx);
3598 dmu_tx_abort(tx);
3599 goto top;
3600 }
3601 zfs_acl_ids_free(&acl_ids);
3602 dmu_tx_abort(tx);
3603 ZFS_EXIT(zsb);
3604 return (error);
3605 }
3606
3607 /*
3608 * Create a new object for the symlink.
3609 * for version 4 ZPL datsets the symlink will be an SA attribute
3610 */
3611 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3612
3613 if (fuid_dirtied)
3614 zfs_fuid_sync(zsb, tx);
3615
3616 mutex_enter(&zp->z_lock);
3617 if (zp->z_is_sa)
3618 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zsb),
3619 link, len, tx);
3620 else
3621 zfs_sa_symlink(zp, link, len, tx);
3622 mutex_exit(&zp->z_lock);
3623
3624 zp->z_size = len;
3625 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zsb),
3626 &zp->z_size, sizeof (zp->z_size), tx);
3627 /*
3628 * Insert the new object into the directory.
3629 */
3630 (void) zfs_link_create(dl, zp, tx, ZNEW);
3631
3632 if (flags & FIGNORECASE)
3633 txtype |= TX_CI;
3634 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3635
3636 zfs_inode_update(dzp);
3637 zfs_inode_update(zp);
3638
3639 zfs_acl_ids_free(&acl_ids);
3640
3641 dmu_tx_commit(tx);
3642
3643 zfs_dirent_unlock(dl);
3644
3645 *ipp = ZTOI(zp);
3646
3647 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
3648 zil_commit(zilog, 0);
3649
3650 ZFS_EXIT(zsb);
3651 return (error);
3652 }
3653 EXPORT_SYMBOL(zfs_symlink);
3654
3655 /*
3656 * Return, in the buffer contained in the provided uio structure,
3657 * the symbolic path referred to by ip.
3658 *
3659 * IN: ip - inode of symbolic link
3660 * uio - structure to contain the link path.
3661 * cr - credentials of caller.
3662 *
3663 * RETURN: 0 if success
3664 * error code if failure
3665 *
3666 * Timestamps:
3667 * ip - atime updated
3668 */
3669 /* ARGSUSED */
3670 int
3671 zfs_readlink(struct inode *ip, uio_t *uio, cred_t *cr)
3672 {
3673 znode_t *zp = ITOZ(ip);
3674 zfs_sb_t *zsb = ITOZSB(ip);
3675 int error;
3676
3677 ZFS_ENTER(zsb);
3678 ZFS_VERIFY_ZP(zp);
3679
3680 mutex_enter(&zp->z_lock);
3681 if (zp->z_is_sa)
3682 error = sa_lookup_uio(zp->z_sa_hdl,
3683 SA_ZPL_SYMLINK(zsb), uio);
3684 else
3685 error = zfs_sa_readlink(zp, uio);
3686 mutex_exit(&zp->z_lock);
3687
3688 ZFS_ACCESSTIME_STAMP(zsb, zp);
3689 ZFS_EXIT(zsb);
3690 return (error);
3691 }
3692 EXPORT_SYMBOL(zfs_readlink);
3693
3694 /*
3695 * Insert a new entry into directory tdip referencing sip.
3696 *
3697 * IN: tdip - Directory to contain new entry.
3698 * sip - inode of new entry.
3699 * name - name of new entry.
3700 * cr - credentials of caller.
3701 *
3702 * RETURN: 0 if success
3703 * error code if failure
3704 *
3705 * Timestamps:
3706 * tdip - ctime|mtime updated
3707 * sip - ctime updated
3708 */
3709 /* ARGSUSED */
3710 int
3711 zfs_link(struct inode *tdip, struct inode *sip, char *name, cred_t *cr)
3712 {
3713 znode_t *dzp = ITOZ(tdip);
3714 znode_t *tzp, *szp;
3715 zfs_sb_t *zsb = ITOZSB(tdip);
3716 zilog_t *zilog;
3717 zfs_dirlock_t *dl;
3718 dmu_tx_t *tx;
3719 int error;
3720 int zf = ZNEW;
3721 uint64_t parent;
3722 uid_t owner;
3723 boolean_t waited = B_FALSE;
3724
3725 ASSERT(S_ISDIR(tdip->i_mode));
3726
3727 ZFS_ENTER(zsb);
3728 ZFS_VERIFY_ZP(dzp);
3729 zilog = zsb->z_log;
3730
3731 /*
3732 * POSIX dictates that we return EPERM here.
3733 * Better choices include ENOTSUP or EISDIR.
3734 */
3735 if (S_ISDIR(sip->i_mode)) {
3736 ZFS_EXIT(zsb);
3737 return (SET_ERROR(EPERM));
3738 }
3739
3740 if (sip->i_sb != tdip->i_sb || zfsctl_is_node(sip)) {
3741 ZFS_EXIT(zsb);
3742 return (SET_ERROR(EXDEV));
3743 }
3744
3745 szp = ITOZ(sip);
3746 ZFS_VERIFY_ZP(szp);
3747
3748 /* Prevent links to .zfs/shares files */
3749
3750 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zsb),
3751 &parent, sizeof (uint64_t))) != 0) {
3752 ZFS_EXIT(zsb);
3753 return (error);
3754 }
3755 if (parent == zsb->z_shares_dir) {
3756 ZFS_EXIT(zsb);
3757 return (SET_ERROR(EPERM));
3758 }
3759
3760 if (zsb->z_utf8 && u8_validate(name,
3761 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3762 ZFS_EXIT(zsb);
3763 return (SET_ERROR(EILSEQ));
3764 }
3765 #ifdef HAVE_PN_UTILS
3766 if (flags & FIGNORECASE)
3767 zf |= ZCILOOK;
3768 #endif /* HAVE_PN_UTILS */
3769
3770 /*
3771 * We do not support links between attributes and non-attributes
3772 * because of the potential security risk of creating links
3773 * into "normal" file space in order to circumvent restrictions
3774 * imposed in attribute space.
3775 */
3776 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
3777 ZFS_EXIT(zsb);
3778 return (SET_ERROR(EINVAL));
3779 }
3780
3781 owner = zfs_fuid_map_id(zsb, szp->z_uid, cr, ZFS_OWNER);
3782 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
3783 ZFS_EXIT(zsb);
3784 return (SET_ERROR(EPERM));
3785 }
3786
3787 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
3788 ZFS_EXIT(zsb);
3789 return (error);
3790 }
3791
3792 top:
3793 /*
3794 * Attempt to lock directory; fail if entry already exists.
3795 */
3796 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
3797 if (error) {
3798 ZFS_EXIT(zsb);
3799 return (error);
3800 }
3801
3802 tx = dmu_tx_create(zsb->z_os);
3803 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3804 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3805 zfs_sa_upgrade_txholds(tx, szp);
3806 zfs_sa_upgrade_txholds(tx, dzp);
3807 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3808 if (error) {
3809 zfs_dirent_unlock(dl);
3810 if (error == ERESTART) {
3811 waited = B_TRUE;
3812 dmu_tx_wait(tx);
3813 dmu_tx_abort(tx);
3814 goto top;
3815 }
3816 dmu_tx_abort(tx);
3817 ZFS_EXIT(zsb);
3818 return (error);
3819 }
3820
3821 error = zfs_link_create(dl, szp, tx, 0);
3822
3823 if (error == 0) {
3824 uint64_t txtype = TX_LINK;
3825 #ifdef HAVE_PN_UTILS
3826 if (flags & FIGNORECASE)
3827 txtype |= TX_CI;
3828 #endif /* HAVE_PN_UTILS */
3829 zfs_log_link(zilog, tx, txtype, dzp, szp, name);
3830 }
3831
3832 dmu_tx_commit(tx);
3833
3834 zfs_dirent_unlock(dl);
3835
3836 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
3837 zil_commit(zilog, 0);
3838
3839 zfs_inode_update(dzp);
3840 zfs_inode_update(szp);
3841 ZFS_EXIT(zsb);
3842 return (error);
3843 }
3844 EXPORT_SYMBOL(zfs_link);
3845
3846 static void
3847 zfs_putpage_commit_cb(void *arg)
3848 {
3849 struct page *pp = arg;
3850
3851 ClearPageError(pp);
3852 end_page_writeback(pp);
3853 }
3854
3855 /*
3856 * Push a page out to disk, once the page is on stable storage the
3857 * registered commit callback will be run as notification of completion.
3858 *
3859 * IN: ip - page mapped for inode.
3860 * pp - page to push (page is locked)
3861 * wbc - writeback control data
3862 *
3863 * RETURN: 0 if success
3864 * error code if failure
3865 *
3866 * Timestamps:
3867 * ip - ctime|mtime updated
3868 */
3869 /* ARGSUSED */
3870 int
3871 zfs_putpage(struct inode *ip, struct page *pp, struct writeback_control *wbc)
3872 {
3873 znode_t *zp = ITOZ(ip);
3874 zfs_sb_t *zsb = ITOZSB(ip);
3875 loff_t offset;
3876 loff_t pgoff;
3877 unsigned int pglen;
3878 rl_t *rl;
3879 dmu_tx_t *tx;
3880 caddr_t va;
3881 int err = 0;
3882 uint64_t mtime[2], ctime[2];
3883 sa_bulk_attr_t bulk[3];
3884 int cnt = 0;
3885
3886 ZFS_ENTER(zsb);
3887 ZFS_VERIFY_ZP(zp);
3888
3889 ASSERT(PageLocked(pp));
3890
3891 pgoff = page_offset(pp); /* Page byte-offset in file */
3892 offset = i_size_read(ip); /* File length in bytes */
3893 pglen = MIN(PAGE_CACHE_SIZE, /* Page length in bytes */
3894 P2ROUNDUP(offset, PAGE_CACHE_SIZE)-pgoff);
3895
3896 /* Page is beyond end of file */
3897 if (pgoff >= offset) {
3898 unlock_page(pp);
3899 ZFS_EXIT(zsb);
3900 return (0);
3901 }
3902
3903 /* Truncate page length to end of file */
3904 if (pgoff + pglen > offset)
3905 pglen = offset - pgoff;
3906
3907 #if 0
3908 /*
3909 * FIXME: Allow mmap writes past its quota. The correct fix
3910 * is to register a page_mkwrite() handler to count the page
3911 * against its quota when it is about to be dirtied.
3912 */
3913 if (zfs_owner_overquota(zsb, zp, B_FALSE) ||
3914 zfs_owner_overquota(zsb, zp, B_TRUE)) {
3915 err = EDQUOT;
3916 }
3917 #endif
3918
3919 set_page_writeback(pp);
3920 unlock_page(pp);
3921
3922 rl = zfs_range_lock(zp, pgoff, pglen, RL_WRITER);
3923 tx = dmu_tx_create(zsb->z_os);
3924
3925 dmu_tx_hold_write(tx, zp->z_id, pgoff, pglen);
3926
3927 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3928 zfs_sa_upgrade_txholds(tx, zp);
3929 err = dmu_tx_assign(tx, TXG_NOWAIT);
3930 if (err != 0) {
3931 if (err == ERESTART)
3932 dmu_tx_wait(tx);
3933
3934 dmu_tx_abort(tx);
3935 __set_page_dirty_nobuffers(pp);
3936 ClearPageError(pp);
3937 end_page_writeback(pp);
3938 zfs_range_unlock(rl);
3939 ZFS_EXIT(zsb);
3940 return (err);
3941 }
3942
3943 va = kmap(pp);
3944 ASSERT3U(pglen, <=, PAGE_CACHE_SIZE);
3945 dmu_write(zsb->z_os, zp->z_id, pgoff, pglen, va, tx);
3946 kunmap(pp);
3947
3948 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zsb), NULL, &mtime, 16);
3949 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zsb), NULL, &ctime, 16);
3950 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_FLAGS(zsb), NULL, &zp->z_pflags, 8);
3951
3952 /* Preserve the mtime and ctime provided by the inode */
3953 ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
3954 ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
3955 zp->z_atime_dirty = 0;
3956 zp->z_seq++;
3957
3958 err = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
3959
3960 zfs_log_write(zsb->z_log, tx, TX_WRITE, zp, pgoff, pglen, 0,
3961 zfs_putpage_commit_cb, pp);
3962 dmu_tx_commit(tx);
3963
3964 zfs_range_unlock(rl);
3965
3966 if (wbc->sync_mode != WB_SYNC_NONE) {
3967 /*
3968 * Note that this is rarely called under writepages(), because
3969 * writepages() normally handles the entire commit for
3970 * performance reasons.
3971 */
3972 if (zsb->z_log != NULL)
3973 zil_commit(zsb->z_log, zp->z_id);
3974 }
3975
3976 ZFS_EXIT(zsb);
3977 return (err);
3978 }
3979
3980 /*
3981 * Update the system attributes when the inode has been dirtied. For the
3982 * moment we only update the mode, atime, mtime, and ctime.
3983 */
3984 int
3985 zfs_dirty_inode(struct inode *ip, int flags)
3986 {
3987 znode_t *zp = ITOZ(ip);
3988 zfs_sb_t *zsb = ITOZSB(ip);
3989 dmu_tx_t *tx;
3990 uint64_t mode, atime[2], mtime[2], ctime[2];
3991 sa_bulk_attr_t bulk[4];
3992 int error;
3993 int cnt = 0;
3994
3995 ZFS_ENTER(zsb);
3996 ZFS_VERIFY_ZP(zp);
3997
3998 tx = dmu_tx_create(zsb->z_os);
3999
4000 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4001 zfs_sa_upgrade_txholds(tx, zp);
4002
4003 error = dmu_tx_assign(tx, TXG_WAIT);
4004 if (error) {
4005 dmu_tx_abort(tx);
4006 goto out;
4007 }
4008
4009 mutex_enter(&zp->z_lock);
4010 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MODE(zsb), NULL, &mode, 8);
4011 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_ATIME(zsb), NULL, &atime, 16);
4012 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zsb), NULL, &mtime, 16);
4013 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zsb), NULL, &ctime, 16);
4014
4015 /* Preserve the mode, mtime and ctime provided by the inode */
4016 ZFS_TIME_ENCODE(&ip->i_atime, atime);
4017 ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
4018 ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
4019 mode = ip->i_mode;
4020
4021 zp->z_mode = mode;
4022 zp->z_atime_dirty = 0;
4023
4024 error = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
4025 mutex_exit(&zp->z_lock);
4026
4027 dmu_tx_commit(tx);
4028 out:
4029 ZFS_EXIT(zsb);
4030 return (error);
4031 }
4032 EXPORT_SYMBOL(zfs_dirty_inode);
4033
4034 /*ARGSUSED*/
4035 void
4036 zfs_inactive(struct inode *ip)
4037 {
4038 znode_t *zp = ITOZ(ip);
4039 zfs_sb_t *zsb = ITOZSB(ip);
4040 int error;
4041
4042 if (zfsctl_is_node(ip)) {
4043 zfsctl_inode_inactive(ip);
4044 return;
4045 }
4046
4047 rw_enter(&zsb->z_teardown_inactive_lock, RW_READER);
4048 if (zp->z_sa_hdl == NULL) {
4049 rw_exit(&zsb->z_teardown_inactive_lock);
4050 return;
4051 }
4052
4053 if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4054 dmu_tx_t *tx = dmu_tx_create(zsb->z_os);
4055
4056 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4057 zfs_sa_upgrade_txholds(tx, zp);
4058 error = dmu_tx_assign(tx, TXG_WAIT);
4059 if (error) {
4060 dmu_tx_abort(tx);
4061 } else {
4062 mutex_enter(&zp->z_lock);
4063 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zsb),
4064 (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4065 zp->z_atime_dirty = 0;
4066 mutex_exit(&zp->z_lock);
4067 dmu_tx_commit(tx);
4068 }
4069 }
4070
4071 zfs_zinactive(zp);
4072 rw_exit(&zsb->z_teardown_inactive_lock);
4073 }
4074 EXPORT_SYMBOL(zfs_inactive);
4075
4076 /*
4077 * Bounds-check the seek operation.
4078 *
4079 * IN: ip - inode seeking within
4080 * ooff - old file offset
4081 * noffp - pointer to new file offset
4082 * ct - caller context
4083 *
4084 * RETURN: 0 if success
4085 * EINVAL if new offset invalid
4086 */
4087 /* ARGSUSED */
4088 int
4089 zfs_seek(struct inode *ip, offset_t ooff, offset_t *noffp)
4090 {
4091 if (S_ISDIR(ip->i_mode))
4092 return (0);
4093 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4094 }
4095 EXPORT_SYMBOL(zfs_seek);
4096
4097 /*
4098 * Fill pages with data from the disk.
4099 */
4100 static int
4101 zfs_fillpage(struct inode *ip, struct page *pl[], int nr_pages)
4102 {
4103 znode_t *zp = ITOZ(ip);
4104 zfs_sb_t *zsb = ITOZSB(ip);
4105 objset_t *os;
4106 struct page *cur_pp;
4107 u_offset_t io_off, total;
4108 size_t io_len;
4109 loff_t i_size;
4110 unsigned page_idx;
4111 int err;
4112
4113 os = zsb->z_os;
4114 io_len = nr_pages << PAGE_CACHE_SHIFT;
4115 i_size = i_size_read(ip);
4116 io_off = page_offset(pl[0]);
4117
4118 if (io_off + io_len > i_size)
4119 io_len = i_size - io_off;
4120
4121 /*
4122 * Iterate over list of pages and read each page individually.
4123 */
4124 page_idx = 0;
4125 cur_pp = pl[0];
4126 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4127 caddr_t va;
4128
4129 va = kmap(cur_pp);
4130 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4131 DMU_READ_PREFETCH);
4132 kunmap(cur_pp);
4133 if (err) {
4134 /* convert checksum errors into IO errors */
4135 if (err == ECKSUM)
4136 err = SET_ERROR(EIO);
4137 return (err);
4138 }
4139 cur_pp = pl[++page_idx];
4140 }
4141
4142 return (0);
4143 }
4144
4145 /*
4146 * Uses zfs_fillpage to read data from the file and fill the pages.
4147 *
4148 * IN: ip - inode of file to get data from.
4149 * pl - list of pages to read
4150 * nr_pages - number of pages to read
4151 *
4152 * RETURN: 0 on success, error code on failure.
4153 *
4154 * Timestamps:
4155 * vp - atime updated
4156 */
4157 /* ARGSUSED */
4158 int
4159 zfs_getpage(struct inode *ip, struct page *pl[], int nr_pages)
4160 {
4161 znode_t *zp = ITOZ(ip);
4162 zfs_sb_t *zsb = ITOZSB(ip);
4163 int err;
4164
4165 if (pl == NULL)
4166 return (0);
4167
4168 ZFS_ENTER(zsb);
4169 ZFS_VERIFY_ZP(zp);
4170
4171 err = zfs_fillpage(ip, pl, nr_pages);
4172
4173 if (!err)
4174 ZFS_ACCESSTIME_STAMP(zsb, zp);
4175
4176 ZFS_EXIT(zsb);
4177 return (err);
4178 }
4179 EXPORT_SYMBOL(zfs_getpage);
4180
4181 /*
4182 * Check ZFS specific permissions to memory map a section of a file.
4183 *
4184 * IN: ip - inode of the file to mmap
4185 * off - file offset
4186 * addrp - start address in memory region
4187 * len - length of memory region
4188 * vm_flags- address flags
4189 *
4190 * RETURN: 0 if success
4191 * error code if failure
4192 */
4193 /*ARGSUSED*/
4194 int
4195 zfs_map(struct inode *ip, offset_t off, caddr_t *addrp, size_t len,
4196 unsigned long vm_flags)
4197 {
4198 znode_t *zp = ITOZ(ip);
4199 zfs_sb_t *zsb = ITOZSB(ip);
4200
4201 ZFS_ENTER(zsb);
4202 ZFS_VERIFY_ZP(zp);
4203
4204 if ((vm_flags & VM_WRITE) && (zp->z_pflags &
4205 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4206 ZFS_EXIT(zsb);
4207 return (SET_ERROR(EPERM));
4208 }
4209
4210 if ((vm_flags & (VM_READ | VM_EXEC)) &&
4211 (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4212 ZFS_EXIT(zsb);
4213 return (SET_ERROR(EACCES));
4214 }
4215
4216 if (off < 0 || len > MAXOFFSET_T - off) {
4217 ZFS_EXIT(zsb);
4218 return (SET_ERROR(ENXIO));
4219 }
4220
4221 ZFS_EXIT(zsb);
4222 return (0);
4223 }
4224 EXPORT_SYMBOL(zfs_map);
4225
4226 /*
4227 * convoff - converts the given data (start, whence) to the
4228 * given whence.
4229 */
4230 int
4231 convoff(struct inode *ip, flock64_t *lckdat, int whence, offset_t offset)
4232 {
4233 vattr_t vap;
4234 int error;
4235
4236 if ((lckdat->l_whence == 2) || (whence == 2)) {
4237 if ((error = zfs_getattr(ip, &vap, 0, CRED()) != 0))
4238 return (error);
4239 }
4240
4241 switch (lckdat->l_whence) {
4242 case 1:
4243 lckdat->l_start += offset;
4244 break;
4245 case 2:
4246 lckdat->l_start += vap.va_size;
4247 /* FALLTHRU */
4248 case 0:
4249 break;
4250 default:
4251 return (SET_ERROR(EINVAL));
4252 }
4253
4254 if (lckdat->l_start < 0)
4255 return (SET_ERROR(EINVAL));
4256
4257 switch (whence) {
4258 case 1:
4259 lckdat->l_start -= offset;
4260 break;
4261 case 2:
4262 lckdat->l_start -= vap.va_size;
4263 /* FALLTHRU */
4264 case 0:
4265 break;
4266 default:
4267 return (SET_ERROR(EINVAL));
4268 }
4269
4270 lckdat->l_whence = (short)whence;
4271 return (0);
4272 }
4273
4274 /*
4275 * Free or allocate space in a file. Currently, this function only
4276 * supports the `F_FREESP' command. However, this command is somewhat
4277 * misnamed, as its functionality includes the ability to allocate as
4278 * well as free space.
4279 *
4280 * IN: ip - inode of file to free data in.
4281 * cmd - action to take (only F_FREESP supported).
4282 * bfp - section of file to free/alloc.
4283 * flag - current file open mode flags.
4284 * offset - current file offset.
4285 * cr - credentials of caller [UNUSED].
4286 *
4287 * RETURN: 0 on success, error code on failure.
4288 *
4289 * Timestamps:
4290 * ip - ctime|mtime updated
4291 */
4292 /* ARGSUSED */
4293 int
4294 zfs_space(struct inode *ip, int cmd, flock64_t *bfp, int flag,
4295 offset_t offset, cred_t *cr)
4296 {
4297 znode_t *zp = ITOZ(ip);
4298 zfs_sb_t *zsb = ITOZSB(ip);
4299 uint64_t off, len;
4300 int error;
4301
4302 ZFS_ENTER(zsb);
4303 ZFS_VERIFY_ZP(zp);
4304
4305 if (cmd != F_FREESP) {
4306 ZFS_EXIT(zsb);
4307 return (SET_ERROR(EINVAL));
4308 }
4309
4310 if ((error = convoff(ip, bfp, 0, offset))) {
4311 ZFS_EXIT(zsb);
4312 return (error);
4313 }
4314
4315 if (bfp->l_len < 0) {
4316 ZFS_EXIT(zsb);
4317 return (SET_ERROR(EINVAL));
4318 }
4319
4320 /*
4321 * Permissions aren't checked on Solaris because on this OS
4322 * zfs_space() can only be called with an opened file handle.
4323 * On Linux we can get here through truncate_range() which
4324 * operates directly on inodes, so we need to check access rights.
4325 */
4326 if ((error = zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr))) {
4327 ZFS_EXIT(zsb);
4328 return (error);
4329 }
4330
4331 off = bfp->l_start;
4332 len = bfp->l_len; /* 0 means from off to end of file */
4333
4334 error = zfs_freesp(zp, off, len, flag, TRUE);
4335
4336 ZFS_EXIT(zsb);
4337 return (error);
4338 }
4339 EXPORT_SYMBOL(zfs_space);
4340
4341 /*ARGSUSED*/
4342 int
4343 zfs_fid(struct inode *ip, fid_t *fidp)
4344 {
4345 znode_t *zp = ITOZ(ip);
4346 zfs_sb_t *zsb = ITOZSB(ip);
4347 uint32_t gen;
4348 uint64_t gen64;
4349 uint64_t object = zp->z_id;
4350 zfid_short_t *zfid;
4351 int size, i, error;
4352
4353 ZFS_ENTER(zsb);
4354 ZFS_VERIFY_ZP(zp);
4355
4356 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zsb),
4357 &gen64, sizeof (uint64_t))) != 0) {
4358 ZFS_EXIT(zsb);
4359 return (error);
4360 }
4361
4362 gen = (uint32_t)gen64;
4363
4364 size = (zsb->z_parent != zsb) ? LONG_FID_LEN : SHORT_FID_LEN;
4365 if (fidp->fid_len < size) {
4366 fidp->fid_len = size;
4367 ZFS_EXIT(zsb);
4368 return (SET_ERROR(ENOSPC));
4369 }
4370
4371 zfid = (zfid_short_t *)fidp;
4372
4373 zfid->zf_len = size;
4374
4375 for (i = 0; i < sizeof (zfid->zf_object); i++)
4376 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4377
4378 /* Must have a non-zero generation number to distinguish from .zfs */
4379 if (gen == 0)
4380 gen = 1;
4381 for (i = 0; i < sizeof (zfid->zf_gen); i++)
4382 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4383
4384 if (size == LONG_FID_LEN) {
4385 uint64_t objsetid = dmu_objset_id(zsb->z_os);
4386 zfid_long_t *zlfid;
4387
4388 zlfid = (zfid_long_t *)fidp;
4389
4390 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4391 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4392
4393 /* XXX - this should be the generation number for the objset */
4394 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4395 zlfid->zf_setgen[i] = 0;
4396 }
4397
4398 ZFS_EXIT(zsb);
4399 return (0);
4400 }
4401 EXPORT_SYMBOL(zfs_fid);
4402
4403 /*ARGSUSED*/
4404 int
4405 zfs_getsecattr(struct inode *ip, vsecattr_t *vsecp, int flag, cred_t *cr)
4406 {
4407 znode_t *zp = ITOZ(ip);
4408 zfs_sb_t *zsb = ITOZSB(ip);
4409 int error;
4410 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4411
4412 ZFS_ENTER(zsb);
4413 ZFS_VERIFY_ZP(zp);
4414 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
4415 ZFS_EXIT(zsb);
4416
4417 return (error);
4418 }
4419 EXPORT_SYMBOL(zfs_getsecattr);
4420
4421 /*ARGSUSED*/
4422 int
4423 zfs_setsecattr(struct inode *ip, vsecattr_t *vsecp, int flag, cred_t *cr)
4424 {
4425 znode_t *zp = ITOZ(ip);
4426 zfs_sb_t *zsb = ITOZSB(ip);
4427 int error;
4428 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4429 zilog_t *zilog = zsb->z_log;
4430
4431 ZFS_ENTER(zsb);
4432 ZFS_VERIFY_ZP(zp);
4433
4434 error = zfs_setacl(zp, vsecp, skipaclchk, cr);
4435
4436 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
4437 zil_commit(zilog, 0);
4438
4439 ZFS_EXIT(zsb);
4440 return (error);
4441 }
4442 EXPORT_SYMBOL(zfs_setsecattr);
4443
4444 #ifdef HAVE_UIO_ZEROCOPY
4445 /*
4446 * Tunable, both must be a power of 2.
4447 *
4448 * zcr_blksz_min: the smallest read we may consider to loan out an arcbuf
4449 * zcr_blksz_max: if set to less than the file block size, allow loaning out of
4450 * an arcbuf for a partial block read
4451 */
4452 int zcr_blksz_min = (1 << 10); /* 1K */
4453 int zcr_blksz_max = (1 << 17); /* 128K */
4454
4455 /*ARGSUSED*/
4456 static int
4457 zfs_reqzcbuf(struct inode *ip, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr)
4458 {
4459 znode_t *zp = ITOZ(ip);
4460 zfs_sb_t *zsb = ITOZSB(ip);
4461 int max_blksz = zsb->z_max_blksz;
4462 uio_t *uio = &xuio->xu_uio;
4463 ssize_t size = uio->uio_resid;
4464 offset_t offset = uio->uio_loffset;
4465 int blksz;
4466 int fullblk, i;
4467 arc_buf_t *abuf;
4468 ssize_t maxsize;
4469 int preamble, postamble;
4470
4471 if (xuio->xu_type != UIOTYPE_ZEROCOPY)
4472 return (SET_ERROR(EINVAL));
4473
4474 ZFS_ENTER(zsb);
4475 ZFS_VERIFY_ZP(zp);
4476 switch (ioflag) {
4477 case UIO_WRITE:
4478 /*
4479 * Loan out an arc_buf for write if write size is bigger than
4480 * max_blksz, and the file's block size is also max_blksz.
4481 */
4482 blksz = max_blksz;
4483 if (size < blksz || zp->z_blksz != blksz) {
4484 ZFS_EXIT(zsb);
4485 return (SET_ERROR(EINVAL));
4486 }
4487 /*
4488 * Caller requests buffers for write before knowing where the
4489 * write offset might be (e.g. NFS TCP write).
4490 */
4491 if (offset == -1) {
4492 preamble = 0;
4493 } else {
4494 preamble = P2PHASE(offset, blksz);
4495 if (preamble) {
4496 preamble = blksz - preamble;
4497 size -= preamble;
4498 }
4499 }
4500
4501 postamble = P2PHASE(size, blksz);
4502 size -= postamble;
4503
4504 fullblk = size / blksz;
4505 (void) dmu_xuio_init(xuio,
4506 (preamble != 0) + fullblk + (postamble != 0));
4507
4508 /*
4509 * Have to fix iov base/len for partial buffers. They
4510 * currently represent full arc_buf's.
4511 */
4512 if (preamble) {
4513 /* data begins in the middle of the arc_buf */
4514 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4515 blksz);
4516 ASSERT(abuf);
4517 (void) dmu_xuio_add(xuio, abuf,
4518 blksz - preamble, preamble);
4519 }
4520
4521 for (i = 0; i < fullblk; i++) {
4522 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4523 blksz);
4524 ASSERT(abuf);
4525 (void) dmu_xuio_add(xuio, abuf, 0, blksz);
4526 }
4527
4528 if (postamble) {
4529 /* data ends in the middle of the arc_buf */
4530 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4531 blksz);
4532 ASSERT(abuf);
4533 (void) dmu_xuio_add(xuio, abuf, 0, postamble);
4534 }
4535 break;
4536 case UIO_READ:
4537 /*
4538 * Loan out an arc_buf for read if the read size is larger than
4539 * the current file block size. Block alignment is not
4540 * considered. Partial arc_buf will be loaned out for read.
4541 */
4542 blksz = zp->z_blksz;
4543 if (blksz < zcr_blksz_min)
4544 blksz = zcr_blksz_min;
4545 if (blksz > zcr_blksz_max)
4546 blksz = zcr_blksz_max;
4547 /* avoid potential complexity of dealing with it */
4548 if (blksz > max_blksz) {
4549 ZFS_EXIT(zsb);
4550 return (SET_ERROR(EINVAL));
4551 }
4552
4553 maxsize = zp->z_size - uio->uio_loffset;
4554 if (size > maxsize)
4555 size = maxsize;
4556
4557 if (size < blksz) {
4558 ZFS_EXIT(zsb);
4559 return (SET_ERROR(EINVAL));
4560 }
4561 break;
4562 default:
4563 ZFS_EXIT(zsb);
4564 return (SET_ERROR(EINVAL));
4565 }
4566
4567 uio->uio_extflg = UIO_XUIO;
4568 XUIO_XUZC_RW(xuio) = ioflag;
4569 ZFS_EXIT(zsb);
4570 return (0);
4571 }
4572
4573 /*ARGSUSED*/
4574 static int
4575 zfs_retzcbuf(struct inode *ip, xuio_t *xuio, cred_t *cr)
4576 {
4577 int i;
4578 arc_buf_t *abuf;
4579 int ioflag = XUIO_XUZC_RW(xuio);
4580
4581 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
4582
4583 i = dmu_xuio_cnt(xuio);
4584 while (i-- > 0) {
4585 abuf = dmu_xuio_arcbuf(xuio, i);
4586 /*
4587 * if abuf == NULL, it must be a write buffer
4588 * that has been returned in zfs_write().
4589 */
4590 if (abuf)
4591 dmu_return_arcbuf(abuf);
4592 ASSERT(abuf || ioflag == UIO_WRITE);
4593 }
4594
4595 dmu_xuio_fini(xuio);
4596 return (0);
4597 }
4598 #endif /* HAVE_UIO_ZEROCOPY */
4599
4600 #if defined(_KERNEL) && defined(HAVE_SPL)
4601 module_param(zfs_read_chunk_size, long, 0644);
4602 MODULE_PARM_DESC(zfs_read_chunk_size, "Bytes to read per chunk");
4603 #endif