]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zfs_vnops.c
Remove TSD zfs_fsyncer_key
[mirror_zfs.git] / module / zfs / zfs_vnops.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 /* Portions Copyright 2007 Jeremy Teo */
26 /* Portions Copyright 2010 Robert Milkowski */
27
28
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/time.h>
32 #include <sys/systm.h>
33 #include <sys/sysmacros.h>
34 #include <sys/resource.h>
35 #include <sys/vfs.h>
36 #include <sys/vfs_opreg.h>
37 #include <sys/file.h>
38 #include <sys/stat.h>
39 #include <sys/kmem.h>
40 #include <sys/taskq.h>
41 #include <sys/uio.h>
42 #include <sys/vmsystm.h>
43 #include <sys/atomic.h>
44 #include <vm/pvn.h>
45 #include <sys/pathname.h>
46 #include <sys/cmn_err.h>
47 #include <sys/errno.h>
48 #include <sys/unistd.h>
49 #include <sys/zfs_dir.h>
50 #include <sys/zfs_acl.h>
51 #include <sys/zfs_ioctl.h>
52 #include <sys/fs/zfs.h>
53 #include <sys/dmu.h>
54 #include <sys/dmu_objset.h>
55 #include <sys/spa.h>
56 #include <sys/txg.h>
57 #include <sys/dbuf.h>
58 #include <sys/zap.h>
59 #include <sys/sa.h>
60 #include <sys/dirent.h>
61 #include <sys/policy.h>
62 #include <sys/sunddi.h>
63 #include <sys/sid.h>
64 #include <sys/mode.h>
65 #include "fs/fs_subr.h"
66 #include <sys/zfs_ctldir.h>
67 #include <sys/zfs_fuid.h>
68 #include <sys/zfs_sa.h>
69 #include <sys/zfs_vnops.h>
70 #include <sys/dnlc.h>
71 #include <sys/zfs_rlock.h>
72 #include <sys/extdirent.h>
73 #include <sys/kidmap.h>
74 #include <sys/cred.h>
75 #include <sys/attr.h>
76 #include <sys/zpl.h>
77
78 /*
79 * Programming rules.
80 *
81 * Each vnode op performs some logical unit of work. To do this, the ZPL must
82 * properly lock its in-core state, create a DMU transaction, do the work,
83 * record this work in the intent log (ZIL), commit the DMU transaction,
84 * and wait for the intent log to commit if it is a synchronous operation.
85 * Moreover, the vnode ops must work in both normal and log replay context.
86 * The ordering of events is important to avoid deadlocks and references
87 * to freed memory. The example below illustrates the following Big Rules:
88 *
89 * (1) A check must be made in each zfs thread for a mounted file system.
90 * This is done avoiding races using ZFS_ENTER(zsb).
91 * A ZFS_EXIT(zsb) is needed before all returns. Any znodes
92 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros
93 * can return EIO from the calling function.
94 *
95 * (2) iput() should always be the last thing except for zil_commit()
96 * (if necessary) and ZFS_EXIT(). This is for 3 reasons:
97 * First, if it's the last reference, the vnode/znode
98 * can be freed, so the zp may point to freed memory. Second, the last
99 * reference will call zfs_zinactive(), which may induce a lot of work --
100 * pushing cached pages (which acquires range locks) and syncing out
101 * cached atime changes. Third, zfs_zinactive() may require a new tx,
102 * which could deadlock the system if you were already holding one.
103 * If you must call iput() within a tx then use iput_ASYNC().
104 *
105 * (3) All range locks must be grabbed before calling dmu_tx_assign(),
106 * as they can span dmu_tx_assign() calls.
107 *
108 * (4) Always pass TXG_NOWAIT as the second argument to dmu_tx_assign().
109 * This is critical because we don't want to block while holding locks.
110 * Note, in particular, that if a lock is sometimes acquired before
111 * the tx assigns, and sometimes after (e.g. z_lock), then failing to
112 * use a non-blocking assign can deadlock the system. The scenario:
113 *
114 * Thread A has grabbed a lock before calling dmu_tx_assign().
115 * Thread B is in an already-assigned tx, and blocks for this lock.
116 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
117 * forever, because the previous txg can't quiesce until B's tx commits.
118 *
119 * If dmu_tx_assign() returns ERESTART and zsb->z_assign is TXG_NOWAIT,
120 * then drop all locks, call dmu_tx_wait(), and try again.
121 *
122 * (5) If the operation succeeded, generate the intent log entry for it
123 * before dropping locks. This ensures that the ordering of events
124 * in the intent log matches the order in which they actually occurred.
125 * During ZIL replay the zfs_log_* functions will update the sequence
126 * number to indicate the zil transaction has replayed.
127 *
128 * (6) At the end of each vnode op, the DMU tx must always commit,
129 * regardless of whether there were any errors.
130 *
131 * (7) After dropping all locks, invoke zil_commit(zilog, foid)
132 * to ensure that synchronous semantics are provided when necessary.
133 *
134 * In general, this is how things should be ordered in each vnode op:
135 *
136 * ZFS_ENTER(zsb); // exit if unmounted
137 * top:
138 * zfs_dirent_lock(&dl, ...) // lock directory entry (may igrab())
139 * rw_enter(...); // grab any other locks you need
140 * tx = dmu_tx_create(...); // get DMU tx
141 * dmu_tx_hold_*(); // hold each object you might modify
142 * error = dmu_tx_assign(tx, TXG_NOWAIT); // try to assign
143 * if (error) {
144 * rw_exit(...); // drop locks
145 * zfs_dirent_unlock(dl); // unlock directory entry
146 * iput(...); // release held vnodes
147 * if (error == ERESTART) {
148 * dmu_tx_wait(tx);
149 * dmu_tx_abort(tx);
150 * goto top;
151 * }
152 * dmu_tx_abort(tx); // abort DMU tx
153 * ZFS_EXIT(zsb); // finished in zfs
154 * return (error); // really out of space
155 * }
156 * error = do_real_work(); // do whatever this VOP does
157 * if (error == 0)
158 * zfs_log_*(...); // on success, make ZIL entry
159 * dmu_tx_commit(tx); // commit DMU tx -- error or not
160 * rw_exit(...); // drop locks
161 * zfs_dirent_unlock(dl); // unlock directory entry
162 * iput(...); // release held vnodes
163 * zil_commit(zilog, foid); // synchronous when necessary
164 * ZFS_EXIT(zsb); // finished in zfs
165 * return (error); // done, report error
166 */
167
168 /*
169 * Virus scanning is unsupported. It would be possible to add a hook
170 * here to performance the required virus scan. This could be done
171 * entirely in the kernel or potentially as an update to invoke a
172 * scanning utility.
173 */
174 static int
175 zfs_vscan(struct inode *ip, cred_t *cr, int async)
176 {
177 return (0);
178 }
179
180 /* ARGSUSED */
181 int
182 zfs_open(struct inode *ip, int mode, int flag, cred_t *cr)
183 {
184 znode_t *zp = ITOZ(ip);
185 zfs_sb_t *zsb = ITOZSB(ip);
186
187 ZFS_ENTER(zsb);
188 ZFS_VERIFY_ZP(zp);
189
190 /* Honor ZFS_APPENDONLY file attribute */
191 if ((mode & FMODE_WRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
192 ((flag & O_APPEND) == 0)) {
193 ZFS_EXIT(zsb);
194 return (EPERM);
195 }
196
197 /* Virus scan eligible files on open */
198 if (!zfs_has_ctldir(zp) && zsb->z_vscan && S_ISREG(ip->i_mode) &&
199 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
200 if (zfs_vscan(ip, cr, 0) != 0) {
201 ZFS_EXIT(zsb);
202 return (EACCES);
203 }
204 }
205
206 /* Keep a count of the synchronous opens in the znode */
207 if (flag & O_SYNC)
208 atomic_inc_32(&zp->z_sync_cnt);
209
210 ZFS_EXIT(zsb);
211 return (0);
212 }
213 EXPORT_SYMBOL(zfs_open);
214
215 /* ARGSUSED */
216 int
217 zfs_close(struct inode *ip, int flag, cred_t *cr)
218 {
219 znode_t *zp = ITOZ(ip);
220 zfs_sb_t *zsb = ITOZSB(ip);
221
222 ZFS_ENTER(zsb);
223 ZFS_VERIFY_ZP(zp);
224
225 /*
226 * Zero the synchronous opens in the znode. Under Linux the
227 * zfs_close() hook is not symmetric with zfs_open(), it is
228 * only called once when the last reference is dropped.
229 */
230 if (flag & O_SYNC)
231 zp->z_sync_cnt = 0;
232
233 if (!zfs_has_ctldir(zp) && zsb->z_vscan && S_ISREG(ip->i_mode) &&
234 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
235 VERIFY(zfs_vscan(ip, cr, 1) == 0);
236
237 ZFS_EXIT(zsb);
238 return (0);
239 }
240 EXPORT_SYMBOL(zfs_close);
241
242 #if defined(_KERNEL)
243 /*
244 * When a file is memory mapped, we must keep the IO data synchronized
245 * between the DMU cache and the memory mapped pages. What this means:
246 *
247 * On Write: If we find a memory mapped page, we write to *both*
248 * the page and the dmu buffer.
249 */
250 static void
251 update_pages(struct inode *ip, int64_t start, int len,
252 objset_t *os, uint64_t oid)
253 {
254 struct address_space *mp = ip->i_mapping;
255 struct page *pp;
256 uint64_t nbytes;
257 int64_t off;
258 void *pb;
259
260 off = start & (PAGE_CACHE_SIZE-1);
261 for (start &= PAGE_CACHE_MASK; len > 0; start += PAGE_CACHE_SIZE) {
262 nbytes = MIN(PAGE_CACHE_SIZE - off, len);
263
264 pp = find_lock_page(mp, start >> PAGE_CACHE_SHIFT);
265 if (pp) {
266 if (mapping_writably_mapped(mp))
267 flush_dcache_page(pp);
268
269 pb = kmap(pp);
270 (void) dmu_read(os, oid, start+off, nbytes, pb+off,
271 DMU_READ_PREFETCH);
272 kunmap(pp);
273
274 if (mapping_writably_mapped(mp))
275 flush_dcache_page(pp);
276
277 mark_page_accessed(pp);
278 SetPageUptodate(pp);
279 ClearPageError(pp);
280 unlock_page(pp);
281 page_cache_release(pp);
282 }
283
284 len -= nbytes;
285 off = 0;
286 }
287 }
288
289 /*
290 * When a file is memory mapped, we must keep the IO data synchronized
291 * between the DMU cache and the memory mapped pages. What this means:
292 *
293 * On Read: We "read" preferentially from memory mapped pages,
294 * else we default from the dmu buffer.
295 *
296 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
297 * the file is memory mapped.
298 */
299 static int
300 mappedread(struct inode *ip, int nbytes, uio_t *uio)
301 {
302 struct address_space *mp = ip->i_mapping;
303 struct page *pp;
304 znode_t *zp = ITOZ(ip);
305 objset_t *os = ITOZSB(ip)->z_os;
306 int64_t start, off;
307 uint64_t bytes;
308 int len = nbytes;
309 int error = 0;
310 void *pb;
311
312 start = uio->uio_loffset;
313 off = start & (PAGE_CACHE_SIZE-1);
314 for (start &= PAGE_CACHE_MASK; len > 0; start += PAGE_CACHE_SIZE) {
315 bytes = MIN(PAGE_CACHE_SIZE - off, len);
316
317 pp = find_lock_page(mp, start >> PAGE_CACHE_SHIFT);
318 if (pp) {
319 ASSERT(PageUptodate(pp));
320
321 pb = kmap(pp);
322 error = uiomove(pb + off, bytes, UIO_READ, uio);
323 kunmap(pp);
324
325 if (mapping_writably_mapped(mp))
326 flush_dcache_page(pp);
327
328 mark_page_accessed(pp);
329 unlock_page(pp);
330 page_cache_release(pp);
331 } else {
332 error = dmu_read_uio(os, zp->z_id, uio, bytes);
333 }
334
335 len -= bytes;
336 off = 0;
337 if (error)
338 break;
339 }
340 return (error);
341 }
342 #endif /* _KERNEL */
343
344 unsigned long zfs_read_chunk_size = 1024 * 1024; /* Tunable */
345
346 /*
347 * Read bytes from specified file into supplied buffer.
348 *
349 * IN: ip - inode of file to be read from.
350 * uio - structure supplying read location, range info,
351 * and return buffer.
352 * ioflag - FSYNC flags; used to provide FRSYNC semantics.
353 * O_DIRECT flag; used to bypass page cache.
354 * cr - credentials of caller.
355 *
356 * OUT: uio - updated offset and range, buffer filled.
357 *
358 * RETURN: 0 if success
359 * error code if failure
360 *
361 * Side Effects:
362 * inode - atime updated if byte count > 0
363 */
364 /* ARGSUSED */
365 int
366 zfs_read(struct inode *ip, uio_t *uio, int ioflag, cred_t *cr)
367 {
368 znode_t *zp = ITOZ(ip);
369 zfs_sb_t *zsb = ITOZSB(ip);
370 objset_t *os;
371 ssize_t n, nbytes;
372 int error = 0;
373 rl_t *rl;
374 #ifdef HAVE_UIO_ZEROCOPY
375 xuio_t *xuio = NULL;
376 #endif /* HAVE_UIO_ZEROCOPY */
377
378 ZFS_ENTER(zsb);
379 ZFS_VERIFY_ZP(zp);
380 os = zsb->z_os;
381
382 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
383 ZFS_EXIT(zsb);
384 return (EACCES);
385 }
386
387 /*
388 * Validate file offset
389 */
390 if (uio->uio_loffset < (offset_t)0) {
391 ZFS_EXIT(zsb);
392 return (EINVAL);
393 }
394
395 /*
396 * Fasttrack empty reads
397 */
398 if (uio->uio_resid == 0) {
399 ZFS_EXIT(zsb);
400 return (0);
401 }
402
403 /*
404 * Check for mandatory locks
405 */
406 if (mandatory_lock(ip) &&
407 !lock_may_read(ip, uio->uio_loffset, uio->uio_resid)) {
408 ZFS_EXIT(zsb);
409 return (EAGAIN);
410 }
411
412 /*
413 * If we're in FRSYNC mode, sync out this znode before reading it.
414 */
415 if (ioflag & FRSYNC || zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
416 zil_commit(zsb->z_log, zp->z_id);
417
418 /*
419 * Lock the range against changes.
420 */
421 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
422
423 /*
424 * If we are reading past end-of-file we can skip
425 * to the end; but we might still need to set atime.
426 */
427 if (uio->uio_loffset >= zp->z_size) {
428 error = 0;
429 goto out;
430 }
431
432 ASSERT(uio->uio_loffset < zp->z_size);
433 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
434
435 #ifdef HAVE_UIO_ZEROCOPY
436 if ((uio->uio_extflg == UIO_XUIO) &&
437 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
438 int nblk;
439 int blksz = zp->z_blksz;
440 uint64_t offset = uio->uio_loffset;
441
442 xuio = (xuio_t *)uio;
443 if ((ISP2(blksz))) {
444 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
445 blksz)) / blksz;
446 } else {
447 ASSERT(offset + n <= blksz);
448 nblk = 1;
449 }
450 (void) dmu_xuio_init(xuio, nblk);
451
452 if (vn_has_cached_data(ip)) {
453 /*
454 * For simplicity, we always allocate a full buffer
455 * even if we only expect to read a portion of a block.
456 */
457 while (--nblk >= 0) {
458 (void) dmu_xuio_add(xuio,
459 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
460 blksz), 0, blksz);
461 }
462 }
463 }
464 #endif /* HAVE_UIO_ZEROCOPY */
465
466 while (n > 0) {
467 nbytes = MIN(n, zfs_read_chunk_size -
468 P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
469
470 if (zp->z_is_mapped && !(ioflag & O_DIRECT))
471 error = mappedread(ip, nbytes, uio);
472 else
473 error = dmu_read_uio(os, zp->z_id, uio, nbytes);
474
475 if (error) {
476 /* convert checksum errors into IO errors */
477 if (error == ECKSUM)
478 error = EIO;
479 break;
480 }
481
482 n -= nbytes;
483 }
484 out:
485 zfs_range_unlock(rl);
486
487 ZFS_ACCESSTIME_STAMP(zsb, zp);
488 zfs_inode_update(zp);
489 ZFS_EXIT(zsb);
490 return (error);
491 }
492 EXPORT_SYMBOL(zfs_read);
493
494 /*
495 * Write the bytes to a file.
496 *
497 * IN: ip - inode of file to be written to.
498 * uio - structure supplying write location, range info,
499 * and data buffer.
500 * ioflag - FAPPEND flag set if in append mode.
501 * O_DIRECT flag; used to bypass page cache.
502 * cr - credentials of caller.
503 *
504 * OUT: uio - updated offset and range.
505 *
506 * RETURN: 0 if success
507 * error code if failure
508 *
509 * Timestamps:
510 * ip - ctime|mtime updated if byte count > 0
511 */
512
513 /* ARGSUSED */
514 int
515 zfs_write(struct inode *ip, uio_t *uio, int ioflag, cred_t *cr)
516 {
517 znode_t *zp = ITOZ(ip);
518 rlim64_t limit = uio->uio_limit;
519 ssize_t start_resid = uio->uio_resid;
520 ssize_t tx_bytes;
521 uint64_t end_size;
522 dmu_tx_t *tx;
523 zfs_sb_t *zsb = ZTOZSB(zp);
524 zilog_t *zilog;
525 offset_t woff;
526 ssize_t n, nbytes;
527 rl_t *rl;
528 int max_blksz = zsb->z_max_blksz;
529 int error = 0;
530 arc_buf_t *abuf;
531 iovec_t *aiov = NULL;
532 xuio_t *xuio = NULL;
533 int i_iov = 0;
534 iovec_t *iovp = uio->uio_iov;
535 int write_eof;
536 int count = 0;
537 sa_bulk_attr_t bulk[4];
538 uint64_t mtime[2], ctime[2];
539 ASSERTV(int iovcnt = uio->uio_iovcnt);
540
541 /*
542 * Fasttrack empty write
543 */
544 n = start_resid;
545 if (n == 0)
546 return (0);
547
548 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
549 limit = MAXOFFSET_T;
550
551 ZFS_ENTER(zsb);
552 ZFS_VERIFY_ZP(zp);
553
554 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zsb), NULL, &mtime, 16);
555 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zsb), NULL, &ctime, 16);
556 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zsb), NULL, &zp->z_size, 8);
557 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zsb), NULL,
558 &zp->z_pflags, 8);
559
560 /*
561 * If immutable or not appending then return EPERM
562 */
563 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
564 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
565 (uio->uio_loffset < zp->z_size))) {
566 ZFS_EXIT(zsb);
567 return (EPERM);
568 }
569
570 zilog = zsb->z_log;
571
572 /*
573 * Validate file offset
574 */
575 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
576 if (woff < 0) {
577 ZFS_EXIT(zsb);
578 return (EINVAL);
579 }
580
581 /*
582 * Check for mandatory locks before calling zfs_range_lock()
583 * in order to prevent a deadlock with locks set via fcntl().
584 */
585 if (mandatory_lock(ip) && !lock_may_write(ip, woff, n)) {
586 ZFS_EXIT(zsb);
587 return (EAGAIN);
588 }
589
590 #ifdef HAVE_UIO_ZEROCOPY
591 /*
592 * Pre-fault the pages to ensure slow (eg NFS) pages
593 * don't hold up txg.
594 * Skip this if uio contains loaned arc_buf.
595 */
596 if ((uio->uio_extflg == UIO_XUIO) &&
597 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
598 xuio = (xuio_t *)uio;
599 else
600 uio_prefaultpages(MIN(n, max_blksz), uio);
601 #endif /* HAVE_UIO_ZEROCOPY */
602
603 /*
604 * If in append mode, set the io offset pointer to eof.
605 */
606 if (ioflag & FAPPEND) {
607 /*
608 * Obtain an appending range lock to guarantee file append
609 * semantics. We reset the write offset once we have the lock.
610 */
611 rl = zfs_range_lock(zp, 0, n, RL_APPEND);
612 woff = rl->r_off;
613 if (rl->r_len == UINT64_MAX) {
614 /*
615 * We overlocked the file because this write will cause
616 * the file block size to increase.
617 * Note that zp_size cannot change with this lock held.
618 */
619 woff = zp->z_size;
620 }
621 uio->uio_loffset = woff;
622 } else {
623 /*
624 * Note that if the file block size will change as a result of
625 * this write, then this range lock will lock the entire file
626 * so that we can re-write the block safely.
627 */
628 rl = zfs_range_lock(zp, woff, n, RL_WRITER);
629 }
630
631 if (woff >= limit) {
632 zfs_range_unlock(rl);
633 ZFS_EXIT(zsb);
634 return (EFBIG);
635 }
636
637 if ((woff + n) > limit || woff > (limit - n))
638 n = limit - woff;
639
640 /* Will this write extend the file length? */
641 write_eof = (woff + n > zp->z_size);
642
643 end_size = MAX(zp->z_size, woff + n);
644
645 /*
646 * Write the file in reasonable size chunks. Each chunk is written
647 * in a separate transaction; this keeps the intent log records small
648 * and allows us to do more fine-grained space accounting.
649 */
650 while (n > 0) {
651 abuf = NULL;
652 woff = uio->uio_loffset;
653 again:
654 if (zfs_owner_overquota(zsb, zp, B_FALSE) ||
655 zfs_owner_overquota(zsb, zp, B_TRUE)) {
656 if (abuf != NULL)
657 dmu_return_arcbuf(abuf);
658 error = EDQUOT;
659 break;
660 }
661
662 if (xuio && abuf == NULL) {
663 ASSERT(i_iov < iovcnt);
664 aiov = &iovp[i_iov];
665 abuf = dmu_xuio_arcbuf(xuio, i_iov);
666 dmu_xuio_clear(xuio, i_iov);
667 ASSERT((aiov->iov_base == abuf->b_data) ||
668 ((char *)aiov->iov_base - (char *)abuf->b_data +
669 aiov->iov_len == arc_buf_size(abuf)));
670 i_iov++;
671 } else if (abuf == NULL && n >= max_blksz &&
672 woff >= zp->z_size &&
673 P2PHASE(woff, max_blksz) == 0 &&
674 zp->z_blksz == max_blksz) {
675 /*
676 * This write covers a full block. "Borrow" a buffer
677 * from the dmu so that we can fill it before we enter
678 * a transaction. This avoids the possibility of
679 * holding up the transaction if the data copy hangs
680 * up on a pagefault (e.g., from an NFS server mapping).
681 */
682 size_t cbytes;
683
684 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
685 max_blksz);
686 ASSERT(abuf != NULL);
687 ASSERT(arc_buf_size(abuf) == max_blksz);
688 if ((error = uiocopy(abuf->b_data, max_blksz,
689 UIO_WRITE, uio, &cbytes))) {
690 dmu_return_arcbuf(abuf);
691 break;
692 }
693 ASSERT(cbytes == max_blksz);
694 }
695
696 /*
697 * Start a transaction.
698 */
699 tx = dmu_tx_create(zsb->z_os);
700 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
701 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
702 zfs_sa_upgrade_txholds(tx, zp);
703 error = dmu_tx_assign(tx, TXG_NOWAIT);
704 if (error) {
705 if (error == ERESTART) {
706 dmu_tx_wait(tx);
707 dmu_tx_abort(tx);
708 goto again;
709 }
710 dmu_tx_abort(tx);
711 if (abuf != NULL)
712 dmu_return_arcbuf(abuf);
713 break;
714 }
715
716 /*
717 * If zfs_range_lock() over-locked we grow the blocksize
718 * and then reduce the lock range. This will only happen
719 * on the first iteration since zfs_range_reduce() will
720 * shrink down r_len to the appropriate size.
721 */
722 if (rl->r_len == UINT64_MAX) {
723 uint64_t new_blksz;
724
725 if (zp->z_blksz > max_blksz) {
726 ASSERT(!ISP2(zp->z_blksz));
727 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE);
728 } else {
729 new_blksz = MIN(end_size, max_blksz);
730 }
731 zfs_grow_blocksize(zp, new_blksz, tx);
732 zfs_range_reduce(rl, woff, n);
733 }
734
735 /*
736 * XXX - should we really limit each write to z_max_blksz?
737 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
738 */
739 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
740
741 if (abuf == NULL) {
742 tx_bytes = uio->uio_resid;
743 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
744 uio, nbytes, tx);
745 tx_bytes -= uio->uio_resid;
746 } else {
747 tx_bytes = nbytes;
748 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
749 /*
750 * If this is not a full block write, but we are
751 * extending the file past EOF and this data starts
752 * block-aligned, use assign_arcbuf(). Otherwise,
753 * write via dmu_write().
754 */
755 if (tx_bytes < max_blksz && (!write_eof ||
756 aiov->iov_base != abuf->b_data)) {
757 ASSERT(xuio);
758 dmu_write(zsb->z_os, zp->z_id, woff,
759 aiov->iov_len, aiov->iov_base, tx);
760 dmu_return_arcbuf(abuf);
761 xuio_stat_wbuf_copied();
762 } else {
763 ASSERT(xuio || tx_bytes == max_blksz);
764 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
765 woff, abuf, tx);
766 }
767 ASSERT(tx_bytes <= uio->uio_resid);
768 uioskip(uio, tx_bytes);
769 }
770
771 if (tx_bytes && zp->z_is_mapped && !(ioflag & O_DIRECT))
772 update_pages(ip, woff, tx_bytes, zsb->z_os, zp->z_id);
773
774 /*
775 * If we made no progress, we're done. If we made even
776 * partial progress, update the znode and ZIL accordingly.
777 */
778 if (tx_bytes == 0) {
779 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zsb),
780 (void *)&zp->z_size, sizeof (uint64_t), tx);
781 dmu_tx_commit(tx);
782 ASSERT(error != 0);
783 break;
784 }
785
786 /*
787 * Clear Set-UID/Set-GID bits on successful write if not
788 * privileged and at least one of the excute bits is set.
789 *
790 * It would be nice to to this after all writes have
791 * been done, but that would still expose the ISUID/ISGID
792 * to another app after the partial write is committed.
793 *
794 * Note: we don't call zfs_fuid_map_id() here because
795 * user 0 is not an ephemeral uid.
796 */
797 mutex_enter(&zp->z_acl_lock);
798 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
799 (S_IXUSR >> 6))) != 0 &&
800 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
801 secpolicy_vnode_setid_retain(cr,
802 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
803 uint64_t newmode;
804 zp->z_mode &= ~(S_ISUID | S_ISGID);
805 newmode = zp->z_mode;
806 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zsb),
807 (void *)&newmode, sizeof (uint64_t), tx);
808 }
809 mutex_exit(&zp->z_acl_lock);
810
811 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
812 B_TRUE);
813
814 /*
815 * Update the file size (zp_size) if it has changed;
816 * account for possible concurrent updates.
817 */
818 while ((end_size = zp->z_size) < uio->uio_loffset) {
819 (void) atomic_cas_64(&zp->z_size, end_size,
820 uio->uio_loffset);
821 ASSERT(error == 0);
822 }
823 /*
824 * If we are replaying and eof is non zero then force
825 * the file size to the specified eof. Note, there's no
826 * concurrency during replay.
827 */
828 if (zsb->z_replay && zsb->z_replay_eof != 0)
829 zp->z_size = zsb->z_replay_eof;
830
831 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
832
833 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
834 dmu_tx_commit(tx);
835
836 if (error != 0)
837 break;
838 ASSERT(tx_bytes == nbytes);
839 n -= nbytes;
840
841 if (!xuio && n > 0)
842 uio_prefaultpages(MIN(n, max_blksz), uio);
843 }
844
845 zfs_range_unlock(rl);
846
847 /*
848 * If we're in replay mode, or we made no progress, return error.
849 * Otherwise, it's at least a partial write, so it's successful.
850 */
851 if (zsb->z_replay || uio->uio_resid == start_resid) {
852 ZFS_EXIT(zsb);
853 return (error);
854 }
855
856 if (ioflag & (FSYNC | FDSYNC) ||
857 zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
858 zil_commit(zilog, zp->z_id);
859
860 zfs_inode_update(zp);
861 ZFS_EXIT(zsb);
862 return (0);
863 }
864 EXPORT_SYMBOL(zfs_write);
865
866 static void
867 iput_async(struct inode *ip, taskq_t *taskq)
868 {
869 ASSERT(atomic_read(&ip->i_count) > 0);
870 if (atomic_read(&ip->i_count) == 1)
871 taskq_dispatch(taskq, (task_func_t *)iput, ip, TQ_PUSHPAGE);
872 else
873 iput(ip);
874 }
875
876 void
877 zfs_get_done(zgd_t *zgd, int error)
878 {
879 znode_t *zp = zgd->zgd_private;
880 objset_t *os = ZTOZSB(zp)->z_os;
881
882 if (zgd->zgd_db)
883 dmu_buf_rele(zgd->zgd_db, zgd);
884
885 zfs_range_unlock(zgd->zgd_rl);
886
887 /*
888 * Release the vnode asynchronously as we currently have the
889 * txg stopped from syncing.
890 */
891 iput_async(ZTOI(zp), dsl_pool_iput_taskq(dmu_objset_pool(os)));
892
893 if (error == 0 && zgd->zgd_bp)
894 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
895
896 kmem_free(zgd, sizeof (zgd_t));
897 }
898
899 #ifdef DEBUG
900 static int zil_fault_io = 0;
901 #endif
902
903 /*
904 * Get data to generate a TX_WRITE intent log record.
905 */
906 int
907 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
908 {
909 zfs_sb_t *zsb = arg;
910 objset_t *os = zsb->z_os;
911 znode_t *zp;
912 uint64_t object = lr->lr_foid;
913 uint64_t offset = lr->lr_offset;
914 uint64_t size = lr->lr_length;
915 blkptr_t *bp = &lr->lr_blkptr;
916 dmu_buf_t *db;
917 zgd_t *zgd;
918 int error = 0;
919
920 ASSERT(zio != NULL);
921 ASSERT(size != 0);
922
923 /*
924 * Nothing to do if the file has been removed
925 */
926 if (zfs_zget(zsb, object, &zp) != 0)
927 return (ENOENT);
928 if (zp->z_unlinked) {
929 /*
930 * Release the vnode asynchronously as we currently have the
931 * txg stopped from syncing.
932 */
933 iput_async(ZTOI(zp), dsl_pool_iput_taskq(dmu_objset_pool(os)));
934 return (ENOENT);
935 }
936
937 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_PUSHPAGE);
938 zgd->zgd_zilog = zsb->z_log;
939 zgd->zgd_private = zp;
940
941 /*
942 * Write records come in two flavors: immediate and indirect.
943 * For small writes it's cheaper to store the data with the
944 * log record (immediate); for large writes it's cheaper to
945 * sync the data and get a pointer to it (indirect) so that
946 * we don't have to write the data twice.
947 */
948 if (buf != NULL) { /* immediate write */
949 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
950 /* test for truncation needs to be done while range locked */
951 if (offset >= zp->z_size) {
952 error = ENOENT;
953 } else {
954 error = dmu_read(os, object, offset, size, buf,
955 DMU_READ_NO_PREFETCH);
956 }
957 ASSERT(error == 0 || error == ENOENT);
958 } else { /* indirect write */
959 /*
960 * Have to lock the whole block to ensure when it's
961 * written out and it's checksum is being calculated
962 * that no one can change the data. We need to re-check
963 * blocksize after we get the lock in case it's changed!
964 */
965 for (;;) {
966 uint64_t blkoff;
967 size = zp->z_blksz;
968 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
969 offset -= blkoff;
970 zgd->zgd_rl = zfs_range_lock(zp, offset, size,
971 RL_READER);
972 if (zp->z_blksz == size)
973 break;
974 offset += blkoff;
975 zfs_range_unlock(zgd->zgd_rl);
976 }
977 /* test for truncation needs to be done while range locked */
978 if (lr->lr_offset >= zp->z_size)
979 error = ENOENT;
980 #ifdef DEBUG
981 if (zil_fault_io) {
982 error = EIO;
983 zil_fault_io = 0;
984 }
985 #endif
986 if (error == 0)
987 error = dmu_buf_hold(os, object, offset, zgd, &db,
988 DMU_READ_NO_PREFETCH);
989
990 if (error == 0) {
991 zgd->zgd_db = db;
992 zgd->zgd_bp = bp;
993
994 ASSERT(db->db_offset == offset);
995 ASSERT(db->db_size == size);
996
997 error = dmu_sync(zio, lr->lr_common.lrc_txg,
998 zfs_get_done, zgd);
999 ASSERT(error || lr->lr_length <= zp->z_blksz);
1000
1001 /*
1002 * On success, we need to wait for the write I/O
1003 * initiated by dmu_sync() to complete before we can
1004 * release this dbuf. We will finish everything up
1005 * in the zfs_get_done() callback.
1006 */
1007 if (error == 0)
1008 return (0);
1009
1010 if (error == EALREADY) {
1011 lr->lr_common.lrc_txtype = TX_WRITE2;
1012 error = 0;
1013 }
1014 }
1015 }
1016
1017 zfs_get_done(zgd, error);
1018
1019 return (error);
1020 }
1021
1022 /*ARGSUSED*/
1023 int
1024 zfs_access(struct inode *ip, int mode, int flag, cred_t *cr)
1025 {
1026 znode_t *zp = ITOZ(ip);
1027 zfs_sb_t *zsb = ITOZSB(ip);
1028 int error;
1029
1030 ZFS_ENTER(zsb);
1031 ZFS_VERIFY_ZP(zp);
1032
1033 if (flag & V_ACE_MASK)
1034 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1035 else
1036 error = zfs_zaccess_rwx(zp, mode, flag, cr);
1037
1038 ZFS_EXIT(zsb);
1039 return (error);
1040 }
1041 EXPORT_SYMBOL(zfs_access);
1042
1043 /*
1044 * Lookup an entry in a directory, or an extended attribute directory.
1045 * If it exists, return a held inode reference for it.
1046 *
1047 * IN: dip - inode of directory to search.
1048 * nm - name of entry to lookup.
1049 * flags - LOOKUP_XATTR set if looking for an attribute.
1050 * cr - credentials of caller.
1051 * direntflags - directory lookup flags
1052 * realpnp - returned pathname.
1053 *
1054 * OUT: ipp - inode of located entry, NULL if not found.
1055 *
1056 * RETURN: 0 if success
1057 * error code if failure
1058 *
1059 * Timestamps:
1060 * NA
1061 */
1062 /* ARGSUSED */
1063 int
1064 zfs_lookup(struct inode *dip, char *nm, struct inode **ipp, int flags,
1065 cred_t *cr, int *direntflags, pathname_t *realpnp)
1066 {
1067 znode_t *zdp = ITOZ(dip);
1068 zfs_sb_t *zsb = ITOZSB(dip);
1069 int error = 0;
1070
1071 /* fast path */
1072 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1073
1074 if (!S_ISDIR(dip->i_mode)) {
1075 return (ENOTDIR);
1076 } else if (zdp->z_sa_hdl == NULL) {
1077 return (EIO);
1078 }
1079
1080 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1081 error = zfs_fastaccesschk_execute(zdp, cr);
1082 if (!error) {
1083 *ipp = dip;
1084 igrab(*ipp);
1085 return (0);
1086 }
1087 return (error);
1088 #ifdef HAVE_DNLC
1089 } else {
1090 vnode_t *tvp = dnlc_lookup(dvp, nm);
1091
1092 if (tvp) {
1093 error = zfs_fastaccesschk_execute(zdp, cr);
1094 if (error) {
1095 iput(tvp);
1096 return (error);
1097 }
1098 if (tvp == DNLC_NO_VNODE) {
1099 iput(tvp);
1100 return (ENOENT);
1101 } else {
1102 *vpp = tvp;
1103 return (specvp_check(vpp, cr));
1104 }
1105 }
1106 #endif /* HAVE_DNLC */
1107 }
1108 }
1109
1110 ZFS_ENTER(zsb);
1111 ZFS_VERIFY_ZP(zdp);
1112
1113 *ipp = NULL;
1114
1115 if (flags & LOOKUP_XATTR) {
1116 /*
1117 * We don't allow recursive attributes..
1118 * Maybe someday we will.
1119 */
1120 if (zdp->z_pflags & ZFS_XATTR) {
1121 ZFS_EXIT(zsb);
1122 return (EINVAL);
1123 }
1124
1125 if ((error = zfs_get_xattrdir(zdp, ipp, cr, flags))) {
1126 ZFS_EXIT(zsb);
1127 return (error);
1128 }
1129
1130 /*
1131 * Do we have permission to get into attribute directory?
1132 */
1133
1134 if ((error = zfs_zaccess(ITOZ(*ipp), ACE_EXECUTE, 0,
1135 B_FALSE, cr))) {
1136 iput(*ipp);
1137 *ipp = NULL;
1138 }
1139
1140 ZFS_EXIT(zsb);
1141 return (error);
1142 }
1143
1144 if (!S_ISDIR(dip->i_mode)) {
1145 ZFS_EXIT(zsb);
1146 return (ENOTDIR);
1147 }
1148
1149 /*
1150 * Check accessibility of directory.
1151 */
1152
1153 if ((error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr))) {
1154 ZFS_EXIT(zsb);
1155 return (error);
1156 }
1157
1158 if (zsb->z_utf8 && u8_validate(nm, strlen(nm),
1159 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1160 ZFS_EXIT(zsb);
1161 return (EILSEQ);
1162 }
1163
1164 error = zfs_dirlook(zdp, nm, ipp, flags, direntflags, realpnp);
1165 if ((error == 0) && (*ipp))
1166 zfs_inode_update(ITOZ(*ipp));
1167
1168 ZFS_EXIT(zsb);
1169 return (error);
1170 }
1171 EXPORT_SYMBOL(zfs_lookup);
1172
1173 /*
1174 * Attempt to create a new entry in a directory. If the entry
1175 * already exists, truncate the file if permissible, else return
1176 * an error. Return the ip of the created or trunc'd file.
1177 *
1178 * IN: dip - inode of directory to put new file entry in.
1179 * name - name of new file entry.
1180 * vap - attributes of new file.
1181 * excl - flag indicating exclusive or non-exclusive mode.
1182 * mode - mode to open file with.
1183 * cr - credentials of caller.
1184 * flag - large file flag [UNUSED].
1185 * vsecp - ACL to be set
1186 *
1187 * OUT: ipp - inode of created or trunc'd entry.
1188 *
1189 * RETURN: 0 if success
1190 * error code if failure
1191 *
1192 * Timestamps:
1193 * dip - ctime|mtime updated if new entry created
1194 * ip - ctime|mtime always, atime if new
1195 */
1196
1197 /* ARGSUSED */
1198 int
1199 zfs_create(struct inode *dip, char *name, vattr_t *vap, int excl,
1200 int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp)
1201 {
1202 znode_t *zp, *dzp = ITOZ(dip);
1203 zfs_sb_t *zsb = ITOZSB(dip);
1204 zilog_t *zilog;
1205 objset_t *os;
1206 zfs_dirlock_t *dl;
1207 dmu_tx_t *tx;
1208 int error;
1209 uid_t uid;
1210 gid_t gid;
1211 zfs_acl_ids_t acl_ids;
1212 boolean_t fuid_dirtied;
1213 boolean_t have_acl = B_FALSE;
1214
1215 /*
1216 * If we have an ephemeral id, ACL, or XVATTR then
1217 * make sure file system is at proper version
1218 */
1219
1220 gid = crgetgid(cr);
1221 uid = crgetuid(cr);
1222
1223 if (zsb->z_use_fuids == B_FALSE &&
1224 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1225 return (EINVAL);
1226
1227 ZFS_ENTER(zsb);
1228 ZFS_VERIFY_ZP(dzp);
1229 os = zsb->z_os;
1230 zilog = zsb->z_log;
1231
1232 if (zsb->z_utf8 && u8_validate(name, strlen(name),
1233 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1234 ZFS_EXIT(zsb);
1235 return (EILSEQ);
1236 }
1237
1238 if (vap->va_mask & ATTR_XVATTR) {
1239 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1240 crgetuid(cr), cr, vap->va_mode)) != 0) {
1241 ZFS_EXIT(zsb);
1242 return (error);
1243 }
1244 }
1245
1246 top:
1247 *ipp = NULL;
1248 if (*name == '\0') {
1249 /*
1250 * Null component name refers to the directory itself.
1251 */
1252 igrab(dip);
1253 zp = dzp;
1254 dl = NULL;
1255 error = 0;
1256 } else {
1257 /* possible igrab(zp) */
1258 int zflg = 0;
1259
1260 if (flag & FIGNORECASE)
1261 zflg |= ZCILOOK;
1262
1263 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1264 NULL, NULL);
1265 if (error) {
1266 if (have_acl)
1267 zfs_acl_ids_free(&acl_ids);
1268 if (strcmp(name, "..") == 0)
1269 error = EISDIR;
1270 ZFS_EXIT(zsb);
1271 return (error);
1272 }
1273 }
1274
1275 if (zp == NULL) {
1276 uint64_t txtype;
1277
1278 /*
1279 * Create a new file object and update the directory
1280 * to reference it.
1281 */
1282 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
1283 if (have_acl)
1284 zfs_acl_ids_free(&acl_ids);
1285 goto out;
1286 }
1287
1288 /*
1289 * We only support the creation of regular files in
1290 * extended attribute directories.
1291 */
1292
1293 if ((dzp->z_pflags & ZFS_XATTR) && !S_ISREG(vap->va_mode)) {
1294 if (have_acl)
1295 zfs_acl_ids_free(&acl_ids);
1296 error = EINVAL;
1297 goto out;
1298 }
1299
1300 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1301 cr, vsecp, &acl_ids)) != 0)
1302 goto out;
1303 have_acl = B_TRUE;
1304
1305 if (zfs_acl_ids_overquota(zsb, &acl_ids)) {
1306 zfs_acl_ids_free(&acl_ids);
1307 error = EDQUOT;
1308 goto out;
1309 }
1310
1311 tx = dmu_tx_create(os);
1312
1313 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1314 ZFS_SA_BASE_ATTR_SIZE);
1315
1316 fuid_dirtied = zsb->z_fuid_dirty;
1317 if (fuid_dirtied)
1318 zfs_fuid_txhold(zsb, tx);
1319 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1320 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1321 if (!zsb->z_use_sa &&
1322 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1323 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1324 0, acl_ids.z_aclp->z_acl_bytes);
1325 }
1326 error = dmu_tx_assign(tx, TXG_NOWAIT);
1327 if (error) {
1328 zfs_dirent_unlock(dl);
1329 if (error == ERESTART) {
1330 dmu_tx_wait(tx);
1331 dmu_tx_abort(tx);
1332 goto top;
1333 }
1334 zfs_acl_ids_free(&acl_ids);
1335 dmu_tx_abort(tx);
1336 ZFS_EXIT(zsb);
1337 return (error);
1338 }
1339 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1340
1341 if (fuid_dirtied)
1342 zfs_fuid_sync(zsb, tx);
1343
1344 (void) zfs_link_create(dl, zp, tx, ZNEW);
1345 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1346 if (flag & FIGNORECASE)
1347 txtype |= TX_CI;
1348 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1349 vsecp, acl_ids.z_fuidp, vap);
1350 zfs_acl_ids_free(&acl_ids);
1351 dmu_tx_commit(tx);
1352 } else {
1353 int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1354
1355 if (have_acl)
1356 zfs_acl_ids_free(&acl_ids);
1357 have_acl = B_FALSE;
1358
1359 /*
1360 * A directory entry already exists for this name.
1361 */
1362 /*
1363 * Can't truncate an existing file if in exclusive mode.
1364 */
1365 if (excl) {
1366 error = EEXIST;
1367 goto out;
1368 }
1369 /*
1370 * Can't open a directory for writing.
1371 */
1372 if (S_ISDIR(ZTOI(zp)->i_mode)) {
1373 error = EISDIR;
1374 goto out;
1375 }
1376 /*
1377 * Verify requested access to file.
1378 */
1379 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1380 goto out;
1381 }
1382
1383 mutex_enter(&dzp->z_lock);
1384 dzp->z_seq++;
1385 mutex_exit(&dzp->z_lock);
1386
1387 /*
1388 * Truncate regular files if requested.
1389 */
1390 if (S_ISREG(ZTOI(zp)->i_mode) &&
1391 (vap->va_mask & ATTR_SIZE) && (vap->va_size == 0)) {
1392 /* we can't hold any locks when calling zfs_freesp() */
1393 zfs_dirent_unlock(dl);
1394 dl = NULL;
1395 error = zfs_freesp(zp, 0, 0, mode, TRUE);
1396 }
1397 }
1398 out:
1399
1400 if (dl)
1401 zfs_dirent_unlock(dl);
1402
1403 if (error) {
1404 if (zp)
1405 iput(ZTOI(zp));
1406 } else {
1407 zfs_inode_update(dzp);
1408 zfs_inode_update(zp);
1409 *ipp = ZTOI(zp);
1410 }
1411
1412 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
1413 zil_commit(zilog, 0);
1414
1415 ZFS_EXIT(zsb);
1416 return (error);
1417 }
1418 EXPORT_SYMBOL(zfs_create);
1419
1420 /*
1421 * Remove an entry from a directory.
1422 *
1423 * IN: dip - inode of directory to remove entry from.
1424 * name - name of entry to remove.
1425 * cr - credentials of caller.
1426 *
1427 * RETURN: 0 if success
1428 * error code if failure
1429 *
1430 * Timestamps:
1431 * dip - ctime|mtime
1432 * ip - ctime (if nlink > 0)
1433 */
1434
1435 uint64_t null_xattr = 0;
1436
1437 /*ARGSUSED*/
1438 int
1439 zfs_remove(struct inode *dip, char *name, cred_t *cr)
1440 {
1441 znode_t *zp, *dzp = ITOZ(dip);
1442 znode_t *xzp;
1443 struct inode *ip;
1444 zfs_sb_t *zsb = ITOZSB(dip);
1445 zilog_t *zilog;
1446 uint64_t xattr_obj;
1447 uint64_t xattr_obj_unlinked = 0;
1448 uint64_t obj = 0;
1449 zfs_dirlock_t *dl;
1450 dmu_tx_t *tx;
1451 boolean_t unlinked;
1452 uint64_t txtype;
1453 pathname_t *realnmp = NULL;
1454 #ifdef HAVE_PN_UTILS
1455 pathname_t realnm;
1456 #endif /* HAVE_PN_UTILS */
1457 int error;
1458 int zflg = ZEXISTS;
1459
1460 ZFS_ENTER(zsb);
1461 ZFS_VERIFY_ZP(dzp);
1462 zilog = zsb->z_log;
1463
1464 #ifdef HAVE_PN_UTILS
1465 if (flags & FIGNORECASE) {
1466 zflg |= ZCILOOK;
1467 pn_alloc(&realnm);
1468 realnmp = &realnm;
1469 }
1470 #endif /* HAVE_PN_UTILS */
1471
1472 top:
1473 xattr_obj = 0;
1474 xzp = NULL;
1475 /*
1476 * Attempt to lock directory; fail if entry doesn't exist.
1477 */
1478 if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1479 NULL, realnmp))) {
1480 #ifdef HAVE_PN_UTILS
1481 if (realnmp)
1482 pn_free(realnmp);
1483 #endif /* HAVE_PN_UTILS */
1484 ZFS_EXIT(zsb);
1485 return (error);
1486 }
1487
1488 ip = ZTOI(zp);
1489
1490 if ((error = zfs_zaccess_delete(dzp, zp, cr))) {
1491 goto out;
1492 }
1493
1494 /*
1495 * Need to use rmdir for removing directories.
1496 */
1497 if (S_ISDIR(ip->i_mode)) {
1498 error = EPERM;
1499 goto out;
1500 }
1501
1502 #ifdef HAVE_DNLC
1503 if (realnmp)
1504 dnlc_remove(dvp, realnmp->pn_buf);
1505 else
1506 dnlc_remove(dvp, name);
1507 #endif /* HAVE_DNLC */
1508
1509 /*
1510 * We never delete the znode and always place it in the unlinked
1511 * set. The dentry cache will always hold the last reference and
1512 * is responsible for safely freeing the znode.
1513 */
1514 obj = zp->z_id;
1515 tx = dmu_tx_create(zsb->z_os);
1516 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1517 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1518 zfs_sa_upgrade_txholds(tx, zp);
1519 zfs_sa_upgrade_txholds(tx, dzp);
1520
1521 /* are there any extended attributes? */
1522 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zsb),
1523 &xattr_obj, sizeof (xattr_obj));
1524 if (error == 0 && xattr_obj) {
1525 error = zfs_zget(zsb, xattr_obj, &xzp);
1526 ASSERT3U(error, ==, 0);
1527 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1528 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1529 }
1530
1531 /* charge as an update -- would be nice not to charge at all */
1532 dmu_tx_hold_zap(tx, zsb->z_unlinkedobj, FALSE, NULL);
1533
1534 error = dmu_tx_assign(tx, TXG_NOWAIT);
1535 if (error) {
1536 zfs_dirent_unlock(dl);
1537 iput(ip);
1538 if (xzp)
1539 iput(ZTOI(xzp));
1540 if (error == ERESTART) {
1541 dmu_tx_wait(tx);
1542 dmu_tx_abort(tx);
1543 goto top;
1544 }
1545 #ifdef HAVE_PN_UTILS
1546 if (realnmp)
1547 pn_free(realnmp);
1548 #endif /* HAVE_PN_UTILS */
1549 dmu_tx_abort(tx);
1550 ZFS_EXIT(zsb);
1551 return (error);
1552 }
1553
1554 /*
1555 * Remove the directory entry.
1556 */
1557 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1558
1559 if (error) {
1560 dmu_tx_commit(tx);
1561 goto out;
1562 }
1563
1564 if (unlinked) {
1565 /*
1566 * Hold z_lock so that we can make sure that the ACL obj
1567 * hasn't changed. Could have been deleted due to
1568 * zfs_sa_upgrade().
1569 */
1570 mutex_enter(&zp->z_lock);
1571 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zsb),
1572 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1573 mutex_exit(&zp->z_lock);
1574 zfs_unlinked_add(zp, tx);
1575 }
1576
1577 txtype = TX_REMOVE;
1578 #ifdef HAVE_PN_UTILS
1579 if (flags & FIGNORECASE)
1580 txtype |= TX_CI;
1581 #endif /* HAVE_PN_UTILS */
1582 zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1583
1584 dmu_tx_commit(tx);
1585 out:
1586 #ifdef HAVE_PN_UTILS
1587 if (realnmp)
1588 pn_free(realnmp);
1589 #endif /* HAVE_PN_UTILS */
1590
1591 zfs_dirent_unlock(dl);
1592 zfs_inode_update(dzp);
1593 zfs_inode_update(zp);
1594 if (xzp)
1595 zfs_inode_update(xzp);
1596
1597 iput(ip);
1598 if (xzp)
1599 iput(ZTOI(xzp));
1600
1601 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
1602 zil_commit(zilog, 0);
1603
1604 ZFS_EXIT(zsb);
1605 return (error);
1606 }
1607 EXPORT_SYMBOL(zfs_remove);
1608
1609 /*
1610 * Create a new directory and insert it into dip using the name
1611 * provided. Return a pointer to the inserted directory.
1612 *
1613 * IN: dip - inode of directory to add subdir to.
1614 * dirname - name of new directory.
1615 * vap - attributes of new directory.
1616 * cr - credentials of caller.
1617 * vsecp - ACL to be set
1618 *
1619 * OUT: ipp - inode of created directory.
1620 *
1621 * RETURN: 0 if success
1622 * error code if failure
1623 *
1624 * Timestamps:
1625 * dip - ctime|mtime updated
1626 * ipp - ctime|mtime|atime updated
1627 */
1628 /*ARGSUSED*/
1629 int
1630 zfs_mkdir(struct inode *dip, char *dirname, vattr_t *vap, struct inode **ipp,
1631 cred_t *cr, int flags, vsecattr_t *vsecp)
1632 {
1633 znode_t *zp, *dzp = ITOZ(dip);
1634 zfs_sb_t *zsb = ITOZSB(dip);
1635 zilog_t *zilog;
1636 zfs_dirlock_t *dl;
1637 uint64_t txtype;
1638 dmu_tx_t *tx;
1639 int error;
1640 int zf = ZNEW;
1641 uid_t uid;
1642 gid_t gid = crgetgid(cr);
1643 zfs_acl_ids_t acl_ids;
1644 boolean_t fuid_dirtied;
1645
1646 ASSERT(S_ISDIR(vap->va_mode));
1647
1648 /*
1649 * If we have an ephemeral id, ACL, or XVATTR then
1650 * make sure file system is at proper version
1651 */
1652
1653 uid = crgetuid(cr);
1654 if (zsb->z_use_fuids == B_FALSE &&
1655 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1656 return (EINVAL);
1657
1658 ZFS_ENTER(zsb);
1659 ZFS_VERIFY_ZP(dzp);
1660 zilog = zsb->z_log;
1661
1662 if (dzp->z_pflags & ZFS_XATTR) {
1663 ZFS_EXIT(zsb);
1664 return (EINVAL);
1665 }
1666
1667 if (zsb->z_utf8 && u8_validate(dirname,
1668 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1669 ZFS_EXIT(zsb);
1670 return (EILSEQ);
1671 }
1672 if (flags & FIGNORECASE)
1673 zf |= ZCILOOK;
1674
1675 if (vap->va_mask & ATTR_XVATTR) {
1676 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1677 crgetuid(cr), cr, vap->va_mode)) != 0) {
1678 ZFS_EXIT(zsb);
1679 return (error);
1680 }
1681 }
1682
1683 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1684 vsecp, &acl_ids)) != 0) {
1685 ZFS_EXIT(zsb);
1686 return (error);
1687 }
1688 /*
1689 * First make sure the new directory doesn't exist.
1690 *
1691 * Existence is checked first to make sure we don't return
1692 * EACCES instead of EEXIST which can cause some applications
1693 * to fail.
1694 */
1695 top:
1696 *ipp = NULL;
1697
1698 if ((error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1699 NULL, NULL))) {
1700 zfs_acl_ids_free(&acl_ids);
1701 ZFS_EXIT(zsb);
1702 return (error);
1703 }
1704
1705 if ((error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr))) {
1706 zfs_acl_ids_free(&acl_ids);
1707 zfs_dirent_unlock(dl);
1708 ZFS_EXIT(zsb);
1709 return (error);
1710 }
1711
1712 if (zfs_acl_ids_overquota(zsb, &acl_ids)) {
1713 zfs_acl_ids_free(&acl_ids);
1714 zfs_dirent_unlock(dl);
1715 ZFS_EXIT(zsb);
1716 return (EDQUOT);
1717 }
1718
1719 /*
1720 * Add a new entry to the directory.
1721 */
1722 tx = dmu_tx_create(zsb->z_os);
1723 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1724 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1725 fuid_dirtied = zsb->z_fuid_dirty;
1726 if (fuid_dirtied)
1727 zfs_fuid_txhold(zsb, tx);
1728 if (!zsb->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1729 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1730 acl_ids.z_aclp->z_acl_bytes);
1731 }
1732
1733 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1734 ZFS_SA_BASE_ATTR_SIZE);
1735
1736 error = dmu_tx_assign(tx, TXG_NOWAIT);
1737 if (error) {
1738 zfs_dirent_unlock(dl);
1739 if (error == ERESTART) {
1740 dmu_tx_wait(tx);
1741 dmu_tx_abort(tx);
1742 goto top;
1743 }
1744 zfs_acl_ids_free(&acl_ids);
1745 dmu_tx_abort(tx);
1746 ZFS_EXIT(zsb);
1747 return (error);
1748 }
1749
1750 /*
1751 * Create new node.
1752 */
1753 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1754
1755 if (fuid_dirtied)
1756 zfs_fuid_sync(zsb, tx);
1757
1758 /*
1759 * Now put new name in parent dir.
1760 */
1761 (void) zfs_link_create(dl, zp, tx, ZNEW);
1762
1763 *ipp = ZTOI(zp);
1764
1765 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1766 if (flags & FIGNORECASE)
1767 txtype |= TX_CI;
1768 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1769 acl_ids.z_fuidp, vap);
1770
1771 zfs_acl_ids_free(&acl_ids);
1772
1773 dmu_tx_commit(tx);
1774
1775 zfs_dirent_unlock(dl);
1776
1777 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
1778 zil_commit(zilog, 0);
1779
1780 zfs_inode_update(dzp);
1781 zfs_inode_update(zp);
1782 ZFS_EXIT(zsb);
1783 return (0);
1784 }
1785 EXPORT_SYMBOL(zfs_mkdir);
1786
1787 /*
1788 * Remove a directory subdir entry. If the current working
1789 * directory is the same as the subdir to be removed, the
1790 * remove will fail.
1791 *
1792 * IN: dip - inode of directory to remove from.
1793 * name - name of directory to be removed.
1794 * cwd - inode of current working directory.
1795 * cr - credentials of caller.
1796 * flags - case flags
1797 *
1798 * RETURN: 0 if success
1799 * error code if failure
1800 *
1801 * Timestamps:
1802 * dip - ctime|mtime updated
1803 */
1804 /*ARGSUSED*/
1805 int
1806 zfs_rmdir(struct inode *dip, char *name, struct inode *cwd, cred_t *cr,
1807 int flags)
1808 {
1809 znode_t *dzp = ITOZ(dip);
1810 znode_t *zp;
1811 struct inode *ip;
1812 zfs_sb_t *zsb = ITOZSB(dip);
1813 zilog_t *zilog;
1814 zfs_dirlock_t *dl;
1815 dmu_tx_t *tx;
1816 int error;
1817 int zflg = ZEXISTS;
1818
1819 ZFS_ENTER(zsb);
1820 ZFS_VERIFY_ZP(dzp);
1821 zilog = zsb->z_log;
1822
1823 if (flags & FIGNORECASE)
1824 zflg |= ZCILOOK;
1825 top:
1826 zp = NULL;
1827
1828 /*
1829 * Attempt to lock directory; fail if entry doesn't exist.
1830 */
1831 if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1832 NULL, NULL))) {
1833 ZFS_EXIT(zsb);
1834 return (error);
1835 }
1836
1837 ip = ZTOI(zp);
1838
1839 if ((error = zfs_zaccess_delete(dzp, zp, cr))) {
1840 goto out;
1841 }
1842
1843 if (!S_ISDIR(ip->i_mode)) {
1844 error = ENOTDIR;
1845 goto out;
1846 }
1847
1848 if (ip == cwd) {
1849 error = EINVAL;
1850 goto out;
1851 }
1852
1853 /*
1854 * Grab a lock on the directory to make sure that noone is
1855 * trying to add (or lookup) entries while we are removing it.
1856 */
1857 rw_enter(&zp->z_name_lock, RW_WRITER);
1858
1859 /*
1860 * Grab a lock on the parent pointer to make sure we play well
1861 * with the treewalk and directory rename code.
1862 */
1863 rw_enter(&zp->z_parent_lock, RW_WRITER);
1864
1865 tx = dmu_tx_create(zsb->z_os);
1866 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1867 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1868 dmu_tx_hold_zap(tx, zsb->z_unlinkedobj, FALSE, NULL);
1869 zfs_sa_upgrade_txholds(tx, zp);
1870 zfs_sa_upgrade_txholds(tx, dzp);
1871 error = dmu_tx_assign(tx, TXG_NOWAIT);
1872 if (error) {
1873 rw_exit(&zp->z_parent_lock);
1874 rw_exit(&zp->z_name_lock);
1875 zfs_dirent_unlock(dl);
1876 iput(ip);
1877 if (error == ERESTART) {
1878 dmu_tx_wait(tx);
1879 dmu_tx_abort(tx);
1880 goto top;
1881 }
1882 dmu_tx_abort(tx);
1883 ZFS_EXIT(zsb);
1884 return (error);
1885 }
1886
1887 error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
1888
1889 if (error == 0) {
1890 uint64_t txtype = TX_RMDIR;
1891 if (flags & FIGNORECASE)
1892 txtype |= TX_CI;
1893 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
1894 }
1895
1896 dmu_tx_commit(tx);
1897
1898 rw_exit(&zp->z_parent_lock);
1899 rw_exit(&zp->z_name_lock);
1900 out:
1901 zfs_dirent_unlock(dl);
1902
1903 zfs_inode_update(dzp);
1904 zfs_inode_update(zp);
1905 iput(ip);
1906
1907 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
1908 zil_commit(zilog, 0);
1909
1910 ZFS_EXIT(zsb);
1911 return (error);
1912 }
1913 EXPORT_SYMBOL(zfs_rmdir);
1914
1915 /*
1916 * Read as many directory entries as will fit into the provided
1917 * dirent buffer from the given directory cursor position.
1918 *
1919 * IN: ip - inode of directory to read.
1920 * dirent - buffer for directory entries.
1921 *
1922 * OUT: dirent - filler buffer of directory entries.
1923 *
1924 * RETURN: 0 if success
1925 * error code if failure
1926 *
1927 * Timestamps:
1928 * ip - atime updated
1929 *
1930 * Note that the low 4 bits of the cookie returned by zap is always zero.
1931 * This allows us to use the low range for "special" directory entries:
1932 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem,
1933 * we use the offset 2 for the '.zfs' directory.
1934 */
1935 /* ARGSUSED */
1936 int
1937 zfs_readdir(struct inode *ip, void *dirent, filldir_t filldir,
1938 loff_t *pos, cred_t *cr)
1939 {
1940 znode_t *zp = ITOZ(ip);
1941 zfs_sb_t *zsb = ITOZSB(ip);
1942 objset_t *os;
1943 zap_cursor_t zc;
1944 zap_attribute_t zap;
1945 int outcount;
1946 int error;
1947 uint8_t prefetch;
1948 int done = 0;
1949 uint64_t parent;
1950
1951 ZFS_ENTER(zsb);
1952 ZFS_VERIFY_ZP(zp);
1953
1954 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zsb),
1955 &parent, sizeof (parent))) != 0)
1956 goto out;
1957
1958 /*
1959 * Quit if directory has been removed (posix)
1960 */
1961 error = 0;
1962 if (zp->z_unlinked)
1963 goto out;
1964
1965 os = zsb->z_os;
1966 prefetch = zp->z_zn_prefetch;
1967
1968 /*
1969 * Initialize the iterator cursor.
1970 */
1971 if (*pos <= 3) {
1972 /*
1973 * Start iteration from the beginning of the directory.
1974 */
1975 zap_cursor_init(&zc, os, zp->z_id);
1976 } else {
1977 /*
1978 * The offset is a serialized cursor.
1979 */
1980 zap_cursor_init_serialized(&zc, os, zp->z_id, *pos);
1981 }
1982
1983 /*
1984 * Transform to file-system independent format
1985 */
1986 outcount = 0;
1987
1988 while (!done) {
1989 uint64_t objnum;
1990 /*
1991 * Special case `.', `..', and `.zfs'.
1992 */
1993 if (*pos == 0) {
1994 (void) strcpy(zap.za_name, ".");
1995 zap.za_normalization_conflict = 0;
1996 objnum = zp->z_id;
1997 } else if (*pos == 1) {
1998 (void) strcpy(zap.za_name, "..");
1999 zap.za_normalization_conflict = 0;
2000 objnum = parent;
2001 } else if (*pos == 2 && zfs_show_ctldir(zp)) {
2002 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2003 zap.za_normalization_conflict = 0;
2004 objnum = ZFSCTL_INO_ROOT;
2005 } else {
2006 /*
2007 * Grab next entry.
2008 */
2009 if ((error = zap_cursor_retrieve(&zc, &zap))) {
2010 if (error == ENOENT)
2011 break;
2012 else
2013 goto update;
2014 }
2015
2016 /*
2017 * Allow multiple entries provided the first entry is
2018 * the object id. Non-zpl consumers may safely make
2019 * use of the additional space.
2020 *
2021 * XXX: This should be a feature flag for compatibility
2022 */
2023 if (zap.za_integer_length != 8 ||
2024 zap.za_num_integers == 0) {
2025 cmn_err(CE_WARN, "zap_readdir: bad directory "
2026 "entry, obj = %lld, offset = %lld, "
2027 "length = %d, num = %lld\n",
2028 (u_longlong_t)zp->z_id,
2029 (u_longlong_t)*pos,
2030 zap.za_integer_length,
2031 (u_longlong_t)zap.za_num_integers);
2032 error = ENXIO;
2033 goto update;
2034 }
2035
2036 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2037 }
2038 done = filldir(dirent, zap.za_name, strlen(zap.za_name),
2039 zap_cursor_serialize(&zc), objnum, 0);
2040 if (done) {
2041 break;
2042 }
2043
2044 /* Prefetch znode */
2045 if (prefetch) {
2046 dmu_prefetch(os, objnum, 0, 0);
2047 }
2048
2049 if (*pos > 2 || (*pos == 2 && !zfs_show_ctldir(zp))) {
2050 zap_cursor_advance(&zc);
2051 *pos = zap_cursor_serialize(&zc);
2052 } else {
2053 (*pos)++;
2054 }
2055 }
2056 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2057
2058 update:
2059 zap_cursor_fini(&zc);
2060 if (error == ENOENT)
2061 error = 0;
2062
2063 ZFS_ACCESSTIME_STAMP(zsb, zp);
2064 zfs_inode_update(zp);
2065
2066 out:
2067 ZFS_EXIT(zsb);
2068
2069 return (error);
2070 }
2071 EXPORT_SYMBOL(zfs_readdir);
2072
2073 int
2074 zfs_fsync(struct inode *ip, int syncflag, cred_t *cr)
2075 {
2076 znode_t *zp = ITOZ(ip);
2077 zfs_sb_t *zsb = ITOZSB(ip);
2078
2079 if (zsb->z_os->os_sync != ZFS_SYNC_DISABLED) {
2080 ZFS_ENTER(zsb);
2081 ZFS_VERIFY_ZP(zp);
2082 zil_commit(zsb->z_log, zp->z_id);
2083 ZFS_EXIT(zsb);
2084 }
2085 return (0);
2086 }
2087 EXPORT_SYMBOL(zfs_fsync);
2088
2089
2090 /*
2091 * Get the requested file attributes and place them in the provided
2092 * vattr structure.
2093 *
2094 * IN: ip - inode of file.
2095 * vap - va_mask identifies requested attributes.
2096 * If ATTR_XVATTR set, then optional attrs are requested
2097 * flags - ATTR_NOACLCHECK (CIFS server context)
2098 * cr - credentials of caller.
2099 *
2100 * OUT: vap - attribute values.
2101 *
2102 * RETURN: 0 (always succeeds)
2103 */
2104 /* ARGSUSED */
2105 int
2106 zfs_getattr(struct inode *ip, vattr_t *vap, int flags, cred_t *cr)
2107 {
2108 znode_t *zp = ITOZ(ip);
2109 zfs_sb_t *zsb = ITOZSB(ip);
2110 int error = 0;
2111 uint64_t links;
2112 uint64_t mtime[2], ctime[2];
2113 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2114 xoptattr_t *xoap = NULL;
2115 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2116 sa_bulk_attr_t bulk[2];
2117 int count = 0;
2118
2119 ZFS_ENTER(zsb);
2120 ZFS_VERIFY_ZP(zp);
2121
2122 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2123
2124 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zsb), NULL, &mtime, 16);
2125 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zsb), NULL, &ctime, 16);
2126
2127 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2128 ZFS_EXIT(zsb);
2129 return (error);
2130 }
2131
2132 /*
2133 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2134 * Also, if we are the owner don't bother, since owner should
2135 * always be allowed to read basic attributes of file.
2136 */
2137 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2138 (vap->va_uid != crgetuid(cr))) {
2139 if ((error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2140 skipaclchk, cr))) {
2141 ZFS_EXIT(zsb);
2142 return (error);
2143 }
2144 }
2145
2146 /*
2147 * Return all attributes. It's cheaper to provide the answer
2148 * than to determine whether we were asked the question.
2149 */
2150
2151 mutex_enter(&zp->z_lock);
2152 vap->va_type = vn_mode_to_vtype(zp->z_mode);
2153 vap->va_mode = zp->z_mode;
2154 vap->va_fsid = ZTOI(zp)->i_sb->s_dev;
2155 vap->va_nodeid = zp->z_id;
2156 if ((zp->z_id == zsb->z_root) && zfs_show_ctldir(zp))
2157 links = zp->z_links + 1;
2158 else
2159 links = zp->z_links;
2160 vap->va_nlink = MIN(links, ZFS_LINK_MAX);
2161 vap->va_size = i_size_read(ip);
2162 vap->va_rdev = ip->i_rdev;
2163 vap->va_seq = ip->i_generation;
2164
2165 /*
2166 * Add in any requested optional attributes and the create time.
2167 * Also set the corresponding bits in the returned attribute bitmap.
2168 */
2169 if ((xoap = xva_getxoptattr(xvap)) != NULL && zsb->z_use_fuids) {
2170 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2171 xoap->xoa_archive =
2172 ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2173 XVA_SET_RTN(xvap, XAT_ARCHIVE);
2174 }
2175
2176 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2177 xoap->xoa_readonly =
2178 ((zp->z_pflags & ZFS_READONLY) != 0);
2179 XVA_SET_RTN(xvap, XAT_READONLY);
2180 }
2181
2182 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2183 xoap->xoa_system =
2184 ((zp->z_pflags & ZFS_SYSTEM) != 0);
2185 XVA_SET_RTN(xvap, XAT_SYSTEM);
2186 }
2187
2188 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2189 xoap->xoa_hidden =
2190 ((zp->z_pflags & ZFS_HIDDEN) != 0);
2191 XVA_SET_RTN(xvap, XAT_HIDDEN);
2192 }
2193
2194 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2195 xoap->xoa_nounlink =
2196 ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2197 XVA_SET_RTN(xvap, XAT_NOUNLINK);
2198 }
2199
2200 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2201 xoap->xoa_immutable =
2202 ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2203 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2204 }
2205
2206 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2207 xoap->xoa_appendonly =
2208 ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2209 XVA_SET_RTN(xvap, XAT_APPENDONLY);
2210 }
2211
2212 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2213 xoap->xoa_nodump =
2214 ((zp->z_pflags & ZFS_NODUMP) != 0);
2215 XVA_SET_RTN(xvap, XAT_NODUMP);
2216 }
2217
2218 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2219 xoap->xoa_opaque =
2220 ((zp->z_pflags & ZFS_OPAQUE) != 0);
2221 XVA_SET_RTN(xvap, XAT_OPAQUE);
2222 }
2223
2224 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2225 xoap->xoa_av_quarantined =
2226 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2227 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2228 }
2229
2230 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2231 xoap->xoa_av_modified =
2232 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2233 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2234 }
2235
2236 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2237 S_ISREG(ip->i_mode)) {
2238 zfs_sa_get_scanstamp(zp, xvap);
2239 }
2240
2241 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2242 uint64_t times[2];
2243
2244 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zsb),
2245 times, sizeof (times));
2246 ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2247 XVA_SET_RTN(xvap, XAT_CREATETIME);
2248 }
2249
2250 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2251 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2252 XVA_SET_RTN(xvap, XAT_REPARSE);
2253 }
2254 if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2255 xoap->xoa_generation = zp->z_gen;
2256 XVA_SET_RTN(xvap, XAT_GEN);
2257 }
2258
2259 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2260 xoap->xoa_offline =
2261 ((zp->z_pflags & ZFS_OFFLINE) != 0);
2262 XVA_SET_RTN(xvap, XAT_OFFLINE);
2263 }
2264
2265 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2266 xoap->xoa_sparse =
2267 ((zp->z_pflags & ZFS_SPARSE) != 0);
2268 XVA_SET_RTN(xvap, XAT_SPARSE);
2269 }
2270 }
2271
2272 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2273 ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2274 ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2275
2276 mutex_exit(&zp->z_lock);
2277
2278 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2279
2280 if (zp->z_blksz == 0) {
2281 /*
2282 * Block size hasn't been set; suggest maximal I/O transfers.
2283 */
2284 vap->va_blksize = zsb->z_max_blksz;
2285 }
2286
2287 ZFS_EXIT(zsb);
2288 return (0);
2289 }
2290 EXPORT_SYMBOL(zfs_getattr);
2291
2292 /*
2293 * Get the basic file attributes and place them in the provided kstat
2294 * structure. The inode is assumed to be the authoritative source
2295 * for most of the attributes. However, the znode currently has the
2296 * authoritative atime, blksize, and block count.
2297 *
2298 * IN: ip - inode of file.
2299 *
2300 * OUT: sp - kstat values.
2301 *
2302 * RETURN: 0 (always succeeds)
2303 */
2304 /* ARGSUSED */
2305 int
2306 zfs_getattr_fast(struct inode *ip, struct kstat *sp)
2307 {
2308 znode_t *zp = ITOZ(ip);
2309 zfs_sb_t *zsb = ITOZSB(ip);
2310
2311 ZFS_ENTER(zsb);
2312 ZFS_VERIFY_ZP(zp);
2313
2314 mutex_enter(&zp->z_lock);
2315
2316 generic_fillattr(ip, sp);
2317 ZFS_TIME_DECODE(&sp->atime, zp->z_atime);
2318
2319 sa_object_size(zp->z_sa_hdl, (uint32_t *)&sp->blksize, &sp->blocks);
2320 if (unlikely(zp->z_blksz == 0)) {
2321 /*
2322 * Block size hasn't been set; suggest maximal I/O transfers.
2323 */
2324 sp->blksize = zsb->z_max_blksz;
2325 }
2326
2327 mutex_exit(&zp->z_lock);
2328
2329 ZFS_EXIT(zsb);
2330
2331 return (0);
2332 }
2333 EXPORT_SYMBOL(zfs_getattr_fast);
2334
2335 /*
2336 * Set the file attributes to the values contained in the
2337 * vattr structure.
2338 *
2339 * IN: ip - inode of file to be modified.
2340 * vap - new attribute values.
2341 * If ATTR_XVATTR set, then optional attrs are being set
2342 * flags - ATTR_UTIME set if non-default time values provided.
2343 * - ATTR_NOACLCHECK (CIFS context only).
2344 * cr - credentials of caller.
2345 *
2346 * RETURN: 0 if success
2347 * error code if failure
2348 *
2349 * Timestamps:
2350 * ip - ctime updated, mtime updated if size changed.
2351 */
2352 /* ARGSUSED */
2353 int
2354 zfs_setattr(struct inode *ip, vattr_t *vap, int flags, cred_t *cr)
2355 {
2356 znode_t *zp = ITOZ(ip);
2357 zfs_sb_t *zsb = ITOZSB(ip);
2358 zilog_t *zilog;
2359 dmu_tx_t *tx;
2360 vattr_t oldva;
2361 xvattr_t *tmpxvattr;
2362 uint_t mask = vap->va_mask;
2363 uint_t saved_mask;
2364 int trim_mask = 0;
2365 uint64_t new_mode;
2366 uint64_t new_uid, new_gid;
2367 uint64_t xattr_obj;
2368 uint64_t mtime[2], ctime[2];
2369 znode_t *attrzp;
2370 int need_policy = FALSE;
2371 int err, err2;
2372 zfs_fuid_info_t *fuidp = NULL;
2373 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2374 xoptattr_t *xoap;
2375 zfs_acl_t *aclp;
2376 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2377 boolean_t fuid_dirtied = B_FALSE;
2378 sa_bulk_attr_t *bulk, *xattr_bulk;
2379 int count = 0, xattr_count = 0;
2380
2381 if (mask == 0)
2382 return (0);
2383
2384 ZFS_ENTER(zsb);
2385 ZFS_VERIFY_ZP(zp);
2386
2387 zilog = zsb->z_log;
2388
2389 /*
2390 * Make sure that if we have ephemeral uid/gid or xvattr specified
2391 * that file system is at proper version level
2392 */
2393
2394 if (zsb->z_use_fuids == B_FALSE &&
2395 (((mask & ATTR_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2396 ((mask & ATTR_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2397 (mask & ATTR_XVATTR))) {
2398 ZFS_EXIT(zsb);
2399 return (EINVAL);
2400 }
2401
2402 if (mask & ATTR_SIZE && S_ISDIR(ip->i_mode)) {
2403 ZFS_EXIT(zsb);
2404 return (EISDIR);
2405 }
2406
2407 if (mask & ATTR_SIZE && !S_ISREG(ip->i_mode) && !S_ISFIFO(ip->i_mode)) {
2408 ZFS_EXIT(zsb);
2409 return (EINVAL);
2410 }
2411
2412 /*
2413 * If this is an xvattr_t, then get a pointer to the structure of
2414 * optional attributes. If this is NULL, then we have a vattr_t.
2415 */
2416 xoap = xva_getxoptattr(xvap);
2417
2418 tmpxvattr = kmem_alloc(sizeof(xvattr_t), KM_SLEEP);
2419 xva_init(tmpxvattr);
2420
2421 bulk = kmem_alloc(sizeof(sa_bulk_attr_t) * 7, KM_SLEEP);
2422 xattr_bulk = kmem_alloc(sizeof(sa_bulk_attr_t) * 7, KM_SLEEP);
2423
2424 /*
2425 * Immutable files can only alter immutable bit and atime
2426 */
2427 if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2428 ((mask & (ATTR_SIZE|ATTR_UID|ATTR_GID|ATTR_MTIME|ATTR_MODE)) ||
2429 ((mask & ATTR_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2430 err = EPERM;
2431 goto out3;
2432 }
2433
2434 if ((mask & ATTR_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2435 err = EPERM;
2436 goto out3;
2437 }
2438
2439 /*
2440 * Verify timestamps doesn't overflow 32 bits.
2441 * ZFS can handle large timestamps, but 32bit syscalls can't
2442 * handle times greater than 2039. This check should be removed
2443 * once large timestamps are fully supported.
2444 */
2445 if (mask & (ATTR_ATIME | ATTR_MTIME)) {
2446 if (((mask & ATTR_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2447 ((mask & ATTR_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2448 err = EOVERFLOW;
2449 goto out3;
2450 }
2451 }
2452
2453 top:
2454 attrzp = NULL;
2455 aclp = NULL;
2456
2457 /* Can this be moved to before the top label? */
2458 if (zfs_is_readonly(zsb)) {
2459 err = EROFS;
2460 goto out3;
2461 }
2462
2463 /*
2464 * First validate permissions
2465 */
2466
2467 if (mask & ATTR_SIZE) {
2468 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2469 if (err)
2470 goto out3;
2471
2472 truncate_setsize(ip, vap->va_size);
2473
2474 /*
2475 * XXX - Note, we are not providing any open
2476 * mode flags here (like FNDELAY), so we may
2477 * block if there are locks present... this
2478 * should be addressed in openat().
2479 */
2480 /* XXX - would it be OK to generate a log record here? */
2481 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2482 if (err)
2483 goto out3;
2484 }
2485
2486 if (mask & (ATTR_ATIME|ATTR_MTIME) ||
2487 ((mask & ATTR_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2488 XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2489 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2490 XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2491 XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2492 XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2493 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2494 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2495 skipaclchk, cr);
2496 }
2497
2498 if (mask & (ATTR_UID|ATTR_GID)) {
2499 int idmask = (mask & (ATTR_UID|ATTR_GID));
2500 int take_owner;
2501 int take_group;
2502
2503 /*
2504 * NOTE: even if a new mode is being set,
2505 * we may clear S_ISUID/S_ISGID bits.
2506 */
2507
2508 if (!(mask & ATTR_MODE))
2509 vap->va_mode = zp->z_mode;
2510
2511 /*
2512 * Take ownership or chgrp to group we are a member of
2513 */
2514
2515 take_owner = (mask & ATTR_UID) && (vap->va_uid == crgetuid(cr));
2516 take_group = (mask & ATTR_GID) &&
2517 zfs_groupmember(zsb, vap->va_gid, cr);
2518
2519 /*
2520 * If both ATTR_UID and ATTR_GID are set then take_owner and
2521 * take_group must both be set in order to allow taking
2522 * ownership.
2523 *
2524 * Otherwise, send the check through secpolicy_vnode_setattr()
2525 *
2526 */
2527
2528 if (((idmask == (ATTR_UID|ATTR_GID)) &&
2529 take_owner && take_group) ||
2530 ((idmask == ATTR_UID) && take_owner) ||
2531 ((idmask == ATTR_GID) && take_group)) {
2532 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2533 skipaclchk, cr) == 0) {
2534 /*
2535 * Remove setuid/setgid for non-privileged users
2536 */
2537 (void) secpolicy_setid_clear(vap, cr);
2538 trim_mask = (mask & (ATTR_UID|ATTR_GID));
2539 } else {
2540 need_policy = TRUE;
2541 }
2542 } else {
2543 need_policy = TRUE;
2544 }
2545 }
2546
2547 mutex_enter(&zp->z_lock);
2548 oldva.va_mode = zp->z_mode;
2549 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2550 if (mask & ATTR_XVATTR) {
2551 /*
2552 * Update xvattr mask to include only those attributes
2553 * that are actually changing.
2554 *
2555 * the bits will be restored prior to actually setting
2556 * the attributes so the caller thinks they were set.
2557 */
2558 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2559 if (xoap->xoa_appendonly !=
2560 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2561 need_policy = TRUE;
2562 } else {
2563 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2564 XVA_SET_REQ(tmpxvattr, XAT_APPENDONLY);
2565 }
2566 }
2567
2568 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2569 if (xoap->xoa_nounlink !=
2570 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2571 need_policy = TRUE;
2572 } else {
2573 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2574 XVA_SET_REQ(tmpxvattr, XAT_NOUNLINK);
2575 }
2576 }
2577
2578 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2579 if (xoap->xoa_immutable !=
2580 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2581 need_policy = TRUE;
2582 } else {
2583 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2584 XVA_SET_REQ(tmpxvattr, XAT_IMMUTABLE);
2585 }
2586 }
2587
2588 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2589 if (xoap->xoa_nodump !=
2590 ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2591 need_policy = TRUE;
2592 } else {
2593 XVA_CLR_REQ(xvap, XAT_NODUMP);
2594 XVA_SET_REQ(tmpxvattr, XAT_NODUMP);
2595 }
2596 }
2597
2598 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2599 if (xoap->xoa_av_modified !=
2600 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2601 need_policy = TRUE;
2602 } else {
2603 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2604 XVA_SET_REQ(tmpxvattr, XAT_AV_MODIFIED);
2605 }
2606 }
2607
2608 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2609 if ((!S_ISREG(ip->i_mode) &&
2610 xoap->xoa_av_quarantined) ||
2611 xoap->xoa_av_quarantined !=
2612 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2613 need_policy = TRUE;
2614 } else {
2615 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2616 XVA_SET_REQ(tmpxvattr, XAT_AV_QUARANTINED);
2617 }
2618 }
2619
2620 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2621 mutex_exit(&zp->z_lock);
2622 err = EPERM;
2623 goto out3;
2624 }
2625
2626 if (need_policy == FALSE &&
2627 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2628 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2629 need_policy = TRUE;
2630 }
2631 }
2632
2633 mutex_exit(&zp->z_lock);
2634
2635 if (mask & ATTR_MODE) {
2636 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2637 err = secpolicy_setid_setsticky_clear(ip, vap,
2638 &oldva, cr);
2639 if (err)
2640 goto out3;
2641
2642 trim_mask |= ATTR_MODE;
2643 } else {
2644 need_policy = TRUE;
2645 }
2646 }
2647
2648 if (need_policy) {
2649 /*
2650 * If trim_mask is set then take ownership
2651 * has been granted or write_acl is present and user
2652 * has the ability to modify mode. In that case remove
2653 * UID|GID and or MODE from mask so that
2654 * secpolicy_vnode_setattr() doesn't revoke it.
2655 */
2656
2657 if (trim_mask) {
2658 saved_mask = vap->va_mask;
2659 vap->va_mask &= ~trim_mask;
2660 }
2661 err = secpolicy_vnode_setattr(cr, ip, vap, &oldva, flags,
2662 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2663 if (err)
2664 goto out3;
2665
2666 if (trim_mask)
2667 vap->va_mask |= saved_mask;
2668 }
2669
2670 /*
2671 * secpolicy_vnode_setattr, or take ownership may have
2672 * changed va_mask
2673 */
2674 mask = vap->va_mask;
2675
2676 if ((mask & (ATTR_UID | ATTR_GID))) {
2677 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zsb),
2678 &xattr_obj, sizeof (xattr_obj));
2679
2680 if (err == 0 && xattr_obj) {
2681 err = zfs_zget(ZTOZSB(zp), xattr_obj, &attrzp);
2682 if (err)
2683 goto out2;
2684 }
2685 if (mask & ATTR_UID) {
2686 new_uid = zfs_fuid_create(zsb,
2687 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2688 if (new_uid != zp->z_uid &&
2689 zfs_fuid_overquota(zsb, B_FALSE, new_uid)) {
2690 if (attrzp)
2691 iput(ZTOI(attrzp));
2692 err = EDQUOT;
2693 goto out2;
2694 }
2695 }
2696
2697 if (mask & ATTR_GID) {
2698 new_gid = zfs_fuid_create(zsb, (uint64_t)vap->va_gid,
2699 cr, ZFS_GROUP, &fuidp);
2700 if (new_gid != zp->z_gid &&
2701 zfs_fuid_overquota(zsb, B_TRUE, new_gid)) {
2702 if (attrzp)
2703 iput(ZTOI(attrzp));
2704 err = EDQUOT;
2705 goto out2;
2706 }
2707 }
2708 }
2709 tx = dmu_tx_create(zsb->z_os);
2710
2711 if (mask & ATTR_MODE) {
2712 uint64_t pmode = zp->z_mode;
2713 uint64_t acl_obj;
2714 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2715
2716 zfs_acl_chmod_setattr(zp, &aclp, new_mode);
2717
2718 mutex_enter(&zp->z_lock);
2719 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
2720 /*
2721 * Are we upgrading ACL from old V0 format
2722 * to V1 format?
2723 */
2724 if (zsb->z_version >= ZPL_VERSION_FUID &&
2725 zfs_znode_acl_version(zp) ==
2726 ZFS_ACL_VERSION_INITIAL) {
2727 dmu_tx_hold_free(tx, acl_obj, 0,
2728 DMU_OBJECT_END);
2729 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2730 0, aclp->z_acl_bytes);
2731 } else {
2732 dmu_tx_hold_write(tx, acl_obj, 0,
2733 aclp->z_acl_bytes);
2734 }
2735 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2736 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2737 0, aclp->z_acl_bytes);
2738 }
2739 mutex_exit(&zp->z_lock);
2740 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2741 } else {
2742 if ((mask & ATTR_XVATTR) &&
2743 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
2744 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2745 else
2746 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2747 }
2748
2749 if (attrzp) {
2750 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
2751 }
2752
2753 fuid_dirtied = zsb->z_fuid_dirty;
2754 if (fuid_dirtied)
2755 zfs_fuid_txhold(zsb, tx);
2756
2757 zfs_sa_upgrade_txholds(tx, zp);
2758
2759 err = dmu_tx_assign(tx, TXG_NOWAIT);
2760 if (err) {
2761 if (err == ERESTART)
2762 dmu_tx_wait(tx);
2763 goto out;
2764 }
2765
2766 count = 0;
2767 /*
2768 * Set each attribute requested.
2769 * We group settings according to the locks they need to acquire.
2770 *
2771 * Note: you cannot set ctime directly, although it will be
2772 * updated as a side-effect of calling this function.
2773 */
2774
2775
2776 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2777 mutex_enter(&zp->z_acl_lock);
2778 mutex_enter(&zp->z_lock);
2779
2780 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zsb), NULL,
2781 &zp->z_pflags, sizeof (zp->z_pflags));
2782
2783 if (attrzp) {
2784 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2785 mutex_enter(&attrzp->z_acl_lock);
2786 mutex_enter(&attrzp->z_lock);
2787 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2788 SA_ZPL_FLAGS(zsb), NULL, &attrzp->z_pflags,
2789 sizeof (attrzp->z_pflags));
2790 }
2791
2792 if (mask & (ATTR_UID|ATTR_GID)) {
2793
2794 if (mask & ATTR_UID) {
2795 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zsb), NULL,
2796 &new_uid, sizeof (new_uid));
2797 zp->z_uid = new_uid;
2798 if (attrzp) {
2799 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2800 SA_ZPL_UID(zsb), NULL, &new_uid,
2801 sizeof (new_uid));
2802 attrzp->z_uid = new_uid;
2803 }
2804 }
2805
2806 if (mask & ATTR_GID) {
2807 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zsb),
2808 NULL, &new_gid, sizeof (new_gid));
2809 zp->z_gid = new_gid;
2810 if (attrzp) {
2811 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2812 SA_ZPL_GID(zsb), NULL, &new_gid,
2813 sizeof (new_gid));
2814 attrzp->z_gid = new_gid;
2815 }
2816 }
2817 if (!(mask & ATTR_MODE)) {
2818 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zsb),
2819 NULL, &new_mode, sizeof (new_mode));
2820 new_mode = zp->z_mode;
2821 }
2822 err = zfs_acl_chown_setattr(zp);
2823 ASSERT(err == 0);
2824 if (attrzp) {
2825 err = zfs_acl_chown_setattr(attrzp);
2826 ASSERT(err == 0);
2827 }
2828 }
2829
2830 if (mask & ATTR_MODE) {
2831 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zsb), NULL,
2832 &new_mode, sizeof (new_mode));
2833 zp->z_mode = new_mode;
2834 ASSERT3P(aclp, !=, NULL);
2835 err = zfs_aclset_common(zp, aclp, cr, tx);
2836 ASSERT3U(err, ==, 0);
2837 if (zp->z_acl_cached)
2838 zfs_acl_free(zp->z_acl_cached);
2839 zp->z_acl_cached = aclp;
2840 aclp = NULL;
2841 }
2842
2843
2844 if (mask & ATTR_ATIME) {
2845 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
2846 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zsb), NULL,
2847 &zp->z_atime, sizeof (zp->z_atime));
2848 }
2849
2850 if (mask & ATTR_MTIME) {
2851 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
2852 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zsb), NULL,
2853 mtime, sizeof (mtime));
2854 }
2855
2856 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
2857 if (mask & ATTR_SIZE && !(mask & ATTR_MTIME)) {
2858 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zsb),
2859 NULL, mtime, sizeof (mtime));
2860 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zsb), NULL,
2861 &ctime, sizeof (ctime));
2862 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
2863 B_TRUE);
2864 } else if (mask != 0) {
2865 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zsb), NULL,
2866 &ctime, sizeof (ctime));
2867 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
2868 B_TRUE);
2869 if (attrzp) {
2870 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2871 SA_ZPL_CTIME(zsb), NULL,
2872 &ctime, sizeof (ctime));
2873 zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
2874 mtime, ctime, B_TRUE);
2875 }
2876 }
2877 /*
2878 * Do this after setting timestamps to prevent timestamp
2879 * update from toggling bit
2880 */
2881
2882 if (xoap && (mask & ATTR_XVATTR)) {
2883
2884 /*
2885 * restore trimmed off masks
2886 * so that return masks can be set for caller.
2887 */
2888
2889 if (XVA_ISSET_REQ(tmpxvattr, XAT_APPENDONLY)) {
2890 XVA_SET_REQ(xvap, XAT_APPENDONLY);
2891 }
2892 if (XVA_ISSET_REQ(tmpxvattr, XAT_NOUNLINK)) {
2893 XVA_SET_REQ(xvap, XAT_NOUNLINK);
2894 }
2895 if (XVA_ISSET_REQ(tmpxvattr, XAT_IMMUTABLE)) {
2896 XVA_SET_REQ(xvap, XAT_IMMUTABLE);
2897 }
2898 if (XVA_ISSET_REQ(tmpxvattr, XAT_NODUMP)) {
2899 XVA_SET_REQ(xvap, XAT_NODUMP);
2900 }
2901 if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_MODIFIED)) {
2902 XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
2903 }
2904 if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_QUARANTINED)) {
2905 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
2906 }
2907
2908 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
2909 ASSERT(S_ISREG(ip->i_mode));
2910
2911 zfs_xvattr_set(zp, xvap, tx);
2912 }
2913
2914 if (fuid_dirtied)
2915 zfs_fuid_sync(zsb, tx);
2916
2917 if (mask != 0)
2918 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
2919
2920 mutex_exit(&zp->z_lock);
2921 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2922 mutex_exit(&zp->z_acl_lock);
2923
2924 if (attrzp) {
2925 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2926 mutex_exit(&attrzp->z_acl_lock);
2927 mutex_exit(&attrzp->z_lock);
2928 }
2929 out:
2930 if (err == 0 && attrzp) {
2931 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
2932 xattr_count, tx);
2933 ASSERT(err2 == 0);
2934 }
2935
2936 if (attrzp)
2937 iput(ZTOI(attrzp));
2938 if (aclp)
2939 zfs_acl_free(aclp);
2940
2941 if (fuidp) {
2942 zfs_fuid_info_free(fuidp);
2943 fuidp = NULL;
2944 }
2945
2946 if (err) {
2947 dmu_tx_abort(tx);
2948 if (err == ERESTART)
2949 goto top;
2950 } else {
2951 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
2952 dmu_tx_commit(tx);
2953 zfs_inode_update(zp);
2954 }
2955
2956 out2:
2957 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
2958 zil_commit(zilog, 0);
2959
2960 out3:
2961 kmem_free(xattr_bulk, sizeof(sa_bulk_attr_t) * 7);
2962 kmem_free(bulk, sizeof(sa_bulk_attr_t) * 7);
2963 kmem_free(tmpxvattr, sizeof(xvattr_t));
2964 ZFS_EXIT(zsb);
2965 return (err);
2966 }
2967 EXPORT_SYMBOL(zfs_setattr);
2968
2969 typedef struct zfs_zlock {
2970 krwlock_t *zl_rwlock; /* lock we acquired */
2971 znode_t *zl_znode; /* znode we held */
2972 struct zfs_zlock *zl_next; /* next in list */
2973 } zfs_zlock_t;
2974
2975 /*
2976 * Drop locks and release vnodes that were held by zfs_rename_lock().
2977 */
2978 static void
2979 zfs_rename_unlock(zfs_zlock_t **zlpp)
2980 {
2981 zfs_zlock_t *zl;
2982
2983 while ((zl = *zlpp) != NULL) {
2984 if (zl->zl_znode != NULL)
2985 iput(ZTOI(zl->zl_znode));
2986 rw_exit(zl->zl_rwlock);
2987 *zlpp = zl->zl_next;
2988 kmem_free(zl, sizeof (*zl));
2989 }
2990 }
2991
2992 /*
2993 * Search back through the directory tree, using the ".." entries.
2994 * Lock each directory in the chain to prevent concurrent renames.
2995 * Fail any attempt to move a directory into one of its own descendants.
2996 * XXX - z_parent_lock can overlap with map or grow locks
2997 */
2998 static int
2999 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3000 {
3001 zfs_zlock_t *zl;
3002 znode_t *zp = tdzp;
3003 uint64_t rootid = ZTOZSB(zp)->z_root;
3004 uint64_t oidp = zp->z_id;
3005 krwlock_t *rwlp = &szp->z_parent_lock;
3006 krw_t rw = RW_WRITER;
3007
3008 /*
3009 * First pass write-locks szp and compares to zp->z_id.
3010 * Later passes read-lock zp and compare to zp->z_parent.
3011 */
3012 do {
3013 if (!rw_tryenter(rwlp, rw)) {
3014 /*
3015 * Another thread is renaming in this path.
3016 * Note that if we are a WRITER, we don't have any
3017 * parent_locks held yet.
3018 */
3019 if (rw == RW_READER && zp->z_id > szp->z_id) {
3020 /*
3021 * Drop our locks and restart
3022 */
3023 zfs_rename_unlock(&zl);
3024 *zlpp = NULL;
3025 zp = tdzp;
3026 oidp = zp->z_id;
3027 rwlp = &szp->z_parent_lock;
3028 rw = RW_WRITER;
3029 continue;
3030 } else {
3031 /*
3032 * Wait for other thread to drop its locks
3033 */
3034 rw_enter(rwlp, rw);
3035 }
3036 }
3037
3038 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3039 zl->zl_rwlock = rwlp;
3040 zl->zl_znode = NULL;
3041 zl->zl_next = *zlpp;
3042 *zlpp = zl;
3043
3044 if (oidp == szp->z_id) /* We're a descendant of szp */
3045 return (EINVAL);
3046
3047 if (oidp == rootid) /* We've hit the top */
3048 return (0);
3049
3050 if (rw == RW_READER) { /* i.e. not the first pass */
3051 int error = zfs_zget(ZTOZSB(zp), oidp, &zp);
3052 if (error)
3053 return (error);
3054 zl->zl_znode = zp;
3055 }
3056 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(ZTOZSB(zp)),
3057 &oidp, sizeof (oidp));
3058 rwlp = &zp->z_parent_lock;
3059 rw = RW_READER;
3060
3061 } while (zp->z_id != sdzp->z_id);
3062
3063 return (0);
3064 }
3065
3066 /*
3067 * Move an entry from the provided source directory to the target
3068 * directory. Change the entry name as indicated.
3069 *
3070 * IN: sdip - Source directory containing the "old entry".
3071 * snm - Old entry name.
3072 * tdip - Target directory to contain the "new entry".
3073 * tnm - New entry name.
3074 * cr - credentials of caller.
3075 * flags - case flags
3076 *
3077 * RETURN: 0 if success
3078 * error code if failure
3079 *
3080 * Timestamps:
3081 * sdip,tdip - ctime|mtime updated
3082 */
3083 /*ARGSUSED*/
3084 int
3085 zfs_rename(struct inode *sdip, char *snm, struct inode *tdip, char *tnm,
3086 cred_t *cr, int flags)
3087 {
3088 znode_t *tdzp, *szp, *tzp;
3089 znode_t *sdzp = ITOZ(sdip);
3090 zfs_sb_t *zsb = ITOZSB(sdip);
3091 zilog_t *zilog;
3092 zfs_dirlock_t *sdl, *tdl;
3093 dmu_tx_t *tx;
3094 zfs_zlock_t *zl;
3095 int cmp, serr, terr;
3096 int error = 0;
3097 int zflg = 0;
3098
3099 ZFS_ENTER(zsb);
3100 ZFS_VERIFY_ZP(sdzp);
3101 zilog = zsb->z_log;
3102
3103 if (tdip->i_sb != sdip->i_sb) {
3104 ZFS_EXIT(zsb);
3105 return (EXDEV);
3106 }
3107
3108 tdzp = ITOZ(tdip);
3109 ZFS_VERIFY_ZP(tdzp);
3110 if (zsb->z_utf8 && u8_validate(tnm,
3111 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3112 ZFS_EXIT(zsb);
3113 return (EILSEQ);
3114 }
3115
3116 if (flags & FIGNORECASE)
3117 zflg |= ZCILOOK;
3118
3119 top:
3120 szp = NULL;
3121 tzp = NULL;
3122 zl = NULL;
3123
3124 /*
3125 * This is to prevent the creation of links into attribute space
3126 * by renaming a linked file into/outof an attribute directory.
3127 * See the comment in zfs_link() for why this is considered bad.
3128 */
3129 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3130 ZFS_EXIT(zsb);
3131 return (EINVAL);
3132 }
3133
3134 /*
3135 * Lock source and target directory entries. To prevent deadlock,
3136 * a lock ordering must be defined. We lock the directory with
3137 * the smallest object id first, or if it's a tie, the one with
3138 * the lexically first name.
3139 */
3140 if (sdzp->z_id < tdzp->z_id) {
3141 cmp = -1;
3142 } else if (sdzp->z_id > tdzp->z_id) {
3143 cmp = 1;
3144 } else {
3145 /*
3146 * First compare the two name arguments without
3147 * considering any case folding.
3148 */
3149 int nofold = (zsb->z_norm & ~U8_TEXTPREP_TOUPPER);
3150
3151 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3152 ASSERT(error == 0 || !zsb->z_utf8);
3153 if (cmp == 0) {
3154 /*
3155 * POSIX: "If the old argument and the new argument
3156 * both refer to links to the same existing file,
3157 * the rename() function shall return successfully
3158 * and perform no other action."
3159 */
3160 ZFS_EXIT(zsb);
3161 return (0);
3162 }
3163 /*
3164 * If the file system is case-folding, then we may
3165 * have some more checking to do. A case-folding file
3166 * system is either supporting mixed case sensitivity
3167 * access or is completely case-insensitive. Note
3168 * that the file system is always case preserving.
3169 *
3170 * In mixed sensitivity mode case sensitive behavior
3171 * is the default. FIGNORECASE must be used to
3172 * explicitly request case insensitive behavior.
3173 *
3174 * If the source and target names provided differ only
3175 * by case (e.g., a request to rename 'tim' to 'Tim'),
3176 * we will treat this as a special case in the
3177 * case-insensitive mode: as long as the source name
3178 * is an exact match, we will allow this to proceed as
3179 * a name-change request.
3180 */
3181 if ((zsb->z_case == ZFS_CASE_INSENSITIVE ||
3182 (zsb->z_case == ZFS_CASE_MIXED &&
3183 flags & FIGNORECASE)) &&
3184 u8_strcmp(snm, tnm, 0, zsb->z_norm, U8_UNICODE_LATEST,
3185 &error) == 0) {
3186 /*
3187 * case preserving rename request, require exact
3188 * name matches
3189 */
3190 zflg |= ZCIEXACT;
3191 zflg &= ~ZCILOOK;
3192 }
3193 }
3194
3195 /*
3196 * If the source and destination directories are the same, we should
3197 * grab the z_name_lock of that directory only once.
3198 */
3199 if (sdzp == tdzp) {
3200 zflg |= ZHAVELOCK;
3201 rw_enter(&sdzp->z_name_lock, RW_READER);
3202 }
3203
3204 if (cmp < 0) {
3205 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3206 ZEXISTS | zflg, NULL, NULL);
3207 terr = zfs_dirent_lock(&tdl,
3208 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3209 } else {
3210 terr = zfs_dirent_lock(&tdl,
3211 tdzp, tnm, &tzp, zflg, NULL, NULL);
3212 serr = zfs_dirent_lock(&sdl,
3213 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3214 NULL, NULL);
3215 }
3216
3217 if (serr) {
3218 /*
3219 * Source entry invalid or not there.
3220 */
3221 if (!terr) {
3222 zfs_dirent_unlock(tdl);
3223 if (tzp)
3224 iput(ZTOI(tzp));
3225 }
3226
3227 if (sdzp == tdzp)
3228 rw_exit(&sdzp->z_name_lock);
3229
3230 if (strcmp(snm, "..") == 0)
3231 serr = EINVAL;
3232 ZFS_EXIT(zsb);
3233 return (serr);
3234 }
3235 if (terr) {
3236 zfs_dirent_unlock(sdl);
3237 iput(ZTOI(szp));
3238
3239 if (sdzp == tdzp)
3240 rw_exit(&sdzp->z_name_lock);
3241
3242 if (strcmp(tnm, "..") == 0)
3243 terr = EINVAL;
3244 ZFS_EXIT(zsb);
3245 return (terr);
3246 }
3247
3248 /*
3249 * Must have write access at the source to remove the old entry
3250 * and write access at the target to create the new entry.
3251 * Note that if target and source are the same, this can be
3252 * done in a single check.
3253 */
3254
3255 if ((error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)))
3256 goto out;
3257
3258 if (S_ISDIR(ZTOI(szp)->i_mode)) {
3259 /*
3260 * Check to make sure rename is valid.
3261 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3262 */
3263 if ((error = zfs_rename_lock(szp, tdzp, sdzp, &zl)))
3264 goto out;
3265 }
3266
3267 /*
3268 * Does target exist?
3269 */
3270 if (tzp) {
3271 /*
3272 * Source and target must be the same type.
3273 */
3274 if (S_ISDIR(ZTOI(szp)->i_mode)) {
3275 if (!S_ISDIR(ZTOI(tzp)->i_mode)) {
3276 error = ENOTDIR;
3277 goto out;
3278 }
3279 } else {
3280 if (S_ISDIR(ZTOI(tzp)->i_mode)) {
3281 error = EISDIR;
3282 goto out;
3283 }
3284 }
3285 /*
3286 * POSIX dictates that when the source and target
3287 * entries refer to the same file object, rename
3288 * must do nothing and exit without error.
3289 */
3290 if (szp->z_id == tzp->z_id) {
3291 error = 0;
3292 goto out;
3293 }
3294 }
3295
3296 tx = dmu_tx_create(zsb->z_os);
3297 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3298 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3299 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3300 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3301 if (sdzp != tdzp) {
3302 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3303 zfs_sa_upgrade_txholds(tx, tdzp);
3304 }
3305 if (tzp) {
3306 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3307 zfs_sa_upgrade_txholds(tx, tzp);
3308 }
3309
3310 zfs_sa_upgrade_txholds(tx, szp);
3311 dmu_tx_hold_zap(tx, zsb->z_unlinkedobj, FALSE, NULL);
3312 error = dmu_tx_assign(tx, TXG_NOWAIT);
3313 if (error) {
3314 if (zl != NULL)
3315 zfs_rename_unlock(&zl);
3316 zfs_dirent_unlock(sdl);
3317 zfs_dirent_unlock(tdl);
3318
3319 if (sdzp == tdzp)
3320 rw_exit(&sdzp->z_name_lock);
3321
3322 iput(ZTOI(szp));
3323 if (tzp)
3324 iput(ZTOI(tzp));
3325 if (error == ERESTART) {
3326 dmu_tx_wait(tx);
3327 dmu_tx_abort(tx);
3328 goto top;
3329 }
3330 dmu_tx_abort(tx);
3331 ZFS_EXIT(zsb);
3332 return (error);
3333 }
3334
3335 if (tzp) /* Attempt to remove the existing target */
3336 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3337
3338 if (error == 0) {
3339 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3340 if (error == 0) {
3341 szp->z_pflags |= ZFS_AV_MODIFIED;
3342
3343 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zsb),
3344 (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3345 ASSERT3U(error, ==, 0);
3346
3347 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3348 if (error == 0) {
3349 zfs_log_rename(zilog, tx, TX_RENAME |
3350 (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3351 sdl->dl_name, tdzp, tdl->dl_name, szp);
3352 } else {
3353 /*
3354 * At this point, we have successfully created
3355 * the target name, but have failed to remove
3356 * the source name. Since the create was done
3357 * with the ZRENAMING flag, there are
3358 * complications; for one, the link count is
3359 * wrong. The easiest way to deal with this
3360 * is to remove the newly created target, and
3361 * return the original error. This must
3362 * succeed; fortunately, it is very unlikely to
3363 * fail, since we just created it.
3364 */
3365 VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3366 ZRENAMING, NULL), ==, 0);
3367 }
3368 }
3369 }
3370
3371 dmu_tx_commit(tx);
3372 out:
3373 if (zl != NULL)
3374 zfs_rename_unlock(&zl);
3375
3376 zfs_dirent_unlock(sdl);
3377 zfs_dirent_unlock(tdl);
3378
3379 zfs_inode_update(sdzp);
3380 if (sdzp == tdzp)
3381 rw_exit(&sdzp->z_name_lock);
3382
3383 if (sdzp != tdzp)
3384 zfs_inode_update(tdzp);
3385
3386 zfs_inode_update(szp);
3387 iput(ZTOI(szp));
3388 if (tzp) {
3389 zfs_inode_update(tzp);
3390 iput(ZTOI(tzp));
3391 }
3392
3393 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
3394 zil_commit(zilog, 0);
3395
3396 ZFS_EXIT(zsb);
3397 return (error);
3398 }
3399 EXPORT_SYMBOL(zfs_rename);
3400
3401 /*
3402 * Insert the indicated symbolic reference entry into the directory.
3403 *
3404 * IN: dip - Directory to contain new symbolic link.
3405 * link - Name for new symlink entry.
3406 * vap - Attributes of new entry.
3407 * target - Target path of new symlink.
3408 *
3409 * cr - credentials of caller.
3410 * flags - case flags
3411 *
3412 * RETURN: 0 if success
3413 * error code if failure
3414 *
3415 * Timestamps:
3416 * dip - ctime|mtime updated
3417 */
3418 /*ARGSUSED*/
3419 int
3420 zfs_symlink(struct inode *dip, char *name, vattr_t *vap, char *link,
3421 struct inode **ipp, cred_t *cr, int flags)
3422 {
3423 znode_t *zp, *dzp = ITOZ(dip);
3424 zfs_dirlock_t *dl;
3425 dmu_tx_t *tx;
3426 zfs_sb_t *zsb = ITOZSB(dip);
3427 zilog_t *zilog;
3428 uint64_t len = strlen(link);
3429 int error;
3430 int zflg = ZNEW;
3431 zfs_acl_ids_t acl_ids;
3432 boolean_t fuid_dirtied;
3433 uint64_t txtype = TX_SYMLINK;
3434
3435 ASSERT(S_ISLNK(vap->va_mode));
3436
3437 ZFS_ENTER(zsb);
3438 ZFS_VERIFY_ZP(dzp);
3439 zilog = zsb->z_log;
3440
3441 if (zsb->z_utf8 && u8_validate(name, strlen(name),
3442 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3443 ZFS_EXIT(zsb);
3444 return (EILSEQ);
3445 }
3446 if (flags & FIGNORECASE)
3447 zflg |= ZCILOOK;
3448
3449 if (len > MAXPATHLEN) {
3450 ZFS_EXIT(zsb);
3451 return (ENAMETOOLONG);
3452 }
3453
3454 if ((error = zfs_acl_ids_create(dzp, 0,
3455 vap, cr, NULL, &acl_ids)) != 0) {
3456 ZFS_EXIT(zsb);
3457 return (error);
3458 }
3459 top:
3460 *ipp = NULL;
3461
3462 /*
3463 * Attempt to lock directory; fail if entry already exists.
3464 */
3465 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3466 if (error) {
3467 zfs_acl_ids_free(&acl_ids);
3468 ZFS_EXIT(zsb);
3469 return (error);
3470 }
3471
3472 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
3473 zfs_acl_ids_free(&acl_ids);
3474 zfs_dirent_unlock(dl);
3475 ZFS_EXIT(zsb);
3476 return (error);
3477 }
3478
3479 if (zfs_acl_ids_overquota(zsb, &acl_ids)) {
3480 zfs_acl_ids_free(&acl_ids);
3481 zfs_dirent_unlock(dl);
3482 ZFS_EXIT(zsb);
3483 return (EDQUOT);
3484 }
3485 tx = dmu_tx_create(zsb->z_os);
3486 fuid_dirtied = zsb->z_fuid_dirty;
3487 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3488 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3489 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3490 ZFS_SA_BASE_ATTR_SIZE + len);
3491 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3492 if (!zsb->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3493 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3494 acl_ids.z_aclp->z_acl_bytes);
3495 }
3496 if (fuid_dirtied)
3497 zfs_fuid_txhold(zsb, tx);
3498 error = dmu_tx_assign(tx, TXG_NOWAIT);
3499 if (error) {
3500 zfs_dirent_unlock(dl);
3501 if (error == ERESTART) {
3502 dmu_tx_wait(tx);
3503 dmu_tx_abort(tx);
3504 goto top;
3505 }
3506 zfs_acl_ids_free(&acl_ids);
3507 dmu_tx_abort(tx);
3508 ZFS_EXIT(zsb);
3509 return (error);
3510 }
3511
3512 /*
3513 * Create a new object for the symlink.
3514 * for version 4 ZPL datsets the symlink will be an SA attribute
3515 */
3516 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3517
3518 if (fuid_dirtied)
3519 zfs_fuid_sync(zsb, tx);
3520
3521 mutex_enter(&zp->z_lock);
3522 if (zp->z_is_sa)
3523 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zsb),
3524 link, len, tx);
3525 else
3526 zfs_sa_symlink(zp, link, len, tx);
3527 mutex_exit(&zp->z_lock);
3528
3529 zp->z_size = len;
3530 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zsb),
3531 &zp->z_size, sizeof (zp->z_size), tx);
3532 /*
3533 * Insert the new object into the directory.
3534 */
3535 (void) zfs_link_create(dl, zp, tx, ZNEW);
3536
3537 if (flags & FIGNORECASE)
3538 txtype |= TX_CI;
3539 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3540
3541 zfs_inode_update(dzp);
3542 zfs_inode_update(zp);
3543
3544 zfs_acl_ids_free(&acl_ids);
3545
3546 dmu_tx_commit(tx);
3547
3548 zfs_dirent_unlock(dl);
3549
3550 *ipp = ZTOI(zp);
3551
3552 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
3553 zil_commit(zilog, 0);
3554
3555 ZFS_EXIT(zsb);
3556 return (error);
3557 }
3558 EXPORT_SYMBOL(zfs_symlink);
3559
3560 /*
3561 * Return, in the buffer contained in the provided uio structure,
3562 * the symbolic path referred to by ip.
3563 *
3564 * IN: ip - inode of symbolic link
3565 * uio - structure to contain the link path.
3566 * cr - credentials of caller.
3567 *
3568 * RETURN: 0 if success
3569 * error code if failure
3570 *
3571 * Timestamps:
3572 * ip - atime updated
3573 */
3574 /* ARGSUSED */
3575 int
3576 zfs_readlink(struct inode *ip, uio_t *uio, cred_t *cr)
3577 {
3578 znode_t *zp = ITOZ(ip);
3579 zfs_sb_t *zsb = ITOZSB(ip);
3580 int error;
3581
3582 ZFS_ENTER(zsb);
3583 ZFS_VERIFY_ZP(zp);
3584
3585 mutex_enter(&zp->z_lock);
3586 if (zp->z_is_sa)
3587 error = sa_lookup_uio(zp->z_sa_hdl,
3588 SA_ZPL_SYMLINK(zsb), uio);
3589 else
3590 error = zfs_sa_readlink(zp, uio);
3591 mutex_exit(&zp->z_lock);
3592
3593 ZFS_ACCESSTIME_STAMP(zsb, zp);
3594 zfs_inode_update(zp);
3595 ZFS_EXIT(zsb);
3596 return (error);
3597 }
3598 EXPORT_SYMBOL(zfs_readlink);
3599
3600 /*
3601 * Insert a new entry into directory tdip referencing sip.
3602 *
3603 * IN: tdip - Directory to contain new entry.
3604 * sip - inode of new entry.
3605 * name - name of new entry.
3606 * cr - credentials of caller.
3607 *
3608 * RETURN: 0 if success
3609 * error code if failure
3610 *
3611 * Timestamps:
3612 * tdip - ctime|mtime updated
3613 * sip - ctime updated
3614 */
3615 /* ARGSUSED */
3616 int
3617 zfs_link(struct inode *tdip, struct inode *sip, char *name, cred_t *cr)
3618 {
3619 znode_t *dzp = ITOZ(tdip);
3620 znode_t *tzp, *szp;
3621 zfs_sb_t *zsb = ITOZSB(tdip);
3622 zilog_t *zilog;
3623 zfs_dirlock_t *dl;
3624 dmu_tx_t *tx;
3625 int error;
3626 int zf = ZNEW;
3627 uint64_t parent;
3628 uid_t owner;
3629
3630 ASSERT(S_ISDIR(tdip->i_mode));
3631
3632 ZFS_ENTER(zsb);
3633 ZFS_VERIFY_ZP(dzp);
3634 zilog = zsb->z_log;
3635
3636 /*
3637 * POSIX dictates that we return EPERM here.
3638 * Better choices include ENOTSUP or EISDIR.
3639 */
3640 if (S_ISDIR(sip->i_mode)) {
3641 ZFS_EXIT(zsb);
3642 return (EPERM);
3643 }
3644
3645 if (sip->i_sb != tdip->i_sb) {
3646 ZFS_EXIT(zsb);
3647 return (EXDEV);
3648 }
3649
3650 szp = ITOZ(sip);
3651 ZFS_VERIFY_ZP(szp);
3652
3653 /* Prevent links to .zfs/shares files */
3654
3655 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zsb),
3656 &parent, sizeof (uint64_t))) != 0) {
3657 ZFS_EXIT(zsb);
3658 return (error);
3659 }
3660 if (parent == zsb->z_shares_dir) {
3661 ZFS_EXIT(zsb);
3662 return (EPERM);
3663 }
3664
3665 if (zsb->z_utf8 && u8_validate(name,
3666 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3667 ZFS_EXIT(zsb);
3668 return (EILSEQ);
3669 }
3670 #ifdef HAVE_PN_UTILS
3671 if (flags & FIGNORECASE)
3672 zf |= ZCILOOK;
3673 #endif /* HAVE_PN_UTILS */
3674
3675 /*
3676 * We do not support links between attributes and non-attributes
3677 * because of the potential security risk of creating links
3678 * into "normal" file space in order to circumvent restrictions
3679 * imposed in attribute space.
3680 */
3681 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
3682 ZFS_EXIT(zsb);
3683 return (EINVAL);
3684 }
3685
3686 owner = zfs_fuid_map_id(zsb, szp->z_uid, cr, ZFS_OWNER);
3687 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
3688 ZFS_EXIT(zsb);
3689 return (EPERM);
3690 }
3691
3692 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
3693 ZFS_EXIT(zsb);
3694 return (error);
3695 }
3696
3697 top:
3698 /*
3699 * Attempt to lock directory; fail if entry already exists.
3700 */
3701 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
3702 if (error) {
3703 ZFS_EXIT(zsb);
3704 return (error);
3705 }
3706
3707 tx = dmu_tx_create(zsb->z_os);
3708 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3709 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3710 zfs_sa_upgrade_txholds(tx, szp);
3711 zfs_sa_upgrade_txholds(tx, dzp);
3712 error = dmu_tx_assign(tx, TXG_NOWAIT);
3713 if (error) {
3714 zfs_dirent_unlock(dl);
3715 if (error == ERESTART) {
3716 dmu_tx_wait(tx);
3717 dmu_tx_abort(tx);
3718 goto top;
3719 }
3720 dmu_tx_abort(tx);
3721 ZFS_EXIT(zsb);
3722 return (error);
3723 }
3724
3725 error = zfs_link_create(dl, szp, tx, 0);
3726
3727 if (error == 0) {
3728 uint64_t txtype = TX_LINK;
3729 #ifdef HAVE_PN_UTILS
3730 if (flags & FIGNORECASE)
3731 txtype |= TX_CI;
3732 #endif /* HAVE_PN_UTILS */
3733 zfs_log_link(zilog, tx, txtype, dzp, szp, name);
3734 }
3735
3736 dmu_tx_commit(tx);
3737
3738 zfs_dirent_unlock(dl);
3739
3740 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
3741 zil_commit(zilog, 0);
3742
3743 zfs_inode_update(dzp);
3744 zfs_inode_update(szp);
3745 ZFS_EXIT(zsb);
3746 return (error);
3747 }
3748 EXPORT_SYMBOL(zfs_link);
3749
3750 static void
3751 zfs_putpage_commit_cb(void *arg, int error)
3752 {
3753 struct page *pp = arg;
3754
3755 if (error) {
3756 __set_page_dirty_nobuffers(pp);
3757
3758 if (error != ECANCELED)
3759 SetPageError(pp);
3760 } else {
3761 ClearPageError(pp);
3762 }
3763
3764 end_page_writeback(pp);
3765 }
3766
3767 /*
3768 * Push a page out to disk, once the page is on stable storage the
3769 * registered commit callback will be run as notification of completion.
3770 *
3771 * IN: ip - page mapped for inode.
3772 * pp - page to push (page is locked)
3773 * wbc - writeback control data
3774 *
3775 * RETURN: 0 if success
3776 * error code if failure
3777 *
3778 * Timestamps:
3779 * ip - ctime|mtime updated
3780 */
3781 /* ARGSUSED */
3782 int
3783 zfs_putpage(struct inode *ip, struct page *pp, struct writeback_control *wbc)
3784 {
3785 znode_t *zp = ITOZ(ip);
3786 zfs_sb_t *zsb = ITOZSB(ip);
3787 loff_t offset;
3788 loff_t pgoff;
3789 unsigned int pglen;
3790 rl_t *rl;
3791 dmu_tx_t *tx;
3792 caddr_t va;
3793 int err = 0;
3794 uint64_t mtime[2], ctime[2];
3795 sa_bulk_attr_t bulk[3];
3796 int cnt = 0;
3797 int sync;
3798
3799 ZFS_ENTER(zsb);
3800 ZFS_VERIFY_ZP(zp);
3801
3802 ASSERT(PageLocked(pp));
3803
3804 pgoff = page_offset(pp); /* Page byte-offset in file */
3805 offset = i_size_read(ip); /* File length in bytes */
3806 pglen = MIN(PAGE_CACHE_SIZE, /* Page length in bytes */
3807 P2ROUNDUP(offset, PAGE_CACHE_SIZE)-pgoff);
3808
3809 /* Page is beyond end of file */
3810 if (pgoff >= offset) {
3811 unlock_page(pp);
3812 ZFS_EXIT(zsb);
3813 return (0);
3814 }
3815
3816 /* Truncate page length to end of file */
3817 if (pgoff + pglen > offset)
3818 pglen = offset - pgoff;
3819
3820 #if 0
3821 /*
3822 * FIXME: Allow mmap writes past its quota. The correct fix
3823 * is to register a page_mkwrite() handler to count the page
3824 * against its quota when it is about to be dirtied.
3825 */
3826 if (zfs_owner_overquota(zsb, zp, B_FALSE) ||
3827 zfs_owner_overquota(zsb, zp, B_TRUE)) {
3828 err = EDQUOT;
3829 }
3830 #endif
3831
3832 set_page_writeback(pp);
3833 unlock_page(pp);
3834
3835 rl = zfs_range_lock(zp, pgoff, pglen, RL_WRITER);
3836 tx = dmu_tx_create(zsb->z_os);
3837
3838 sync = ((zsb->z_os->os_sync == ZFS_SYNC_ALWAYS) ||
3839 (wbc->sync_mode == WB_SYNC_ALL));
3840 if (!sync)
3841 dmu_tx_callback_register(tx, zfs_putpage_commit_cb, pp);
3842
3843 dmu_tx_hold_write(tx, zp->z_id, pgoff, pglen);
3844
3845 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3846 zfs_sa_upgrade_txholds(tx, zp);
3847 err = dmu_tx_assign(tx, TXG_NOWAIT);
3848 if (err != 0) {
3849 if (err == ERESTART)
3850 dmu_tx_wait(tx);
3851
3852 /* Will call all registered commit callbacks */
3853 dmu_tx_abort(tx);
3854
3855 /*
3856 * For the synchronous case the commit callback must be
3857 * explicitly called because there is no registered callback.
3858 */
3859 if (sync)
3860 zfs_putpage_commit_cb(pp, ECANCELED);
3861
3862 zfs_range_unlock(rl);
3863 ZFS_EXIT(zsb);
3864 return (err);
3865 }
3866
3867 va = kmap(pp);
3868 ASSERT3U(pglen, <=, PAGE_CACHE_SIZE);
3869 dmu_write(zsb->z_os, zp->z_id, pgoff, pglen, va, tx);
3870 kunmap(pp);
3871
3872 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zsb), NULL, &mtime, 16);
3873 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zsb), NULL, &ctime, 16);
3874 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_FLAGS(zsb), NULL, &zp->z_pflags, 8);
3875
3876 /* Preserve the mtime and ctime provided by the inode */
3877 ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
3878 ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
3879 zp->z_atime_dirty = 0;
3880 zp->z_seq++;
3881
3882 err = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
3883
3884 zfs_log_write(zsb->z_log, tx, TX_WRITE, zp, pgoff, pglen, 0);
3885 dmu_tx_commit(tx);
3886
3887 zfs_range_unlock(rl);
3888
3889 if (sync) {
3890 zil_commit(zsb->z_log, zp->z_id);
3891 zfs_putpage_commit_cb(pp, err);
3892 }
3893
3894 ZFS_EXIT(zsb);
3895 return (err);
3896 }
3897
3898 /*
3899 * Update the system attributes when the inode has been dirtied. For the
3900 * moment we're conservative and only update the atime, mtime, and ctime.
3901 */
3902 int
3903 zfs_dirty_inode(struct inode *ip, int flags)
3904 {
3905 znode_t *zp = ITOZ(ip);
3906 zfs_sb_t *zsb = ITOZSB(ip);
3907 dmu_tx_t *tx;
3908 uint64_t atime[2], mtime[2], ctime[2];
3909 sa_bulk_attr_t bulk[3];
3910 int error;
3911 int cnt = 0;
3912
3913 ZFS_ENTER(zsb);
3914 ZFS_VERIFY_ZP(zp);
3915
3916 tx = dmu_tx_create(zsb->z_os);
3917
3918 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3919 zfs_sa_upgrade_txholds(tx, zp);
3920
3921 error = dmu_tx_assign(tx, TXG_WAIT);
3922 if (error) {
3923 dmu_tx_abort(tx);
3924 goto out;
3925 }
3926
3927 mutex_enter(&zp->z_lock);
3928 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_ATIME(zsb), NULL, &atime, 16);
3929 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zsb), NULL, &mtime, 16);
3930 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zsb), NULL, &ctime, 16);
3931
3932 /* Preserve the mtime and ctime provided by the inode */
3933 ZFS_TIME_ENCODE(&ip->i_atime, atime);
3934 ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
3935 ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
3936 zp->z_atime_dirty = 0;
3937
3938 error = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
3939 mutex_exit(&zp->z_lock);
3940
3941 dmu_tx_commit(tx);
3942 out:
3943 ZFS_EXIT(zsb);
3944 return (error);
3945 }
3946 EXPORT_SYMBOL(zfs_dirty_inode);
3947
3948 /*ARGSUSED*/
3949 void
3950 zfs_inactive(struct inode *ip)
3951 {
3952 znode_t *zp = ITOZ(ip);
3953 zfs_sb_t *zsb = ITOZSB(ip);
3954 int error;
3955
3956 if (zfsctl_is_node(ip)) {
3957 zfsctl_inode_inactive(ip);
3958 return;
3959 }
3960
3961 rw_enter(&zsb->z_teardown_inactive_lock, RW_READER);
3962 if (zp->z_sa_hdl == NULL) {
3963 rw_exit(&zsb->z_teardown_inactive_lock);
3964 return;
3965 }
3966
3967 if (zp->z_atime_dirty && zp->z_unlinked == 0) {
3968 dmu_tx_t *tx = dmu_tx_create(zsb->z_os);
3969
3970 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3971 zfs_sa_upgrade_txholds(tx, zp);
3972 error = dmu_tx_assign(tx, TXG_WAIT);
3973 if (error) {
3974 dmu_tx_abort(tx);
3975 } else {
3976 mutex_enter(&zp->z_lock);
3977 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zsb),
3978 (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
3979 zp->z_atime_dirty = 0;
3980 mutex_exit(&zp->z_lock);
3981 dmu_tx_commit(tx);
3982 }
3983 }
3984
3985 zfs_zinactive(zp);
3986 rw_exit(&zsb->z_teardown_inactive_lock);
3987 }
3988 EXPORT_SYMBOL(zfs_inactive);
3989
3990 /*
3991 * Bounds-check the seek operation.
3992 *
3993 * IN: ip - inode seeking within
3994 * ooff - old file offset
3995 * noffp - pointer to new file offset
3996 * ct - caller context
3997 *
3998 * RETURN: 0 if success
3999 * EINVAL if new offset invalid
4000 */
4001 /* ARGSUSED */
4002 int
4003 zfs_seek(struct inode *ip, offset_t ooff, offset_t *noffp)
4004 {
4005 if (S_ISDIR(ip->i_mode))
4006 return (0);
4007 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4008 }
4009 EXPORT_SYMBOL(zfs_seek);
4010
4011 /*
4012 * Fill pages with data from the disk.
4013 */
4014 static int
4015 zfs_fillpage(struct inode *ip, struct page *pl[], int nr_pages)
4016 {
4017 znode_t *zp = ITOZ(ip);
4018 zfs_sb_t *zsb = ITOZSB(ip);
4019 objset_t *os;
4020 struct page *cur_pp;
4021 u_offset_t io_off, total;
4022 size_t io_len;
4023 loff_t i_size;
4024 unsigned page_idx;
4025 int err;
4026
4027 os = zsb->z_os;
4028 io_len = nr_pages << PAGE_CACHE_SHIFT;
4029 i_size = i_size_read(ip);
4030 io_off = page_offset(pl[0]);
4031
4032 if (io_off + io_len > i_size)
4033 io_len = i_size - io_off;
4034
4035 /*
4036 * Iterate over list of pages and read each page individually.
4037 */
4038 page_idx = 0;
4039 cur_pp = pl[0];
4040 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4041 caddr_t va;
4042
4043 va = kmap(cur_pp);
4044 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4045 DMU_READ_PREFETCH);
4046 kunmap(cur_pp);
4047 if (err) {
4048 /* convert checksum errors into IO errors */
4049 if (err == ECKSUM)
4050 err = EIO;
4051 return (err);
4052 }
4053 cur_pp = pl[++page_idx];
4054 }
4055
4056 return (0);
4057 }
4058
4059 /*
4060 * Uses zfs_fillpage to read data from the file and fill the pages.
4061 *
4062 * IN: ip - inode of file to get data from.
4063 * pl - list of pages to read
4064 * nr_pages - number of pages to read
4065 *
4066 * RETURN: 0 if success
4067 * error code if failure
4068 *
4069 * Timestamps:
4070 * vp - atime updated
4071 */
4072 /* ARGSUSED */
4073 int
4074 zfs_getpage(struct inode *ip, struct page *pl[], int nr_pages)
4075 {
4076 znode_t *zp = ITOZ(ip);
4077 zfs_sb_t *zsb = ITOZSB(ip);
4078 int err;
4079
4080 if (pl == NULL)
4081 return (0);
4082
4083 ZFS_ENTER(zsb);
4084 ZFS_VERIFY_ZP(zp);
4085
4086 err = zfs_fillpage(ip, pl, nr_pages);
4087
4088 if (!err)
4089 ZFS_ACCESSTIME_STAMP(zsb, zp);
4090
4091 ZFS_EXIT(zsb);
4092 return (err);
4093 }
4094 EXPORT_SYMBOL(zfs_getpage);
4095
4096 /*
4097 * Check ZFS specific permissions to memory map a section of a file.
4098 *
4099 * IN: ip - inode of the file to mmap
4100 * off - file offset
4101 * addrp - start address in memory region
4102 * len - length of memory region
4103 * vm_flags- address flags
4104 *
4105 * RETURN: 0 if success
4106 * error code if failure
4107 */
4108 /*ARGSUSED*/
4109 int
4110 zfs_map(struct inode *ip, offset_t off, caddr_t *addrp, size_t len,
4111 unsigned long vm_flags)
4112 {
4113 znode_t *zp = ITOZ(ip);
4114 zfs_sb_t *zsb = ITOZSB(ip);
4115
4116 ZFS_ENTER(zsb);
4117 ZFS_VERIFY_ZP(zp);
4118
4119 if ((vm_flags & VM_WRITE) && (zp->z_pflags &
4120 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4121 ZFS_EXIT(zsb);
4122 return (EPERM);
4123 }
4124
4125 if ((vm_flags & (VM_READ | VM_EXEC)) &&
4126 (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4127 ZFS_EXIT(zsb);
4128 return (EACCES);
4129 }
4130
4131 if (off < 0 || len > MAXOFFSET_T - off) {
4132 ZFS_EXIT(zsb);
4133 return (ENXIO);
4134 }
4135
4136 ZFS_EXIT(zsb);
4137 return (0);
4138 }
4139 EXPORT_SYMBOL(zfs_map);
4140
4141 /*
4142 * convoff - converts the given data (start, whence) to the
4143 * given whence.
4144 */
4145 int
4146 convoff(struct inode *ip, flock64_t *lckdat, int whence, offset_t offset)
4147 {
4148 vattr_t vap;
4149 int error;
4150
4151 if ((lckdat->l_whence == 2) || (whence == 2)) {
4152 if ((error = zfs_getattr(ip, &vap, 0, CRED()) != 0))
4153 return (error);
4154 }
4155
4156 switch (lckdat->l_whence) {
4157 case 1:
4158 lckdat->l_start += offset;
4159 break;
4160 case 2:
4161 lckdat->l_start += vap.va_size;
4162 /* FALLTHRU */
4163 case 0:
4164 break;
4165 default:
4166 return (EINVAL);
4167 }
4168
4169 if (lckdat->l_start < 0)
4170 return (EINVAL);
4171
4172 switch (whence) {
4173 case 1:
4174 lckdat->l_start -= offset;
4175 break;
4176 case 2:
4177 lckdat->l_start -= vap.va_size;
4178 /* FALLTHRU */
4179 case 0:
4180 break;
4181 default:
4182 return (EINVAL);
4183 }
4184
4185 lckdat->l_whence = (short)whence;
4186 return (0);
4187 }
4188
4189 /*
4190 * Free or allocate space in a file. Currently, this function only
4191 * supports the `F_FREESP' command. However, this command is somewhat
4192 * misnamed, as its functionality includes the ability to allocate as
4193 * well as free space.
4194 *
4195 * IN: ip - inode of file to free data in.
4196 * cmd - action to take (only F_FREESP supported).
4197 * bfp - section of file to free/alloc.
4198 * flag - current file open mode flags.
4199 * offset - current file offset.
4200 * cr - credentials of caller [UNUSED].
4201 *
4202 * RETURN: 0 if success
4203 * error code if failure
4204 *
4205 * Timestamps:
4206 * ip - ctime|mtime updated
4207 */
4208 /* ARGSUSED */
4209 int
4210 zfs_space(struct inode *ip, int cmd, flock64_t *bfp, int flag,
4211 offset_t offset, cred_t *cr)
4212 {
4213 znode_t *zp = ITOZ(ip);
4214 zfs_sb_t *zsb = ITOZSB(ip);
4215 uint64_t off, len;
4216 int error;
4217
4218 ZFS_ENTER(zsb);
4219 ZFS_VERIFY_ZP(zp);
4220
4221 if (cmd != F_FREESP) {
4222 ZFS_EXIT(zsb);
4223 return (EINVAL);
4224 }
4225
4226 if ((error = convoff(ip, bfp, 0, offset))) {
4227 ZFS_EXIT(zsb);
4228 return (error);
4229 }
4230
4231 if (bfp->l_len < 0) {
4232 ZFS_EXIT(zsb);
4233 return (EINVAL);
4234 }
4235
4236 /*
4237 * Permissions aren't checked on Solaris because on this OS
4238 * zfs_space() can only be called with an opened file handle.
4239 * On Linux we can get here through truncate_range() which
4240 * operates directly on inodes, so we need to check access rights.
4241 */
4242 if ((error = zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr))) {
4243 ZFS_EXIT(zsb);
4244 return (error);
4245 }
4246
4247 off = bfp->l_start;
4248 len = bfp->l_len; /* 0 means from off to end of file */
4249
4250 error = zfs_freesp(zp, off, len, flag, TRUE);
4251
4252 ZFS_EXIT(zsb);
4253 return (error);
4254 }
4255 EXPORT_SYMBOL(zfs_space);
4256
4257 /*ARGSUSED*/
4258 int
4259 zfs_fid(struct inode *ip, fid_t *fidp)
4260 {
4261 znode_t *zp = ITOZ(ip);
4262 zfs_sb_t *zsb = ITOZSB(ip);
4263 uint32_t gen;
4264 uint64_t gen64;
4265 uint64_t object = zp->z_id;
4266 zfid_short_t *zfid;
4267 int size, i, error;
4268
4269 ZFS_ENTER(zsb);
4270 ZFS_VERIFY_ZP(zp);
4271
4272 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zsb),
4273 &gen64, sizeof (uint64_t))) != 0) {
4274 ZFS_EXIT(zsb);
4275 return (error);
4276 }
4277
4278 gen = (uint32_t)gen64;
4279
4280 size = (zsb->z_parent != zsb) ? LONG_FID_LEN : SHORT_FID_LEN;
4281 if (fidp->fid_len < size) {
4282 fidp->fid_len = size;
4283 ZFS_EXIT(zsb);
4284 return (ENOSPC);
4285 }
4286
4287 zfid = (zfid_short_t *)fidp;
4288
4289 zfid->zf_len = size;
4290
4291 for (i = 0; i < sizeof (zfid->zf_object); i++)
4292 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4293
4294 /* Must have a non-zero generation number to distinguish from .zfs */
4295 if (gen == 0)
4296 gen = 1;
4297 for (i = 0; i < sizeof (zfid->zf_gen); i++)
4298 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4299
4300 if (size == LONG_FID_LEN) {
4301 uint64_t objsetid = dmu_objset_id(zsb->z_os);
4302 zfid_long_t *zlfid;
4303
4304 zlfid = (zfid_long_t *)fidp;
4305
4306 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4307 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4308
4309 /* XXX - this should be the generation number for the objset */
4310 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4311 zlfid->zf_setgen[i] = 0;
4312 }
4313
4314 ZFS_EXIT(zsb);
4315 return (0);
4316 }
4317 EXPORT_SYMBOL(zfs_fid);
4318
4319 /*ARGSUSED*/
4320 int
4321 zfs_getsecattr(struct inode *ip, vsecattr_t *vsecp, int flag, cred_t *cr)
4322 {
4323 znode_t *zp = ITOZ(ip);
4324 zfs_sb_t *zsb = ITOZSB(ip);
4325 int error;
4326 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4327
4328 ZFS_ENTER(zsb);
4329 ZFS_VERIFY_ZP(zp);
4330 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
4331 ZFS_EXIT(zsb);
4332
4333 return (error);
4334 }
4335 EXPORT_SYMBOL(zfs_getsecattr);
4336
4337 /*ARGSUSED*/
4338 int
4339 zfs_setsecattr(struct inode *ip, vsecattr_t *vsecp, int flag, cred_t *cr)
4340 {
4341 znode_t *zp = ITOZ(ip);
4342 zfs_sb_t *zsb = ITOZSB(ip);
4343 int error;
4344 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4345 zilog_t *zilog = zsb->z_log;
4346
4347 ZFS_ENTER(zsb);
4348 ZFS_VERIFY_ZP(zp);
4349
4350 error = zfs_setacl(zp, vsecp, skipaclchk, cr);
4351
4352 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
4353 zil_commit(zilog, 0);
4354
4355 ZFS_EXIT(zsb);
4356 return (error);
4357 }
4358 EXPORT_SYMBOL(zfs_setsecattr);
4359
4360 #ifdef HAVE_UIO_ZEROCOPY
4361 /*
4362 * Tunable, both must be a power of 2.
4363 *
4364 * zcr_blksz_min: the smallest read we may consider to loan out an arcbuf
4365 * zcr_blksz_max: if set to less than the file block size, allow loaning out of
4366 * an arcbuf for a partial block read
4367 */
4368 int zcr_blksz_min = (1 << 10); /* 1K */
4369 int zcr_blksz_max = (1 << 17); /* 128K */
4370
4371 /*ARGSUSED*/
4372 static int
4373 zfs_reqzcbuf(struct inode *ip, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr)
4374 {
4375 znode_t *zp = ITOZ(ip);
4376 zfs_sb_t *zsb = ITOZSB(ip);
4377 int max_blksz = zsb->z_max_blksz;
4378 uio_t *uio = &xuio->xu_uio;
4379 ssize_t size = uio->uio_resid;
4380 offset_t offset = uio->uio_loffset;
4381 int blksz;
4382 int fullblk, i;
4383 arc_buf_t *abuf;
4384 ssize_t maxsize;
4385 int preamble, postamble;
4386
4387 if (xuio->xu_type != UIOTYPE_ZEROCOPY)
4388 return (EINVAL);
4389
4390 ZFS_ENTER(zsb);
4391 ZFS_VERIFY_ZP(zp);
4392 switch (ioflag) {
4393 case UIO_WRITE:
4394 /*
4395 * Loan out an arc_buf for write if write size is bigger than
4396 * max_blksz, and the file's block size is also max_blksz.
4397 */
4398 blksz = max_blksz;
4399 if (size < blksz || zp->z_blksz != blksz) {
4400 ZFS_EXIT(zsb);
4401 return (EINVAL);
4402 }
4403 /*
4404 * Caller requests buffers for write before knowing where the
4405 * write offset might be (e.g. NFS TCP write).
4406 */
4407 if (offset == -1) {
4408 preamble = 0;
4409 } else {
4410 preamble = P2PHASE(offset, blksz);
4411 if (preamble) {
4412 preamble = blksz - preamble;
4413 size -= preamble;
4414 }
4415 }
4416
4417 postamble = P2PHASE(size, blksz);
4418 size -= postamble;
4419
4420 fullblk = size / blksz;
4421 (void) dmu_xuio_init(xuio,
4422 (preamble != 0) + fullblk + (postamble != 0));
4423
4424 /*
4425 * Have to fix iov base/len for partial buffers. They
4426 * currently represent full arc_buf's.
4427 */
4428 if (preamble) {
4429 /* data begins in the middle of the arc_buf */
4430 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4431 blksz);
4432 ASSERT(abuf);
4433 (void) dmu_xuio_add(xuio, abuf,
4434 blksz - preamble, preamble);
4435 }
4436
4437 for (i = 0; i < fullblk; i++) {
4438 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4439 blksz);
4440 ASSERT(abuf);
4441 (void) dmu_xuio_add(xuio, abuf, 0, blksz);
4442 }
4443
4444 if (postamble) {
4445 /* data ends in the middle of the arc_buf */
4446 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4447 blksz);
4448 ASSERT(abuf);
4449 (void) dmu_xuio_add(xuio, abuf, 0, postamble);
4450 }
4451 break;
4452 case UIO_READ:
4453 /*
4454 * Loan out an arc_buf for read if the read size is larger than
4455 * the current file block size. Block alignment is not
4456 * considered. Partial arc_buf will be loaned out for read.
4457 */
4458 blksz = zp->z_blksz;
4459 if (blksz < zcr_blksz_min)
4460 blksz = zcr_blksz_min;
4461 if (blksz > zcr_blksz_max)
4462 blksz = zcr_blksz_max;
4463 /* avoid potential complexity of dealing with it */
4464 if (blksz > max_blksz) {
4465 ZFS_EXIT(zsb);
4466 return (EINVAL);
4467 }
4468
4469 maxsize = zp->z_size - uio->uio_loffset;
4470 if (size > maxsize)
4471 size = maxsize;
4472
4473 if (size < blksz) {
4474 ZFS_EXIT(zsb);
4475 return (EINVAL);
4476 }
4477 break;
4478 default:
4479 ZFS_EXIT(zsb);
4480 return (EINVAL);
4481 }
4482
4483 uio->uio_extflg = UIO_XUIO;
4484 XUIO_XUZC_RW(xuio) = ioflag;
4485 ZFS_EXIT(zsb);
4486 return (0);
4487 }
4488
4489 /*ARGSUSED*/
4490 static int
4491 zfs_retzcbuf(struct inode *ip, xuio_t *xuio, cred_t *cr)
4492 {
4493 int i;
4494 arc_buf_t *abuf;
4495 int ioflag = XUIO_XUZC_RW(xuio);
4496
4497 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
4498
4499 i = dmu_xuio_cnt(xuio);
4500 while (i-- > 0) {
4501 abuf = dmu_xuio_arcbuf(xuio, i);
4502 /*
4503 * if abuf == NULL, it must be a write buffer
4504 * that has been returned in zfs_write().
4505 */
4506 if (abuf)
4507 dmu_return_arcbuf(abuf);
4508 ASSERT(abuf || ioflag == UIO_WRITE);
4509 }
4510
4511 dmu_xuio_fini(xuio);
4512 return (0);
4513 }
4514 #endif /* HAVE_UIO_ZEROCOPY */
4515
4516 #if defined(_KERNEL) && defined(HAVE_SPL)
4517 module_param(zfs_read_chunk_size, long, 0644);
4518 MODULE_PARM_DESC(zfs_read_chunk_size, "Bytes to read per chunk");
4519 #endif