]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zfs_vnops.c
Improve performance by using dmu_tx_hold_*_by_dnode()
[mirror_zfs.git] / module / zfs / zfs_vnops.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.
27 */
28
29 /* Portions Copyright 2007 Jeremy Teo */
30 /* Portions Copyright 2010 Robert Milkowski */
31
32
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/time.h>
36 #include <sys/sysmacros.h>
37 #include <sys/vfs.h>
38 #include <sys/file.h>
39 #include <sys/stat.h>
40 #include <sys/kmem.h>
41 #include <sys/taskq.h>
42 #include <sys/uio.h>
43 #include <sys/vmsystm.h>
44 #include <sys/atomic.h>
45 #include <sys/pathname.h>
46 #include <sys/cmn_err.h>
47 #include <sys/errno.h>
48 #include <sys/zfs_dir.h>
49 #include <sys/zfs_acl.h>
50 #include <sys/zfs_ioctl.h>
51 #include <sys/fs/zfs.h>
52 #include <sys/dmu.h>
53 #include <sys/dmu_objset.h>
54 #include <sys/spa.h>
55 #include <sys/txg.h>
56 #include <sys/dbuf.h>
57 #include <sys/zap.h>
58 #include <sys/sa.h>
59 #include <sys/policy.h>
60 #include <sys/sunddi.h>
61 #include <sys/sid.h>
62 #include <sys/mode.h>
63 #include <sys/zfs_ctldir.h>
64 #include <sys/zfs_fuid.h>
65 #include <sys/zfs_sa.h>
66 #include <sys/zfs_vnops.h>
67 #include <sys/zfs_rlock.h>
68 #include <sys/cred.h>
69 #include <sys/zpl.h>
70 #include <sys/zil.h>
71 #include <sys/sa_impl.h>
72
73 /*
74 * Programming rules.
75 *
76 * Each vnode op performs some logical unit of work. To do this, the ZPL must
77 * properly lock its in-core state, create a DMU transaction, do the work,
78 * record this work in the intent log (ZIL), commit the DMU transaction,
79 * and wait for the intent log to commit if it is a synchronous operation.
80 * Moreover, the vnode ops must work in both normal and log replay context.
81 * The ordering of events is important to avoid deadlocks and references
82 * to freed memory. The example below illustrates the following Big Rules:
83 *
84 * (1) A check must be made in each zfs thread for a mounted file system.
85 * This is done avoiding races using ZFS_ENTER(zfsvfs).
86 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes
87 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros
88 * can return EIO from the calling function.
89 *
90 * (2) iput() should always be the last thing except for zil_commit()
91 * (if necessary) and ZFS_EXIT(). This is for 3 reasons:
92 * First, if it's the last reference, the vnode/znode
93 * can be freed, so the zp may point to freed memory. Second, the last
94 * reference will call zfs_zinactive(), which may induce a lot of work --
95 * pushing cached pages (which acquires range locks) and syncing out
96 * cached atime changes. Third, zfs_zinactive() may require a new tx,
97 * which could deadlock the system if you were already holding one.
98 * If you must call iput() within a tx then use zfs_iput_async().
99 *
100 * (3) All range locks must be grabbed before calling dmu_tx_assign(),
101 * as they can span dmu_tx_assign() calls.
102 *
103 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
104 * dmu_tx_assign(). This is critical because we don't want to block
105 * while holding locks.
106 *
107 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This
108 * reduces lock contention and CPU usage when we must wait (note that if
109 * throughput is constrained by the storage, nearly every transaction
110 * must wait).
111 *
112 * Note, in particular, that if a lock is sometimes acquired before
113 * the tx assigns, and sometimes after (e.g. z_lock), then failing
114 * to use a non-blocking assign can deadlock the system. The scenario:
115 *
116 * Thread A has grabbed a lock before calling dmu_tx_assign().
117 * Thread B is in an already-assigned tx, and blocks for this lock.
118 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
119 * forever, because the previous txg can't quiesce until B's tx commits.
120 *
121 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
122 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent
123 * calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT,
124 * to indicate that this operation has already called dmu_tx_wait().
125 * This will ensure that we don't retry forever, waiting a short bit
126 * each time.
127 *
128 * (5) If the operation succeeded, generate the intent log entry for it
129 * before dropping locks. This ensures that the ordering of events
130 * in the intent log matches the order in which they actually occurred.
131 * During ZIL replay the zfs_log_* functions will update the sequence
132 * number to indicate the zil transaction has replayed.
133 *
134 * (6) At the end of each vnode op, the DMU tx must always commit,
135 * regardless of whether there were any errors.
136 *
137 * (7) After dropping all locks, invoke zil_commit(zilog, foid)
138 * to ensure that synchronous semantics are provided when necessary.
139 *
140 * In general, this is how things should be ordered in each vnode op:
141 *
142 * ZFS_ENTER(zfsvfs); // exit if unmounted
143 * top:
144 * zfs_dirent_lock(&dl, ...) // lock directory entry (may igrab())
145 * rw_enter(...); // grab any other locks you need
146 * tx = dmu_tx_create(...); // get DMU tx
147 * dmu_tx_hold_*(); // hold each object you might modify
148 * error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
149 * if (error) {
150 * rw_exit(...); // drop locks
151 * zfs_dirent_unlock(dl); // unlock directory entry
152 * iput(...); // release held vnodes
153 * if (error == ERESTART) {
154 * waited = B_TRUE;
155 * dmu_tx_wait(tx);
156 * dmu_tx_abort(tx);
157 * goto top;
158 * }
159 * dmu_tx_abort(tx); // abort DMU tx
160 * ZFS_EXIT(zfsvfs); // finished in zfs
161 * return (error); // really out of space
162 * }
163 * error = do_real_work(); // do whatever this VOP does
164 * if (error == 0)
165 * zfs_log_*(...); // on success, make ZIL entry
166 * dmu_tx_commit(tx); // commit DMU tx -- error or not
167 * rw_exit(...); // drop locks
168 * zfs_dirent_unlock(dl); // unlock directory entry
169 * iput(...); // release held vnodes
170 * zil_commit(zilog, foid); // synchronous when necessary
171 * ZFS_EXIT(zfsvfs); // finished in zfs
172 * return (error); // done, report error
173 */
174
175 /*
176 * Virus scanning is unsupported. It would be possible to add a hook
177 * here to performance the required virus scan. This could be done
178 * entirely in the kernel or potentially as an update to invoke a
179 * scanning utility.
180 */
181 static int
182 zfs_vscan(struct inode *ip, cred_t *cr, int async)
183 {
184 return (0);
185 }
186
187 /* ARGSUSED */
188 int
189 zfs_open(struct inode *ip, int mode, int flag, cred_t *cr)
190 {
191 znode_t *zp = ITOZ(ip);
192 zfsvfs_t *zfsvfs = ITOZSB(ip);
193
194 ZFS_ENTER(zfsvfs);
195 ZFS_VERIFY_ZP(zp);
196
197 /* Honor ZFS_APPENDONLY file attribute */
198 if ((mode & FMODE_WRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
199 ((flag & O_APPEND) == 0)) {
200 ZFS_EXIT(zfsvfs);
201 return (SET_ERROR(EPERM));
202 }
203
204 /* Virus scan eligible files on open */
205 if (!zfs_has_ctldir(zp) && zfsvfs->z_vscan && S_ISREG(ip->i_mode) &&
206 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
207 if (zfs_vscan(ip, cr, 0) != 0) {
208 ZFS_EXIT(zfsvfs);
209 return (SET_ERROR(EACCES));
210 }
211 }
212
213 /* Keep a count of the synchronous opens in the znode */
214 if (flag & O_SYNC)
215 atomic_inc_32(&zp->z_sync_cnt);
216
217 ZFS_EXIT(zfsvfs);
218 return (0);
219 }
220
221 /* ARGSUSED */
222 int
223 zfs_close(struct inode *ip, int flag, cred_t *cr)
224 {
225 znode_t *zp = ITOZ(ip);
226 zfsvfs_t *zfsvfs = ITOZSB(ip);
227
228 ZFS_ENTER(zfsvfs);
229 ZFS_VERIFY_ZP(zp);
230
231 /* Decrement the synchronous opens in the znode */
232 if (flag & O_SYNC)
233 atomic_dec_32(&zp->z_sync_cnt);
234
235 if (!zfs_has_ctldir(zp) && zfsvfs->z_vscan && S_ISREG(ip->i_mode) &&
236 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
237 VERIFY(zfs_vscan(ip, cr, 1) == 0);
238
239 ZFS_EXIT(zfsvfs);
240 return (0);
241 }
242
243 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
244 /*
245 * Lseek support for finding holes (cmd == SEEK_HOLE) and
246 * data (cmd == SEEK_DATA). "off" is an in/out parameter.
247 */
248 static int
249 zfs_holey_common(struct inode *ip, int cmd, loff_t *off)
250 {
251 znode_t *zp = ITOZ(ip);
252 uint64_t noff = (uint64_t)*off; /* new offset */
253 uint64_t file_sz;
254 int error;
255 boolean_t hole;
256
257 file_sz = zp->z_size;
258 if (noff >= file_sz) {
259 return (SET_ERROR(ENXIO));
260 }
261
262 if (cmd == SEEK_HOLE)
263 hole = B_TRUE;
264 else
265 hole = B_FALSE;
266
267 error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);
268
269 if (error == ESRCH)
270 return (SET_ERROR(ENXIO));
271
272 /* file was dirty, so fall back to using generic logic */
273 if (error == EBUSY) {
274 if (hole)
275 *off = file_sz;
276
277 return (0);
278 }
279
280 /*
281 * We could find a hole that begins after the logical end-of-file,
282 * because dmu_offset_next() only works on whole blocks. If the
283 * EOF falls mid-block, then indicate that the "virtual hole"
284 * at the end of the file begins at the logical EOF, rather than
285 * at the end of the last block.
286 */
287 if (noff > file_sz) {
288 ASSERT(hole);
289 noff = file_sz;
290 }
291
292 if (noff < *off)
293 return (error);
294 *off = noff;
295 return (error);
296 }
297
298 int
299 zfs_holey(struct inode *ip, int cmd, loff_t *off)
300 {
301 znode_t *zp = ITOZ(ip);
302 zfsvfs_t *zfsvfs = ITOZSB(ip);
303 int error;
304
305 ZFS_ENTER(zfsvfs);
306 ZFS_VERIFY_ZP(zp);
307
308 error = zfs_holey_common(ip, cmd, off);
309
310 ZFS_EXIT(zfsvfs);
311 return (error);
312 }
313 #endif /* SEEK_HOLE && SEEK_DATA */
314
315 #if defined(_KERNEL)
316 /*
317 * When a file is memory mapped, we must keep the IO data synchronized
318 * between the DMU cache and the memory mapped pages. What this means:
319 *
320 * On Write: If we find a memory mapped page, we write to *both*
321 * the page and the dmu buffer.
322 */
323 static void
324 update_pages(struct inode *ip, int64_t start, int len,
325 objset_t *os, uint64_t oid)
326 {
327 struct address_space *mp = ip->i_mapping;
328 struct page *pp;
329 uint64_t nbytes;
330 int64_t off;
331 void *pb;
332
333 off = start & (PAGE_SIZE-1);
334 for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
335 nbytes = MIN(PAGE_SIZE - off, len);
336
337 pp = find_lock_page(mp, start >> PAGE_SHIFT);
338 if (pp) {
339 if (mapping_writably_mapped(mp))
340 flush_dcache_page(pp);
341
342 pb = kmap(pp);
343 (void) dmu_read(os, oid, start+off, nbytes, pb+off,
344 DMU_READ_PREFETCH);
345 kunmap(pp);
346
347 if (mapping_writably_mapped(mp))
348 flush_dcache_page(pp);
349
350 mark_page_accessed(pp);
351 SetPageUptodate(pp);
352 ClearPageError(pp);
353 unlock_page(pp);
354 put_page(pp);
355 }
356
357 len -= nbytes;
358 off = 0;
359 }
360 }
361
362 /*
363 * When a file is memory mapped, we must keep the IO data synchronized
364 * between the DMU cache and the memory mapped pages. What this means:
365 *
366 * On Read: We "read" preferentially from memory mapped pages,
367 * else we default from the dmu buffer.
368 *
369 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
370 * the file is memory mapped.
371 */
372 static int
373 mappedread(struct inode *ip, int nbytes, uio_t *uio)
374 {
375 struct address_space *mp = ip->i_mapping;
376 struct page *pp;
377 znode_t *zp = ITOZ(ip);
378 int64_t start, off;
379 uint64_t bytes;
380 int len = nbytes;
381 int error = 0;
382 void *pb;
383
384 start = uio->uio_loffset;
385 off = start & (PAGE_SIZE-1);
386 for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
387 bytes = MIN(PAGE_SIZE - off, len);
388
389 pp = find_lock_page(mp, start >> PAGE_SHIFT);
390 if (pp) {
391 ASSERT(PageUptodate(pp));
392 unlock_page(pp);
393
394 pb = kmap(pp);
395 error = uiomove(pb + off, bytes, UIO_READ, uio);
396 kunmap(pp);
397
398 if (mapping_writably_mapped(mp))
399 flush_dcache_page(pp);
400
401 mark_page_accessed(pp);
402 put_page(pp);
403 } else {
404 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
405 uio, bytes);
406 }
407
408 len -= bytes;
409 off = 0;
410 if (error)
411 break;
412 }
413 return (error);
414 }
415 #endif /* _KERNEL */
416
417 unsigned long zfs_read_chunk_size = 1024 * 1024; /* Tunable */
418 unsigned long zfs_delete_blocks = DMU_MAX_DELETEBLKCNT;
419
420 /*
421 * Read bytes from specified file into supplied buffer.
422 *
423 * IN: ip - inode of file to be read from.
424 * uio - structure supplying read location, range info,
425 * and return buffer.
426 * ioflag - FSYNC flags; used to provide FRSYNC semantics.
427 * O_DIRECT flag; used to bypass page cache.
428 * cr - credentials of caller.
429 *
430 * OUT: uio - updated offset and range, buffer filled.
431 *
432 * RETURN: 0 on success, error code on failure.
433 *
434 * Side Effects:
435 * inode - atime updated if byte count > 0
436 */
437 /* ARGSUSED */
438 int
439 zfs_read(struct inode *ip, uio_t *uio, int ioflag, cred_t *cr)
440 {
441 int error = 0;
442 boolean_t frsync = B_FALSE;
443
444 znode_t *zp = ITOZ(ip);
445 zfsvfs_t *zfsvfs = ITOZSB(ip);
446 ZFS_ENTER(zfsvfs);
447 ZFS_VERIFY_ZP(zp);
448
449 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
450 ZFS_EXIT(zfsvfs);
451 return (SET_ERROR(EACCES));
452 }
453
454 /*
455 * Validate file offset
456 */
457 if (uio->uio_loffset < (offset_t)0) {
458 ZFS_EXIT(zfsvfs);
459 return (SET_ERROR(EINVAL));
460 }
461
462 /*
463 * Fasttrack empty reads
464 */
465 if (uio->uio_resid == 0) {
466 ZFS_EXIT(zfsvfs);
467 return (0);
468 }
469
470 #ifdef FRSYNC
471 /*
472 * If we're in FRSYNC mode, sync out this znode before reading it.
473 * Only do this for non-snapshots.
474 *
475 * Some platforms do not support FRSYNC and instead map it
476 * to FSYNC, which results in unnecessary calls to zil_commit. We
477 * only honor FRSYNC requests on platforms which support it.
478 */
479 frsync = !!(ioflag & FRSYNC);
480 #endif
481 if (zfsvfs->z_log &&
482 (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
483 zil_commit(zfsvfs->z_log, zp->z_id);
484
485 /*
486 * Lock the range against changes.
487 */
488 locked_range_t *lr = rangelock_enter(&zp->z_rangelock,
489 uio->uio_loffset, uio->uio_resid, RL_READER);
490
491 /*
492 * If we are reading past end-of-file we can skip
493 * to the end; but we might still need to set atime.
494 */
495 if (uio->uio_loffset >= zp->z_size) {
496 error = 0;
497 goto out;
498 }
499
500 ASSERT(uio->uio_loffset < zp->z_size);
501 ssize_t n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
502 ssize_t start_resid = n;
503
504 #ifdef HAVE_UIO_ZEROCOPY
505 xuio_t *xuio = NULL;
506 if ((uio->uio_extflg == UIO_XUIO) &&
507 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
508 int nblk;
509 int blksz = zp->z_blksz;
510 uint64_t offset = uio->uio_loffset;
511
512 xuio = (xuio_t *)uio;
513 if ((ISP2(blksz))) {
514 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
515 blksz)) / blksz;
516 } else {
517 ASSERT(offset + n <= blksz);
518 nblk = 1;
519 }
520 (void) dmu_xuio_init(xuio, nblk);
521
522 if (vn_has_cached_data(ip)) {
523 /*
524 * For simplicity, we always allocate a full buffer
525 * even if we only expect to read a portion of a block.
526 */
527 while (--nblk >= 0) {
528 (void) dmu_xuio_add(xuio,
529 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
530 blksz), 0, blksz);
531 }
532 }
533 }
534 #endif /* HAVE_UIO_ZEROCOPY */
535
536 while (n > 0) {
537 ssize_t nbytes = MIN(n, zfs_read_chunk_size -
538 P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
539
540 if (zp->z_is_mapped && !(ioflag & O_DIRECT)) {
541 error = mappedread(ip, nbytes, uio);
542 } else {
543 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
544 uio, nbytes);
545 }
546
547 if (error) {
548 /* convert checksum errors into IO errors */
549 if (error == ECKSUM)
550 error = SET_ERROR(EIO);
551 break;
552 }
553
554 n -= nbytes;
555 }
556
557 int64_t nread = start_resid - n;
558 dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread);
559 task_io_account_read(nread);
560 out:
561 rangelock_exit(lr);
562
563 ZFS_EXIT(zfsvfs);
564 return (error);
565 }
566
567 /*
568 * Write the bytes to a file.
569 *
570 * IN: ip - inode of file to be written to.
571 * uio - structure supplying write location, range info,
572 * and data buffer.
573 * ioflag - FAPPEND flag set if in append mode.
574 * O_DIRECT flag; used to bypass page cache.
575 * cr - credentials of caller.
576 *
577 * OUT: uio - updated offset and range.
578 *
579 * RETURN: 0 if success
580 * error code if failure
581 *
582 * Timestamps:
583 * ip - ctime|mtime updated if byte count > 0
584 */
585
586 /* ARGSUSED */
587 int
588 zfs_write(struct inode *ip, uio_t *uio, int ioflag, cred_t *cr)
589 {
590 int error = 0;
591 ssize_t start_resid = uio->uio_resid;
592
593 /*
594 * Fasttrack empty write
595 */
596 ssize_t n = start_resid;
597 if (n == 0)
598 return (0);
599
600 rlim64_t limit = uio->uio_limit;
601 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
602 limit = MAXOFFSET_T;
603
604 znode_t *zp = ITOZ(ip);
605 zfsvfs_t *zfsvfs = ZTOZSB(zp);
606 ZFS_ENTER(zfsvfs);
607 ZFS_VERIFY_ZP(zp);
608
609 sa_bulk_attr_t bulk[4];
610 int count = 0;
611 uint64_t mtime[2], ctime[2];
612 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
613 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
614 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
615 &zp->z_size, 8);
616 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
617 &zp->z_pflags, 8);
618
619 /*
620 * Callers might not be able to detect properly that we are read-only,
621 * so check it explicitly here.
622 */
623 if (zfs_is_readonly(zfsvfs)) {
624 ZFS_EXIT(zfsvfs);
625 return (SET_ERROR(EROFS));
626 }
627
628 /*
629 * If immutable or not appending then return EPERM
630 */
631 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
632 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
633 (uio->uio_loffset < zp->z_size))) {
634 ZFS_EXIT(zfsvfs);
635 return (SET_ERROR(EPERM));
636 }
637
638 /*
639 * Validate file offset
640 */
641 offset_t woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
642 if (woff < 0) {
643 ZFS_EXIT(zfsvfs);
644 return (SET_ERROR(EINVAL));
645 }
646
647 int max_blksz = zfsvfs->z_max_blksz;
648 xuio_t *xuio = NULL;
649
650 /*
651 * Pre-fault the pages to ensure slow (eg NFS) pages
652 * don't hold up txg.
653 * Skip this if uio contains loaned arc_buf.
654 */
655 #ifdef HAVE_UIO_ZEROCOPY
656 if ((uio->uio_extflg == UIO_XUIO) &&
657 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
658 xuio = (xuio_t *)uio;
659 else
660 #endif
661 if (uio_prefaultpages(MIN(n, max_blksz), uio)) {
662 ZFS_EXIT(zfsvfs);
663 return (SET_ERROR(EFAULT));
664 }
665
666 /*
667 * If in append mode, set the io offset pointer to eof.
668 */
669 locked_range_t *lr;
670 if (ioflag & FAPPEND) {
671 /*
672 * Obtain an appending range lock to guarantee file append
673 * semantics. We reset the write offset once we have the lock.
674 */
675 lr = rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND);
676 woff = lr->lr_offset;
677 if (lr->lr_length == UINT64_MAX) {
678 /*
679 * We overlocked the file because this write will cause
680 * the file block size to increase.
681 * Note that zp_size cannot change with this lock held.
682 */
683 woff = zp->z_size;
684 }
685 uio->uio_loffset = woff;
686 } else {
687 /*
688 * Note that if the file block size will change as a result of
689 * this write, then this range lock will lock the entire file
690 * so that we can re-write the block safely.
691 */
692 lr = rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER);
693 }
694
695 if (woff >= limit) {
696 rangelock_exit(lr);
697 ZFS_EXIT(zfsvfs);
698 return (SET_ERROR(EFBIG));
699 }
700
701 if ((woff + n) > limit || woff > (limit - n))
702 n = limit - woff;
703
704 /* Will this write extend the file length? */
705 int write_eof = (woff + n > zp->z_size);
706
707 uint64_t end_size = MAX(zp->z_size, woff + n);
708 zilog_t *zilog = zfsvfs->z_log;
709 #ifdef HAVE_UIO_ZEROCOPY
710 int i_iov = 0;
711 const iovec_t *iovp = uio->uio_iov;
712 ASSERTV(int iovcnt = uio->uio_iovcnt);
713 #endif
714
715
716 /*
717 * Write the file in reasonable size chunks. Each chunk is written
718 * in a separate transaction; this keeps the intent log records small
719 * and allows us to do more fine-grained space accounting.
720 */
721 while (n > 0) {
722 woff = uio->uio_loffset;
723
724 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT,
725 KUID_TO_SUID(ip->i_uid)) ||
726 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT,
727 KGID_TO_SGID(ip->i_gid)) ||
728 (zp->z_projid != ZFS_DEFAULT_PROJID &&
729 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
730 zp->z_projid))) {
731 error = SET_ERROR(EDQUOT);
732 break;
733 }
734
735 arc_buf_t *abuf = NULL;
736 const iovec_t *aiov = NULL;
737 if (xuio) {
738 #ifdef HAVE_UIO_ZEROCOPY
739 ASSERT(i_iov < iovcnt);
740 ASSERT3U(uio->uio_segflg, !=, UIO_BVEC);
741 aiov = &iovp[i_iov];
742 abuf = dmu_xuio_arcbuf(xuio, i_iov);
743 dmu_xuio_clear(xuio, i_iov);
744 ASSERT((aiov->iov_base == abuf->b_data) ||
745 ((char *)aiov->iov_base - (char *)abuf->b_data +
746 aiov->iov_len == arc_buf_size(abuf)));
747 i_iov++;
748 #endif
749 } else if (n >= max_blksz && woff >= zp->z_size &&
750 P2PHASE(woff, max_blksz) == 0 &&
751 zp->z_blksz == max_blksz) {
752 /*
753 * This write covers a full block. "Borrow" a buffer
754 * from the dmu so that we can fill it before we enter
755 * a transaction. This avoids the possibility of
756 * holding up the transaction if the data copy hangs
757 * up on a pagefault (e.g., from an NFS server mapping).
758 */
759 size_t cbytes;
760
761 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
762 max_blksz);
763 ASSERT(abuf != NULL);
764 ASSERT(arc_buf_size(abuf) == max_blksz);
765 if ((error = uiocopy(abuf->b_data, max_blksz,
766 UIO_WRITE, uio, &cbytes))) {
767 dmu_return_arcbuf(abuf);
768 break;
769 }
770 ASSERT(cbytes == max_blksz);
771 }
772
773 /*
774 * Start a transaction.
775 */
776 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
777 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
778 dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
779 DB_DNODE_ENTER(db);
780 dmu_tx_hold_write_by_dnode(tx, DB_DNODE(db), woff,
781 MIN(n, max_blksz));
782 DB_DNODE_EXIT(db);
783 zfs_sa_upgrade_txholds(tx, zp);
784 error = dmu_tx_assign(tx, TXG_WAIT);
785 if (error) {
786 dmu_tx_abort(tx);
787 if (abuf != NULL)
788 dmu_return_arcbuf(abuf);
789 break;
790 }
791
792 /*
793 * If rangelock_enter() over-locked we grow the blocksize
794 * and then reduce the lock range. This will only happen
795 * on the first iteration since rangelock_reduce() will
796 * shrink down lr_length to the appropriate size.
797 */
798 if (lr->lr_length == UINT64_MAX) {
799 uint64_t new_blksz;
800
801 if (zp->z_blksz > max_blksz) {
802 /*
803 * File's blocksize is already larger than the
804 * "recordsize" property. Only let it grow to
805 * the next power of 2.
806 */
807 ASSERT(!ISP2(zp->z_blksz));
808 new_blksz = MIN(end_size,
809 1 << highbit64(zp->z_blksz));
810 } else {
811 new_blksz = MIN(end_size, max_blksz);
812 }
813 zfs_grow_blocksize(zp, new_blksz, tx);
814 rangelock_reduce(lr, woff, n);
815 }
816
817 /*
818 * XXX - should we really limit each write to z_max_blksz?
819 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
820 */
821 ssize_t nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
822
823 ssize_t tx_bytes;
824 if (abuf == NULL) {
825 tx_bytes = uio->uio_resid;
826 uio->uio_fault_disable = B_TRUE;
827 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
828 uio, nbytes, tx);
829 uio->uio_fault_disable = B_FALSE;
830 if (error == EFAULT) {
831 dmu_tx_commit(tx);
832 if (uio_prefaultpages(MIN(n, max_blksz), uio)) {
833 break;
834 }
835 continue;
836 } else if (error != 0) {
837 dmu_tx_commit(tx);
838 break;
839 }
840 tx_bytes -= uio->uio_resid;
841 } else {
842 tx_bytes = nbytes;
843 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
844 /*
845 * If this is not a full block write, but we are
846 * extending the file past EOF and this data starts
847 * block-aligned, use assign_arcbuf(). Otherwise,
848 * write via dmu_write().
849 */
850 if (tx_bytes < max_blksz && (!write_eof ||
851 aiov->iov_base != abuf->b_data)) {
852 ASSERT(xuio);
853 dmu_write(zfsvfs->z_os, zp->z_id, woff,
854 /* cppcheck-suppress nullPointer */
855 aiov->iov_len, aiov->iov_base, tx);
856 dmu_return_arcbuf(abuf);
857 xuio_stat_wbuf_copied();
858 } else {
859 ASSERT(xuio || tx_bytes == max_blksz);
860 error = dmu_assign_arcbuf_by_dbuf(
861 sa_get_db(zp->z_sa_hdl), woff, abuf, tx);
862 if (error != 0) {
863 dmu_return_arcbuf(abuf);
864 dmu_tx_commit(tx);
865 break;
866 }
867 }
868 ASSERT(tx_bytes <= uio->uio_resid);
869 uioskip(uio, tx_bytes);
870 }
871 if (tx_bytes && zp->z_is_mapped && !(ioflag & O_DIRECT)) {
872 update_pages(ip, woff,
873 tx_bytes, zfsvfs->z_os, zp->z_id);
874 }
875
876 /*
877 * If we made no progress, we're done. If we made even
878 * partial progress, update the znode and ZIL accordingly.
879 */
880 if (tx_bytes == 0) {
881 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
882 (void *)&zp->z_size, sizeof (uint64_t), tx);
883 dmu_tx_commit(tx);
884 ASSERT(error != 0);
885 break;
886 }
887
888 /*
889 * Clear Set-UID/Set-GID bits on successful write if not
890 * privileged and at least one of the execute bits is set.
891 *
892 * It would be nice to to this after all writes have
893 * been done, but that would still expose the ISUID/ISGID
894 * to another app after the partial write is committed.
895 *
896 * Note: we don't call zfs_fuid_map_id() here because
897 * user 0 is not an ephemeral uid.
898 */
899 mutex_enter(&zp->z_acl_lock);
900 uint32_t uid = KUID_TO_SUID(ip->i_uid);
901 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
902 (S_IXUSR >> 6))) != 0 &&
903 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
904 secpolicy_vnode_setid_retain(cr,
905 ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) {
906 uint64_t newmode;
907 zp->z_mode &= ~(S_ISUID | S_ISGID);
908 ip->i_mode = newmode = zp->z_mode;
909 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
910 (void *)&newmode, sizeof (uint64_t), tx);
911 }
912 mutex_exit(&zp->z_acl_lock);
913
914 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
915
916 /*
917 * Update the file size (zp_size) if it has changed;
918 * account for possible concurrent updates.
919 */
920 while ((end_size = zp->z_size) < uio->uio_loffset) {
921 (void) atomic_cas_64(&zp->z_size, end_size,
922 uio->uio_loffset);
923 ASSERT(error == 0);
924 }
925 /*
926 * If we are replaying and eof is non zero then force
927 * the file size to the specified eof. Note, there's no
928 * concurrency during replay.
929 */
930 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
931 zp->z_size = zfsvfs->z_replay_eof;
932
933 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
934
935 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag,
936 NULL, NULL);
937 dmu_tx_commit(tx);
938
939 if (error != 0)
940 break;
941 ASSERT(tx_bytes == nbytes);
942 n -= nbytes;
943
944 if (!xuio && n > 0) {
945 if (uio_prefaultpages(MIN(n, max_blksz), uio)) {
946 error = EFAULT;
947 break;
948 }
949 }
950 }
951
952 zfs_inode_update(zp);
953 rangelock_exit(lr);
954
955 /*
956 * If we're in replay mode, or we made no progress, return error.
957 * Otherwise, it's at least a partial write, so it's successful.
958 */
959 if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
960 ZFS_EXIT(zfsvfs);
961 return (error);
962 }
963
964 if (ioflag & (FSYNC | FDSYNC) ||
965 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
966 zil_commit(zilog, zp->z_id);
967
968 int64_t nwritten = start_resid - uio->uio_resid;
969 dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten);
970 task_io_account_write(nwritten);
971
972 ZFS_EXIT(zfsvfs);
973 return (0);
974 }
975
976 /*
977 * Drop a reference on the passed inode asynchronously. This ensures
978 * that the caller will never drop the last reference on an inode in
979 * the current context. Doing so while holding open a tx could result
980 * in a deadlock if iput_final() re-enters the filesystem code.
981 */
982 void
983 zfs_iput_async(struct inode *ip)
984 {
985 objset_t *os = ITOZSB(ip)->z_os;
986
987 ASSERT(atomic_read(&ip->i_count) > 0);
988 ASSERT(os != NULL);
989
990 if (atomic_read(&ip->i_count) == 1)
991 VERIFY(taskq_dispatch(dsl_pool_iput_taskq(dmu_objset_pool(os)),
992 (task_func_t *)iput, ip, TQ_SLEEP) != TASKQID_INVALID);
993 else
994 iput(ip);
995 }
996
997 /* ARGSUSED */
998 void
999 zfs_get_done(zgd_t *zgd, int error)
1000 {
1001 znode_t *zp = zgd->zgd_private;
1002
1003 if (zgd->zgd_db)
1004 dmu_buf_rele(zgd->zgd_db, zgd);
1005
1006 rangelock_exit(zgd->zgd_lr);
1007
1008 /*
1009 * Release the vnode asynchronously as we currently have the
1010 * txg stopped from syncing.
1011 */
1012 zfs_iput_async(ZTOI(zp));
1013
1014 kmem_free(zgd, sizeof (zgd_t));
1015 }
1016
1017 #ifdef DEBUG
1018 static int zil_fault_io = 0;
1019 #endif
1020
1021 /*
1022 * Get data to generate a TX_WRITE intent log record.
1023 */
1024 int
1025 zfs_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio)
1026 {
1027 zfsvfs_t *zfsvfs = arg;
1028 objset_t *os = zfsvfs->z_os;
1029 znode_t *zp;
1030 uint64_t object = lr->lr_foid;
1031 uint64_t offset = lr->lr_offset;
1032 uint64_t size = lr->lr_length;
1033 dmu_buf_t *db;
1034 zgd_t *zgd;
1035 int error = 0;
1036
1037 ASSERT3P(lwb, !=, NULL);
1038 ASSERT3P(zio, !=, NULL);
1039 ASSERT3U(size, !=, 0);
1040
1041 /*
1042 * Nothing to do if the file has been removed
1043 */
1044 if (zfs_zget(zfsvfs, object, &zp) != 0)
1045 return (SET_ERROR(ENOENT));
1046 if (zp->z_unlinked) {
1047 /*
1048 * Release the vnode asynchronously as we currently have the
1049 * txg stopped from syncing.
1050 */
1051 zfs_iput_async(ZTOI(zp));
1052 return (SET_ERROR(ENOENT));
1053 }
1054
1055 zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1056 zgd->zgd_lwb = lwb;
1057 zgd->zgd_private = zp;
1058
1059 /*
1060 * Write records come in two flavors: immediate and indirect.
1061 * For small writes it's cheaper to store the data with the
1062 * log record (immediate); for large writes it's cheaper to
1063 * sync the data and get a pointer to it (indirect) so that
1064 * we don't have to write the data twice.
1065 */
1066 if (buf != NULL) { /* immediate write */
1067 zgd->zgd_lr = rangelock_enter(&zp->z_rangelock,
1068 offset, size, RL_READER);
1069 /* test for truncation needs to be done while range locked */
1070 if (offset >= zp->z_size) {
1071 error = SET_ERROR(ENOENT);
1072 } else {
1073 error = dmu_read(os, object, offset, size, buf,
1074 DMU_READ_NO_PREFETCH);
1075 }
1076 ASSERT(error == 0 || error == ENOENT);
1077 } else { /* indirect write */
1078 /*
1079 * Have to lock the whole block to ensure when it's
1080 * written out and its checksum is being calculated
1081 * that no one can change the data. We need to re-check
1082 * blocksize after we get the lock in case it's changed!
1083 */
1084 for (;;) {
1085 uint64_t blkoff;
1086 size = zp->z_blksz;
1087 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1088 offset -= blkoff;
1089 zgd->zgd_lr = rangelock_enter(&zp->z_rangelock,
1090 offset, size, RL_READER);
1091 if (zp->z_blksz == size)
1092 break;
1093 offset += blkoff;
1094 rangelock_exit(zgd->zgd_lr);
1095 }
1096 /* test for truncation needs to be done while range locked */
1097 if (lr->lr_offset >= zp->z_size)
1098 error = SET_ERROR(ENOENT);
1099 #ifdef DEBUG
1100 if (zil_fault_io) {
1101 error = SET_ERROR(EIO);
1102 zil_fault_io = 0;
1103 }
1104 #endif
1105 if (error == 0)
1106 error = dmu_buf_hold(os, object, offset, zgd, &db,
1107 DMU_READ_NO_PREFETCH);
1108
1109 if (error == 0) {
1110 blkptr_t *bp = &lr->lr_blkptr;
1111
1112 zgd->zgd_db = db;
1113 zgd->zgd_bp = bp;
1114
1115 ASSERT(db->db_offset == offset);
1116 ASSERT(db->db_size == size);
1117
1118 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1119 zfs_get_done, zgd);
1120 ASSERT(error || lr->lr_length <= size);
1121
1122 /*
1123 * On success, we need to wait for the write I/O
1124 * initiated by dmu_sync() to complete before we can
1125 * release this dbuf. We will finish everything up
1126 * in the zfs_get_done() callback.
1127 */
1128 if (error == 0)
1129 return (0);
1130
1131 if (error == EALREADY) {
1132 lr->lr_common.lrc_txtype = TX_WRITE2;
1133 /*
1134 * TX_WRITE2 relies on the data previously
1135 * written by the TX_WRITE that caused
1136 * EALREADY. We zero out the BP because
1137 * it is the old, currently-on-disk BP.
1138 */
1139 zgd->zgd_bp = NULL;
1140 BP_ZERO(bp);
1141 error = 0;
1142 }
1143 }
1144 }
1145
1146 zfs_get_done(zgd, error);
1147
1148 return (error);
1149 }
1150
1151 /*ARGSUSED*/
1152 int
1153 zfs_access(struct inode *ip, int mode, int flag, cred_t *cr)
1154 {
1155 znode_t *zp = ITOZ(ip);
1156 zfsvfs_t *zfsvfs = ITOZSB(ip);
1157 int error;
1158
1159 ZFS_ENTER(zfsvfs);
1160 ZFS_VERIFY_ZP(zp);
1161
1162 if (flag & V_ACE_MASK)
1163 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1164 else
1165 error = zfs_zaccess_rwx(zp, mode, flag, cr);
1166
1167 ZFS_EXIT(zfsvfs);
1168 return (error);
1169 }
1170
1171 /*
1172 * Lookup an entry in a directory, or an extended attribute directory.
1173 * If it exists, return a held inode reference for it.
1174 *
1175 * IN: dip - inode of directory to search.
1176 * nm - name of entry to lookup.
1177 * flags - LOOKUP_XATTR set if looking for an attribute.
1178 * cr - credentials of caller.
1179 * direntflags - directory lookup flags
1180 * realpnp - returned pathname.
1181 *
1182 * OUT: ipp - inode of located entry, NULL if not found.
1183 *
1184 * RETURN: 0 on success, error code on failure.
1185 *
1186 * Timestamps:
1187 * NA
1188 */
1189 /* ARGSUSED */
1190 int
1191 zfs_lookup(struct inode *dip, char *nm, struct inode **ipp, int flags,
1192 cred_t *cr, int *direntflags, pathname_t *realpnp)
1193 {
1194 znode_t *zdp = ITOZ(dip);
1195 zfsvfs_t *zfsvfs = ITOZSB(dip);
1196 int error = 0;
1197
1198 /*
1199 * Fast path lookup, however we must skip DNLC lookup
1200 * for case folding or normalizing lookups because the
1201 * DNLC code only stores the passed in name. This means
1202 * creating 'a' and removing 'A' on a case insensitive
1203 * file system would work, but DNLC still thinks 'a'
1204 * exists and won't let you create it again on the next
1205 * pass through fast path.
1206 */
1207 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1208
1209 if (!S_ISDIR(dip->i_mode)) {
1210 return (SET_ERROR(ENOTDIR));
1211 } else if (zdp->z_sa_hdl == NULL) {
1212 return (SET_ERROR(EIO));
1213 }
1214
1215 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1216 error = zfs_fastaccesschk_execute(zdp, cr);
1217 if (!error) {
1218 *ipp = dip;
1219 igrab(*ipp);
1220 return (0);
1221 }
1222 return (error);
1223 }
1224 }
1225
1226 ZFS_ENTER(zfsvfs);
1227 ZFS_VERIFY_ZP(zdp);
1228
1229 *ipp = NULL;
1230
1231 if (flags & LOOKUP_XATTR) {
1232 /*
1233 * We don't allow recursive attributes..
1234 * Maybe someday we will.
1235 */
1236 if (zdp->z_pflags & ZFS_XATTR) {
1237 ZFS_EXIT(zfsvfs);
1238 return (SET_ERROR(EINVAL));
1239 }
1240
1241 if ((error = zfs_get_xattrdir(zdp, ipp, cr, flags))) {
1242 ZFS_EXIT(zfsvfs);
1243 return (error);
1244 }
1245
1246 /*
1247 * Do we have permission to get into attribute directory?
1248 */
1249
1250 if ((error = zfs_zaccess(ITOZ(*ipp), ACE_EXECUTE, 0,
1251 B_FALSE, cr))) {
1252 iput(*ipp);
1253 *ipp = NULL;
1254 }
1255
1256 ZFS_EXIT(zfsvfs);
1257 return (error);
1258 }
1259
1260 if (!S_ISDIR(dip->i_mode)) {
1261 ZFS_EXIT(zfsvfs);
1262 return (SET_ERROR(ENOTDIR));
1263 }
1264
1265 /*
1266 * Check accessibility of directory.
1267 */
1268
1269 if ((error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr))) {
1270 ZFS_EXIT(zfsvfs);
1271 return (error);
1272 }
1273
1274 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1275 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1276 ZFS_EXIT(zfsvfs);
1277 return (SET_ERROR(EILSEQ));
1278 }
1279
1280 error = zfs_dirlook(zdp, nm, ipp, flags, direntflags, realpnp);
1281 if ((error == 0) && (*ipp))
1282 zfs_inode_update(ITOZ(*ipp));
1283
1284 ZFS_EXIT(zfsvfs);
1285 return (error);
1286 }
1287
1288 /*
1289 * Attempt to create a new entry in a directory. If the entry
1290 * already exists, truncate the file if permissible, else return
1291 * an error. Return the ip of the created or trunc'd file.
1292 *
1293 * IN: dip - inode of directory to put new file entry in.
1294 * name - name of new file entry.
1295 * vap - attributes of new file.
1296 * excl - flag indicating exclusive or non-exclusive mode.
1297 * mode - mode to open file with.
1298 * cr - credentials of caller.
1299 * flag - file flag.
1300 * vsecp - ACL to be set
1301 *
1302 * OUT: ipp - inode of created or trunc'd entry.
1303 *
1304 * RETURN: 0 on success, error code on failure.
1305 *
1306 * Timestamps:
1307 * dip - ctime|mtime updated if new entry created
1308 * ip - ctime|mtime always, atime if new
1309 */
1310
1311 /* ARGSUSED */
1312 int
1313 zfs_create(struct inode *dip, char *name, vattr_t *vap, int excl,
1314 int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp)
1315 {
1316 znode_t *zp, *dzp = ITOZ(dip);
1317 zfsvfs_t *zfsvfs = ITOZSB(dip);
1318 zilog_t *zilog;
1319 objset_t *os;
1320 zfs_dirlock_t *dl;
1321 dmu_tx_t *tx;
1322 int error;
1323 uid_t uid;
1324 gid_t gid;
1325 zfs_acl_ids_t acl_ids;
1326 boolean_t fuid_dirtied;
1327 boolean_t have_acl = B_FALSE;
1328 boolean_t waited = B_FALSE;
1329
1330 /*
1331 * If we have an ephemeral id, ACL, or XVATTR then
1332 * make sure file system is at proper version
1333 */
1334
1335 gid = crgetgid(cr);
1336 uid = crgetuid(cr);
1337
1338 if (zfsvfs->z_use_fuids == B_FALSE &&
1339 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1340 return (SET_ERROR(EINVAL));
1341
1342 if (name == NULL)
1343 return (SET_ERROR(EINVAL));
1344
1345 ZFS_ENTER(zfsvfs);
1346 ZFS_VERIFY_ZP(dzp);
1347 os = zfsvfs->z_os;
1348 zilog = zfsvfs->z_log;
1349
1350 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1351 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1352 ZFS_EXIT(zfsvfs);
1353 return (SET_ERROR(EILSEQ));
1354 }
1355
1356 if (vap->va_mask & ATTR_XVATTR) {
1357 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1358 crgetuid(cr), cr, vap->va_mode)) != 0) {
1359 ZFS_EXIT(zfsvfs);
1360 return (error);
1361 }
1362 }
1363
1364 top:
1365 *ipp = NULL;
1366 if (*name == '\0') {
1367 /*
1368 * Null component name refers to the directory itself.
1369 */
1370 igrab(dip);
1371 zp = dzp;
1372 dl = NULL;
1373 error = 0;
1374 } else {
1375 /* possible igrab(zp) */
1376 int zflg = 0;
1377
1378 if (flag & FIGNORECASE)
1379 zflg |= ZCILOOK;
1380
1381 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1382 NULL, NULL);
1383 if (error) {
1384 if (have_acl)
1385 zfs_acl_ids_free(&acl_ids);
1386 if (strcmp(name, "..") == 0)
1387 error = SET_ERROR(EISDIR);
1388 ZFS_EXIT(zfsvfs);
1389 return (error);
1390 }
1391 }
1392
1393 if (zp == NULL) {
1394 uint64_t txtype;
1395 uint64_t projid = ZFS_DEFAULT_PROJID;
1396
1397 /*
1398 * Create a new file object and update the directory
1399 * to reference it.
1400 */
1401 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
1402 if (have_acl)
1403 zfs_acl_ids_free(&acl_ids);
1404 goto out;
1405 }
1406
1407 /*
1408 * We only support the creation of regular files in
1409 * extended attribute directories.
1410 */
1411
1412 if ((dzp->z_pflags & ZFS_XATTR) && !S_ISREG(vap->va_mode)) {
1413 if (have_acl)
1414 zfs_acl_ids_free(&acl_ids);
1415 error = SET_ERROR(EINVAL);
1416 goto out;
1417 }
1418
1419 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1420 cr, vsecp, &acl_ids)) != 0)
1421 goto out;
1422 have_acl = B_TRUE;
1423
1424 if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
1425 projid = zfs_inherit_projid(dzp);
1426 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
1427 zfs_acl_ids_free(&acl_ids);
1428 error = SET_ERROR(EDQUOT);
1429 goto out;
1430 }
1431
1432 tx = dmu_tx_create(os);
1433
1434 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1435 ZFS_SA_BASE_ATTR_SIZE);
1436
1437 fuid_dirtied = zfsvfs->z_fuid_dirty;
1438 if (fuid_dirtied)
1439 zfs_fuid_txhold(zfsvfs, tx);
1440 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1441 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1442 if (!zfsvfs->z_use_sa &&
1443 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1444 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1445 0, acl_ids.z_aclp->z_acl_bytes);
1446 }
1447
1448 error = dmu_tx_assign(tx,
1449 (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1450 if (error) {
1451 zfs_dirent_unlock(dl);
1452 if (error == ERESTART) {
1453 waited = B_TRUE;
1454 dmu_tx_wait(tx);
1455 dmu_tx_abort(tx);
1456 goto top;
1457 }
1458 zfs_acl_ids_free(&acl_ids);
1459 dmu_tx_abort(tx);
1460 ZFS_EXIT(zfsvfs);
1461 return (error);
1462 }
1463 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1464
1465 error = zfs_link_create(dl, zp, tx, ZNEW);
1466 if (error != 0) {
1467 /*
1468 * Since, we failed to add the directory entry for it,
1469 * delete the newly created dnode.
1470 */
1471 zfs_znode_delete(zp, tx);
1472 remove_inode_hash(ZTOI(zp));
1473 zfs_acl_ids_free(&acl_ids);
1474 dmu_tx_commit(tx);
1475 goto out;
1476 }
1477
1478 if (fuid_dirtied)
1479 zfs_fuid_sync(zfsvfs, tx);
1480
1481 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1482 if (flag & FIGNORECASE)
1483 txtype |= TX_CI;
1484 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1485 vsecp, acl_ids.z_fuidp, vap);
1486 zfs_acl_ids_free(&acl_ids);
1487 dmu_tx_commit(tx);
1488 } else {
1489 int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1490
1491 if (have_acl)
1492 zfs_acl_ids_free(&acl_ids);
1493 have_acl = B_FALSE;
1494
1495 /*
1496 * A directory entry already exists for this name.
1497 */
1498 /*
1499 * Can't truncate an existing file if in exclusive mode.
1500 */
1501 if (excl) {
1502 error = SET_ERROR(EEXIST);
1503 goto out;
1504 }
1505 /*
1506 * Can't open a directory for writing.
1507 */
1508 if (S_ISDIR(ZTOI(zp)->i_mode)) {
1509 error = SET_ERROR(EISDIR);
1510 goto out;
1511 }
1512 /*
1513 * Verify requested access to file.
1514 */
1515 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1516 goto out;
1517 }
1518
1519 mutex_enter(&dzp->z_lock);
1520 dzp->z_seq++;
1521 mutex_exit(&dzp->z_lock);
1522
1523 /*
1524 * Truncate regular files if requested.
1525 */
1526 if (S_ISREG(ZTOI(zp)->i_mode) &&
1527 (vap->va_mask & ATTR_SIZE) && (vap->va_size == 0)) {
1528 /* we can't hold any locks when calling zfs_freesp() */
1529 if (dl) {
1530 zfs_dirent_unlock(dl);
1531 dl = NULL;
1532 }
1533 error = zfs_freesp(zp, 0, 0, mode, TRUE);
1534 }
1535 }
1536 out:
1537
1538 if (dl)
1539 zfs_dirent_unlock(dl);
1540
1541 if (error) {
1542 if (zp)
1543 iput(ZTOI(zp));
1544 } else {
1545 zfs_inode_update(dzp);
1546 zfs_inode_update(zp);
1547 *ipp = ZTOI(zp);
1548 }
1549
1550 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1551 zil_commit(zilog, 0);
1552
1553 ZFS_EXIT(zfsvfs);
1554 return (error);
1555 }
1556
1557 /* ARGSUSED */
1558 int
1559 zfs_tmpfile(struct inode *dip, vattr_t *vap, int excl,
1560 int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp)
1561 {
1562 znode_t *zp = NULL, *dzp = ITOZ(dip);
1563 zfsvfs_t *zfsvfs = ITOZSB(dip);
1564 objset_t *os;
1565 dmu_tx_t *tx;
1566 int error;
1567 uid_t uid;
1568 gid_t gid;
1569 zfs_acl_ids_t acl_ids;
1570 uint64_t projid = ZFS_DEFAULT_PROJID;
1571 boolean_t fuid_dirtied;
1572 boolean_t have_acl = B_FALSE;
1573 boolean_t waited = B_FALSE;
1574
1575 /*
1576 * If we have an ephemeral id, ACL, or XVATTR then
1577 * make sure file system is at proper version
1578 */
1579
1580 gid = crgetgid(cr);
1581 uid = crgetuid(cr);
1582
1583 if (zfsvfs->z_use_fuids == B_FALSE &&
1584 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1585 return (SET_ERROR(EINVAL));
1586
1587 ZFS_ENTER(zfsvfs);
1588 ZFS_VERIFY_ZP(dzp);
1589 os = zfsvfs->z_os;
1590
1591 if (vap->va_mask & ATTR_XVATTR) {
1592 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1593 crgetuid(cr), cr, vap->va_mode)) != 0) {
1594 ZFS_EXIT(zfsvfs);
1595 return (error);
1596 }
1597 }
1598
1599 top:
1600 *ipp = NULL;
1601
1602 /*
1603 * Create a new file object and update the directory
1604 * to reference it.
1605 */
1606 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
1607 if (have_acl)
1608 zfs_acl_ids_free(&acl_ids);
1609 goto out;
1610 }
1611
1612 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1613 cr, vsecp, &acl_ids)) != 0)
1614 goto out;
1615 have_acl = B_TRUE;
1616
1617 if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
1618 projid = zfs_inherit_projid(dzp);
1619 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
1620 zfs_acl_ids_free(&acl_ids);
1621 error = SET_ERROR(EDQUOT);
1622 goto out;
1623 }
1624
1625 tx = dmu_tx_create(os);
1626
1627 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1628 ZFS_SA_BASE_ATTR_SIZE);
1629 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1630
1631 fuid_dirtied = zfsvfs->z_fuid_dirty;
1632 if (fuid_dirtied)
1633 zfs_fuid_txhold(zfsvfs, tx);
1634 if (!zfsvfs->z_use_sa &&
1635 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1636 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1637 0, acl_ids.z_aclp->z_acl_bytes);
1638 }
1639 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1640 if (error) {
1641 if (error == ERESTART) {
1642 waited = B_TRUE;
1643 dmu_tx_wait(tx);
1644 dmu_tx_abort(tx);
1645 goto top;
1646 }
1647 zfs_acl_ids_free(&acl_ids);
1648 dmu_tx_abort(tx);
1649 ZFS_EXIT(zfsvfs);
1650 return (error);
1651 }
1652 zfs_mknode(dzp, vap, tx, cr, IS_TMPFILE, &zp, &acl_ids);
1653
1654 if (fuid_dirtied)
1655 zfs_fuid_sync(zfsvfs, tx);
1656
1657 /* Add to unlinked set */
1658 zp->z_unlinked = 1;
1659 zfs_unlinked_add(zp, tx);
1660 zfs_acl_ids_free(&acl_ids);
1661 dmu_tx_commit(tx);
1662 out:
1663
1664 if (error) {
1665 if (zp)
1666 iput(ZTOI(zp));
1667 } else {
1668 zfs_inode_update(dzp);
1669 zfs_inode_update(zp);
1670 *ipp = ZTOI(zp);
1671 }
1672
1673 ZFS_EXIT(zfsvfs);
1674 return (error);
1675 }
1676
1677 /*
1678 * Remove an entry from a directory.
1679 *
1680 * IN: dip - inode of directory to remove entry from.
1681 * name - name of entry to remove.
1682 * cr - credentials of caller.
1683 * flags - case flags.
1684 *
1685 * RETURN: 0 if success
1686 * error code if failure
1687 *
1688 * Timestamps:
1689 * dip - ctime|mtime
1690 * ip - ctime (if nlink > 0)
1691 */
1692
1693 uint64_t null_xattr = 0;
1694
1695 /*ARGSUSED*/
1696 int
1697 zfs_remove(struct inode *dip, char *name, cred_t *cr, int flags)
1698 {
1699 znode_t *zp, *dzp = ITOZ(dip);
1700 znode_t *xzp;
1701 struct inode *ip;
1702 zfsvfs_t *zfsvfs = ITOZSB(dip);
1703 zilog_t *zilog;
1704 uint64_t acl_obj, xattr_obj;
1705 uint64_t xattr_obj_unlinked = 0;
1706 uint64_t obj = 0;
1707 uint64_t links;
1708 zfs_dirlock_t *dl;
1709 dmu_tx_t *tx;
1710 boolean_t may_delete_now, delete_now = FALSE;
1711 boolean_t unlinked, toobig = FALSE;
1712 uint64_t txtype;
1713 pathname_t *realnmp = NULL;
1714 pathname_t realnm;
1715 int error;
1716 int zflg = ZEXISTS;
1717 boolean_t waited = B_FALSE;
1718
1719 if (name == NULL)
1720 return (SET_ERROR(EINVAL));
1721
1722 ZFS_ENTER(zfsvfs);
1723 ZFS_VERIFY_ZP(dzp);
1724 zilog = zfsvfs->z_log;
1725
1726 if (flags & FIGNORECASE) {
1727 zflg |= ZCILOOK;
1728 pn_alloc(&realnm);
1729 realnmp = &realnm;
1730 }
1731
1732 top:
1733 xattr_obj = 0;
1734 xzp = NULL;
1735 /*
1736 * Attempt to lock directory; fail if entry doesn't exist.
1737 */
1738 if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1739 NULL, realnmp))) {
1740 if (realnmp)
1741 pn_free(realnmp);
1742 ZFS_EXIT(zfsvfs);
1743 return (error);
1744 }
1745
1746 ip = ZTOI(zp);
1747
1748 if ((error = zfs_zaccess_delete(dzp, zp, cr))) {
1749 goto out;
1750 }
1751
1752 /*
1753 * Need to use rmdir for removing directories.
1754 */
1755 if (S_ISDIR(ip->i_mode)) {
1756 error = SET_ERROR(EPERM);
1757 goto out;
1758 }
1759
1760 mutex_enter(&zp->z_lock);
1761 may_delete_now = atomic_read(&ip->i_count) == 1 && !(zp->z_is_mapped);
1762 mutex_exit(&zp->z_lock);
1763
1764 /*
1765 * We may delete the znode now, or we may put it in the unlinked set;
1766 * it depends on whether we're the last link, and on whether there are
1767 * other holds on the inode. So we dmu_tx_hold() the right things to
1768 * allow for either case.
1769 */
1770 obj = zp->z_id;
1771 tx = dmu_tx_create(zfsvfs->z_os);
1772 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1773 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1774 zfs_sa_upgrade_txholds(tx, zp);
1775 zfs_sa_upgrade_txholds(tx, dzp);
1776 if (may_delete_now) {
1777 toobig = zp->z_size > zp->z_blksz * zfs_delete_blocks;
1778 /* if the file is too big, only hold_free a token amount */
1779 dmu_tx_hold_free(tx, zp->z_id, 0,
1780 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1781 }
1782
1783 /* are there any extended attributes? */
1784 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1785 &xattr_obj, sizeof (xattr_obj));
1786 if (error == 0 && xattr_obj) {
1787 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1788 ASSERT0(error);
1789 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1790 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1791 }
1792
1793 mutex_enter(&zp->z_lock);
1794 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1795 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1796 mutex_exit(&zp->z_lock);
1797
1798 /* charge as an update -- would be nice not to charge at all */
1799 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1800
1801 /*
1802 * Mark this transaction as typically resulting in a net free of space
1803 */
1804 dmu_tx_mark_netfree(tx);
1805
1806 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1807 if (error) {
1808 zfs_dirent_unlock(dl);
1809 if (error == ERESTART) {
1810 waited = B_TRUE;
1811 dmu_tx_wait(tx);
1812 dmu_tx_abort(tx);
1813 iput(ip);
1814 if (xzp)
1815 iput(ZTOI(xzp));
1816 goto top;
1817 }
1818 if (realnmp)
1819 pn_free(realnmp);
1820 dmu_tx_abort(tx);
1821 iput(ip);
1822 if (xzp)
1823 iput(ZTOI(xzp));
1824 ZFS_EXIT(zfsvfs);
1825 return (error);
1826 }
1827
1828 /*
1829 * Remove the directory entry.
1830 */
1831 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1832
1833 if (error) {
1834 dmu_tx_commit(tx);
1835 goto out;
1836 }
1837
1838 if (unlinked) {
1839 /*
1840 * Hold z_lock so that we can make sure that the ACL obj
1841 * hasn't changed. Could have been deleted due to
1842 * zfs_sa_upgrade().
1843 */
1844 mutex_enter(&zp->z_lock);
1845 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1846 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1847 delete_now = may_delete_now && !toobig &&
1848 atomic_read(&ip->i_count) == 1 && !(zp->z_is_mapped) &&
1849 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1850 acl_obj;
1851 }
1852
1853 if (delete_now) {
1854 if (xattr_obj_unlinked) {
1855 ASSERT3U(ZTOI(xzp)->i_nlink, ==, 2);
1856 mutex_enter(&xzp->z_lock);
1857 xzp->z_unlinked = 1;
1858 clear_nlink(ZTOI(xzp));
1859 links = 0;
1860 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1861 &links, sizeof (links), tx);
1862 ASSERT3U(error, ==, 0);
1863 mutex_exit(&xzp->z_lock);
1864 zfs_unlinked_add(xzp, tx);
1865
1866 if (zp->z_is_sa)
1867 error = sa_remove(zp->z_sa_hdl,
1868 SA_ZPL_XATTR(zfsvfs), tx);
1869 else
1870 error = sa_update(zp->z_sa_hdl,
1871 SA_ZPL_XATTR(zfsvfs), &null_xattr,
1872 sizeof (uint64_t), tx);
1873 ASSERT0(error);
1874 }
1875 /*
1876 * Add to the unlinked set because a new reference could be
1877 * taken concurrently resulting in a deferred destruction.
1878 */
1879 zfs_unlinked_add(zp, tx);
1880 mutex_exit(&zp->z_lock);
1881 } else if (unlinked) {
1882 mutex_exit(&zp->z_lock);
1883 zfs_unlinked_add(zp, tx);
1884 }
1885
1886 txtype = TX_REMOVE;
1887 if (flags & FIGNORECASE)
1888 txtype |= TX_CI;
1889 zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1890
1891 dmu_tx_commit(tx);
1892 out:
1893 if (realnmp)
1894 pn_free(realnmp);
1895
1896 zfs_dirent_unlock(dl);
1897 zfs_inode_update(dzp);
1898 zfs_inode_update(zp);
1899
1900 if (delete_now)
1901 iput(ip);
1902 else
1903 zfs_iput_async(ip);
1904
1905 if (xzp) {
1906 zfs_inode_update(xzp);
1907 zfs_iput_async(ZTOI(xzp));
1908 }
1909
1910 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1911 zil_commit(zilog, 0);
1912
1913 ZFS_EXIT(zfsvfs);
1914 return (error);
1915 }
1916
1917 /*
1918 * Create a new directory and insert it into dip using the name
1919 * provided. Return a pointer to the inserted directory.
1920 *
1921 * IN: dip - inode of directory to add subdir to.
1922 * dirname - name of new directory.
1923 * vap - attributes of new directory.
1924 * cr - credentials of caller.
1925 * flags - case flags.
1926 * vsecp - ACL to be set
1927 *
1928 * OUT: ipp - inode of created directory.
1929 *
1930 * RETURN: 0 if success
1931 * error code if failure
1932 *
1933 * Timestamps:
1934 * dip - ctime|mtime updated
1935 * ipp - ctime|mtime|atime updated
1936 */
1937 /*ARGSUSED*/
1938 int
1939 zfs_mkdir(struct inode *dip, char *dirname, vattr_t *vap, struct inode **ipp,
1940 cred_t *cr, int flags, vsecattr_t *vsecp)
1941 {
1942 znode_t *zp, *dzp = ITOZ(dip);
1943 zfsvfs_t *zfsvfs = ITOZSB(dip);
1944 zilog_t *zilog;
1945 zfs_dirlock_t *dl;
1946 uint64_t txtype;
1947 dmu_tx_t *tx;
1948 int error;
1949 int zf = ZNEW;
1950 uid_t uid;
1951 gid_t gid = crgetgid(cr);
1952 zfs_acl_ids_t acl_ids;
1953 boolean_t fuid_dirtied;
1954 boolean_t waited = B_FALSE;
1955
1956 ASSERT(S_ISDIR(vap->va_mode));
1957
1958 /*
1959 * If we have an ephemeral id, ACL, or XVATTR then
1960 * make sure file system is at proper version
1961 */
1962
1963 uid = crgetuid(cr);
1964 if (zfsvfs->z_use_fuids == B_FALSE &&
1965 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1966 return (SET_ERROR(EINVAL));
1967
1968 if (dirname == NULL)
1969 return (SET_ERROR(EINVAL));
1970
1971 ZFS_ENTER(zfsvfs);
1972 ZFS_VERIFY_ZP(dzp);
1973 zilog = zfsvfs->z_log;
1974
1975 if (dzp->z_pflags & ZFS_XATTR) {
1976 ZFS_EXIT(zfsvfs);
1977 return (SET_ERROR(EINVAL));
1978 }
1979
1980 if (zfsvfs->z_utf8 && u8_validate(dirname,
1981 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1982 ZFS_EXIT(zfsvfs);
1983 return (SET_ERROR(EILSEQ));
1984 }
1985 if (flags & FIGNORECASE)
1986 zf |= ZCILOOK;
1987
1988 if (vap->va_mask & ATTR_XVATTR) {
1989 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1990 crgetuid(cr), cr, vap->va_mode)) != 0) {
1991 ZFS_EXIT(zfsvfs);
1992 return (error);
1993 }
1994 }
1995
1996 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1997 vsecp, &acl_ids)) != 0) {
1998 ZFS_EXIT(zfsvfs);
1999 return (error);
2000 }
2001 /*
2002 * First make sure the new directory doesn't exist.
2003 *
2004 * Existence is checked first to make sure we don't return
2005 * EACCES instead of EEXIST which can cause some applications
2006 * to fail.
2007 */
2008 top:
2009 *ipp = NULL;
2010
2011 if ((error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
2012 NULL, NULL))) {
2013 zfs_acl_ids_free(&acl_ids);
2014 ZFS_EXIT(zfsvfs);
2015 return (error);
2016 }
2017
2018 if ((error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr))) {
2019 zfs_acl_ids_free(&acl_ids);
2020 zfs_dirent_unlock(dl);
2021 ZFS_EXIT(zfsvfs);
2022 return (error);
2023 }
2024
2025 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zfs_inherit_projid(dzp))) {
2026 zfs_acl_ids_free(&acl_ids);
2027 zfs_dirent_unlock(dl);
2028 ZFS_EXIT(zfsvfs);
2029 return (SET_ERROR(EDQUOT));
2030 }
2031
2032 /*
2033 * Add a new entry to the directory.
2034 */
2035 tx = dmu_tx_create(zfsvfs->z_os);
2036 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
2037 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2038 fuid_dirtied = zfsvfs->z_fuid_dirty;
2039 if (fuid_dirtied)
2040 zfs_fuid_txhold(zfsvfs, tx);
2041 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2042 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
2043 acl_ids.z_aclp->z_acl_bytes);
2044 }
2045
2046 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
2047 ZFS_SA_BASE_ATTR_SIZE);
2048
2049 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
2050 if (error) {
2051 zfs_dirent_unlock(dl);
2052 if (error == ERESTART) {
2053 waited = B_TRUE;
2054 dmu_tx_wait(tx);
2055 dmu_tx_abort(tx);
2056 goto top;
2057 }
2058 zfs_acl_ids_free(&acl_ids);
2059 dmu_tx_abort(tx);
2060 ZFS_EXIT(zfsvfs);
2061 return (error);
2062 }
2063
2064 /*
2065 * Create new node.
2066 */
2067 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
2068
2069 /*
2070 * Now put new name in parent dir.
2071 */
2072 error = zfs_link_create(dl, zp, tx, ZNEW);
2073 if (error != 0) {
2074 zfs_znode_delete(zp, tx);
2075 remove_inode_hash(ZTOI(zp));
2076 goto out;
2077 }
2078
2079 if (fuid_dirtied)
2080 zfs_fuid_sync(zfsvfs, tx);
2081
2082 *ipp = ZTOI(zp);
2083
2084 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2085 if (flags & FIGNORECASE)
2086 txtype |= TX_CI;
2087 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2088 acl_ids.z_fuidp, vap);
2089
2090 out:
2091 zfs_acl_ids_free(&acl_ids);
2092
2093 dmu_tx_commit(tx);
2094
2095 zfs_dirent_unlock(dl);
2096
2097 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2098 zil_commit(zilog, 0);
2099
2100 if (error != 0) {
2101 iput(ZTOI(zp));
2102 } else {
2103 zfs_inode_update(dzp);
2104 zfs_inode_update(zp);
2105 }
2106 ZFS_EXIT(zfsvfs);
2107 return (error);
2108 }
2109
2110 /*
2111 * Remove a directory subdir entry. If the current working
2112 * directory is the same as the subdir to be removed, the
2113 * remove will fail.
2114 *
2115 * IN: dip - inode of directory to remove from.
2116 * name - name of directory to be removed.
2117 * cwd - inode of current working directory.
2118 * cr - credentials of caller.
2119 * flags - case flags
2120 *
2121 * RETURN: 0 on success, error code on failure.
2122 *
2123 * Timestamps:
2124 * dip - ctime|mtime updated
2125 */
2126 /*ARGSUSED*/
2127 int
2128 zfs_rmdir(struct inode *dip, char *name, struct inode *cwd, cred_t *cr,
2129 int flags)
2130 {
2131 znode_t *dzp = ITOZ(dip);
2132 znode_t *zp;
2133 struct inode *ip;
2134 zfsvfs_t *zfsvfs = ITOZSB(dip);
2135 zilog_t *zilog;
2136 zfs_dirlock_t *dl;
2137 dmu_tx_t *tx;
2138 int error;
2139 int zflg = ZEXISTS;
2140 boolean_t waited = B_FALSE;
2141
2142 if (name == NULL)
2143 return (SET_ERROR(EINVAL));
2144
2145 ZFS_ENTER(zfsvfs);
2146 ZFS_VERIFY_ZP(dzp);
2147 zilog = zfsvfs->z_log;
2148
2149 if (flags & FIGNORECASE)
2150 zflg |= ZCILOOK;
2151 top:
2152 zp = NULL;
2153
2154 /*
2155 * Attempt to lock directory; fail if entry doesn't exist.
2156 */
2157 if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2158 NULL, NULL))) {
2159 ZFS_EXIT(zfsvfs);
2160 return (error);
2161 }
2162
2163 ip = ZTOI(zp);
2164
2165 if ((error = zfs_zaccess_delete(dzp, zp, cr))) {
2166 goto out;
2167 }
2168
2169 if (!S_ISDIR(ip->i_mode)) {
2170 error = SET_ERROR(ENOTDIR);
2171 goto out;
2172 }
2173
2174 if (ip == cwd) {
2175 error = SET_ERROR(EINVAL);
2176 goto out;
2177 }
2178
2179 /*
2180 * Grab a lock on the directory to make sure that no one is
2181 * trying to add (or lookup) entries while we are removing it.
2182 */
2183 rw_enter(&zp->z_name_lock, RW_WRITER);
2184
2185 /*
2186 * Grab a lock on the parent pointer to make sure we play well
2187 * with the treewalk and directory rename code.
2188 */
2189 rw_enter(&zp->z_parent_lock, RW_WRITER);
2190
2191 tx = dmu_tx_create(zfsvfs->z_os);
2192 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2193 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2194 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2195 zfs_sa_upgrade_txholds(tx, zp);
2196 zfs_sa_upgrade_txholds(tx, dzp);
2197 dmu_tx_mark_netfree(tx);
2198 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
2199 if (error) {
2200 rw_exit(&zp->z_parent_lock);
2201 rw_exit(&zp->z_name_lock);
2202 zfs_dirent_unlock(dl);
2203 if (error == ERESTART) {
2204 waited = B_TRUE;
2205 dmu_tx_wait(tx);
2206 dmu_tx_abort(tx);
2207 iput(ip);
2208 goto top;
2209 }
2210 dmu_tx_abort(tx);
2211 iput(ip);
2212 ZFS_EXIT(zfsvfs);
2213 return (error);
2214 }
2215
2216 error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2217
2218 if (error == 0) {
2219 uint64_t txtype = TX_RMDIR;
2220 if (flags & FIGNORECASE)
2221 txtype |= TX_CI;
2222 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2223 }
2224
2225 dmu_tx_commit(tx);
2226
2227 rw_exit(&zp->z_parent_lock);
2228 rw_exit(&zp->z_name_lock);
2229 out:
2230 zfs_dirent_unlock(dl);
2231
2232 zfs_inode_update(dzp);
2233 zfs_inode_update(zp);
2234 iput(ip);
2235
2236 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2237 zil_commit(zilog, 0);
2238
2239 ZFS_EXIT(zfsvfs);
2240 return (error);
2241 }
2242
2243 /*
2244 * Read directory entries from the given directory cursor position and emit
2245 * name and position for each entry.
2246 *
2247 * IN: ip - inode of directory to read.
2248 * ctx - directory entry context.
2249 * cr - credentials of caller.
2250 *
2251 * RETURN: 0 if success
2252 * error code if failure
2253 *
2254 * Timestamps:
2255 * ip - atime updated
2256 *
2257 * Note that the low 4 bits of the cookie returned by zap is always zero.
2258 * This allows us to use the low range for "special" directory entries:
2259 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem,
2260 * we use the offset 2 for the '.zfs' directory.
2261 */
2262 /* ARGSUSED */
2263 int
2264 zfs_readdir(struct inode *ip, zpl_dir_context_t *ctx, cred_t *cr)
2265 {
2266 znode_t *zp = ITOZ(ip);
2267 zfsvfs_t *zfsvfs = ITOZSB(ip);
2268 objset_t *os;
2269 zap_cursor_t zc;
2270 zap_attribute_t zap;
2271 int error;
2272 uint8_t prefetch;
2273 uint8_t type;
2274 int done = 0;
2275 uint64_t parent;
2276 uint64_t offset; /* must be unsigned; checks for < 1 */
2277
2278 ZFS_ENTER(zfsvfs);
2279 ZFS_VERIFY_ZP(zp);
2280
2281 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2282 &parent, sizeof (parent))) != 0)
2283 goto out;
2284
2285 /*
2286 * Quit if directory has been removed (posix)
2287 */
2288 if (zp->z_unlinked)
2289 goto out;
2290
2291 error = 0;
2292 os = zfsvfs->z_os;
2293 offset = ctx->pos;
2294 prefetch = zp->z_zn_prefetch;
2295
2296 /*
2297 * Initialize the iterator cursor.
2298 */
2299 if (offset <= 3) {
2300 /*
2301 * Start iteration from the beginning of the directory.
2302 */
2303 zap_cursor_init(&zc, os, zp->z_id);
2304 } else {
2305 /*
2306 * The offset is a serialized cursor.
2307 */
2308 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2309 }
2310
2311 /*
2312 * Transform to file-system independent format
2313 */
2314 while (!done) {
2315 uint64_t objnum;
2316 /*
2317 * Special case `.', `..', and `.zfs'.
2318 */
2319 if (offset == 0) {
2320 (void) strcpy(zap.za_name, ".");
2321 zap.za_normalization_conflict = 0;
2322 objnum = zp->z_id;
2323 type = DT_DIR;
2324 } else if (offset == 1) {
2325 (void) strcpy(zap.za_name, "..");
2326 zap.za_normalization_conflict = 0;
2327 objnum = parent;
2328 type = DT_DIR;
2329 } else if (offset == 2 && zfs_show_ctldir(zp)) {
2330 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2331 zap.za_normalization_conflict = 0;
2332 objnum = ZFSCTL_INO_ROOT;
2333 type = DT_DIR;
2334 } else {
2335 /*
2336 * Grab next entry.
2337 */
2338 if ((error = zap_cursor_retrieve(&zc, &zap))) {
2339 if (error == ENOENT)
2340 break;
2341 else
2342 goto update;
2343 }
2344
2345 /*
2346 * Allow multiple entries provided the first entry is
2347 * the object id. Non-zpl consumers may safely make
2348 * use of the additional space.
2349 *
2350 * XXX: This should be a feature flag for compatibility
2351 */
2352 if (zap.za_integer_length != 8 ||
2353 zap.za_num_integers == 0) {
2354 cmn_err(CE_WARN, "zap_readdir: bad directory "
2355 "entry, obj = %lld, offset = %lld, "
2356 "length = %d, num = %lld\n",
2357 (u_longlong_t)zp->z_id,
2358 (u_longlong_t)offset,
2359 zap.za_integer_length,
2360 (u_longlong_t)zap.za_num_integers);
2361 error = SET_ERROR(ENXIO);
2362 goto update;
2363 }
2364
2365 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2366 type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2367 }
2368
2369 done = !zpl_dir_emit(ctx, zap.za_name, strlen(zap.za_name),
2370 objnum, type);
2371 if (done)
2372 break;
2373
2374 /* Prefetch znode */
2375 if (prefetch) {
2376 dmu_prefetch(os, objnum, 0, 0, 0,
2377 ZIO_PRIORITY_SYNC_READ);
2378 }
2379
2380 /*
2381 * Move to the next entry, fill in the previous offset.
2382 */
2383 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2384 zap_cursor_advance(&zc);
2385 offset = zap_cursor_serialize(&zc);
2386 } else {
2387 offset += 1;
2388 }
2389 ctx->pos = offset;
2390 }
2391 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2392
2393 update:
2394 zap_cursor_fini(&zc);
2395 if (error == ENOENT)
2396 error = 0;
2397 out:
2398 ZFS_EXIT(zfsvfs);
2399
2400 return (error);
2401 }
2402
2403 ulong_t zfs_fsync_sync_cnt = 4;
2404
2405 int
2406 zfs_fsync(struct inode *ip, int syncflag, cred_t *cr)
2407 {
2408 znode_t *zp = ITOZ(ip);
2409 zfsvfs_t *zfsvfs = ITOZSB(ip);
2410
2411 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2412
2413 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2414 ZFS_ENTER(zfsvfs);
2415 ZFS_VERIFY_ZP(zp);
2416 zil_commit(zfsvfs->z_log, zp->z_id);
2417 ZFS_EXIT(zfsvfs);
2418 }
2419 tsd_set(zfs_fsyncer_key, NULL);
2420
2421 return (0);
2422 }
2423
2424
2425 /*
2426 * Get the requested file attributes and place them in the provided
2427 * vattr structure.
2428 *
2429 * IN: ip - inode of file.
2430 * vap - va_mask identifies requested attributes.
2431 * If ATTR_XVATTR set, then optional attrs are requested
2432 * flags - ATTR_NOACLCHECK (CIFS server context)
2433 * cr - credentials of caller.
2434 *
2435 * OUT: vap - attribute values.
2436 *
2437 * RETURN: 0 (always succeeds)
2438 */
2439 /* ARGSUSED */
2440 int
2441 zfs_getattr(struct inode *ip, vattr_t *vap, int flags, cred_t *cr)
2442 {
2443 znode_t *zp = ITOZ(ip);
2444 zfsvfs_t *zfsvfs = ITOZSB(ip);
2445 int error = 0;
2446 uint64_t links;
2447 uint64_t atime[2], mtime[2], ctime[2];
2448 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2449 xoptattr_t *xoap = NULL;
2450 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2451 sa_bulk_attr_t bulk[3];
2452 int count = 0;
2453
2454 ZFS_ENTER(zfsvfs);
2455 ZFS_VERIFY_ZP(zp);
2456
2457 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2458
2459 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
2460 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2461 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2462
2463 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2464 ZFS_EXIT(zfsvfs);
2465 return (error);
2466 }
2467
2468 /*
2469 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2470 * Also, if we are the owner don't bother, since owner should
2471 * always be allowed to read basic attributes of file.
2472 */
2473 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2474 (vap->va_uid != crgetuid(cr))) {
2475 if ((error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2476 skipaclchk, cr))) {
2477 ZFS_EXIT(zfsvfs);
2478 return (error);
2479 }
2480 }
2481
2482 /*
2483 * Return all attributes. It's cheaper to provide the answer
2484 * than to determine whether we were asked the question.
2485 */
2486
2487 mutex_enter(&zp->z_lock);
2488 vap->va_type = vn_mode_to_vtype(zp->z_mode);
2489 vap->va_mode = zp->z_mode;
2490 vap->va_fsid = ZTOI(zp)->i_sb->s_dev;
2491 vap->va_nodeid = zp->z_id;
2492 if ((zp->z_id == zfsvfs->z_root) && zfs_show_ctldir(zp))
2493 links = ZTOI(zp)->i_nlink + 1;
2494 else
2495 links = ZTOI(zp)->i_nlink;
2496 vap->va_nlink = MIN(links, ZFS_LINK_MAX);
2497 vap->va_size = i_size_read(ip);
2498 vap->va_rdev = ip->i_rdev;
2499 vap->va_seq = ip->i_generation;
2500
2501 /*
2502 * Add in any requested optional attributes and the create time.
2503 * Also set the corresponding bits in the returned attribute bitmap.
2504 */
2505 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2506 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2507 xoap->xoa_archive =
2508 ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2509 XVA_SET_RTN(xvap, XAT_ARCHIVE);
2510 }
2511
2512 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2513 xoap->xoa_readonly =
2514 ((zp->z_pflags & ZFS_READONLY) != 0);
2515 XVA_SET_RTN(xvap, XAT_READONLY);
2516 }
2517
2518 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2519 xoap->xoa_system =
2520 ((zp->z_pflags & ZFS_SYSTEM) != 0);
2521 XVA_SET_RTN(xvap, XAT_SYSTEM);
2522 }
2523
2524 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2525 xoap->xoa_hidden =
2526 ((zp->z_pflags & ZFS_HIDDEN) != 0);
2527 XVA_SET_RTN(xvap, XAT_HIDDEN);
2528 }
2529
2530 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2531 xoap->xoa_nounlink =
2532 ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2533 XVA_SET_RTN(xvap, XAT_NOUNLINK);
2534 }
2535
2536 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2537 xoap->xoa_immutable =
2538 ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2539 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2540 }
2541
2542 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2543 xoap->xoa_appendonly =
2544 ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2545 XVA_SET_RTN(xvap, XAT_APPENDONLY);
2546 }
2547
2548 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2549 xoap->xoa_nodump =
2550 ((zp->z_pflags & ZFS_NODUMP) != 0);
2551 XVA_SET_RTN(xvap, XAT_NODUMP);
2552 }
2553
2554 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2555 xoap->xoa_opaque =
2556 ((zp->z_pflags & ZFS_OPAQUE) != 0);
2557 XVA_SET_RTN(xvap, XAT_OPAQUE);
2558 }
2559
2560 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2561 xoap->xoa_av_quarantined =
2562 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2563 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2564 }
2565
2566 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2567 xoap->xoa_av_modified =
2568 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2569 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2570 }
2571
2572 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2573 S_ISREG(ip->i_mode)) {
2574 zfs_sa_get_scanstamp(zp, xvap);
2575 }
2576
2577 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2578 uint64_t times[2];
2579
2580 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2581 times, sizeof (times));
2582 ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2583 XVA_SET_RTN(xvap, XAT_CREATETIME);
2584 }
2585
2586 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2587 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2588 XVA_SET_RTN(xvap, XAT_REPARSE);
2589 }
2590 if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2591 xoap->xoa_generation = ip->i_generation;
2592 XVA_SET_RTN(xvap, XAT_GEN);
2593 }
2594
2595 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2596 xoap->xoa_offline =
2597 ((zp->z_pflags & ZFS_OFFLINE) != 0);
2598 XVA_SET_RTN(xvap, XAT_OFFLINE);
2599 }
2600
2601 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2602 xoap->xoa_sparse =
2603 ((zp->z_pflags & ZFS_SPARSE) != 0);
2604 XVA_SET_RTN(xvap, XAT_SPARSE);
2605 }
2606
2607 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
2608 xoap->xoa_projinherit =
2609 ((zp->z_pflags & ZFS_PROJINHERIT) != 0);
2610 XVA_SET_RTN(xvap, XAT_PROJINHERIT);
2611 }
2612
2613 if (XVA_ISSET_REQ(xvap, XAT_PROJID)) {
2614 xoap->xoa_projid = zp->z_projid;
2615 XVA_SET_RTN(xvap, XAT_PROJID);
2616 }
2617 }
2618
2619 ZFS_TIME_DECODE(&vap->va_atime, atime);
2620 ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2621 ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2622
2623 mutex_exit(&zp->z_lock);
2624
2625 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2626
2627 if (zp->z_blksz == 0) {
2628 /*
2629 * Block size hasn't been set; suggest maximal I/O transfers.
2630 */
2631 vap->va_blksize = zfsvfs->z_max_blksz;
2632 }
2633
2634 ZFS_EXIT(zfsvfs);
2635 return (0);
2636 }
2637
2638 /*
2639 * Get the basic file attributes and place them in the provided kstat
2640 * structure. The inode is assumed to be the authoritative source
2641 * for most of the attributes. However, the znode currently has the
2642 * authoritative atime, blksize, and block count.
2643 *
2644 * IN: ip - inode of file.
2645 *
2646 * OUT: sp - kstat values.
2647 *
2648 * RETURN: 0 (always succeeds)
2649 */
2650 /* ARGSUSED */
2651 int
2652 zfs_getattr_fast(struct inode *ip, struct kstat *sp)
2653 {
2654 znode_t *zp = ITOZ(ip);
2655 zfsvfs_t *zfsvfs = ITOZSB(ip);
2656 uint32_t blksize;
2657 u_longlong_t nblocks;
2658
2659 ZFS_ENTER(zfsvfs);
2660 ZFS_VERIFY_ZP(zp);
2661
2662 mutex_enter(&zp->z_lock);
2663
2664 generic_fillattr(ip, sp);
2665 /*
2666 * +1 link count for root inode with visible '.zfs' directory.
2667 */
2668 if ((zp->z_id == zfsvfs->z_root) && zfs_show_ctldir(zp))
2669 if (sp->nlink < ZFS_LINK_MAX)
2670 sp->nlink++;
2671
2672 sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
2673 sp->blksize = blksize;
2674 sp->blocks = nblocks;
2675
2676 if (unlikely(zp->z_blksz == 0)) {
2677 /*
2678 * Block size hasn't been set; suggest maximal I/O transfers.
2679 */
2680 sp->blksize = zfsvfs->z_max_blksz;
2681 }
2682
2683 mutex_exit(&zp->z_lock);
2684
2685 /*
2686 * Required to prevent NFS client from detecting different inode
2687 * numbers of snapshot root dentry before and after snapshot mount.
2688 */
2689 if (zfsvfs->z_issnap) {
2690 if (ip->i_sb->s_root->d_inode == ip)
2691 sp->ino = ZFSCTL_INO_SNAPDIRS -
2692 dmu_objset_id(zfsvfs->z_os);
2693 }
2694
2695 ZFS_EXIT(zfsvfs);
2696
2697 return (0);
2698 }
2699
2700 /*
2701 * For the operation of changing file's user/group/project, we need to
2702 * handle not only the main object that is assigned to the file directly,
2703 * but also the ones that are used by the file via hidden xattr directory.
2704 *
2705 * Because the xattr directory may contains many EA entries, as to it may
2706 * be impossible to change all of them via the transaction of changing the
2707 * main object's user/group/project attributes. Then we have to change them
2708 * via other multiple independent transactions one by one. It may be not good
2709 * solution, but we have no better idea yet.
2710 */
2711 static int
2712 zfs_setattr_dir(znode_t *dzp)
2713 {
2714 struct inode *dxip = ZTOI(dzp);
2715 struct inode *xip = NULL;
2716 zfsvfs_t *zfsvfs = ITOZSB(dxip);
2717 objset_t *os = zfsvfs->z_os;
2718 zap_cursor_t zc;
2719 zap_attribute_t zap;
2720 zfs_dirlock_t *dl;
2721 znode_t *zp;
2722 dmu_tx_t *tx = NULL;
2723 uint64_t uid, gid;
2724 sa_bulk_attr_t bulk[4];
2725 int count;
2726 int err;
2727
2728 zap_cursor_init(&zc, os, dzp->z_id);
2729 while ((err = zap_cursor_retrieve(&zc, &zap)) == 0) {
2730 count = 0;
2731 if (zap.za_integer_length != 8 || zap.za_num_integers != 1) {
2732 err = ENXIO;
2733 break;
2734 }
2735
2736 err = zfs_dirent_lock(&dl, dzp, (char *)zap.za_name, &zp,
2737 ZEXISTS, NULL, NULL);
2738 if (err == ENOENT)
2739 goto next;
2740 if (err)
2741 break;
2742
2743 xip = ZTOI(zp);
2744 if (KUID_TO_SUID(xip->i_uid) == KUID_TO_SUID(dxip->i_uid) &&
2745 KGID_TO_SGID(xip->i_gid) == KGID_TO_SGID(dxip->i_gid) &&
2746 zp->z_projid == dzp->z_projid)
2747 goto next;
2748
2749 tx = dmu_tx_create(os);
2750 if (!(zp->z_pflags & ZFS_PROJID))
2751 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2752 else
2753 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2754
2755 err = dmu_tx_assign(tx, TXG_WAIT);
2756 if (err)
2757 break;
2758
2759 mutex_enter(&dzp->z_lock);
2760
2761 if (KUID_TO_SUID(xip->i_uid) != KUID_TO_SUID(dxip->i_uid)) {
2762 xip->i_uid = dxip->i_uid;
2763 uid = zfs_uid_read(dxip);
2764 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
2765 &uid, sizeof (uid));
2766 }
2767
2768 if (KGID_TO_SGID(xip->i_gid) != KGID_TO_SGID(dxip->i_gid)) {
2769 xip->i_gid = dxip->i_gid;
2770 gid = zfs_gid_read(dxip);
2771 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
2772 &gid, sizeof (gid));
2773 }
2774
2775 if (zp->z_projid != dzp->z_projid) {
2776 if (!(zp->z_pflags & ZFS_PROJID)) {
2777 zp->z_pflags |= ZFS_PROJID;
2778 SA_ADD_BULK_ATTR(bulk, count,
2779 SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags,
2780 sizeof (zp->z_pflags));
2781 }
2782
2783 zp->z_projid = dzp->z_projid;
2784 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PROJID(zfsvfs),
2785 NULL, &zp->z_projid, sizeof (zp->z_projid));
2786 }
2787
2788 mutex_exit(&dzp->z_lock);
2789
2790 if (likely(count > 0)) {
2791 err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
2792 dmu_tx_commit(tx);
2793 } else {
2794 dmu_tx_abort(tx);
2795 }
2796 tx = NULL;
2797 if (err != 0 && err != ENOENT)
2798 break;
2799
2800 next:
2801 if (xip) {
2802 iput(xip);
2803 xip = NULL;
2804 zfs_dirent_unlock(dl);
2805 }
2806 zap_cursor_advance(&zc);
2807 }
2808
2809 if (tx)
2810 dmu_tx_abort(tx);
2811 if (xip) {
2812 iput(xip);
2813 zfs_dirent_unlock(dl);
2814 }
2815 zap_cursor_fini(&zc);
2816
2817 return (err == ENOENT ? 0 : err);
2818 }
2819
2820 /*
2821 * Set the file attributes to the values contained in the
2822 * vattr structure.
2823 *
2824 * IN: ip - inode of file to be modified.
2825 * vap - new attribute values.
2826 * If ATTR_XVATTR set, then optional attrs are being set
2827 * flags - ATTR_UTIME set if non-default time values provided.
2828 * - ATTR_NOACLCHECK (CIFS context only).
2829 * cr - credentials of caller.
2830 *
2831 * RETURN: 0 if success
2832 * error code if failure
2833 *
2834 * Timestamps:
2835 * ip - ctime updated, mtime updated if size changed.
2836 */
2837 /* ARGSUSED */
2838 int
2839 zfs_setattr(struct inode *ip, vattr_t *vap, int flags, cred_t *cr)
2840 {
2841 znode_t *zp = ITOZ(ip);
2842 zfsvfs_t *zfsvfs = ITOZSB(ip);
2843 objset_t *os = zfsvfs->z_os;
2844 zilog_t *zilog;
2845 dmu_tx_t *tx;
2846 vattr_t oldva;
2847 xvattr_t *tmpxvattr;
2848 uint_t mask = vap->va_mask;
2849 uint_t saved_mask = 0;
2850 int trim_mask = 0;
2851 uint64_t new_mode;
2852 uint64_t new_kuid = 0, new_kgid = 0, new_uid, new_gid;
2853 uint64_t xattr_obj;
2854 uint64_t mtime[2], ctime[2], atime[2];
2855 uint64_t projid = ZFS_INVALID_PROJID;
2856 znode_t *attrzp;
2857 int need_policy = FALSE;
2858 int err, err2 = 0;
2859 zfs_fuid_info_t *fuidp = NULL;
2860 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2861 xoptattr_t *xoap;
2862 zfs_acl_t *aclp;
2863 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2864 boolean_t fuid_dirtied = B_FALSE;
2865 boolean_t handle_eadir = B_FALSE;
2866 sa_bulk_attr_t *bulk, *xattr_bulk;
2867 int count = 0, xattr_count = 0, bulks = 8;
2868
2869 if (mask == 0)
2870 return (0);
2871
2872 ZFS_ENTER(zfsvfs);
2873 ZFS_VERIFY_ZP(zp);
2874
2875 /*
2876 * If this is a xvattr_t, then get a pointer to the structure of
2877 * optional attributes. If this is NULL, then we have a vattr_t.
2878 */
2879 xoap = xva_getxoptattr(xvap);
2880 if (xoap != NULL && (mask & ATTR_XVATTR)) {
2881 if (XVA_ISSET_REQ(xvap, XAT_PROJID)) {
2882 if (!dmu_objset_projectquota_enabled(os) ||
2883 (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode))) {
2884 ZFS_EXIT(zfsvfs);
2885 return (SET_ERROR(ENOTSUP));
2886 }
2887
2888 projid = xoap->xoa_projid;
2889 if (unlikely(projid == ZFS_INVALID_PROJID)) {
2890 ZFS_EXIT(zfsvfs);
2891 return (SET_ERROR(EINVAL));
2892 }
2893
2894 if (projid == zp->z_projid && zp->z_pflags & ZFS_PROJID)
2895 projid = ZFS_INVALID_PROJID;
2896 else
2897 need_policy = TRUE;
2898 }
2899
2900 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT) &&
2901 (xoap->xoa_projinherit !=
2902 ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) &&
2903 (!dmu_objset_projectquota_enabled(os) ||
2904 (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode)))) {
2905 ZFS_EXIT(zfsvfs);
2906 return (SET_ERROR(ENOTSUP));
2907 }
2908 }
2909
2910 zilog = zfsvfs->z_log;
2911
2912 /*
2913 * Make sure that if we have ephemeral uid/gid or xvattr specified
2914 * that file system is at proper version level
2915 */
2916
2917 if (zfsvfs->z_use_fuids == B_FALSE &&
2918 (((mask & ATTR_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2919 ((mask & ATTR_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2920 (mask & ATTR_XVATTR))) {
2921 ZFS_EXIT(zfsvfs);
2922 return (SET_ERROR(EINVAL));
2923 }
2924
2925 if (mask & ATTR_SIZE && S_ISDIR(ip->i_mode)) {
2926 ZFS_EXIT(zfsvfs);
2927 return (SET_ERROR(EISDIR));
2928 }
2929
2930 if (mask & ATTR_SIZE && !S_ISREG(ip->i_mode) && !S_ISFIFO(ip->i_mode)) {
2931 ZFS_EXIT(zfsvfs);
2932 return (SET_ERROR(EINVAL));
2933 }
2934
2935 tmpxvattr = kmem_alloc(sizeof (xvattr_t), KM_SLEEP);
2936 xva_init(tmpxvattr);
2937
2938 bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
2939 xattr_bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
2940
2941 /*
2942 * Immutable files can only alter immutable bit and atime
2943 */
2944 if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2945 ((mask & (ATTR_SIZE|ATTR_UID|ATTR_GID|ATTR_MTIME|ATTR_MODE)) ||
2946 ((mask & ATTR_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2947 err = SET_ERROR(EPERM);
2948 goto out3;
2949 }
2950
2951 if ((mask & ATTR_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2952 err = SET_ERROR(EPERM);
2953 goto out3;
2954 }
2955
2956 /*
2957 * Verify timestamps doesn't overflow 32 bits.
2958 * ZFS can handle large timestamps, but 32bit syscalls can't
2959 * handle times greater than 2039. This check should be removed
2960 * once large timestamps are fully supported.
2961 */
2962 if (mask & (ATTR_ATIME | ATTR_MTIME)) {
2963 if (((mask & ATTR_ATIME) &&
2964 TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2965 ((mask & ATTR_MTIME) &&
2966 TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2967 err = SET_ERROR(EOVERFLOW);
2968 goto out3;
2969 }
2970 }
2971
2972 top:
2973 attrzp = NULL;
2974 aclp = NULL;
2975
2976 /* Can this be moved to before the top label? */
2977 if (zfs_is_readonly(zfsvfs)) {
2978 err = SET_ERROR(EROFS);
2979 goto out3;
2980 }
2981
2982 /*
2983 * First validate permissions
2984 */
2985
2986 if (mask & ATTR_SIZE) {
2987 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2988 if (err)
2989 goto out3;
2990
2991 /*
2992 * XXX - Note, we are not providing any open
2993 * mode flags here (like FNDELAY), so we may
2994 * block if there are locks present... this
2995 * should be addressed in openat().
2996 */
2997 /* XXX - would it be OK to generate a log record here? */
2998 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2999 if (err)
3000 goto out3;
3001 }
3002
3003 if (mask & (ATTR_ATIME|ATTR_MTIME) ||
3004 ((mask & ATTR_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
3005 XVA_ISSET_REQ(xvap, XAT_READONLY) ||
3006 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
3007 XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
3008 XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
3009 XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
3010 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
3011 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
3012 skipaclchk, cr);
3013 }
3014
3015 if (mask & (ATTR_UID|ATTR_GID)) {
3016 int idmask = (mask & (ATTR_UID|ATTR_GID));
3017 int take_owner;
3018 int take_group;
3019
3020 /*
3021 * NOTE: even if a new mode is being set,
3022 * we may clear S_ISUID/S_ISGID bits.
3023 */
3024
3025 if (!(mask & ATTR_MODE))
3026 vap->va_mode = zp->z_mode;
3027
3028 /*
3029 * Take ownership or chgrp to group we are a member of
3030 */
3031
3032 take_owner = (mask & ATTR_UID) && (vap->va_uid == crgetuid(cr));
3033 take_group = (mask & ATTR_GID) &&
3034 zfs_groupmember(zfsvfs, vap->va_gid, cr);
3035
3036 /*
3037 * If both ATTR_UID and ATTR_GID are set then take_owner and
3038 * take_group must both be set in order to allow taking
3039 * ownership.
3040 *
3041 * Otherwise, send the check through secpolicy_vnode_setattr()
3042 *
3043 */
3044
3045 if (((idmask == (ATTR_UID|ATTR_GID)) &&
3046 take_owner && take_group) ||
3047 ((idmask == ATTR_UID) && take_owner) ||
3048 ((idmask == ATTR_GID) && take_group)) {
3049 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
3050 skipaclchk, cr) == 0) {
3051 /*
3052 * Remove setuid/setgid for non-privileged users
3053 */
3054 (void) secpolicy_setid_clear(vap, cr);
3055 trim_mask = (mask & (ATTR_UID|ATTR_GID));
3056 } else {
3057 need_policy = TRUE;
3058 }
3059 } else {
3060 need_policy = TRUE;
3061 }
3062 }
3063
3064 mutex_enter(&zp->z_lock);
3065 oldva.va_mode = zp->z_mode;
3066 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
3067 if (mask & ATTR_XVATTR) {
3068 /*
3069 * Update xvattr mask to include only those attributes
3070 * that are actually changing.
3071 *
3072 * the bits will be restored prior to actually setting
3073 * the attributes so the caller thinks they were set.
3074 */
3075 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
3076 if (xoap->xoa_appendonly !=
3077 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
3078 need_policy = TRUE;
3079 } else {
3080 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
3081 XVA_SET_REQ(tmpxvattr, XAT_APPENDONLY);
3082 }
3083 }
3084
3085 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
3086 if (xoap->xoa_projinherit !=
3087 ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) {
3088 need_policy = TRUE;
3089 } else {
3090 XVA_CLR_REQ(xvap, XAT_PROJINHERIT);
3091 XVA_SET_REQ(tmpxvattr, XAT_PROJINHERIT);
3092 }
3093 }
3094
3095 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
3096 if (xoap->xoa_nounlink !=
3097 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
3098 need_policy = TRUE;
3099 } else {
3100 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
3101 XVA_SET_REQ(tmpxvattr, XAT_NOUNLINK);
3102 }
3103 }
3104
3105 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
3106 if (xoap->xoa_immutable !=
3107 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
3108 need_policy = TRUE;
3109 } else {
3110 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
3111 XVA_SET_REQ(tmpxvattr, XAT_IMMUTABLE);
3112 }
3113 }
3114
3115 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
3116 if (xoap->xoa_nodump !=
3117 ((zp->z_pflags & ZFS_NODUMP) != 0)) {
3118 need_policy = TRUE;
3119 } else {
3120 XVA_CLR_REQ(xvap, XAT_NODUMP);
3121 XVA_SET_REQ(tmpxvattr, XAT_NODUMP);
3122 }
3123 }
3124
3125 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
3126 if (xoap->xoa_av_modified !=
3127 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
3128 need_policy = TRUE;
3129 } else {
3130 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
3131 XVA_SET_REQ(tmpxvattr, XAT_AV_MODIFIED);
3132 }
3133 }
3134
3135 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
3136 if ((!S_ISREG(ip->i_mode) &&
3137 xoap->xoa_av_quarantined) ||
3138 xoap->xoa_av_quarantined !=
3139 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
3140 need_policy = TRUE;
3141 } else {
3142 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
3143 XVA_SET_REQ(tmpxvattr, XAT_AV_QUARANTINED);
3144 }
3145 }
3146
3147 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
3148 mutex_exit(&zp->z_lock);
3149 err = SET_ERROR(EPERM);
3150 goto out3;
3151 }
3152
3153 if (need_policy == FALSE &&
3154 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
3155 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
3156 need_policy = TRUE;
3157 }
3158 }
3159
3160 mutex_exit(&zp->z_lock);
3161
3162 if (mask & ATTR_MODE) {
3163 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
3164 err = secpolicy_setid_setsticky_clear(ip, vap,
3165 &oldva, cr);
3166 if (err)
3167 goto out3;
3168
3169 trim_mask |= ATTR_MODE;
3170 } else {
3171 need_policy = TRUE;
3172 }
3173 }
3174
3175 if (need_policy) {
3176 /*
3177 * If trim_mask is set then take ownership
3178 * has been granted or write_acl is present and user
3179 * has the ability to modify mode. In that case remove
3180 * UID|GID and or MODE from mask so that
3181 * secpolicy_vnode_setattr() doesn't revoke it.
3182 */
3183
3184 if (trim_mask) {
3185 saved_mask = vap->va_mask;
3186 vap->va_mask &= ~trim_mask;
3187 }
3188 err = secpolicy_vnode_setattr(cr, ip, vap, &oldva, flags,
3189 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
3190 if (err)
3191 goto out3;
3192
3193 if (trim_mask)
3194 vap->va_mask |= saved_mask;
3195 }
3196
3197 /*
3198 * secpolicy_vnode_setattr, or take ownership may have
3199 * changed va_mask
3200 */
3201 mask = vap->va_mask;
3202
3203 if ((mask & (ATTR_UID | ATTR_GID)) || projid != ZFS_INVALID_PROJID) {
3204 handle_eadir = B_TRUE;
3205 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
3206 &xattr_obj, sizeof (xattr_obj));
3207
3208 if (err == 0 && xattr_obj) {
3209 err = zfs_zget(ZTOZSB(zp), xattr_obj, &attrzp);
3210 if (err)
3211 goto out2;
3212 }
3213 if (mask & ATTR_UID) {
3214 new_kuid = zfs_fuid_create(zfsvfs,
3215 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3216 if (new_kuid != KUID_TO_SUID(ZTOI(zp)->i_uid) &&
3217 zfs_id_overquota(zfsvfs, DMU_USERUSED_OBJECT,
3218 new_kuid)) {
3219 if (attrzp)
3220 iput(ZTOI(attrzp));
3221 err = SET_ERROR(EDQUOT);
3222 goto out2;
3223 }
3224 }
3225
3226 if (mask & ATTR_GID) {
3227 new_kgid = zfs_fuid_create(zfsvfs,
3228 (uint64_t)vap->va_gid, cr, ZFS_GROUP, &fuidp);
3229 if (new_kgid != KGID_TO_SGID(ZTOI(zp)->i_gid) &&
3230 zfs_id_overquota(zfsvfs, DMU_GROUPUSED_OBJECT,
3231 new_kgid)) {
3232 if (attrzp)
3233 iput(ZTOI(attrzp));
3234 err = SET_ERROR(EDQUOT);
3235 goto out2;
3236 }
3237 }
3238
3239 if (projid != ZFS_INVALID_PROJID &&
3240 zfs_id_overquota(zfsvfs, DMU_PROJECTUSED_OBJECT, projid)) {
3241 if (attrzp)
3242 iput(ZTOI(attrzp));
3243 err = EDQUOT;
3244 goto out2;
3245 }
3246 }
3247 tx = dmu_tx_create(os);
3248
3249 if (mask & ATTR_MODE) {
3250 uint64_t pmode = zp->z_mode;
3251 uint64_t acl_obj;
3252 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3253
3254 zfs_acl_chmod_setattr(zp, &aclp, new_mode);
3255
3256 mutex_enter(&zp->z_lock);
3257 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3258 /*
3259 * Are we upgrading ACL from old V0 format
3260 * to V1 format?
3261 */
3262 if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3263 zfs_znode_acl_version(zp) ==
3264 ZFS_ACL_VERSION_INITIAL) {
3265 dmu_tx_hold_free(tx, acl_obj, 0,
3266 DMU_OBJECT_END);
3267 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3268 0, aclp->z_acl_bytes);
3269 } else {
3270 dmu_tx_hold_write(tx, acl_obj, 0,
3271 aclp->z_acl_bytes);
3272 }
3273 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3274 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3275 0, aclp->z_acl_bytes);
3276 }
3277 mutex_exit(&zp->z_lock);
3278 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3279 } else {
3280 if (((mask & ATTR_XVATTR) &&
3281 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) ||
3282 (projid != ZFS_INVALID_PROJID &&
3283 !(zp->z_pflags & ZFS_PROJID)))
3284 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3285 else
3286 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3287 }
3288
3289 if (attrzp) {
3290 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3291 }
3292
3293 fuid_dirtied = zfsvfs->z_fuid_dirty;
3294 if (fuid_dirtied)
3295 zfs_fuid_txhold(zfsvfs, tx);
3296
3297 zfs_sa_upgrade_txholds(tx, zp);
3298
3299 err = dmu_tx_assign(tx, TXG_WAIT);
3300 if (err)
3301 goto out;
3302
3303 count = 0;
3304 /*
3305 * Set each attribute requested.
3306 * We group settings according to the locks they need to acquire.
3307 *
3308 * Note: you cannot set ctime directly, although it will be
3309 * updated as a side-effect of calling this function.
3310 */
3311
3312 if (projid != ZFS_INVALID_PROJID && !(zp->z_pflags & ZFS_PROJID)) {
3313 /*
3314 * For the existed object that is upgraded from old system,
3315 * its on-disk layout has no slot for the project ID attribute.
3316 * But quota accounting logic needs to access related slots by
3317 * offset directly. So we need to adjust old objects' layout
3318 * to make the project ID to some unified and fixed offset.
3319 */
3320 if (attrzp)
3321 err = sa_add_projid(attrzp->z_sa_hdl, tx, projid);
3322 if (err == 0)
3323 err = sa_add_projid(zp->z_sa_hdl, tx, projid);
3324
3325 if (unlikely(err == EEXIST))
3326 err = 0;
3327 else if (err != 0)
3328 goto out;
3329 else
3330 projid = ZFS_INVALID_PROJID;
3331 }
3332
3333 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
3334 mutex_enter(&zp->z_acl_lock);
3335 mutex_enter(&zp->z_lock);
3336
3337 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3338 &zp->z_pflags, sizeof (zp->z_pflags));
3339
3340 if (attrzp) {
3341 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
3342 mutex_enter(&attrzp->z_acl_lock);
3343 mutex_enter(&attrzp->z_lock);
3344 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3345 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3346 sizeof (attrzp->z_pflags));
3347 if (projid != ZFS_INVALID_PROJID) {
3348 attrzp->z_projid = projid;
3349 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3350 SA_ZPL_PROJID(zfsvfs), NULL, &attrzp->z_projid,
3351 sizeof (attrzp->z_projid));
3352 }
3353 }
3354
3355 if (mask & (ATTR_UID|ATTR_GID)) {
3356
3357 if (mask & ATTR_UID) {
3358 ZTOI(zp)->i_uid = SUID_TO_KUID(new_kuid);
3359 new_uid = zfs_uid_read(ZTOI(zp));
3360 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3361 &new_uid, sizeof (new_uid));
3362 if (attrzp) {
3363 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3364 SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3365 sizeof (new_uid));
3366 ZTOI(attrzp)->i_uid = SUID_TO_KUID(new_uid);
3367 }
3368 }
3369
3370 if (mask & ATTR_GID) {
3371 ZTOI(zp)->i_gid = SGID_TO_KGID(new_kgid);
3372 new_gid = zfs_gid_read(ZTOI(zp));
3373 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3374 NULL, &new_gid, sizeof (new_gid));
3375 if (attrzp) {
3376 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3377 SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3378 sizeof (new_gid));
3379 ZTOI(attrzp)->i_gid = SGID_TO_KGID(new_kgid);
3380 }
3381 }
3382 if (!(mask & ATTR_MODE)) {
3383 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3384 NULL, &new_mode, sizeof (new_mode));
3385 new_mode = zp->z_mode;
3386 }
3387 err = zfs_acl_chown_setattr(zp);
3388 ASSERT(err == 0);
3389 if (attrzp) {
3390 err = zfs_acl_chown_setattr(attrzp);
3391 ASSERT(err == 0);
3392 }
3393 }
3394
3395 if (mask & ATTR_MODE) {
3396 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3397 &new_mode, sizeof (new_mode));
3398 zp->z_mode = ZTOI(zp)->i_mode = new_mode;
3399 ASSERT3P(aclp, !=, NULL);
3400 err = zfs_aclset_common(zp, aclp, cr, tx);
3401 ASSERT0(err);
3402 if (zp->z_acl_cached)
3403 zfs_acl_free(zp->z_acl_cached);
3404 zp->z_acl_cached = aclp;
3405 aclp = NULL;
3406 }
3407
3408 if ((mask & ATTR_ATIME) || zp->z_atime_dirty) {
3409 zp->z_atime_dirty = 0;
3410 ZFS_TIME_ENCODE(&ip->i_atime, atime);
3411 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3412 &atime, sizeof (atime));
3413 }
3414
3415 if (mask & (ATTR_MTIME | ATTR_SIZE)) {
3416 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3417 ZTOI(zp)->i_mtime = zpl_inode_timespec_trunc(vap->va_mtime,
3418 ZTOI(zp)->i_sb->s_time_gran);
3419
3420 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3421 mtime, sizeof (mtime));
3422 }
3423
3424 if (mask & (ATTR_CTIME | ATTR_SIZE)) {
3425 ZFS_TIME_ENCODE(&vap->va_ctime, ctime);
3426 ZTOI(zp)->i_ctime = zpl_inode_timespec_trunc(vap->va_ctime,
3427 ZTOI(zp)->i_sb->s_time_gran);
3428 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3429 ctime, sizeof (ctime));
3430 }
3431
3432 if (projid != ZFS_INVALID_PROJID) {
3433 zp->z_projid = projid;
3434 SA_ADD_BULK_ATTR(bulk, count,
3435 SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid,
3436 sizeof (zp->z_projid));
3437 }
3438
3439 if (attrzp && mask) {
3440 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3441 SA_ZPL_CTIME(zfsvfs), NULL, &ctime,
3442 sizeof (ctime));
3443 }
3444
3445 /*
3446 * Do this after setting timestamps to prevent timestamp
3447 * update from toggling bit
3448 */
3449
3450 if (xoap && (mask & ATTR_XVATTR)) {
3451
3452 /*
3453 * restore trimmed off masks
3454 * so that return masks can be set for caller.
3455 */
3456
3457 if (XVA_ISSET_REQ(tmpxvattr, XAT_APPENDONLY)) {
3458 XVA_SET_REQ(xvap, XAT_APPENDONLY);
3459 }
3460 if (XVA_ISSET_REQ(tmpxvattr, XAT_NOUNLINK)) {
3461 XVA_SET_REQ(xvap, XAT_NOUNLINK);
3462 }
3463 if (XVA_ISSET_REQ(tmpxvattr, XAT_IMMUTABLE)) {
3464 XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3465 }
3466 if (XVA_ISSET_REQ(tmpxvattr, XAT_NODUMP)) {
3467 XVA_SET_REQ(xvap, XAT_NODUMP);
3468 }
3469 if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_MODIFIED)) {
3470 XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3471 }
3472 if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_QUARANTINED)) {
3473 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3474 }
3475 if (XVA_ISSET_REQ(tmpxvattr, XAT_PROJINHERIT)) {
3476 XVA_SET_REQ(xvap, XAT_PROJINHERIT);
3477 }
3478
3479 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3480 ASSERT(S_ISREG(ip->i_mode));
3481
3482 zfs_xvattr_set(zp, xvap, tx);
3483 }
3484
3485 if (fuid_dirtied)
3486 zfs_fuid_sync(zfsvfs, tx);
3487
3488 if (mask != 0)
3489 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3490
3491 mutex_exit(&zp->z_lock);
3492 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
3493 mutex_exit(&zp->z_acl_lock);
3494
3495 if (attrzp) {
3496 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
3497 mutex_exit(&attrzp->z_acl_lock);
3498 mutex_exit(&attrzp->z_lock);
3499 }
3500 out:
3501 if (err == 0 && xattr_count > 0) {
3502 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3503 xattr_count, tx);
3504 ASSERT(err2 == 0);
3505 }
3506
3507 if (aclp)
3508 zfs_acl_free(aclp);
3509
3510 if (fuidp) {
3511 zfs_fuid_info_free(fuidp);
3512 fuidp = NULL;
3513 }
3514
3515 if (err) {
3516 dmu_tx_abort(tx);
3517 if (attrzp)
3518 iput(ZTOI(attrzp));
3519 if (err == ERESTART)
3520 goto top;
3521 } else {
3522 if (count > 0)
3523 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3524 dmu_tx_commit(tx);
3525 if (attrzp) {
3526 if (err2 == 0 && handle_eadir)
3527 err2 = zfs_setattr_dir(attrzp);
3528 iput(ZTOI(attrzp));
3529 }
3530 zfs_inode_update(zp);
3531 }
3532
3533 out2:
3534 if (os->os_sync == ZFS_SYNC_ALWAYS)
3535 zil_commit(zilog, 0);
3536
3537 out3:
3538 kmem_free(xattr_bulk, sizeof (sa_bulk_attr_t) * bulks);
3539 kmem_free(bulk, sizeof (sa_bulk_attr_t) * bulks);
3540 kmem_free(tmpxvattr, sizeof (xvattr_t));
3541 ZFS_EXIT(zfsvfs);
3542 return (err);
3543 }
3544
3545 typedef struct zfs_zlock {
3546 krwlock_t *zl_rwlock; /* lock we acquired */
3547 znode_t *zl_znode; /* znode we held */
3548 struct zfs_zlock *zl_next; /* next in list */
3549 } zfs_zlock_t;
3550
3551 /*
3552 * Drop locks and release vnodes that were held by zfs_rename_lock().
3553 */
3554 static void
3555 zfs_rename_unlock(zfs_zlock_t **zlpp)
3556 {
3557 zfs_zlock_t *zl;
3558
3559 while ((zl = *zlpp) != NULL) {
3560 if (zl->zl_znode != NULL)
3561 zfs_iput_async(ZTOI(zl->zl_znode));
3562 rw_exit(zl->zl_rwlock);
3563 *zlpp = zl->zl_next;
3564 kmem_free(zl, sizeof (*zl));
3565 }
3566 }
3567
3568 /*
3569 * Search back through the directory tree, using the ".." entries.
3570 * Lock each directory in the chain to prevent concurrent renames.
3571 * Fail any attempt to move a directory into one of its own descendants.
3572 * XXX - z_parent_lock can overlap with map or grow locks
3573 */
3574 static int
3575 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3576 {
3577 zfs_zlock_t *zl;
3578 znode_t *zp = tdzp;
3579 uint64_t rootid = ZTOZSB(zp)->z_root;
3580 uint64_t oidp = zp->z_id;
3581 krwlock_t *rwlp = &szp->z_parent_lock;
3582 krw_t rw = RW_WRITER;
3583
3584 /*
3585 * First pass write-locks szp and compares to zp->z_id.
3586 * Later passes read-lock zp and compare to zp->z_parent.
3587 */
3588 do {
3589 if (!rw_tryenter(rwlp, rw)) {
3590 /*
3591 * Another thread is renaming in this path.
3592 * Note that if we are a WRITER, we don't have any
3593 * parent_locks held yet.
3594 */
3595 if (rw == RW_READER && zp->z_id > szp->z_id) {
3596 /*
3597 * Drop our locks and restart
3598 */
3599 zfs_rename_unlock(&zl);
3600 *zlpp = NULL;
3601 zp = tdzp;
3602 oidp = zp->z_id;
3603 rwlp = &szp->z_parent_lock;
3604 rw = RW_WRITER;
3605 continue;
3606 } else {
3607 /*
3608 * Wait for other thread to drop its locks
3609 */
3610 rw_enter(rwlp, rw);
3611 }
3612 }
3613
3614 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3615 zl->zl_rwlock = rwlp;
3616 zl->zl_znode = NULL;
3617 zl->zl_next = *zlpp;
3618 *zlpp = zl;
3619
3620 if (oidp == szp->z_id) /* We're a descendant of szp */
3621 return (SET_ERROR(EINVAL));
3622
3623 if (oidp == rootid) /* We've hit the top */
3624 return (0);
3625
3626 if (rw == RW_READER) { /* i.e. not the first pass */
3627 int error = zfs_zget(ZTOZSB(zp), oidp, &zp);
3628 if (error)
3629 return (error);
3630 zl->zl_znode = zp;
3631 }
3632 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(ZTOZSB(zp)),
3633 &oidp, sizeof (oidp));
3634 rwlp = &zp->z_parent_lock;
3635 rw = RW_READER;
3636
3637 } while (zp->z_id != sdzp->z_id);
3638
3639 return (0);
3640 }
3641
3642 /*
3643 * Move an entry from the provided source directory to the target
3644 * directory. Change the entry name as indicated.
3645 *
3646 * IN: sdip - Source directory containing the "old entry".
3647 * snm - Old entry name.
3648 * tdip - Target directory to contain the "new entry".
3649 * tnm - New entry name.
3650 * cr - credentials of caller.
3651 * flags - case flags
3652 *
3653 * RETURN: 0 on success, error code on failure.
3654 *
3655 * Timestamps:
3656 * sdip,tdip - ctime|mtime updated
3657 */
3658 /*ARGSUSED*/
3659 int
3660 zfs_rename(struct inode *sdip, char *snm, struct inode *tdip, char *tnm,
3661 cred_t *cr, int flags)
3662 {
3663 znode_t *tdzp, *szp, *tzp;
3664 znode_t *sdzp = ITOZ(sdip);
3665 zfsvfs_t *zfsvfs = ITOZSB(sdip);
3666 zilog_t *zilog;
3667 zfs_dirlock_t *sdl, *tdl;
3668 dmu_tx_t *tx;
3669 zfs_zlock_t *zl;
3670 int cmp, serr, terr;
3671 int error = 0;
3672 int zflg = 0;
3673 boolean_t waited = B_FALSE;
3674
3675 if (snm == NULL || tnm == NULL)
3676 return (SET_ERROR(EINVAL));
3677
3678 ZFS_ENTER(zfsvfs);
3679 ZFS_VERIFY_ZP(sdzp);
3680 zilog = zfsvfs->z_log;
3681
3682 tdzp = ITOZ(tdip);
3683 ZFS_VERIFY_ZP(tdzp);
3684
3685 /*
3686 * We check i_sb because snapshots and the ctldir must have different
3687 * super blocks.
3688 */
3689 if (tdip->i_sb != sdip->i_sb || zfsctl_is_node(tdip)) {
3690 ZFS_EXIT(zfsvfs);
3691 return (SET_ERROR(EXDEV));
3692 }
3693
3694 if (zfsvfs->z_utf8 && u8_validate(tnm,
3695 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3696 ZFS_EXIT(zfsvfs);
3697 return (SET_ERROR(EILSEQ));
3698 }
3699
3700 if (flags & FIGNORECASE)
3701 zflg |= ZCILOOK;
3702
3703 top:
3704 szp = NULL;
3705 tzp = NULL;
3706 zl = NULL;
3707
3708 /*
3709 * This is to prevent the creation of links into attribute space
3710 * by renaming a linked file into/outof an attribute directory.
3711 * See the comment in zfs_link() for why this is considered bad.
3712 */
3713 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3714 ZFS_EXIT(zfsvfs);
3715 return (SET_ERROR(EINVAL));
3716 }
3717
3718 /*
3719 * Lock source and target directory entries. To prevent deadlock,
3720 * a lock ordering must be defined. We lock the directory with
3721 * the smallest object id first, or if it's a tie, the one with
3722 * the lexically first name.
3723 */
3724 if (sdzp->z_id < tdzp->z_id) {
3725 cmp = -1;
3726 } else if (sdzp->z_id > tdzp->z_id) {
3727 cmp = 1;
3728 } else {
3729 /*
3730 * First compare the two name arguments without
3731 * considering any case folding.
3732 */
3733 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3734
3735 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3736 ASSERT(error == 0 || !zfsvfs->z_utf8);
3737 if (cmp == 0) {
3738 /*
3739 * POSIX: "If the old argument and the new argument
3740 * both refer to links to the same existing file,
3741 * the rename() function shall return successfully
3742 * and perform no other action."
3743 */
3744 ZFS_EXIT(zfsvfs);
3745 return (0);
3746 }
3747 /*
3748 * If the file system is case-folding, then we may
3749 * have some more checking to do. A case-folding file
3750 * system is either supporting mixed case sensitivity
3751 * access or is completely case-insensitive. Note
3752 * that the file system is always case preserving.
3753 *
3754 * In mixed sensitivity mode case sensitive behavior
3755 * is the default. FIGNORECASE must be used to
3756 * explicitly request case insensitive behavior.
3757 *
3758 * If the source and target names provided differ only
3759 * by case (e.g., a request to rename 'tim' to 'Tim'),
3760 * we will treat this as a special case in the
3761 * case-insensitive mode: as long as the source name
3762 * is an exact match, we will allow this to proceed as
3763 * a name-change request.
3764 */
3765 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3766 (zfsvfs->z_case == ZFS_CASE_MIXED &&
3767 flags & FIGNORECASE)) &&
3768 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3769 &error) == 0) {
3770 /*
3771 * case preserving rename request, require exact
3772 * name matches
3773 */
3774 zflg |= ZCIEXACT;
3775 zflg &= ~ZCILOOK;
3776 }
3777 }
3778
3779 /*
3780 * If the source and destination directories are the same, we should
3781 * grab the z_name_lock of that directory only once.
3782 */
3783 if (sdzp == tdzp) {
3784 zflg |= ZHAVELOCK;
3785 rw_enter(&sdzp->z_name_lock, RW_READER);
3786 }
3787
3788 if (cmp < 0) {
3789 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3790 ZEXISTS | zflg, NULL, NULL);
3791 terr = zfs_dirent_lock(&tdl,
3792 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3793 } else {
3794 terr = zfs_dirent_lock(&tdl,
3795 tdzp, tnm, &tzp, zflg, NULL, NULL);
3796 serr = zfs_dirent_lock(&sdl,
3797 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3798 NULL, NULL);
3799 }
3800
3801 if (serr) {
3802 /*
3803 * Source entry invalid or not there.
3804 */
3805 if (!terr) {
3806 zfs_dirent_unlock(tdl);
3807 if (tzp)
3808 iput(ZTOI(tzp));
3809 }
3810
3811 if (sdzp == tdzp)
3812 rw_exit(&sdzp->z_name_lock);
3813
3814 if (strcmp(snm, "..") == 0)
3815 serr = EINVAL;
3816 ZFS_EXIT(zfsvfs);
3817 return (serr);
3818 }
3819 if (terr) {
3820 zfs_dirent_unlock(sdl);
3821 iput(ZTOI(szp));
3822
3823 if (sdzp == tdzp)
3824 rw_exit(&sdzp->z_name_lock);
3825
3826 if (strcmp(tnm, "..") == 0)
3827 terr = EINVAL;
3828 ZFS_EXIT(zfsvfs);
3829 return (terr);
3830 }
3831
3832 /*
3833 * If we are using project inheritance, means if the directory has
3834 * ZFS_PROJINHERIT set, then its descendant directories will inherit
3835 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
3836 * such case, we only allow renames into our tree when the project
3837 * IDs are the same.
3838 */
3839 if (tdzp->z_pflags & ZFS_PROJINHERIT &&
3840 tdzp->z_projid != szp->z_projid) {
3841 error = SET_ERROR(EXDEV);
3842 goto out;
3843 }
3844
3845 /*
3846 * Must have write access at the source to remove the old entry
3847 * and write access at the target to create the new entry.
3848 * Note that if target and source are the same, this can be
3849 * done in a single check.
3850 */
3851
3852 if ((error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)))
3853 goto out;
3854
3855 if (S_ISDIR(ZTOI(szp)->i_mode)) {
3856 /*
3857 * Check to make sure rename is valid.
3858 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3859 */
3860 if ((error = zfs_rename_lock(szp, tdzp, sdzp, &zl)))
3861 goto out;
3862 }
3863
3864 /*
3865 * Does target exist?
3866 */
3867 if (tzp) {
3868 /*
3869 * Source and target must be the same type.
3870 */
3871 if (S_ISDIR(ZTOI(szp)->i_mode)) {
3872 if (!S_ISDIR(ZTOI(tzp)->i_mode)) {
3873 error = SET_ERROR(ENOTDIR);
3874 goto out;
3875 }
3876 } else {
3877 if (S_ISDIR(ZTOI(tzp)->i_mode)) {
3878 error = SET_ERROR(EISDIR);
3879 goto out;
3880 }
3881 }
3882 /*
3883 * POSIX dictates that when the source and target
3884 * entries refer to the same file object, rename
3885 * must do nothing and exit without error.
3886 */
3887 if (szp->z_id == tzp->z_id) {
3888 error = 0;
3889 goto out;
3890 }
3891 }
3892
3893 tx = dmu_tx_create(zfsvfs->z_os);
3894 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3895 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3896 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3897 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3898 if (sdzp != tdzp) {
3899 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3900 zfs_sa_upgrade_txholds(tx, tdzp);
3901 }
3902 if (tzp) {
3903 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3904 zfs_sa_upgrade_txholds(tx, tzp);
3905 }
3906
3907 zfs_sa_upgrade_txholds(tx, szp);
3908 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3909 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3910 if (error) {
3911 if (zl != NULL)
3912 zfs_rename_unlock(&zl);
3913 zfs_dirent_unlock(sdl);
3914 zfs_dirent_unlock(tdl);
3915
3916 if (sdzp == tdzp)
3917 rw_exit(&sdzp->z_name_lock);
3918
3919 if (error == ERESTART) {
3920 waited = B_TRUE;
3921 dmu_tx_wait(tx);
3922 dmu_tx_abort(tx);
3923 iput(ZTOI(szp));
3924 if (tzp)
3925 iput(ZTOI(tzp));
3926 goto top;
3927 }
3928 dmu_tx_abort(tx);
3929 iput(ZTOI(szp));
3930 if (tzp)
3931 iput(ZTOI(tzp));
3932 ZFS_EXIT(zfsvfs);
3933 return (error);
3934 }
3935
3936 if (tzp) /* Attempt to remove the existing target */
3937 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3938
3939 if (error == 0) {
3940 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3941 if (error == 0) {
3942 szp->z_pflags |= ZFS_AV_MODIFIED;
3943 if (tdzp->z_pflags & ZFS_PROJINHERIT)
3944 szp->z_pflags |= ZFS_PROJINHERIT;
3945
3946 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3947 (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3948 ASSERT0(error);
3949
3950 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3951 if (error == 0) {
3952 zfs_log_rename(zilog, tx, TX_RENAME |
3953 (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3954 sdl->dl_name, tdzp, tdl->dl_name, szp);
3955 } else {
3956 /*
3957 * At this point, we have successfully created
3958 * the target name, but have failed to remove
3959 * the source name. Since the create was done
3960 * with the ZRENAMING flag, there are
3961 * complications; for one, the link count is
3962 * wrong. The easiest way to deal with this
3963 * is to remove the newly created target, and
3964 * return the original error. This must
3965 * succeed; fortunately, it is very unlikely to
3966 * fail, since we just created it.
3967 */
3968 VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3969 ZRENAMING, NULL), ==, 0);
3970 }
3971 } else {
3972 /*
3973 * If we had removed the existing target, subsequent
3974 * call to zfs_link_create() to add back the same entry
3975 * but, the new dnode (szp) should not fail.
3976 */
3977 ASSERT(tzp == NULL);
3978 }
3979 }
3980
3981 dmu_tx_commit(tx);
3982 out:
3983 if (zl != NULL)
3984 zfs_rename_unlock(&zl);
3985
3986 zfs_dirent_unlock(sdl);
3987 zfs_dirent_unlock(tdl);
3988
3989 zfs_inode_update(sdzp);
3990 if (sdzp == tdzp)
3991 rw_exit(&sdzp->z_name_lock);
3992
3993 if (sdzp != tdzp)
3994 zfs_inode_update(tdzp);
3995
3996 zfs_inode_update(szp);
3997 iput(ZTOI(szp));
3998 if (tzp) {
3999 zfs_inode_update(tzp);
4000 iput(ZTOI(tzp));
4001 }
4002
4003 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4004 zil_commit(zilog, 0);
4005
4006 ZFS_EXIT(zfsvfs);
4007 return (error);
4008 }
4009
4010 /*
4011 * Insert the indicated symbolic reference entry into the directory.
4012 *
4013 * IN: dip - Directory to contain new symbolic link.
4014 * name - Name of directory entry in dip.
4015 * vap - Attributes of new entry.
4016 * link - Name for new symlink entry.
4017 * cr - credentials of caller.
4018 * flags - case flags
4019 *
4020 * OUT: ipp - Inode for new symbolic link.
4021 *
4022 * RETURN: 0 on success, error code on failure.
4023 *
4024 * Timestamps:
4025 * dip - ctime|mtime updated
4026 */
4027 /*ARGSUSED*/
4028 int
4029 zfs_symlink(struct inode *dip, char *name, vattr_t *vap, char *link,
4030 struct inode **ipp, cred_t *cr, int flags)
4031 {
4032 znode_t *zp, *dzp = ITOZ(dip);
4033 zfs_dirlock_t *dl;
4034 dmu_tx_t *tx;
4035 zfsvfs_t *zfsvfs = ITOZSB(dip);
4036 zilog_t *zilog;
4037 uint64_t len = strlen(link);
4038 int error;
4039 int zflg = ZNEW;
4040 zfs_acl_ids_t acl_ids;
4041 boolean_t fuid_dirtied;
4042 uint64_t txtype = TX_SYMLINK;
4043 boolean_t waited = B_FALSE;
4044
4045 ASSERT(S_ISLNK(vap->va_mode));
4046
4047 if (name == NULL)
4048 return (SET_ERROR(EINVAL));
4049
4050 ZFS_ENTER(zfsvfs);
4051 ZFS_VERIFY_ZP(dzp);
4052 zilog = zfsvfs->z_log;
4053
4054 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
4055 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4056 ZFS_EXIT(zfsvfs);
4057 return (SET_ERROR(EILSEQ));
4058 }
4059 if (flags & FIGNORECASE)
4060 zflg |= ZCILOOK;
4061
4062 if (len > MAXPATHLEN) {
4063 ZFS_EXIT(zfsvfs);
4064 return (SET_ERROR(ENAMETOOLONG));
4065 }
4066
4067 if ((error = zfs_acl_ids_create(dzp, 0,
4068 vap, cr, NULL, &acl_ids)) != 0) {
4069 ZFS_EXIT(zfsvfs);
4070 return (error);
4071 }
4072 top:
4073 *ipp = NULL;
4074
4075 /*
4076 * Attempt to lock directory; fail if entry already exists.
4077 */
4078 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
4079 if (error) {
4080 zfs_acl_ids_free(&acl_ids);
4081 ZFS_EXIT(zfsvfs);
4082 return (error);
4083 }
4084
4085 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
4086 zfs_acl_ids_free(&acl_ids);
4087 zfs_dirent_unlock(dl);
4088 ZFS_EXIT(zfsvfs);
4089 return (error);
4090 }
4091
4092 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, ZFS_DEFAULT_PROJID)) {
4093 zfs_acl_ids_free(&acl_ids);
4094 zfs_dirent_unlock(dl);
4095 ZFS_EXIT(zfsvfs);
4096 return (SET_ERROR(EDQUOT));
4097 }
4098 tx = dmu_tx_create(zfsvfs->z_os);
4099 fuid_dirtied = zfsvfs->z_fuid_dirty;
4100 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
4101 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4102 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
4103 ZFS_SA_BASE_ATTR_SIZE + len);
4104 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
4105 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
4106 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
4107 acl_ids.z_aclp->z_acl_bytes);
4108 }
4109 if (fuid_dirtied)
4110 zfs_fuid_txhold(zfsvfs, tx);
4111 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
4112 if (error) {
4113 zfs_dirent_unlock(dl);
4114 if (error == ERESTART) {
4115 waited = B_TRUE;
4116 dmu_tx_wait(tx);
4117 dmu_tx_abort(tx);
4118 goto top;
4119 }
4120 zfs_acl_ids_free(&acl_ids);
4121 dmu_tx_abort(tx);
4122 ZFS_EXIT(zfsvfs);
4123 return (error);
4124 }
4125
4126 /*
4127 * Create a new object for the symlink.
4128 * for version 4 ZPL datsets the symlink will be an SA attribute
4129 */
4130 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
4131
4132 if (fuid_dirtied)
4133 zfs_fuid_sync(zfsvfs, tx);
4134
4135 mutex_enter(&zp->z_lock);
4136 if (zp->z_is_sa)
4137 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
4138 link, len, tx);
4139 else
4140 zfs_sa_symlink(zp, link, len, tx);
4141 mutex_exit(&zp->z_lock);
4142
4143 zp->z_size = len;
4144 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
4145 &zp->z_size, sizeof (zp->z_size), tx);
4146 /*
4147 * Insert the new object into the directory.
4148 */
4149 error = zfs_link_create(dl, zp, tx, ZNEW);
4150 if (error != 0) {
4151 zfs_znode_delete(zp, tx);
4152 remove_inode_hash(ZTOI(zp));
4153 } else {
4154 if (flags & FIGNORECASE)
4155 txtype |= TX_CI;
4156 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
4157
4158 zfs_inode_update(dzp);
4159 zfs_inode_update(zp);
4160 }
4161
4162 zfs_acl_ids_free(&acl_ids);
4163
4164 dmu_tx_commit(tx);
4165
4166 zfs_dirent_unlock(dl);
4167
4168 if (error == 0) {
4169 *ipp = ZTOI(zp);
4170
4171 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4172 zil_commit(zilog, 0);
4173 } else {
4174 iput(ZTOI(zp));
4175 }
4176
4177 ZFS_EXIT(zfsvfs);
4178 return (error);
4179 }
4180
4181 /*
4182 * Return, in the buffer contained in the provided uio structure,
4183 * the symbolic path referred to by ip.
4184 *
4185 * IN: ip - inode of symbolic link
4186 * uio - structure to contain the link path.
4187 * cr - credentials of caller.
4188 *
4189 * RETURN: 0 if success
4190 * error code if failure
4191 *
4192 * Timestamps:
4193 * ip - atime updated
4194 */
4195 /* ARGSUSED */
4196 int
4197 zfs_readlink(struct inode *ip, uio_t *uio, cred_t *cr)
4198 {
4199 znode_t *zp = ITOZ(ip);
4200 zfsvfs_t *zfsvfs = ITOZSB(ip);
4201 int error;
4202
4203 ZFS_ENTER(zfsvfs);
4204 ZFS_VERIFY_ZP(zp);
4205
4206 mutex_enter(&zp->z_lock);
4207 if (zp->z_is_sa)
4208 error = sa_lookup_uio(zp->z_sa_hdl,
4209 SA_ZPL_SYMLINK(zfsvfs), uio);
4210 else
4211 error = zfs_sa_readlink(zp, uio);
4212 mutex_exit(&zp->z_lock);
4213
4214 ZFS_EXIT(zfsvfs);
4215 return (error);
4216 }
4217
4218 /*
4219 * Insert a new entry into directory tdip referencing sip.
4220 *
4221 * IN: tdip - Directory to contain new entry.
4222 * sip - inode of new entry.
4223 * name - name of new entry.
4224 * cr - credentials of caller.
4225 * flags - case flags.
4226 *
4227 * RETURN: 0 if success
4228 * error code if failure
4229 *
4230 * Timestamps:
4231 * tdip - ctime|mtime updated
4232 * sip - ctime updated
4233 */
4234 /* ARGSUSED */
4235 int
4236 zfs_link(struct inode *tdip, struct inode *sip, char *name, cred_t *cr,
4237 int flags)
4238 {
4239 znode_t *dzp = ITOZ(tdip);
4240 znode_t *tzp, *szp;
4241 zfsvfs_t *zfsvfs = ITOZSB(tdip);
4242 zilog_t *zilog;
4243 zfs_dirlock_t *dl;
4244 dmu_tx_t *tx;
4245 int error;
4246 int zf = ZNEW;
4247 uint64_t parent;
4248 uid_t owner;
4249 boolean_t waited = B_FALSE;
4250 boolean_t is_tmpfile = 0;
4251 uint64_t txg;
4252 #ifdef HAVE_TMPFILE
4253 is_tmpfile = (sip->i_nlink == 0 && (sip->i_state & I_LINKABLE));
4254 #endif
4255 ASSERT(S_ISDIR(tdip->i_mode));
4256
4257 if (name == NULL)
4258 return (SET_ERROR(EINVAL));
4259
4260 ZFS_ENTER(zfsvfs);
4261 ZFS_VERIFY_ZP(dzp);
4262 zilog = zfsvfs->z_log;
4263
4264 /*
4265 * POSIX dictates that we return EPERM here.
4266 * Better choices include ENOTSUP or EISDIR.
4267 */
4268 if (S_ISDIR(sip->i_mode)) {
4269 ZFS_EXIT(zfsvfs);
4270 return (SET_ERROR(EPERM));
4271 }
4272
4273 szp = ITOZ(sip);
4274 ZFS_VERIFY_ZP(szp);
4275
4276 /*
4277 * If we are using project inheritance, means if the directory has
4278 * ZFS_PROJINHERIT set, then its descendant directories will inherit
4279 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
4280 * such case, we only allow hard link creation in our tree when the
4281 * project IDs are the same.
4282 */
4283 if (dzp->z_pflags & ZFS_PROJINHERIT && dzp->z_projid != szp->z_projid) {
4284 ZFS_EXIT(zfsvfs);
4285 return (SET_ERROR(EXDEV));
4286 }
4287
4288 /*
4289 * We check i_sb because snapshots and the ctldir must have different
4290 * super blocks.
4291 */
4292 if (sip->i_sb != tdip->i_sb || zfsctl_is_node(sip)) {
4293 ZFS_EXIT(zfsvfs);
4294 return (SET_ERROR(EXDEV));
4295 }
4296
4297 /* Prevent links to .zfs/shares files */
4298
4299 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
4300 &parent, sizeof (uint64_t))) != 0) {
4301 ZFS_EXIT(zfsvfs);
4302 return (error);
4303 }
4304 if (parent == zfsvfs->z_shares_dir) {
4305 ZFS_EXIT(zfsvfs);
4306 return (SET_ERROR(EPERM));
4307 }
4308
4309 if (zfsvfs->z_utf8 && u8_validate(name,
4310 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4311 ZFS_EXIT(zfsvfs);
4312 return (SET_ERROR(EILSEQ));
4313 }
4314 if (flags & FIGNORECASE)
4315 zf |= ZCILOOK;
4316
4317 /*
4318 * We do not support links between attributes and non-attributes
4319 * because of the potential security risk of creating links
4320 * into "normal" file space in order to circumvent restrictions
4321 * imposed in attribute space.
4322 */
4323 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4324 ZFS_EXIT(zfsvfs);
4325 return (SET_ERROR(EINVAL));
4326 }
4327
4328 owner = zfs_fuid_map_id(zfsvfs, KUID_TO_SUID(sip->i_uid),
4329 cr, ZFS_OWNER);
4330 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
4331 ZFS_EXIT(zfsvfs);
4332 return (SET_ERROR(EPERM));
4333 }
4334
4335 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
4336 ZFS_EXIT(zfsvfs);
4337 return (error);
4338 }
4339
4340 top:
4341 /*
4342 * Attempt to lock directory; fail if entry already exists.
4343 */
4344 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4345 if (error) {
4346 ZFS_EXIT(zfsvfs);
4347 return (error);
4348 }
4349
4350 tx = dmu_tx_create(zfsvfs->z_os);
4351 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4352 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4353 if (is_tmpfile)
4354 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
4355
4356 zfs_sa_upgrade_txholds(tx, szp);
4357 zfs_sa_upgrade_txholds(tx, dzp);
4358 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
4359 if (error) {
4360 zfs_dirent_unlock(dl);
4361 if (error == ERESTART) {
4362 waited = B_TRUE;
4363 dmu_tx_wait(tx);
4364 dmu_tx_abort(tx);
4365 goto top;
4366 }
4367 dmu_tx_abort(tx);
4368 ZFS_EXIT(zfsvfs);
4369 return (error);
4370 }
4371 /* unmark z_unlinked so zfs_link_create will not reject */
4372 if (is_tmpfile)
4373 szp->z_unlinked = 0;
4374 error = zfs_link_create(dl, szp, tx, 0);
4375
4376 if (error == 0) {
4377 uint64_t txtype = TX_LINK;
4378 /*
4379 * tmpfile is created to be in z_unlinkedobj, so remove it.
4380 * Also, we don't log in ZIL, be cause all previous file
4381 * operation on the tmpfile are ignored by ZIL. Instead we
4382 * always wait for txg to sync to make sure all previous
4383 * operation are sync safe.
4384 */
4385 if (is_tmpfile) {
4386 VERIFY(zap_remove_int(zfsvfs->z_os,
4387 zfsvfs->z_unlinkedobj, szp->z_id, tx) == 0);
4388 } else {
4389 if (flags & FIGNORECASE)
4390 txtype |= TX_CI;
4391 zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4392 }
4393 } else if (is_tmpfile) {
4394 /* restore z_unlinked since when linking failed */
4395 szp->z_unlinked = 1;
4396 }
4397 txg = dmu_tx_get_txg(tx);
4398 dmu_tx_commit(tx);
4399
4400 zfs_dirent_unlock(dl);
4401
4402 if (!is_tmpfile && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4403 zil_commit(zilog, 0);
4404
4405 if (is_tmpfile)
4406 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), txg);
4407
4408 zfs_inode_update(dzp);
4409 zfs_inode_update(szp);
4410 ZFS_EXIT(zfsvfs);
4411 return (error);
4412 }
4413
4414 static void
4415 zfs_putpage_commit_cb(void *arg)
4416 {
4417 struct page *pp = arg;
4418
4419 ClearPageError(pp);
4420 end_page_writeback(pp);
4421 }
4422
4423 /*
4424 * Push a page out to disk, once the page is on stable storage the
4425 * registered commit callback will be run as notification of completion.
4426 *
4427 * IN: ip - page mapped for inode.
4428 * pp - page to push (page is locked)
4429 * wbc - writeback control data
4430 *
4431 * RETURN: 0 if success
4432 * error code if failure
4433 *
4434 * Timestamps:
4435 * ip - ctime|mtime updated
4436 */
4437 /* ARGSUSED */
4438 int
4439 zfs_putpage(struct inode *ip, struct page *pp, struct writeback_control *wbc)
4440 {
4441 znode_t *zp = ITOZ(ip);
4442 zfsvfs_t *zfsvfs = ITOZSB(ip);
4443 loff_t offset;
4444 loff_t pgoff;
4445 unsigned int pglen;
4446 dmu_tx_t *tx;
4447 caddr_t va;
4448 int err = 0;
4449 uint64_t mtime[2], ctime[2];
4450 sa_bulk_attr_t bulk[3];
4451 int cnt = 0;
4452 struct address_space *mapping;
4453
4454 ZFS_ENTER(zfsvfs);
4455 ZFS_VERIFY_ZP(zp);
4456
4457 ASSERT(PageLocked(pp));
4458
4459 pgoff = page_offset(pp); /* Page byte-offset in file */
4460 offset = i_size_read(ip); /* File length in bytes */
4461 pglen = MIN(PAGE_SIZE, /* Page length in bytes */
4462 P2ROUNDUP(offset, PAGE_SIZE)-pgoff);
4463
4464 /* Page is beyond end of file */
4465 if (pgoff >= offset) {
4466 unlock_page(pp);
4467 ZFS_EXIT(zfsvfs);
4468 return (0);
4469 }
4470
4471 /* Truncate page length to end of file */
4472 if (pgoff + pglen > offset)
4473 pglen = offset - pgoff;
4474
4475 #if 0
4476 /*
4477 * FIXME: Allow mmap writes past its quota. The correct fix
4478 * is to register a page_mkwrite() handler to count the page
4479 * against its quota when it is about to be dirtied.
4480 */
4481 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT,
4482 KUID_TO_SUID(ip->i_uid)) ||
4483 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT,
4484 KGID_TO_SGID(ip->i_gid)) ||
4485 (zp->z_projid != ZFS_DEFAULT_PROJID &&
4486 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
4487 zp->z_projid))) {
4488 err = EDQUOT;
4489 }
4490 #endif
4491
4492 /*
4493 * The ordering here is critical and must adhere to the following
4494 * rules in order to avoid deadlocking in either zfs_read() or
4495 * zfs_free_range() due to a lock inversion.
4496 *
4497 * 1) The page must be unlocked prior to acquiring the range lock.
4498 * This is critical because zfs_read() calls find_lock_page()
4499 * which may block on the page lock while holding the range lock.
4500 *
4501 * 2) Before setting or clearing write back on a page the range lock
4502 * must be held in order to prevent a lock inversion with the
4503 * zfs_free_range() function.
4504 *
4505 * This presents a problem because upon entering this function the
4506 * page lock is already held. To safely acquire the range lock the
4507 * page lock must be dropped. This creates a window where another
4508 * process could truncate, invalidate, dirty, or write out the page.
4509 *
4510 * Therefore, after successfully reacquiring the range and page locks
4511 * the current page state is checked. In the common case everything
4512 * will be as is expected and it can be written out. However, if
4513 * the page state has changed it must be handled accordingly.
4514 */
4515 mapping = pp->mapping;
4516 redirty_page_for_writepage(wbc, pp);
4517 unlock_page(pp);
4518
4519 locked_range_t *lr = rangelock_enter(&zp->z_rangelock,
4520 pgoff, pglen, RL_WRITER);
4521 lock_page(pp);
4522
4523 /* Page mapping changed or it was no longer dirty, we're done */
4524 if (unlikely((mapping != pp->mapping) || !PageDirty(pp))) {
4525 unlock_page(pp);
4526 rangelock_exit(lr);
4527 ZFS_EXIT(zfsvfs);
4528 return (0);
4529 }
4530
4531 /* Another process started write block if required */
4532 if (PageWriteback(pp)) {
4533 unlock_page(pp);
4534 rangelock_exit(lr);
4535
4536 if (wbc->sync_mode != WB_SYNC_NONE) {
4537 if (PageWriteback(pp))
4538 wait_on_page_bit(pp, PG_writeback);
4539 }
4540
4541 ZFS_EXIT(zfsvfs);
4542 return (0);
4543 }
4544
4545 /* Clear the dirty flag the required locks are held */
4546 if (!clear_page_dirty_for_io(pp)) {
4547 unlock_page(pp);
4548 rangelock_exit(lr);
4549 ZFS_EXIT(zfsvfs);
4550 return (0);
4551 }
4552
4553 /*
4554 * Counterpart for redirty_page_for_writepage() above. This page
4555 * was in fact not skipped and should not be counted as if it were.
4556 */
4557 wbc->pages_skipped--;
4558 set_page_writeback(pp);
4559 unlock_page(pp);
4560
4561 tx = dmu_tx_create(zfsvfs->z_os);
4562 dmu_tx_hold_write(tx, zp->z_id, pgoff, pglen);
4563 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4564 zfs_sa_upgrade_txholds(tx, zp);
4565
4566 err = dmu_tx_assign(tx, TXG_NOWAIT);
4567 if (err != 0) {
4568 if (err == ERESTART)
4569 dmu_tx_wait(tx);
4570
4571 dmu_tx_abort(tx);
4572 __set_page_dirty_nobuffers(pp);
4573 ClearPageError(pp);
4574 end_page_writeback(pp);
4575 rangelock_exit(lr);
4576 ZFS_EXIT(zfsvfs);
4577 return (err);
4578 }
4579
4580 va = kmap(pp);
4581 ASSERT3U(pglen, <=, PAGE_SIZE);
4582 dmu_write(zfsvfs->z_os, zp->z_id, pgoff, pglen, va, tx);
4583 kunmap(pp);
4584
4585 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
4586 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
4587 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_FLAGS(zfsvfs), NULL,
4588 &zp->z_pflags, 8);
4589
4590 /* Preserve the mtime and ctime provided by the inode */
4591 ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
4592 ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
4593 zp->z_atime_dirty = 0;
4594 zp->z_seq++;
4595
4596 err = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
4597
4598 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, pgoff, pglen, 0,
4599 zfs_putpage_commit_cb, pp);
4600 dmu_tx_commit(tx);
4601
4602 rangelock_exit(lr);
4603
4604 if (wbc->sync_mode != WB_SYNC_NONE) {
4605 /*
4606 * Note that this is rarely called under writepages(), because
4607 * writepages() normally handles the entire commit for
4608 * performance reasons.
4609 */
4610 zil_commit(zfsvfs->z_log, zp->z_id);
4611 }
4612
4613 ZFS_EXIT(zfsvfs);
4614 return (err);
4615 }
4616
4617 /*
4618 * Update the system attributes when the inode has been dirtied. For the
4619 * moment we only update the mode, atime, mtime, and ctime.
4620 */
4621 int
4622 zfs_dirty_inode(struct inode *ip, int flags)
4623 {
4624 znode_t *zp = ITOZ(ip);
4625 zfsvfs_t *zfsvfs = ITOZSB(ip);
4626 dmu_tx_t *tx;
4627 uint64_t mode, atime[2], mtime[2], ctime[2];
4628 sa_bulk_attr_t bulk[4];
4629 int error = 0;
4630 int cnt = 0;
4631
4632 if (zfs_is_readonly(zfsvfs) || dmu_objset_is_snapshot(zfsvfs->z_os))
4633 return (0);
4634
4635 ZFS_ENTER(zfsvfs);
4636 ZFS_VERIFY_ZP(zp);
4637
4638 #ifdef I_DIRTY_TIME
4639 /*
4640 * This is the lazytime semantic indroduced in Linux 4.0
4641 * This flag will only be called from update_time when lazytime is set.
4642 * (Note, I_DIRTY_SYNC will also set if not lazytime)
4643 * Fortunately mtime and ctime are managed within ZFS itself, so we
4644 * only need to dirty atime.
4645 */
4646 if (flags == I_DIRTY_TIME) {
4647 zp->z_atime_dirty = 1;
4648 goto out;
4649 }
4650 #endif
4651
4652 tx = dmu_tx_create(zfsvfs->z_os);
4653
4654 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4655 zfs_sa_upgrade_txholds(tx, zp);
4656
4657 error = dmu_tx_assign(tx, TXG_WAIT);
4658 if (error) {
4659 dmu_tx_abort(tx);
4660 goto out;
4661 }
4662
4663 mutex_enter(&zp->z_lock);
4664 zp->z_atime_dirty = 0;
4665
4666 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
4667 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
4668 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
4669 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
4670
4671 /* Preserve the mode, mtime and ctime provided by the inode */
4672 ZFS_TIME_ENCODE(&ip->i_atime, atime);
4673 ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
4674 ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
4675 mode = ip->i_mode;
4676
4677 zp->z_mode = mode;
4678
4679 error = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
4680 mutex_exit(&zp->z_lock);
4681
4682 dmu_tx_commit(tx);
4683 out:
4684 ZFS_EXIT(zfsvfs);
4685 return (error);
4686 }
4687
4688 /*ARGSUSED*/
4689 void
4690 zfs_inactive(struct inode *ip)
4691 {
4692 znode_t *zp = ITOZ(ip);
4693 zfsvfs_t *zfsvfs = ITOZSB(ip);
4694 uint64_t atime[2];
4695 int error;
4696 int need_unlock = 0;
4697
4698 /* Only read lock if we haven't already write locked, e.g. rollback */
4699 if (!RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)) {
4700 need_unlock = 1;
4701 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4702 }
4703 if (zp->z_sa_hdl == NULL) {
4704 if (need_unlock)
4705 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4706 return;
4707 }
4708
4709 if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4710 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4711
4712 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4713 zfs_sa_upgrade_txholds(tx, zp);
4714 error = dmu_tx_assign(tx, TXG_WAIT);
4715 if (error) {
4716 dmu_tx_abort(tx);
4717 } else {
4718 ZFS_TIME_ENCODE(&ip->i_atime, atime);
4719 mutex_enter(&zp->z_lock);
4720 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4721 (void *)&atime, sizeof (atime), tx);
4722 zp->z_atime_dirty = 0;
4723 mutex_exit(&zp->z_lock);
4724 dmu_tx_commit(tx);
4725 }
4726 }
4727
4728 zfs_zinactive(zp);
4729 if (need_unlock)
4730 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4731 }
4732
4733 /*
4734 * Bounds-check the seek operation.
4735 *
4736 * IN: ip - inode seeking within
4737 * ooff - old file offset
4738 * noffp - pointer to new file offset
4739 *
4740 * RETURN: 0 if success
4741 * EINVAL if new offset invalid
4742 */
4743 /* ARGSUSED */
4744 int
4745 zfs_seek(struct inode *ip, offset_t ooff, offset_t *noffp)
4746 {
4747 if (S_ISDIR(ip->i_mode))
4748 return (0);
4749 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4750 }
4751
4752 /*
4753 * Fill pages with data from the disk.
4754 */
4755 static int
4756 zfs_fillpage(struct inode *ip, struct page *pl[], int nr_pages)
4757 {
4758 znode_t *zp = ITOZ(ip);
4759 zfsvfs_t *zfsvfs = ITOZSB(ip);
4760 objset_t *os;
4761 struct page *cur_pp;
4762 u_offset_t io_off, total;
4763 size_t io_len;
4764 loff_t i_size;
4765 unsigned page_idx;
4766 int err;
4767
4768 os = zfsvfs->z_os;
4769 io_len = nr_pages << PAGE_SHIFT;
4770 i_size = i_size_read(ip);
4771 io_off = page_offset(pl[0]);
4772
4773 if (io_off + io_len > i_size)
4774 io_len = i_size - io_off;
4775
4776 /*
4777 * Iterate over list of pages and read each page individually.
4778 */
4779 page_idx = 0;
4780 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4781 caddr_t va;
4782
4783 cur_pp = pl[page_idx++];
4784 va = kmap(cur_pp);
4785 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4786 DMU_READ_PREFETCH);
4787 kunmap(cur_pp);
4788 if (err) {
4789 /* convert checksum errors into IO errors */
4790 if (err == ECKSUM)
4791 err = SET_ERROR(EIO);
4792 return (err);
4793 }
4794 }
4795
4796 return (0);
4797 }
4798
4799 /*
4800 * Uses zfs_fillpage to read data from the file and fill the pages.
4801 *
4802 * IN: ip - inode of file to get data from.
4803 * pl - list of pages to read
4804 * nr_pages - number of pages to read
4805 *
4806 * RETURN: 0 on success, error code on failure.
4807 *
4808 * Timestamps:
4809 * vp - atime updated
4810 */
4811 /* ARGSUSED */
4812 int
4813 zfs_getpage(struct inode *ip, struct page *pl[], int nr_pages)
4814 {
4815 znode_t *zp = ITOZ(ip);
4816 zfsvfs_t *zfsvfs = ITOZSB(ip);
4817 int err;
4818
4819 if (pl == NULL)
4820 return (0);
4821
4822 ZFS_ENTER(zfsvfs);
4823 ZFS_VERIFY_ZP(zp);
4824
4825 err = zfs_fillpage(ip, pl, nr_pages);
4826
4827 ZFS_EXIT(zfsvfs);
4828 return (err);
4829 }
4830
4831 /*
4832 * Check ZFS specific permissions to memory map a section of a file.
4833 *
4834 * IN: ip - inode of the file to mmap
4835 * off - file offset
4836 * addrp - start address in memory region
4837 * len - length of memory region
4838 * vm_flags- address flags
4839 *
4840 * RETURN: 0 if success
4841 * error code if failure
4842 */
4843 /*ARGSUSED*/
4844 int
4845 zfs_map(struct inode *ip, offset_t off, caddr_t *addrp, size_t len,
4846 unsigned long vm_flags)
4847 {
4848 znode_t *zp = ITOZ(ip);
4849 zfsvfs_t *zfsvfs = ITOZSB(ip);
4850
4851 ZFS_ENTER(zfsvfs);
4852 ZFS_VERIFY_ZP(zp);
4853
4854 if ((vm_flags & VM_WRITE) && (zp->z_pflags &
4855 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4856 ZFS_EXIT(zfsvfs);
4857 return (SET_ERROR(EPERM));
4858 }
4859
4860 if ((vm_flags & (VM_READ | VM_EXEC)) &&
4861 (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4862 ZFS_EXIT(zfsvfs);
4863 return (SET_ERROR(EACCES));
4864 }
4865
4866 if (off < 0 || len > MAXOFFSET_T - off) {
4867 ZFS_EXIT(zfsvfs);
4868 return (SET_ERROR(ENXIO));
4869 }
4870
4871 ZFS_EXIT(zfsvfs);
4872 return (0);
4873 }
4874
4875 /*
4876 * convoff - converts the given data (start, whence) to the
4877 * given whence.
4878 */
4879 int
4880 convoff(struct inode *ip, flock64_t *lckdat, int whence, offset_t offset)
4881 {
4882 vattr_t vap;
4883 int error;
4884
4885 if ((lckdat->l_whence == SEEK_END) || (whence == SEEK_END)) {
4886 if ((error = zfs_getattr(ip, &vap, 0, CRED())))
4887 return (error);
4888 }
4889
4890 switch (lckdat->l_whence) {
4891 case SEEK_CUR:
4892 lckdat->l_start += offset;
4893 break;
4894 case SEEK_END:
4895 lckdat->l_start += vap.va_size;
4896 /* FALLTHRU */
4897 case SEEK_SET:
4898 break;
4899 default:
4900 return (SET_ERROR(EINVAL));
4901 }
4902
4903 if (lckdat->l_start < 0)
4904 return (SET_ERROR(EINVAL));
4905
4906 switch (whence) {
4907 case SEEK_CUR:
4908 lckdat->l_start -= offset;
4909 break;
4910 case SEEK_END:
4911 lckdat->l_start -= vap.va_size;
4912 /* FALLTHRU */
4913 case SEEK_SET:
4914 break;
4915 default:
4916 return (SET_ERROR(EINVAL));
4917 }
4918
4919 lckdat->l_whence = (short)whence;
4920 return (0);
4921 }
4922
4923 /*
4924 * Free or allocate space in a file. Currently, this function only
4925 * supports the `F_FREESP' command. However, this command is somewhat
4926 * misnamed, as its functionality includes the ability to allocate as
4927 * well as free space.
4928 *
4929 * IN: ip - inode of file to free data in.
4930 * cmd - action to take (only F_FREESP supported).
4931 * bfp - section of file to free/alloc.
4932 * flag - current file open mode flags.
4933 * offset - current file offset.
4934 * cr - credentials of caller.
4935 *
4936 * RETURN: 0 on success, error code on failure.
4937 *
4938 * Timestamps:
4939 * ip - ctime|mtime updated
4940 */
4941 /* ARGSUSED */
4942 int
4943 zfs_space(struct inode *ip, int cmd, flock64_t *bfp, int flag,
4944 offset_t offset, cred_t *cr)
4945 {
4946 znode_t *zp = ITOZ(ip);
4947 zfsvfs_t *zfsvfs = ITOZSB(ip);
4948 uint64_t off, len;
4949 int error;
4950
4951 ZFS_ENTER(zfsvfs);
4952 ZFS_VERIFY_ZP(zp);
4953
4954 if (cmd != F_FREESP) {
4955 ZFS_EXIT(zfsvfs);
4956 return (SET_ERROR(EINVAL));
4957 }
4958
4959 /*
4960 * Callers might not be able to detect properly that we are read-only,
4961 * so check it explicitly here.
4962 */
4963 if (zfs_is_readonly(zfsvfs)) {
4964 ZFS_EXIT(zfsvfs);
4965 return (SET_ERROR(EROFS));
4966 }
4967
4968 if ((error = convoff(ip, bfp, SEEK_SET, offset))) {
4969 ZFS_EXIT(zfsvfs);
4970 return (error);
4971 }
4972
4973 if (bfp->l_len < 0) {
4974 ZFS_EXIT(zfsvfs);
4975 return (SET_ERROR(EINVAL));
4976 }
4977
4978 /*
4979 * Permissions aren't checked on Solaris because on this OS
4980 * zfs_space() can only be called with an opened file handle.
4981 * On Linux we can get here through truncate_range() which
4982 * operates directly on inodes, so we need to check access rights.
4983 */
4984 if ((error = zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr))) {
4985 ZFS_EXIT(zfsvfs);
4986 return (error);
4987 }
4988
4989 off = bfp->l_start;
4990 len = bfp->l_len; /* 0 means from off to end of file */
4991
4992 error = zfs_freesp(zp, off, len, flag, TRUE);
4993
4994 ZFS_EXIT(zfsvfs);
4995 return (error);
4996 }
4997
4998 /*ARGSUSED*/
4999 int
5000 zfs_fid(struct inode *ip, fid_t *fidp)
5001 {
5002 znode_t *zp = ITOZ(ip);
5003 zfsvfs_t *zfsvfs = ITOZSB(ip);
5004 uint32_t gen;
5005 uint64_t gen64;
5006 uint64_t object = zp->z_id;
5007 zfid_short_t *zfid;
5008 int size, i, error;
5009
5010 ZFS_ENTER(zfsvfs);
5011 ZFS_VERIFY_ZP(zp);
5012
5013 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
5014 &gen64, sizeof (uint64_t))) != 0) {
5015 ZFS_EXIT(zfsvfs);
5016 return (error);
5017 }
5018
5019 gen = (uint32_t)gen64;
5020
5021 size = SHORT_FID_LEN;
5022
5023 zfid = (zfid_short_t *)fidp;
5024
5025 zfid->zf_len = size;
5026
5027 for (i = 0; i < sizeof (zfid->zf_object); i++)
5028 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
5029
5030 /* Must have a non-zero generation number to distinguish from .zfs */
5031 if (gen == 0)
5032 gen = 1;
5033 for (i = 0; i < sizeof (zfid->zf_gen); i++)
5034 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
5035
5036 ZFS_EXIT(zfsvfs);
5037 return (0);
5038 }
5039
5040 /*ARGSUSED*/
5041 int
5042 zfs_getsecattr(struct inode *ip, vsecattr_t *vsecp, int flag, cred_t *cr)
5043 {
5044 znode_t *zp = ITOZ(ip);
5045 zfsvfs_t *zfsvfs = ITOZSB(ip);
5046 int error;
5047 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5048
5049 ZFS_ENTER(zfsvfs);
5050 ZFS_VERIFY_ZP(zp);
5051 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
5052 ZFS_EXIT(zfsvfs);
5053
5054 return (error);
5055 }
5056
5057 /*ARGSUSED*/
5058 int
5059 zfs_setsecattr(struct inode *ip, vsecattr_t *vsecp, int flag, cred_t *cr)
5060 {
5061 znode_t *zp = ITOZ(ip);
5062 zfsvfs_t *zfsvfs = ITOZSB(ip);
5063 int error;
5064 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5065 zilog_t *zilog = zfsvfs->z_log;
5066
5067 ZFS_ENTER(zfsvfs);
5068 ZFS_VERIFY_ZP(zp);
5069
5070 error = zfs_setacl(zp, vsecp, skipaclchk, cr);
5071
5072 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5073 zil_commit(zilog, 0);
5074
5075 ZFS_EXIT(zfsvfs);
5076 return (error);
5077 }
5078
5079 #ifdef HAVE_UIO_ZEROCOPY
5080 /*
5081 * The smallest read we may consider to loan out an arcbuf.
5082 * This must be a power of 2.
5083 */
5084 int zcr_blksz_min = (1 << 10); /* 1K */
5085 /*
5086 * If set to less than the file block size, allow loaning out of an
5087 * arcbuf for a partial block read. This must be a power of 2.
5088 */
5089 int zcr_blksz_max = (1 << 17); /* 128K */
5090
5091 /*ARGSUSED*/
5092 static int
5093 zfs_reqzcbuf(struct inode *ip, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr)
5094 {
5095 znode_t *zp = ITOZ(ip);
5096 zfsvfs_t *zfsvfs = ITOZSB(ip);
5097 int max_blksz = zfsvfs->z_max_blksz;
5098 uio_t *uio = &xuio->xu_uio;
5099 ssize_t size = uio->uio_resid;
5100 offset_t offset = uio->uio_loffset;
5101 int blksz;
5102 int fullblk, i;
5103 arc_buf_t *abuf;
5104 ssize_t maxsize;
5105 int preamble, postamble;
5106
5107 if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5108 return (SET_ERROR(EINVAL));
5109
5110 ZFS_ENTER(zfsvfs);
5111 ZFS_VERIFY_ZP(zp);
5112 switch (ioflag) {
5113 case UIO_WRITE:
5114 /*
5115 * Loan out an arc_buf for write if write size is bigger than
5116 * max_blksz, and the file's block size is also max_blksz.
5117 */
5118 blksz = max_blksz;
5119 if (size < blksz || zp->z_blksz != blksz) {
5120 ZFS_EXIT(zfsvfs);
5121 return (SET_ERROR(EINVAL));
5122 }
5123 /*
5124 * Caller requests buffers for write before knowing where the
5125 * write offset might be (e.g. NFS TCP write).
5126 */
5127 if (offset == -1) {
5128 preamble = 0;
5129 } else {
5130 preamble = P2PHASE(offset, blksz);
5131 if (preamble) {
5132 preamble = blksz - preamble;
5133 size -= preamble;
5134 }
5135 }
5136
5137 postamble = P2PHASE(size, blksz);
5138 size -= postamble;
5139
5140 fullblk = size / blksz;
5141 (void) dmu_xuio_init(xuio,
5142 (preamble != 0) + fullblk + (postamble != 0));
5143
5144 /*
5145 * Have to fix iov base/len for partial buffers. They
5146 * currently represent full arc_buf's.
5147 */
5148 if (preamble) {
5149 /* data begins in the middle of the arc_buf */
5150 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5151 blksz);
5152 ASSERT(abuf);
5153 (void) dmu_xuio_add(xuio, abuf,
5154 blksz - preamble, preamble);
5155 }
5156
5157 for (i = 0; i < fullblk; i++) {
5158 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5159 blksz);
5160 ASSERT(abuf);
5161 (void) dmu_xuio_add(xuio, abuf, 0, blksz);
5162 }
5163
5164 if (postamble) {
5165 /* data ends in the middle of the arc_buf */
5166 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5167 blksz);
5168 ASSERT(abuf);
5169 (void) dmu_xuio_add(xuio, abuf, 0, postamble);
5170 }
5171 break;
5172 case UIO_READ:
5173 /*
5174 * Loan out an arc_buf for read if the read size is larger than
5175 * the current file block size. Block alignment is not
5176 * considered. Partial arc_buf will be loaned out for read.
5177 */
5178 blksz = zp->z_blksz;
5179 if (blksz < zcr_blksz_min)
5180 blksz = zcr_blksz_min;
5181 if (blksz > zcr_blksz_max)
5182 blksz = zcr_blksz_max;
5183 /* avoid potential complexity of dealing with it */
5184 if (blksz > max_blksz) {
5185 ZFS_EXIT(zfsvfs);
5186 return (SET_ERROR(EINVAL));
5187 }
5188
5189 maxsize = zp->z_size - uio->uio_loffset;
5190 if (size > maxsize)
5191 size = maxsize;
5192
5193 if (size < blksz) {
5194 ZFS_EXIT(zfsvfs);
5195 return (SET_ERROR(EINVAL));
5196 }
5197 break;
5198 default:
5199 ZFS_EXIT(zfsvfs);
5200 return (SET_ERROR(EINVAL));
5201 }
5202
5203 uio->uio_extflg = UIO_XUIO;
5204 XUIO_XUZC_RW(xuio) = ioflag;
5205 ZFS_EXIT(zfsvfs);
5206 return (0);
5207 }
5208
5209 /*ARGSUSED*/
5210 static int
5211 zfs_retzcbuf(struct inode *ip, xuio_t *xuio, cred_t *cr)
5212 {
5213 int i;
5214 arc_buf_t *abuf;
5215 int ioflag = XUIO_XUZC_RW(xuio);
5216
5217 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5218
5219 i = dmu_xuio_cnt(xuio);
5220 while (i-- > 0) {
5221 abuf = dmu_xuio_arcbuf(xuio, i);
5222 /*
5223 * if abuf == NULL, it must be a write buffer
5224 * that has been returned in zfs_write().
5225 */
5226 if (abuf)
5227 dmu_return_arcbuf(abuf);
5228 ASSERT(abuf || ioflag == UIO_WRITE);
5229 }
5230
5231 dmu_xuio_fini(xuio);
5232 return (0);
5233 }
5234 #endif /* HAVE_UIO_ZEROCOPY */
5235
5236 #if defined(_KERNEL)
5237 EXPORT_SYMBOL(zfs_open);
5238 EXPORT_SYMBOL(zfs_close);
5239 EXPORT_SYMBOL(zfs_read);
5240 EXPORT_SYMBOL(zfs_write);
5241 EXPORT_SYMBOL(zfs_access);
5242 EXPORT_SYMBOL(zfs_lookup);
5243 EXPORT_SYMBOL(zfs_create);
5244 EXPORT_SYMBOL(zfs_tmpfile);
5245 EXPORT_SYMBOL(zfs_remove);
5246 EXPORT_SYMBOL(zfs_mkdir);
5247 EXPORT_SYMBOL(zfs_rmdir);
5248 EXPORT_SYMBOL(zfs_readdir);
5249 EXPORT_SYMBOL(zfs_fsync);
5250 EXPORT_SYMBOL(zfs_getattr);
5251 EXPORT_SYMBOL(zfs_getattr_fast);
5252 EXPORT_SYMBOL(zfs_setattr);
5253 EXPORT_SYMBOL(zfs_rename);
5254 EXPORT_SYMBOL(zfs_symlink);
5255 EXPORT_SYMBOL(zfs_readlink);
5256 EXPORT_SYMBOL(zfs_link);
5257 EXPORT_SYMBOL(zfs_inactive);
5258 EXPORT_SYMBOL(zfs_space);
5259 EXPORT_SYMBOL(zfs_fid);
5260 EXPORT_SYMBOL(zfs_getsecattr);
5261 EXPORT_SYMBOL(zfs_setsecattr);
5262 EXPORT_SYMBOL(zfs_getpage);
5263 EXPORT_SYMBOL(zfs_putpage);
5264 EXPORT_SYMBOL(zfs_dirty_inode);
5265 EXPORT_SYMBOL(zfs_map);
5266
5267 /* BEGIN CSTYLED */
5268 module_param(zfs_delete_blocks, ulong, 0644);
5269 MODULE_PARM_DESC(zfs_delete_blocks, "Delete files larger than N blocks async");
5270 module_param(zfs_read_chunk_size, ulong, 0644);
5271 MODULE_PARM_DESC(zfs_read_chunk_size, "Bytes to read per chunk");
5272 /* END CSTYLED */
5273
5274 #endif