]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zfs_vnops.c
Fix coverity defects: CID 150926
[mirror_zfs.git] / module / zfs / zfs_vnops.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
24 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26 */
27
28 /* Portions Copyright 2007 Jeremy Teo */
29 /* Portions Copyright 2010 Robert Milkowski */
30
31
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/time.h>
35 #include <sys/systm.h>
36 #include <sys/sysmacros.h>
37 #include <sys/resource.h>
38 #include <sys/vfs.h>
39 #include <sys/vfs_opreg.h>
40 #include <sys/file.h>
41 #include <sys/stat.h>
42 #include <sys/kmem.h>
43 #include <sys/taskq.h>
44 #include <sys/uio.h>
45 #include <sys/vmsystm.h>
46 #include <sys/atomic.h>
47 #include <vm/pvn.h>
48 #include <sys/pathname.h>
49 #include <sys/cmn_err.h>
50 #include <sys/errno.h>
51 #include <sys/unistd.h>
52 #include <sys/zfs_dir.h>
53 #include <sys/zfs_acl.h>
54 #include <sys/zfs_ioctl.h>
55 #include <sys/fs/zfs.h>
56 #include <sys/dmu.h>
57 #include <sys/dmu_objset.h>
58 #include <sys/spa.h>
59 #include <sys/txg.h>
60 #include <sys/dbuf.h>
61 #include <sys/zap.h>
62 #include <sys/sa.h>
63 #include <sys/dirent.h>
64 #include <sys/policy.h>
65 #include <sys/sunddi.h>
66 #include <sys/sid.h>
67 #include <sys/mode.h>
68 #include "fs/fs_subr.h"
69 #include <sys/zfs_ctldir.h>
70 #include <sys/zfs_fuid.h>
71 #include <sys/zfs_sa.h>
72 #include <sys/zfs_vnops.h>
73 #include <sys/dnlc.h>
74 #include <sys/zfs_rlock.h>
75 #include <sys/extdirent.h>
76 #include <sys/kidmap.h>
77 #include <sys/cred.h>
78 #include <sys/attr.h>
79 #include <sys/zpl.h>
80
81 /*
82 * Programming rules.
83 *
84 * Each vnode op performs some logical unit of work. To do this, the ZPL must
85 * properly lock its in-core state, create a DMU transaction, do the work,
86 * record this work in the intent log (ZIL), commit the DMU transaction,
87 * and wait for the intent log to commit if it is a synchronous operation.
88 * Moreover, the vnode ops must work in both normal and log replay context.
89 * The ordering of events is important to avoid deadlocks and references
90 * to freed memory. The example below illustrates the following Big Rules:
91 *
92 * (1) A check must be made in each zfs thread for a mounted file system.
93 * This is done avoiding races using ZFS_ENTER(zsb).
94 * A ZFS_EXIT(zsb) is needed before all returns. Any znodes
95 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros
96 * can return EIO from the calling function.
97 *
98 * (2) iput() should always be the last thing except for zil_commit()
99 * (if necessary) and ZFS_EXIT(). This is for 3 reasons:
100 * First, if it's the last reference, the vnode/znode
101 * can be freed, so the zp may point to freed memory. Second, the last
102 * reference will call zfs_zinactive(), which may induce a lot of work --
103 * pushing cached pages (which acquires range locks) and syncing out
104 * cached atime changes. Third, zfs_zinactive() may require a new tx,
105 * which could deadlock the system if you were already holding one.
106 * If you must call iput() within a tx then use zfs_iput_async().
107 *
108 * (3) All range locks must be grabbed before calling dmu_tx_assign(),
109 * as they can span dmu_tx_assign() calls.
110 *
111 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
112 * dmu_tx_assign(). This is critical because we don't want to block
113 * while holding locks.
114 *
115 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This
116 * reduces lock contention and CPU usage when we must wait (note that if
117 * throughput is constrained by the storage, nearly every transaction
118 * must wait).
119 *
120 * Note, in particular, that if a lock is sometimes acquired before
121 * the tx assigns, and sometimes after (e.g. z_lock), then failing
122 * to use a non-blocking assign can deadlock the system. The scenario:
123 *
124 * Thread A has grabbed a lock before calling dmu_tx_assign().
125 * Thread B is in an already-assigned tx, and blocks for this lock.
126 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
127 * forever, because the previous txg can't quiesce until B's tx commits.
128 *
129 * If dmu_tx_assign() returns ERESTART and zsb->z_assign is TXG_NOWAIT,
130 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent
131 * calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT,
132 * to indicate that this operation has already called dmu_tx_wait().
133 * This will ensure that we don't retry forever, waiting a short bit
134 * each time.
135 *
136 * (5) If the operation succeeded, generate the intent log entry for it
137 * before dropping locks. This ensures that the ordering of events
138 * in the intent log matches the order in which they actually occurred.
139 * During ZIL replay the zfs_log_* functions will update the sequence
140 * number to indicate the zil transaction has replayed.
141 *
142 * (6) At the end of each vnode op, the DMU tx must always commit,
143 * regardless of whether there were any errors.
144 *
145 * (7) After dropping all locks, invoke zil_commit(zilog, foid)
146 * to ensure that synchronous semantics are provided when necessary.
147 *
148 * In general, this is how things should be ordered in each vnode op:
149 *
150 * ZFS_ENTER(zsb); // exit if unmounted
151 * top:
152 * zfs_dirent_lock(&dl, ...) // lock directory entry (may igrab())
153 * rw_enter(...); // grab any other locks you need
154 * tx = dmu_tx_create(...); // get DMU tx
155 * dmu_tx_hold_*(); // hold each object you might modify
156 * error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
157 * if (error) {
158 * rw_exit(...); // drop locks
159 * zfs_dirent_unlock(dl); // unlock directory entry
160 * iput(...); // release held vnodes
161 * if (error == ERESTART) {
162 * waited = B_TRUE;
163 * dmu_tx_wait(tx);
164 * dmu_tx_abort(tx);
165 * goto top;
166 * }
167 * dmu_tx_abort(tx); // abort DMU tx
168 * ZFS_EXIT(zsb); // finished in zfs
169 * return (error); // really out of space
170 * }
171 * error = do_real_work(); // do whatever this VOP does
172 * if (error == 0)
173 * zfs_log_*(...); // on success, make ZIL entry
174 * dmu_tx_commit(tx); // commit DMU tx -- error or not
175 * rw_exit(...); // drop locks
176 * zfs_dirent_unlock(dl); // unlock directory entry
177 * iput(...); // release held vnodes
178 * zil_commit(zilog, foid); // synchronous when necessary
179 * ZFS_EXIT(zsb); // finished in zfs
180 * return (error); // done, report error
181 */
182
183 /*
184 * Virus scanning is unsupported. It would be possible to add a hook
185 * here to performance the required virus scan. This could be done
186 * entirely in the kernel or potentially as an update to invoke a
187 * scanning utility.
188 */
189 static int
190 zfs_vscan(struct inode *ip, cred_t *cr, int async)
191 {
192 return (0);
193 }
194
195 /* ARGSUSED */
196 int
197 zfs_open(struct inode *ip, int mode, int flag, cred_t *cr)
198 {
199 znode_t *zp = ITOZ(ip);
200 zfs_sb_t *zsb = ITOZSB(ip);
201
202 ZFS_ENTER(zsb);
203 ZFS_VERIFY_ZP(zp);
204
205 /* Honor ZFS_APPENDONLY file attribute */
206 if ((mode & FMODE_WRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
207 ((flag & O_APPEND) == 0)) {
208 ZFS_EXIT(zsb);
209 return (SET_ERROR(EPERM));
210 }
211
212 /* Virus scan eligible files on open */
213 if (!zfs_has_ctldir(zp) && zsb->z_vscan && S_ISREG(ip->i_mode) &&
214 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
215 if (zfs_vscan(ip, cr, 0) != 0) {
216 ZFS_EXIT(zsb);
217 return (SET_ERROR(EACCES));
218 }
219 }
220
221 /* Keep a count of the synchronous opens in the znode */
222 if (flag & O_SYNC)
223 atomic_inc_32(&zp->z_sync_cnt);
224
225 ZFS_EXIT(zsb);
226 return (0);
227 }
228 EXPORT_SYMBOL(zfs_open);
229
230 /* ARGSUSED */
231 int
232 zfs_close(struct inode *ip, int flag, cred_t *cr)
233 {
234 znode_t *zp = ITOZ(ip);
235 zfs_sb_t *zsb = ITOZSB(ip);
236
237 ZFS_ENTER(zsb);
238 ZFS_VERIFY_ZP(zp);
239
240 /* Decrement the synchronous opens in the znode */
241 if (flag & O_SYNC)
242 atomic_dec_32(&zp->z_sync_cnt);
243
244 if (!zfs_has_ctldir(zp) && zsb->z_vscan && S_ISREG(ip->i_mode) &&
245 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
246 VERIFY(zfs_vscan(ip, cr, 1) == 0);
247
248 ZFS_EXIT(zsb);
249 return (0);
250 }
251 EXPORT_SYMBOL(zfs_close);
252
253 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
254 /*
255 * Lseek support for finding holes (cmd == SEEK_HOLE) and
256 * data (cmd == SEEK_DATA). "off" is an in/out parameter.
257 */
258 static int
259 zfs_holey_common(struct inode *ip, int cmd, loff_t *off)
260 {
261 znode_t *zp = ITOZ(ip);
262 uint64_t noff = (uint64_t)*off; /* new offset */
263 uint64_t file_sz;
264 int error;
265 boolean_t hole;
266
267 file_sz = zp->z_size;
268 if (noff >= file_sz) {
269 return (SET_ERROR(ENXIO));
270 }
271
272 if (cmd == SEEK_HOLE)
273 hole = B_TRUE;
274 else
275 hole = B_FALSE;
276
277 error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);
278
279 if (error == ESRCH)
280 return (SET_ERROR(ENXIO));
281
282 /*
283 * We could find a hole that begins after the logical end-of-file,
284 * because dmu_offset_next() only works on whole blocks. If the
285 * EOF falls mid-block, then indicate that the "virtual hole"
286 * at the end of the file begins at the logical EOF, rather than
287 * at the end of the last block.
288 */
289 if (noff > file_sz) {
290 ASSERT(hole);
291 noff = file_sz;
292 }
293
294 if (noff < *off)
295 return (error);
296 *off = noff;
297 return (error);
298 }
299
300 int
301 zfs_holey(struct inode *ip, int cmd, loff_t *off)
302 {
303 znode_t *zp = ITOZ(ip);
304 zfs_sb_t *zsb = ITOZSB(ip);
305 int error;
306
307 ZFS_ENTER(zsb);
308 ZFS_VERIFY_ZP(zp);
309
310 error = zfs_holey_common(ip, cmd, off);
311
312 ZFS_EXIT(zsb);
313 return (error);
314 }
315 EXPORT_SYMBOL(zfs_holey);
316 #endif /* SEEK_HOLE && SEEK_DATA */
317
318 #if defined(_KERNEL)
319 /*
320 * When a file is memory mapped, we must keep the IO data synchronized
321 * between the DMU cache and the memory mapped pages. What this means:
322 *
323 * On Write: If we find a memory mapped page, we write to *both*
324 * the page and the dmu buffer.
325 */
326 static void
327 update_pages(struct inode *ip, int64_t start, int len,
328 objset_t *os, uint64_t oid)
329 {
330 struct address_space *mp = ip->i_mapping;
331 struct page *pp;
332 uint64_t nbytes;
333 int64_t off;
334 void *pb;
335
336 off = start & (PAGE_SIZE-1);
337 for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
338 nbytes = MIN(PAGE_SIZE - off, len);
339
340 pp = find_lock_page(mp, start >> PAGE_SHIFT);
341 if (pp) {
342 if (mapping_writably_mapped(mp))
343 flush_dcache_page(pp);
344
345 pb = kmap(pp);
346 (void) dmu_read(os, oid, start+off, nbytes, pb+off,
347 DMU_READ_PREFETCH);
348 kunmap(pp);
349
350 if (mapping_writably_mapped(mp))
351 flush_dcache_page(pp);
352
353 mark_page_accessed(pp);
354 SetPageUptodate(pp);
355 ClearPageError(pp);
356 unlock_page(pp);
357 put_page(pp);
358 }
359
360 len -= nbytes;
361 off = 0;
362 }
363 }
364
365 /*
366 * When a file is memory mapped, we must keep the IO data synchronized
367 * between the DMU cache and the memory mapped pages. What this means:
368 *
369 * On Read: We "read" preferentially from memory mapped pages,
370 * else we default from the dmu buffer.
371 *
372 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
373 * the file is memory mapped.
374 */
375 static int
376 mappedread(struct inode *ip, int nbytes, uio_t *uio)
377 {
378 struct address_space *mp = ip->i_mapping;
379 struct page *pp;
380 znode_t *zp = ITOZ(ip);
381 int64_t start, off;
382 uint64_t bytes;
383 int len = nbytes;
384 int error = 0;
385 void *pb;
386
387 start = uio->uio_loffset;
388 off = start & (PAGE_SIZE-1);
389 for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
390 bytes = MIN(PAGE_SIZE - off, len);
391
392 pp = find_lock_page(mp, start >> PAGE_SHIFT);
393 if (pp) {
394 ASSERT(PageUptodate(pp));
395
396 pb = kmap(pp);
397 error = uiomove(pb + off, bytes, UIO_READ, uio);
398 kunmap(pp);
399
400 if (mapping_writably_mapped(mp))
401 flush_dcache_page(pp);
402
403 mark_page_accessed(pp);
404 unlock_page(pp);
405 put_page(pp);
406 } else {
407 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
408 uio, bytes);
409 }
410
411 len -= bytes;
412 off = 0;
413 if (error)
414 break;
415 }
416 return (error);
417 }
418 #endif /* _KERNEL */
419
420 unsigned long zfs_read_chunk_size = 1024 * 1024; /* Tunable */
421 unsigned long zfs_delete_blocks = DMU_MAX_DELETEBLKCNT;
422
423 /*
424 * Read bytes from specified file into supplied buffer.
425 *
426 * IN: ip - inode of file to be read from.
427 * uio - structure supplying read location, range info,
428 * and return buffer.
429 * ioflag - FSYNC flags; used to provide FRSYNC semantics.
430 * O_DIRECT flag; used to bypass page cache.
431 * cr - credentials of caller.
432 *
433 * OUT: uio - updated offset and range, buffer filled.
434 *
435 * RETURN: 0 on success, error code on failure.
436 *
437 * Side Effects:
438 * inode - atime updated if byte count > 0
439 */
440 /* ARGSUSED */
441 int
442 zfs_read(struct inode *ip, uio_t *uio, int ioflag, cred_t *cr)
443 {
444 znode_t *zp = ITOZ(ip);
445 zfs_sb_t *zsb = ITOZSB(ip);
446 ssize_t n, nbytes;
447 int error = 0;
448 rl_t *rl;
449 #ifdef HAVE_UIO_ZEROCOPY
450 xuio_t *xuio = NULL;
451 #endif /* HAVE_UIO_ZEROCOPY */
452
453 ZFS_ENTER(zsb);
454 ZFS_VERIFY_ZP(zp);
455
456 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
457 ZFS_EXIT(zsb);
458 return (SET_ERROR(EACCES));
459 }
460
461 /*
462 * Validate file offset
463 */
464 if (uio->uio_loffset < (offset_t)0) {
465 ZFS_EXIT(zsb);
466 return (SET_ERROR(EINVAL));
467 }
468
469 /*
470 * Fasttrack empty reads
471 */
472 if (uio->uio_resid == 0) {
473 ZFS_EXIT(zsb);
474 return (0);
475 }
476
477 /*
478 * If we're in FRSYNC mode, sync out this znode before reading it.
479 */
480 if (ioflag & FRSYNC || zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
481 zil_commit(zsb->z_log, zp->z_id);
482
483 /*
484 * Lock the range against changes.
485 */
486 rl = zfs_range_lock(&zp->z_range_lock, uio->uio_loffset, uio->uio_resid,
487 RL_READER);
488
489 /*
490 * If we are reading past end-of-file we can skip
491 * to the end; but we might still need to set atime.
492 */
493 if (uio->uio_loffset >= zp->z_size) {
494 error = 0;
495 goto out;
496 }
497
498 ASSERT(uio->uio_loffset < zp->z_size);
499 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
500
501 #ifdef HAVE_UIO_ZEROCOPY
502 if ((uio->uio_extflg == UIO_XUIO) &&
503 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
504 int nblk;
505 int blksz = zp->z_blksz;
506 uint64_t offset = uio->uio_loffset;
507
508 xuio = (xuio_t *)uio;
509 if ((ISP2(blksz))) {
510 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
511 blksz)) / blksz;
512 } else {
513 ASSERT(offset + n <= blksz);
514 nblk = 1;
515 }
516 (void) dmu_xuio_init(xuio, nblk);
517
518 if (vn_has_cached_data(ip)) {
519 /*
520 * For simplicity, we always allocate a full buffer
521 * even if we only expect to read a portion of a block.
522 */
523 while (--nblk >= 0) {
524 (void) dmu_xuio_add(xuio,
525 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
526 blksz), 0, blksz);
527 }
528 }
529 }
530 #endif /* HAVE_UIO_ZEROCOPY */
531
532 while (n > 0) {
533 nbytes = MIN(n, zfs_read_chunk_size -
534 P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
535
536 if (zp->z_is_mapped && !(ioflag & O_DIRECT)) {
537 error = mappedread(ip, nbytes, uio);
538 } else {
539 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
540 uio, nbytes);
541 }
542
543 if (error) {
544 /* convert checksum errors into IO errors */
545 if (error == ECKSUM)
546 error = SET_ERROR(EIO);
547 break;
548 }
549
550 n -= nbytes;
551 }
552 out:
553 zfs_range_unlock(rl);
554
555 ZFS_EXIT(zsb);
556 return (error);
557 }
558 EXPORT_SYMBOL(zfs_read);
559
560 /*
561 * Write the bytes to a file.
562 *
563 * IN: ip - inode of file to be written to.
564 * uio - structure supplying write location, range info,
565 * and data buffer.
566 * ioflag - FAPPEND flag set if in append mode.
567 * O_DIRECT flag; used to bypass page cache.
568 * cr - credentials of caller.
569 *
570 * OUT: uio - updated offset and range.
571 *
572 * RETURN: 0 if success
573 * error code if failure
574 *
575 * Timestamps:
576 * ip - ctime|mtime updated if byte count > 0
577 */
578
579 /* ARGSUSED */
580 int
581 zfs_write(struct inode *ip, uio_t *uio, int ioflag, cred_t *cr)
582 {
583 znode_t *zp = ITOZ(ip);
584 rlim64_t limit = uio->uio_limit;
585 ssize_t start_resid = uio->uio_resid;
586 ssize_t tx_bytes;
587 uint64_t end_size;
588 dmu_tx_t *tx;
589 zfs_sb_t *zsb = ZTOZSB(zp);
590 zilog_t *zilog;
591 offset_t woff;
592 ssize_t n, nbytes;
593 rl_t *rl;
594 int max_blksz = zsb->z_max_blksz;
595 int error = 0;
596 arc_buf_t *abuf;
597 const iovec_t *aiov = NULL;
598 xuio_t *xuio = NULL;
599 int i_iov = 0;
600 const iovec_t *iovp = uio->uio_iov;
601 int write_eof;
602 int count = 0;
603 sa_bulk_attr_t bulk[4];
604 uint64_t mtime[2], ctime[2];
605 uint32_t uid;
606 ASSERTV(int iovcnt = uio->uio_iovcnt);
607
608 /*
609 * Fasttrack empty write
610 */
611 n = start_resid;
612 if (n == 0)
613 return (0);
614
615 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
616 limit = MAXOFFSET_T;
617
618 ZFS_ENTER(zsb);
619 ZFS_VERIFY_ZP(zp);
620
621 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zsb), NULL, &mtime, 16);
622 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zsb), NULL, &ctime, 16);
623 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zsb), NULL, &zp->z_size, 8);
624 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zsb), NULL,
625 &zp->z_pflags, 8);
626
627 /*
628 * Callers might not be able to detect properly that we are read-only,
629 * so check it explicitly here.
630 */
631 if (zfs_is_readonly(zsb)) {
632 ZFS_EXIT(zsb);
633 return (SET_ERROR(EROFS));
634 }
635
636 /*
637 * If immutable or not appending then return EPERM
638 */
639 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
640 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
641 (uio->uio_loffset < zp->z_size))) {
642 ZFS_EXIT(zsb);
643 return (SET_ERROR(EPERM));
644 }
645
646 zilog = zsb->z_log;
647
648 /*
649 * Validate file offset
650 */
651 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
652 if (woff < 0) {
653 ZFS_EXIT(zsb);
654 return (SET_ERROR(EINVAL));
655 }
656
657 /*
658 * Pre-fault the pages to ensure slow (eg NFS) pages
659 * don't hold up txg.
660 * Skip this if uio contains loaned arc_buf.
661 */
662 #ifdef HAVE_UIO_ZEROCOPY
663 if ((uio->uio_extflg == UIO_XUIO) &&
664 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
665 xuio = (xuio_t *)uio;
666 else
667 #endif
668 uio_prefaultpages(MIN(n, max_blksz), uio);
669
670 /*
671 * If in append mode, set the io offset pointer to eof.
672 */
673 if (ioflag & FAPPEND) {
674 /*
675 * Obtain an appending range lock to guarantee file append
676 * semantics. We reset the write offset once we have the lock.
677 */
678 rl = zfs_range_lock(&zp->z_range_lock, 0, n, RL_APPEND);
679 woff = rl->r_off;
680 if (rl->r_len == UINT64_MAX) {
681 /*
682 * We overlocked the file because this write will cause
683 * the file block size to increase.
684 * Note that zp_size cannot change with this lock held.
685 */
686 woff = zp->z_size;
687 }
688 uio->uio_loffset = woff;
689 } else {
690 /*
691 * Note that if the file block size will change as a result of
692 * this write, then this range lock will lock the entire file
693 * so that we can re-write the block safely.
694 */
695 rl = zfs_range_lock(&zp->z_range_lock, woff, n, RL_WRITER);
696 }
697
698 if (woff >= limit) {
699 zfs_range_unlock(rl);
700 ZFS_EXIT(zsb);
701 return (SET_ERROR(EFBIG));
702 }
703
704 if ((woff + n) > limit || woff > (limit - n))
705 n = limit - woff;
706
707 /* Will this write extend the file length? */
708 write_eof = (woff + n > zp->z_size);
709
710 end_size = MAX(zp->z_size, woff + n);
711
712 /*
713 * Write the file in reasonable size chunks. Each chunk is written
714 * in a separate transaction; this keeps the intent log records small
715 * and allows us to do more fine-grained space accounting.
716 */
717 while (n > 0) {
718 abuf = NULL;
719 woff = uio->uio_loffset;
720 if (zfs_owner_overquota(zsb, zp, B_FALSE) ||
721 zfs_owner_overquota(zsb, zp, B_TRUE)) {
722 if (abuf != NULL)
723 dmu_return_arcbuf(abuf);
724 error = SET_ERROR(EDQUOT);
725 break;
726 }
727
728 if (xuio && abuf == NULL) {
729 ASSERT(i_iov < iovcnt);
730 ASSERT3U(uio->uio_segflg, !=, UIO_BVEC);
731 aiov = &iovp[i_iov];
732 abuf = dmu_xuio_arcbuf(xuio, i_iov);
733 dmu_xuio_clear(xuio, i_iov);
734 ASSERT((aiov->iov_base == abuf->b_data) ||
735 ((char *)aiov->iov_base - (char *)abuf->b_data +
736 aiov->iov_len == arc_buf_size(abuf)));
737 i_iov++;
738 } else if (abuf == NULL && n >= max_blksz &&
739 woff >= zp->z_size &&
740 P2PHASE(woff, max_blksz) == 0 &&
741 zp->z_blksz == max_blksz) {
742 /*
743 * This write covers a full block. "Borrow" a buffer
744 * from the dmu so that we can fill it before we enter
745 * a transaction. This avoids the possibility of
746 * holding up the transaction if the data copy hangs
747 * up on a pagefault (e.g., from an NFS server mapping).
748 */
749 size_t cbytes;
750
751 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
752 max_blksz);
753 ASSERT(abuf != NULL);
754 ASSERT(arc_buf_size(abuf) == max_blksz);
755 if ((error = uiocopy(abuf->b_data, max_blksz,
756 UIO_WRITE, uio, &cbytes))) {
757 dmu_return_arcbuf(abuf);
758 break;
759 }
760 ASSERT(cbytes == max_blksz);
761 }
762
763 /*
764 * Start a transaction.
765 */
766 tx = dmu_tx_create(zsb->z_os);
767 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
768 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
769 zfs_sa_upgrade_txholds(tx, zp);
770 error = dmu_tx_assign(tx, TXG_WAIT);
771 if (error) {
772 dmu_tx_abort(tx);
773 if (abuf != NULL)
774 dmu_return_arcbuf(abuf);
775 break;
776 }
777
778 /*
779 * If zfs_range_lock() over-locked we grow the blocksize
780 * and then reduce the lock range. This will only happen
781 * on the first iteration since zfs_range_reduce() will
782 * shrink down r_len to the appropriate size.
783 */
784 if (rl->r_len == UINT64_MAX) {
785 uint64_t new_blksz;
786
787 if (zp->z_blksz > max_blksz) {
788 /*
789 * File's blocksize is already larger than the
790 * "recordsize" property. Only let it grow to
791 * the next power of 2.
792 */
793 ASSERT(!ISP2(zp->z_blksz));
794 new_blksz = MIN(end_size,
795 1 << highbit64(zp->z_blksz));
796 } else {
797 new_blksz = MIN(end_size, max_blksz);
798 }
799 zfs_grow_blocksize(zp, new_blksz, tx);
800 zfs_range_reduce(rl, woff, n);
801 }
802
803 /*
804 * XXX - should we really limit each write to z_max_blksz?
805 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
806 */
807 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
808
809 if (abuf == NULL) {
810 tx_bytes = uio->uio_resid;
811 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
812 uio, nbytes, tx);
813 tx_bytes -= uio->uio_resid;
814 } else {
815 tx_bytes = nbytes;
816 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
817 /*
818 * If this is not a full block write, but we are
819 * extending the file past EOF and this data starts
820 * block-aligned, use assign_arcbuf(). Otherwise,
821 * write via dmu_write().
822 */
823 if (tx_bytes < max_blksz && (!write_eof ||
824 aiov->iov_base != abuf->b_data)) {
825 ASSERT(xuio);
826 dmu_write(zsb->z_os, zp->z_id, woff,
827 aiov->iov_len, aiov->iov_base, tx);
828 dmu_return_arcbuf(abuf);
829 xuio_stat_wbuf_copied();
830 } else {
831 ASSERT(xuio || tx_bytes == max_blksz);
832 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
833 woff, abuf, tx);
834 }
835 ASSERT(tx_bytes <= uio->uio_resid);
836 uioskip(uio, tx_bytes);
837 }
838
839 if (tx_bytes && zp->z_is_mapped && !(ioflag & O_DIRECT))
840 update_pages(ip, woff, tx_bytes, zsb->z_os, zp->z_id);
841
842 /*
843 * If we made no progress, we're done. If we made even
844 * partial progress, update the znode and ZIL accordingly.
845 */
846 if (tx_bytes == 0) {
847 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zsb),
848 (void *)&zp->z_size, sizeof (uint64_t), tx);
849 dmu_tx_commit(tx);
850 ASSERT(error != 0);
851 break;
852 }
853
854 /*
855 * Clear Set-UID/Set-GID bits on successful write if not
856 * privileged and at least one of the excute bits is set.
857 *
858 * It would be nice to to this after all writes have
859 * been done, but that would still expose the ISUID/ISGID
860 * to another app after the partial write is committed.
861 *
862 * Note: we don't call zfs_fuid_map_id() here because
863 * user 0 is not an ephemeral uid.
864 */
865 mutex_enter(&zp->z_acl_lock);
866 uid = KUID_TO_SUID(ip->i_uid);
867 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
868 (S_IXUSR >> 6))) != 0 &&
869 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
870 secpolicy_vnode_setid_retain(cr,
871 ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) {
872 uint64_t newmode;
873 zp->z_mode &= ~(S_ISUID | S_ISGID);
874 ip->i_mode = newmode = zp->z_mode;
875 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zsb),
876 (void *)&newmode, sizeof (uint64_t), tx);
877 }
878 mutex_exit(&zp->z_acl_lock);
879
880 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
881
882 /*
883 * Update the file size (zp_size) if it has changed;
884 * account for possible concurrent updates.
885 */
886 while ((end_size = zp->z_size) < uio->uio_loffset) {
887 (void) atomic_cas_64(&zp->z_size, end_size,
888 uio->uio_loffset);
889 ASSERT(error == 0);
890 }
891 /*
892 * If we are replaying and eof is non zero then force
893 * the file size to the specified eof. Note, there's no
894 * concurrency during replay.
895 */
896 if (zsb->z_replay && zsb->z_replay_eof != 0)
897 zp->z_size = zsb->z_replay_eof;
898
899 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
900
901 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag,
902 NULL, NULL);
903 dmu_tx_commit(tx);
904
905 if (error != 0)
906 break;
907 ASSERT(tx_bytes == nbytes);
908 n -= nbytes;
909
910 if (!xuio && n > 0)
911 uio_prefaultpages(MIN(n, max_blksz), uio);
912 }
913
914 zfs_inode_update(zp);
915 zfs_range_unlock(rl);
916
917 /*
918 * If we're in replay mode, or we made no progress, return error.
919 * Otherwise, it's at least a partial write, so it's successful.
920 */
921 if (zsb->z_replay || uio->uio_resid == start_resid) {
922 ZFS_EXIT(zsb);
923 return (error);
924 }
925
926 if (ioflag & (FSYNC | FDSYNC) ||
927 zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
928 zil_commit(zilog, zp->z_id);
929
930 ZFS_EXIT(zsb);
931 return (0);
932 }
933 EXPORT_SYMBOL(zfs_write);
934
935 /*
936 * Drop a reference on the passed inode asynchronously. This ensures
937 * that the caller will never drop the last reference on an inode in
938 * the current context. Doing so while holding open a tx could result
939 * in a deadlock if iput_final() re-enters the filesystem code.
940 */
941 void
942 zfs_iput_async(struct inode *ip)
943 {
944 objset_t *os = ITOZSB(ip)->z_os;
945
946 ASSERT(atomic_read(&ip->i_count) > 0);
947 ASSERT(os != NULL);
948
949 if (atomic_read(&ip->i_count) == 1)
950 VERIFY(taskq_dispatch(dsl_pool_iput_taskq(dmu_objset_pool(os)),
951 (task_func_t *)iput, ip, TQ_SLEEP) != 0);
952 else
953 iput(ip);
954 }
955
956 void
957 zfs_get_done(zgd_t *zgd, int error)
958 {
959 znode_t *zp = zgd->zgd_private;
960
961 if (zgd->zgd_db)
962 dmu_buf_rele(zgd->zgd_db, zgd);
963
964 zfs_range_unlock(zgd->zgd_rl);
965
966 /*
967 * Release the vnode asynchronously as we currently have the
968 * txg stopped from syncing.
969 */
970 zfs_iput_async(ZTOI(zp));
971
972 if (error == 0 && zgd->zgd_bp)
973 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
974
975 kmem_free(zgd, sizeof (zgd_t));
976 }
977
978 #ifdef DEBUG
979 static int zil_fault_io = 0;
980 #endif
981
982 /*
983 * Get data to generate a TX_WRITE intent log record.
984 */
985 int
986 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
987 {
988 zfs_sb_t *zsb = arg;
989 objset_t *os = zsb->z_os;
990 znode_t *zp;
991 uint64_t object = lr->lr_foid;
992 uint64_t offset = lr->lr_offset;
993 uint64_t size = lr->lr_length;
994 blkptr_t *bp = &lr->lr_blkptr;
995 dmu_buf_t *db;
996 zgd_t *zgd;
997 int error = 0;
998
999 ASSERT(zio != NULL);
1000 ASSERT(size != 0);
1001
1002 /*
1003 * Nothing to do if the file has been removed
1004 */
1005 if (zfs_zget(zsb, object, &zp) != 0)
1006 return (SET_ERROR(ENOENT));
1007 if (zp->z_unlinked) {
1008 /*
1009 * Release the vnode asynchronously as we currently have the
1010 * txg stopped from syncing.
1011 */
1012 zfs_iput_async(ZTOI(zp));
1013 return (SET_ERROR(ENOENT));
1014 }
1015
1016 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1017 zgd->zgd_zilog = zsb->z_log;
1018 zgd->zgd_private = zp;
1019
1020 /*
1021 * Write records come in two flavors: immediate and indirect.
1022 * For small writes it's cheaper to store the data with the
1023 * log record (immediate); for large writes it's cheaper to
1024 * sync the data and get a pointer to it (indirect) so that
1025 * we don't have to write the data twice.
1026 */
1027 if (buf != NULL) { /* immediate write */
1028 zgd->zgd_rl = zfs_range_lock(&zp->z_range_lock, offset, size,
1029 RL_READER);
1030 /* test for truncation needs to be done while range locked */
1031 if (offset >= zp->z_size) {
1032 error = SET_ERROR(ENOENT);
1033 } else {
1034 error = dmu_read(os, object, offset, size, buf,
1035 DMU_READ_NO_PREFETCH);
1036 }
1037 ASSERT(error == 0 || error == ENOENT);
1038 } else { /* indirect write */
1039 /*
1040 * Have to lock the whole block to ensure when it's
1041 * written out and it's checksum is being calculated
1042 * that no one can change the data. We need to re-check
1043 * blocksize after we get the lock in case it's changed!
1044 */
1045 for (;;) {
1046 uint64_t blkoff;
1047 size = zp->z_blksz;
1048 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1049 offset -= blkoff;
1050 zgd->zgd_rl = zfs_range_lock(&zp->z_range_lock, offset,
1051 size, RL_READER);
1052 if (zp->z_blksz == size)
1053 break;
1054 offset += blkoff;
1055 zfs_range_unlock(zgd->zgd_rl);
1056 }
1057 /* test for truncation needs to be done while range locked */
1058 if (lr->lr_offset >= zp->z_size)
1059 error = SET_ERROR(ENOENT);
1060 #ifdef DEBUG
1061 if (zil_fault_io) {
1062 error = SET_ERROR(EIO);
1063 zil_fault_io = 0;
1064 }
1065 #endif
1066 if (error == 0)
1067 error = dmu_buf_hold(os, object, offset, zgd, &db,
1068 DMU_READ_NO_PREFETCH);
1069
1070 if (error == 0) {
1071 blkptr_t *obp = dmu_buf_get_blkptr(db);
1072 if (obp) {
1073 ASSERT(BP_IS_HOLE(bp));
1074 *bp = *obp;
1075 }
1076
1077 zgd->zgd_db = db;
1078 zgd->zgd_bp = bp;
1079
1080 ASSERT(db->db_offset == offset);
1081 ASSERT(db->db_size == size);
1082
1083 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1084 zfs_get_done, zgd);
1085 ASSERT(error || lr->lr_length <= zp->z_blksz);
1086
1087 /*
1088 * On success, we need to wait for the write I/O
1089 * initiated by dmu_sync() to complete before we can
1090 * release this dbuf. We will finish everything up
1091 * in the zfs_get_done() callback.
1092 */
1093 if (error == 0)
1094 return (0);
1095
1096 if (error == EALREADY) {
1097 lr->lr_common.lrc_txtype = TX_WRITE2;
1098 error = 0;
1099 }
1100 }
1101 }
1102
1103 zfs_get_done(zgd, error);
1104
1105 return (error);
1106 }
1107
1108 /*ARGSUSED*/
1109 int
1110 zfs_access(struct inode *ip, int mode, int flag, cred_t *cr)
1111 {
1112 znode_t *zp = ITOZ(ip);
1113 zfs_sb_t *zsb = ITOZSB(ip);
1114 int error;
1115
1116 ZFS_ENTER(zsb);
1117 ZFS_VERIFY_ZP(zp);
1118
1119 if (flag & V_ACE_MASK)
1120 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1121 else
1122 error = zfs_zaccess_rwx(zp, mode, flag, cr);
1123
1124 ZFS_EXIT(zsb);
1125 return (error);
1126 }
1127 EXPORT_SYMBOL(zfs_access);
1128
1129 /*
1130 * Lookup an entry in a directory, or an extended attribute directory.
1131 * If it exists, return a held inode reference for it.
1132 *
1133 * IN: dip - inode of directory to search.
1134 * nm - name of entry to lookup.
1135 * flags - LOOKUP_XATTR set if looking for an attribute.
1136 * cr - credentials of caller.
1137 * direntflags - directory lookup flags
1138 * realpnp - returned pathname.
1139 *
1140 * OUT: ipp - inode of located entry, NULL if not found.
1141 *
1142 * RETURN: 0 on success, error code on failure.
1143 *
1144 * Timestamps:
1145 * NA
1146 */
1147 /* ARGSUSED */
1148 int
1149 zfs_lookup(struct inode *dip, char *nm, struct inode **ipp, int flags,
1150 cred_t *cr, int *direntflags, pathname_t *realpnp)
1151 {
1152 znode_t *zdp = ITOZ(dip);
1153 zfs_sb_t *zsb = ITOZSB(dip);
1154 int error = 0;
1155
1156 /* fast path */
1157 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1158
1159 if (!S_ISDIR(dip->i_mode)) {
1160 return (SET_ERROR(ENOTDIR));
1161 } else if (zdp->z_sa_hdl == NULL) {
1162 return (SET_ERROR(EIO));
1163 }
1164
1165 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1166 error = zfs_fastaccesschk_execute(zdp, cr);
1167 if (!error) {
1168 *ipp = dip;
1169 igrab(*ipp);
1170 return (0);
1171 }
1172 return (error);
1173 #ifdef HAVE_DNLC
1174 } else {
1175 vnode_t *tvp = dnlc_lookup(dvp, nm);
1176
1177 if (tvp) {
1178 error = zfs_fastaccesschk_execute(zdp, cr);
1179 if (error) {
1180 iput(tvp);
1181 return (error);
1182 }
1183 if (tvp == DNLC_NO_VNODE) {
1184 iput(tvp);
1185 return (SET_ERROR(ENOENT));
1186 } else {
1187 *vpp = tvp;
1188 return (specvp_check(vpp, cr));
1189 }
1190 }
1191 #endif /* HAVE_DNLC */
1192 }
1193 }
1194
1195 ZFS_ENTER(zsb);
1196 ZFS_VERIFY_ZP(zdp);
1197
1198 *ipp = NULL;
1199
1200 if (flags & LOOKUP_XATTR) {
1201 /*
1202 * We don't allow recursive attributes..
1203 * Maybe someday we will.
1204 */
1205 if (zdp->z_pflags & ZFS_XATTR) {
1206 ZFS_EXIT(zsb);
1207 return (SET_ERROR(EINVAL));
1208 }
1209
1210 if ((error = zfs_get_xattrdir(zdp, ipp, cr, flags))) {
1211 ZFS_EXIT(zsb);
1212 return (error);
1213 }
1214
1215 /*
1216 * Do we have permission to get into attribute directory?
1217 */
1218
1219 if ((error = zfs_zaccess(ITOZ(*ipp), ACE_EXECUTE, 0,
1220 B_FALSE, cr))) {
1221 iput(*ipp);
1222 *ipp = NULL;
1223 }
1224
1225 ZFS_EXIT(zsb);
1226 return (error);
1227 }
1228
1229 if (!S_ISDIR(dip->i_mode)) {
1230 ZFS_EXIT(zsb);
1231 return (SET_ERROR(ENOTDIR));
1232 }
1233
1234 /*
1235 * Check accessibility of directory.
1236 */
1237
1238 if ((error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr))) {
1239 ZFS_EXIT(zsb);
1240 return (error);
1241 }
1242
1243 if (zsb->z_utf8 && u8_validate(nm, strlen(nm),
1244 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1245 ZFS_EXIT(zsb);
1246 return (SET_ERROR(EILSEQ));
1247 }
1248
1249 error = zfs_dirlook(zdp, nm, ipp, flags, direntflags, realpnp);
1250 if ((error == 0) && (*ipp))
1251 zfs_inode_update(ITOZ(*ipp));
1252
1253 ZFS_EXIT(zsb);
1254 return (error);
1255 }
1256 EXPORT_SYMBOL(zfs_lookup);
1257
1258 /*
1259 * Attempt to create a new entry in a directory. If the entry
1260 * already exists, truncate the file if permissible, else return
1261 * an error. Return the ip of the created or trunc'd file.
1262 *
1263 * IN: dip - inode of directory to put new file entry in.
1264 * name - name of new file entry.
1265 * vap - attributes of new file.
1266 * excl - flag indicating exclusive or non-exclusive mode.
1267 * mode - mode to open file with.
1268 * cr - credentials of caller.
1269 * flag - large file flag [UNUSED].
1270 * vsecp - ACL to be set
1271 *
1272 * OUT: ipp - inode of created or trunc'd entry.
1273 *
1274 * RETURN: 0 on success, error code on failure.
1275 *
1276 * Timestamps:
1277 * dip - ctime|mtime updated if new entry created
1278 * ip - ctime|mtime always, atime if new
1279 */
1280
1281 /* ARGSUSED */
1282 int
1283 zfs_create(struct inode *dip, char *name, vattr_t *vap, int excl,
1284 int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp)
1285 {
1286 znode_t *zp, *dzp = ITOZ(dip);
1287 zfs_sb_t *zsb = ITOZSB(dip);
1288 zilog_t *zilog;
1289 objset_t *os;
1290 zfs_dirlock_t *dl;
1291 dmu_tx_t *tx;
1292 int error;
1293 uid_t uid;
1294 gid_t gid;
1295 zfs_acl_ids_t acl_ids;
1296 boolean_t fuid_dirtied;
1297 boolean_t have_acl = B_FALSE;
1298 boolean_t waited = B_FALSE;
1299
1300 /*
1301 * If we have an ephemeral id, ACL, or XVATTR then
1302 * make sure file system is at proper version
1303 */
1304
1305 gid = crgetgid(cr);
1306 uid = crgetuid(cr);
1307
1308 if (zsb->z_use_fuids == B_FALSE &&
1309 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1310 return (SET_ERROR(EINVAL));
1311
1312 ZFS_ENTER(zsb);
1313 ZFS_VERIFY_ZP(dzp);
1314 os = zsb->z_os;
1315 zilog = zsb->z_log;
1316
1317 if (zsb->z_utf8 && u8_validate(name, strlen(name),
1318 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1319 ZFS_EXIT(zsb);
1320 return (SET_ERROR(EILSEQ));
1321 }
1322
1323 if (vap->va_mask & ATTR_XVATTR) {
1324 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1325 crgetuid(cr), cr, vap->va_mode)) != 0) {
1326 ZFS_EXIT(zsb);
1327 return (error);
1328 }
1329 }
1330
1331 top:
1332 *ipp = NULL;
1333 if (*name == '\0') {
1334 /*
1335 * Null component name refers to the directory itself.
1336 */
1337 igrab(dip);
1338 zp = dzp;
1339 dl = NULL;
1340 error = 0;
1341 } else {
1342 /* possible igrab(zp) */
1343 int zflg = 0;
1344
1345 if (flag & FIGNORECASE)
1346 zflg |= ZCILOOK;
1347
1348 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1349 NULL, NULL);
1350 if (error) {
1351 if (have_acl)
1352 zfs_acl_ids_free(&acl_ids);
1353 if (strcmp(name, "..") == 0)
1354 error = SET_ERROR(EISDIR);
1355 ZFS_EXIT(zsb);
1356 return (error);
1357 }
1358 }
1359
1360 if (zp == NULL) {
1361 uint64_t txtype;
1362
1363 /*
1364 * Create a new file object and update the directory
1365 * to reference it.
1366 */
1367 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
1368 if (have_acl)
1369 zfs_acl_ids_free(&acl_ids);
1370 goto out;
1371 }
1372
1373 /*
1374 * We only support the creation of regular files in
1375 * extended attribute directories.
1376 */
1377
1378 if ((dzp->z_pflags & ZFS_XATTR) && !S_ISREG(vap->va_mode)) {
1379 if (have_acl)
1380 zfs_acl_ids_free(&acl_ids);
1381 error = SET_ERROR(EINVAL);
1382 goto out;
1383 }
1384
1385 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1386 cr, vsecp, &acl_ids)) != 0)
1387 goto out;
1388 have_acl = B_TRUE;
1389
1390 if (zfs_acl_ids_overquota(zsb, &acl_ids)) {
1391 zfs_acl_ids_free(&acl_ids);
1392 error = SET_ERROR(EDQUOT);
1393 goto out;
1394 }
1395
1396 tx = dmu_tx_create(os);
1397
1398 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1399 ZFS_SA_BASE_ATTR_SIZE);
1400
1401 fuid_dirtied = zsb->z_fuid_dirty;
1402 if (fuid_dirtied)
1403 zfs_fuid_txhold(zsb, tx);
1404 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1405 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1406 if (!zsb->z_use_sa &&
1407 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1408 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1409 0, acl_ids.z_aclp->z_acl_bytes);
1410 }
1411 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1412 if (error) {
1413 zfs_dirent_unlock(dl);
1414 if (error == ERESTART) {
1415 waited = B_TRUE;
1416 dmu_tx_wait(tx);
1417 dmu_tx_abort(tx);
1418 goto top;
1419 }
1420 zfs_acl_ids_free(&acl_ids);
1421 dmu_tx_abort(tx);
1422 ZFS_EXIT(zsb);
1423 return (error);
1424 }
1425 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1426
1427 if (fuid_dirtied)
1428 zfs_fuid_sync(zsb, tx);
1429
1430 (void) zfs_link_create(dl, zp, tx, ZNEW);
1431 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1432 if (flag & FIGNORECASE)
1433 txtype |= TX_CI;
1434 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1435 vsecp, acl_ids.z_fuidp, vap);
1436 zfs_acl_ids_free(&acl_ids);
1437 dmu_tx_commit(tx);
1438 } else {
1439 int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1440
1441 if (have_acl)
1442 zfs_acl_ids_free(&acl_ids);
1443 have_acl = B_FALSE;
1444
1445 /*
1446 * A directory entry already exists for this name.
1447 */
1448 /*
1449 * Can't truncate an existing file if in exclusive mode.
1450 */
1451 if (excl) {
1452 error = SET_ERROR(EEXIST);
1453 goto out;
1454 }
1455 /*
1456 * Can't open a directory for writing.
1457 */
1458 if (S_ISDIR(ZTOI(zp)->i_mode)) {
1459 error = SET_ERROR(EISDIR);
1460 goto out;
1461 }
1462 /*
1463 * Verify requested access to file.
1464 */
1465 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1466 goto out;
1467 }
1468
1469 mutex_enter(&dzp->z_lock);
1470 dzp->z_seq++;
1471 mutex_exit(&dzp->z_lock);
1472
1473 /*
1474 * Truncate regular files if requested.
1475 */
1476 if (S_ISREG(ZTOI(zp)->i_mode) &&
1477 (vap->va_mask & ATTR_SIZE) && (vap->va_size == 0)) {
1478 /* we can't hold any locks when calling zfs_freesp() */
1479 if (dl) {
1480 zfs_dirent_unlock(dl);
1481 dl = NULL;
1482 }
1483 error = zfs_freesp(zp, 0, 0, mode, TRUE);
1484 }
1485 }
1486 out:
1487
1488 if (dl)
1489 zfs_dirent_unlock(dl);
1490
1491 if (error) {
1492 if (zp)
1493 iput(ZTOI(zp));
1494 } else {
1495 zfs_inode_update(dzp);
1496 zfs_inode_update(zp);
1497 *ipp = ZTOI(zp);
1498 }
1499
1500 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
1501 zil_commit(zilog, 0);
1502
1503 ZFS_EXIT(zsb);
1504 return (error);
1505 }
1506 EXPORT_SYMBOL(zfs_create);
1507
1508 /*
1509 * Remove an entry from a directory.
1510 *
1511 * IN: dip - inode of directory to remove entry from.
1512 * name - name of entry to remove.
1513 * cr - credentials of caller.
1514 *
1515 * RETURN: 0 if success
1516 * error code if failure
1517 *
1518 * Timestamps:
1519 * dip - ctime|mtime
1520 * ip - ctime (if nlink > 0)
1521 */
1522
1523 uint64_t null_xattr = 0;
1524
1525 /*ARGSUSED*/
1526 int
1527 zfs_remove(struct inode *dip, char *name, cred_t *cr, int flags)
1528 {
1529 znode_t *zp, *dzp = ITOZ(dip);
1530 znode_t *xzp;
1531 struct inode *ip;
1532 zfs_sb_t *zsb = ITOZSB(dip);
1533 zilog_t *zilog;
1534 uint64_t acl_obj, xattr_obj;
1535 uint64_t xattr_obj_unlinked = 0;
1536 uint64_t obj = 0;
1537 uint64_t links;
1538 zfs_dirlock_t *dl;
1539 dmu_tx_t *tx;
1540 boolean_t may_delete_now, delete_now = FALSE;
1541 boolean_t unlinked, toobig = FALSE;
1542 uint64_t txtype;
1543 pathname_t *realnmp = NULL;
1544 pathname_t realnm;
1545 int error;
1546 int zflg = ZEXISTS;
1547 boolean_t waited = B_FALSE;
1548
1549 ZFS_ENTER(zsb);
1550 ZFS_VERIFY_ZP(dzp);
1551 zilog = zsb->z_log;
1552
1553 if (flags & FIGNORECASE) {
1554 zflg |= ZCILOOK;
1555 pn_alloc(&realnm);
1556 realnmp = &realnm;
1557 }
1558
1559 top:
1560 xattr_obj = 0;
1561 xzp = NULL;
1562 /*
1563 * Attempt to lock directory; fail if entry doesn't exist.
1564 */
1565 if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1566 NULL, realnmp))) {
1567 if (realnmp)
1568 pn_free(realnmp);
1569 ZFS_EXIT(zsb);
1570 return (error);
1571 }
1572
1573 ip = ZTOI(zp);
1574
1575 if ((error = zfs_zaccess_delete(dzp, zp, cr))) {
1576 goto out;
1577 }
1578
1579 /*
1580 * Need to use rmdir for removing directories.
1581 */
1582 if (S_ISDIR(ip->i_mode)) {
1583 error = SET_ERROR(EPERM);
1584 goto out;
1585 }
1586
1587 #ifdef HAVE_DNLC
1588 if (realnmp)
1589 dnlc_remove(dvp, realnmp->pn_buf);
1590 else
1591 dnlc_remove(dvp, name);
1592 #endif /* HAVE_DNLC */
1593
1594 mutex_enter(&zp->z_lock);
1595 may_delete_now = atomic_read(&ip->i_count) == 1 && !(zp->z_is_mapped);
1596 mutex_exit(&zp->z_lock);
1597
1598 /*
1599 * We may delete the znode now, or we may put it in the unlinked set;
1600 * it depends on whether we're the last link, and on whether there are
1601 * other holds on the inode. So we dmu_tx_hold() the right things to
1602 * allow for either case.
1603 */
1604 obj = zp->z_id;
1605 tx = dmu_tx_create(zsb->z_os);
1606 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1607 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1608 zfs_sa_upgrade_txholds(tx, zp);
1609 zfs_sa_upgrade_txholds(tx, dzp);
1610 if (may_delete_now) {
1611 toobig = zp->z_size > zp->z_blksz * zfs_delete_blocks;
1612 /* if the file is too big, only hold_free a token amount */
1613 dmu_tx_hold_free(tx, zp->z_id, 0,
1614 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1615 }
1616
1617 /* are there any extended attributes? */
1618 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zsb),
1619 &xattr_obj, sizeof (xattr_obj));
1620 if (error == 0 && xattr_obj) {
1621 error = zfs_zget(zsb, xattr_obj, &xzp);
1622 ASSERT0(error);
1623 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1624 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1625 }
1626
1627 mutex_enter(&zp->z_lock);
1628 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1629 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1630 mutex_exit(&zp->z_lock);
1631
1632 /* charge as an update -- would be nice not to charge at all */
1633 dmu_tx_hold_zap(tx, zsb->z_unlinkedobj, FALSE, NULL);
1634
1635 /*
1636 * Mark this transaction as typically resulting in a net free of space
1637 */
1638 dmu_tx_mark_netfree(tx);
1639
1640 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1641 if (error) {
1642 zfs_dirent_unlock(dl);
1643 iput(ip);
1644 if (xzp)
1645 iput(ZTOI(xzp));
1646 if (error == ERESTART) {
1647 waited = B_TRUE;
1648 dmu_tx_wait(tx);
1649 dmu_tx_abort(tx);
1650 goto top;
1651 }
1652 if (realnmp)
1653 pn_free(realnmp);
1654 dmu_tx_abort(tx);
1655 ZFS_EXIT(zsb);
1656 return (error);
1657 }
1658
1659 /*
1660 * Remove the directory entry.
1661 */
1662 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1663
1664 if (error) {
1665 dmu_tx_commit(tx);
1666 goto out;
1667 }
1668
1669 if (unlinked) {
1670 /*
1671 * Hold z_lock so that we can make sure that the ACL obj
1672 * hasn't changed. Could have been deleted due to
1673 * zfs_sa_upgrade().
1674 */
1675 mutex_enter(&zp->z_lock);
1676 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zsb),
1677 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1678 delete_now = may_delete_now && !toobig &&
1679 atomic_read(&ip->i_count) == 1 && !(zp->z_is_mapped) &&
1680 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1681 acl_obj;
1682 }
1683
1684 if (delete_now) {
1685 if (xattr_obj_unlinked) {
1686 ASSERT3U(ZTOI(xzp)->i_nlink, ==, 2);
1687 mutex_enter(&xzp->z_lock);
1688 xzp->z_unlinked = 1;
1689 clear_nlink(ZTOI(xzp));
1690 links = 0;
1691 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zsb),
1692 &links, sizeof (links), tx);
1693 ASSERT3U(error, ==, 0);
1694 mutex_exit(&xzp->z_lock);
1695 zfs_unlinked_add(xzp, tx);
1696
1697 if (zp->z_is_sa)
1698 error = sa_remove(zp->z_sa_hdl,
1699 SA_ZPL_XATTR(zsb), tx);
1700 else
1701 error = sa_update(zp->z_sa_hdl,
1702 SA_ZPL_XATTR(zsb), &null_xattr,
1703 sizeof (uint64_t), tx);
1704 ASSERT0(error);
1705 }
1706 /*
1707 * Add to the unlinked set because a new reference could be
1708 * taken concurrently resulting in a deferred destruction.
1709 */
1710 zfs_unlinked_add(zp, tx);
1711 mutex_exit(&zp->z_lock);
1712 zfs_inode_update(zp);
1713 iput(ip);
1714 } else if (unlinked) {
1715 mutex_exit(&zp->z_lock);
1716 zfs_unlinked_add(zp, tx);
1717 }
1718
1719 txtype = TX_REMOVE;
1720 if (flags & FIGNORECASE)
1721 txtype |= TX_CI;
1722 zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1723
1724 dmu_tx_commit(tx);
1725 out:
1726 if (realnmp)
1727 pn_free(realnmp);
1728
1729 zfs_dirent_unlock(dl);
1730 zfs_inode_update(dzp);
1731
1732 if (!delete_now) {
1733 zfs_inode_update(zp);
1734 zfs_iput_async(ip);
1735 }
1736
1737 if (xzp) {
1738 zfs_inode_update(xzp);
1739 zfs_iput_async(ZTOI(xzp));
1740 }
1741
1742 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
1743 zil_commit(zilog, 0);
1744
1745 ZFS_EXIT(zsb);
1746 return (error);
1747 }
1748 EXPORT_SYMBOL(zfs_remove);
1749
1750 /*
1751 * Create a new directory and insert it into dip using the name
1752 * provided. Return a pointer to the inserted directory.
1753 *
1754 * IN: dip - inode of directory to add subdir to.
1755 * dirname - name of new directory.
1756 * vap - attributes of new directory.
1757 * cr - credentials of caller.
1758 * vsecp - ACL to be set
1759 *
1760 * OUT: ipp - inode of created directory.
1761 *
1762 * RETURN: 0 if success
1763 * error code if failure
1764 *
1765 * Timestamps:
1766 * dip - ctime|mtime updated
1767 * ipp - ctime|mtime|atime updated
1768 */
1769 /*ARGSUSED*/
1770 int
1771 zfs_mkdir(struct inode *dip, char *dirname, vattr_t *vap, struct inode **ipp,
1772 cred_t *cr, int flags, vsecattr_t *vsecp)
1773 {
1774 znode_t *zp, *dzp = ITOZ(dip);
1775 zfs_sb_t *zsb = ITOZSB(dip);
1776 zilog_t *zilog;
1777 zfs_dirlock_t *dl;
1778 uint64_t txtype;
1779 dmu_tx_t *tx;
1780 int error;
1781 int zf = ZNEW;
1782 uid_t uid;
1783 gid_t gid = crgetgid(cr);
1784 zfs_acl_ids_t acl_ids;
1785 boolean_t fuid_dirtied;
1786 boolean_t waited = B_FALSE;
1787
1788 ASSERT(S_ISDIR(vap->va_mode));
1789
1790 /*
1791 * If we have an ephemeral id, ACL, or XVATTR then
1792 * make sure file system is at proper version
1793 */
1794
1795 uid = crgetuid(cr);
1796 if (zsb->z_use_fuids == B_FALSE &&
1797 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1798 return (SET_ERROR(EINVAL));
1799
1800 ZFS_ENTER(zsb);
1801 ZFS_VERIFY_ZP(dzp);
1802 zilog = zsb->z_log;
1803
1804 if (dzp->z_pflags & ZFS_XATTR) {
1805 ZFS_EXIT(zsb);
1806 return (SET_ERROR(EINVAL));
1807 }
1808
1809 if (zsb->z_utf8 && u8_validate(dirname,
1810 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1811 ZFS_EXIT(zsb);
1812 return (SET_ERROR(EILSEQ));
1813 }
1814 if (flags & FIGNORECASE)
1815 zf |= ZCILOOK;
1816
1817 if (vap->va_mask & ATTR_XVATTR) {
1818 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1819 crgetuid(cr), cr, vap->va_mode)) != 0) {
1820 ZFS_EXIT(zsb);
1821 return (error);
1822 }
1823 }
1824
1825 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1826 vsecp, &acl_ids)) != 0) {
1827 ZFS_EXIT(zsb);
1828 return (error);
1829 }
1830 /*
1831 * First make sure the new directory doesn't exist.
1832 *
1833 * Existence is checked first to make sure we don't return
1834 * EACCES instead of EEXIST which can cause some applications
1835 * to fail.
1836 */
1837 top:
1838 *ipp = NULL;
1839
1840 if ((error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1841 NULL, NULL))) {
1842 zfs_acl_ids_free(&acl_ids);
1843 ZFS_EXIT(zsb);
1844 return (error);
1845 }
1846
1847 if ((error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr))) {
1848 zfs_acl_ids_free(&acl_ids);
1849 zfs_dirent_unlock(dl);
1850 ZFS_EXIT(zsb);
1851 return (error);
1852 }
1853
1854 if (zfs_acl_ids_overquota(zsb, &acl_ids)) {
1855 zfs_acl_ids_free(&acl_ids);
1856 zfs_dirent_unlock(dl);
1857 ZFS_EXIT(zsb);
1858 return (SET_ERROR(EDQUOT));
1859 }
1860
1861 /*
1862 * Add a new entry to the directory.
1863 */
1864 tx = dmu_tx_create(zsb->z_os);
1865 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1866 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1867 fuid_dirtied = zsb->z_fuid_dirty;
1868 if (fuid_dirtied)
1869 zfs_fuid_txhold(zsb, tx);
1870 if (!zsb->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1871 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1872 acl_ids.z_aclp->z_acl_bytes);
1873 }
1874
1875 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1876 ZFS_SA_BASE_ATTR_SIZE);
1877
1878 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1879 if (error) {
1880 zfs_dirent_unlock(dl);
1881 if (error == ERESTART) {
1882 waited = B_TRUE;
1883 dmu_tx_wait(tx);
1884 dmu_tx_abort(tx);
1885 goto top;
1886 }
1887 zfs_acl_ids_free(&acl_ids);
1888 dmu_tx_abort(tx);
1889 ZFS_EXIT(zsb);
1890 return (error);
1891 }
1892
1893 /*
1894 * Create new node.
1895 */
1896 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1897
1898 if (fuid_dirtied)
1899 zfs_fuid_sync(zsb, tx);
1900
1901 /*
1902 * Now put new name in parent dir.
1903 */
1904 (void) zfs_link_create(dl, zp, tx, ZNEW);
1905
1906 *ipp = ZTOI(zp);
1907
1908 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1909 if (flags & FIGNORECASE)
1910 txtype |= TX_CI;
1911 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1912 acl_ids.z_fuidp, vap);
1913
1914 zfs_acl_ids_free(&acl_ids);
1915
1916 dmu_tx_commit(tx);
1917
1918 zfs_dirent_unlock(dl);
1919
1920 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
1921 zil_commit(zilog, 0);
1922
1923 zfs_inode_update(dzp);
1924 zfs_inode_update(zp);
1925 ZFS_EXIT(zsb);
1926 return (0);
1927 }
1928 EXPORT_SYMBOL(zfs_mkdir);
1929
1930 /*
1931 * Remove a directory subdir entry. If the current working
1932 * directory is the same as the subdir to be removed, the
1933 * remove will fail.
1934 *
1935 * IN: dip - inode of directory to remove from.
1936 * name - name of directory to be removed.
1937 * cwd - inode of current working directory.
1938 * cr - credentials of caller.
1939 * flags - case flags
1940 *
1941 * RETURN: 0 on success, error code on failure.
1942 *
1943 * Timestamps:
1944 * dip - ctime|mtime updated
1945 */
1946 /*ARGSUSED*/
1947 int
1948 zfs_rmdir(struct inode *dip, char *name, struct inode *cwd, cred_t *cr,
1949 int flags)
1950 {
1951 znode_t *dzp = ITOZ(dip);
1952 znode_t *zp;
1953 struct inode *ip;
1954 zfs_sb_t *zsb = ITOZSB(dip);
1955 zilog_t *zilog;
1956 zfs_dirlock_t *dl;
1957 dmu_tx_t *tx;
1958 int error;
1959 int zflg = ZEXISTS;
1960 boolean_t waited = B_FALSE;
1961
1962 ZFS_ENTER(zsb);
1963 ZFS_VERIFY_ZP(dzp);
1964 zilog = zsb->z_log;
1965
1966 if (flags & FIGNORECASE)
1967 zflg |= ZCILOOK;
1968 top:
1969 zp = NULL;
1970
1971 /*
1972 * Attempt to lock directory; fail if entry doesn't exist.
1973 */
1974 if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1975 NULL, NULL))) {
1976 ZFS_EXIT(zsb);
1977 return (error);
1978 }
1979
1980 ip = ZTOI(zp);
1981
1982 if ((error = zfs_zaccess_delete(dzp, zp, cr))) {
1983 goto out;
1984 }
1985
1986 if (!S_ISDIR(ip->i_mode)) {
1987 error = SET_ERROR(ENOTDIR);
1988 goto out;
1989 }
1990
1991 if (ip == cwd) {
1992 error = SET_ERROR(EINVAL);
1993 goto out;
1994 }
1995
1996 /*
1997 * Grab a lock on the directory to make sure that noone is
1998 * trying to add (or lookup) entries while we are removing it.
1999 */
2000 rw_enter(&zp->z_name_lock, RW_WRITER);
2001
2002 /*
2003 * Grab a lock on the parent pointer to make sure we play well
2004 * with the treewalk and directory rename code.
2005 */
2006 rw_enter(&zp->z_parent_lock, RW_WRITER);
2007
2008 tx = dmu_tx_create(zsb->z_os);
2009 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2010 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2011 dmu_tx_hold_zap(tx, zsb->z_unlinkedobj, FALSE, NULL);
2012 zfs_sa_upgrade_txholds(tx, zp);
2013 zfs_sa_upgrade_txholds(tx, dzp);
2014 dmu_tx_mark_netfree(tx);
2015 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2016 if (error) {
2017 rw_exit(&zp->z_parent_lock);
2018 rw_exit(&zp->z_name_lock);
2019 zfs_dirent_unlock(dl);
2020 iput(ip);
2021 if (error == ERESTART) {
2022 waited = B_TRUE;
2023 dmu_tx_wait(tx);
2024 dmu_tx_abort(tx);
2025 goto top;
2026 }
2027 dmu_tx_abort(tx);
2028 ZFS_EXIT(zsb);
2029 return (error);
2030 }
2031
2032 error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2033
2034 if (error == 0) {
2035 uint64_t txtype = TX_RMDIR;
2036 if (flags & FIGNORECASE)
2037 txtype |= TX_CI;
2038 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2039 }
2040
2041 dmu_tx_commit(tx);
2042
2043 rw_exit(&zp->z_parent_lock);
2044 rw_exit(&zp->z_name_lock);
2045 out:
2046 zfs_dirent_unlock(dl);
2047
2048 zfs_inode_update(dzp);
2049 zfs_inode_update(zp);
2050 iput(ip);
2051
2052 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
2053 zil_commit(zilog, 0);
2054
2055 ZFS_EXIT(zsb);
2056 return (error);
2057 }
2058 EXPORT_SYMBOL(zfs_rmdir);
2059
2060 /*
2061 * Read as many directory entries as will fit into the provided
2062 * dirent buffer from the given directory cursor position.
2063 *
2064 * IN: ip - inode of directory to read.
2065 * dirent - buffer for directory entries.
2066 *
2067 * OUT: dirent - filler buffer of directory entries.
2068 *
2069 * RETURN: 0 if success
2070 * error code if failure
2071 *
2072 * Timestamps:
2073 * ip - atime updated
2074 *
2075 * Note that the low 4 bits of the cookie returned by zap is always zero.
2076 * This allows us to use the low range for "special" directory entries:
2077 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem,
2078 * we use the offset 2 for the '.zfs' directory.
2079 */
2080 /* ARGSUSED */
2081 int
2082 zfs_readdir(struct inode *ip, struct dir_context *ctx, cred_t *cr)
2083 {
2084 znode_t *zp = ITOZ(ip);
2085 zfs_sb_t *zsb = ITOZSB(ip);
2086 objset_t *os;
2087 zap_cursor_t zc;
2088 zap_attribute_t zap;
2089 int error;
2090 uint8_t prefetch;
2091 uint8_t type;
2092 int done = 0;
2093 uint64_t parent;
2094 uint64_t offset; /* must be unsigned; checks for < 1 */
2095
2096 ZFS_ENTER(zsb);
2097 ZFS_VERIFY_ZP(zp);
2098
2099 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zsb),
2100 &parent, sizeof (parent))) != 0)
2101 goto out;
2102
2103 /*
2104 * Quit if directory has been removed (posix)
2105 */
2106 if (zp->z_unlinked)
2107 goto out;
2108
2109 error = 0;
2110 os = zsb->z_os;
2111 offset = ctx->pos;
2112 prefetch = zp->z_zn_prefetch;
2113
2114 /*
2115 * Initialize the iterator cursor.
2116 */
2117 if (offset <= 3) {
2118 /*
2119 * Start iteration from the beginning of the directory.
2120 */
2121 zap_cursor_init(&zc, os, zp->z_id);
2122 } else {
2123 /*
2124 * The offset is a serialized cursor.
2125 */
2126 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2127 }
2128
2129 /*
2130 * Transform to file-system independent format
2131 */
2132 while (!done) {
2133 uint64_t objnum;
2134 /*
2135 * Special case `.', `..', and `.zfs'.
2136 */
2137 if (offset == 0) {
2138 (void) strcpy(zap.za_name, ".");
2139 zap.za_normalization_conflict = 0;
2140 objnum = zp->z_id;
2141 type = DT_DIR;
2142 } else if (offset == 1) {
2143 (void) strcpy(zap.za_name, "..");
2144 zap.za_normalization_conflict = 0;
2145 objnum = parent;
2146 type = DT_DIR;
2147 } else if (offset == 2 && zfs_show_ctldir(zp)) {
2148 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2149 zap.za_normalization_conflict = 0;
2150 objnum = ZFSCTL_INO_ROOT;
2151 type = DT_DIR;
2152 } else {
2153 /*
2154 * Grab next entry.
2155 */
2156 if ((error = zap_cursor_retrieve(&zc, &zap))) {
2157 if (error == ENOENT)
2158 break;
2159 else
2160 goto update;
2161 }
2162
2163 /*
2164 * Allow multiple entries provided the first entry is
2165 * the object id. Non-zpl consumers may safely make
2166 * use of the additional space.
2167 *
2168 * XXX: This should be a feature flag for compatibility
2169 */
2170 if (zap.za_integer_length != 8 ||
2171 zap.za_num_integers == 0) {
2172 cmn_err(CE_WARN, "zap_readdir: bad directory "
2173 "entry, obj = %lld, offset = %lld, "
2174 "length = %d, num = %lld\n",
2175 (u_longlong_t)zp->z_id,
2176 (u_longlong_t)offset,
2177 zap.za_integer_length,
2178 (u_longlong_t)zap.za_num_integers);
2179 error = SET_ERROR(ENXIO);
2180 goto update;
2181 }
2182
2183 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2184 type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2185 }
2186
2187 done = !dir_emit(ctx, zap.za_name, strlen(zap.za_name),
2188 objnum, type);
2189 if (done)
2190 break;
2191
2192 /* Prefetch znode */
2193 if (prefetch) {
2194 dmu_prefetch(os, objnum, 0, 0, 0,
2195 ZIO_PRIORITY_SYNC_READ);
2196 }
2197
2198 /*
2199 * Move to the next entry, fill in the previous offset.
2200 */
2201 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2202 zap_cursor_advance(&zc);
2203 offset = zap_cursor_serialize(&zc);
2204 } else {
2205 offset += 1;
2206 }
2207 ctx->pos = offset;
2208 }
2209 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2210
2211 update:
2212 zap_cursor_fini(&zc);
2213 if (error == ENOENT)
2214 error = 0;
2215 out:
2216 ZFS_EXIT(zsb);
2217
2218 return (error);
2219 }
2220 EXPORT_SYMBOL(zfs_readdir);
2221
2222 ulong_t zfs_fsync_sync_cnt = 4;
2223
2224 int
2225 zfs_fsync(struct inode *ip, int syncflag, cred_t *cr)
2226 {
2227 znode_t *zp = ITOZ(ip);
2228 zfs_sb_t *zsb = ITOZSB(ip);
2229
2230 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2231
2232 if (zsb->z_os->os_sync != ZFS_SYNC_DISABLED) {
2233 ZFS_ENTER(zsb);
2234 ZFS_VERIFY_ZP(zp);
2235 zil_commit(zsb->z_log, zp->z_id);
2236 ZFS_EXIT(zsb);
2237 }
2238 tsd_set(zfs_fsyncer_key, NULL);
2239
2240 return (0);
2241 }
2242 EXPORT_SYMBOL(zfs_fsync);
2243
2244
2245 /*
2246 * Get the requested file attributes and place them in the provided
2247 * vattr structure.
2248 *
2249 * IN: ip - inode of file.
2250 * vap - va_mask identifies requested attributes.
2251 * If ATTR_XVATTR set, then optional attrs are requested
2252 * flags - ATTR_NOACLCHECK (CIFS server context)
2253 * cr - credentials of caller.
2254 *
2255 * OUT: vap - attribute values.
2256 *
2257 * RETURN: 0 (always succeeds)
2258 */
2259 /* ARGSUSED */
2260 int
2261 zfs_getattr(struct inode *ip, vattr_t *vap, int flags, cred_t *cr)
2262 {
2263 znode_t *zp = ITOZ(ip);
2264 zfs_sb_t *zsb = ITOZSB(ip);
2265 int error = 0;
2266 uint64_t links;
2267 uint64_t atime[2], mtime[2], ctime[2];
2268 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2269 xoptattr_t *xoap = NULL;
2270 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2271 sa_bulk_attr_t bulk[3];
2272 int count = 0;
2273
2274 ZFS_ENTER(zsb);
2275 ZFS_VERIFY_ZP(zp);
2276
2277 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2278
2279 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zsb), NULL, &atime, 16);
2280 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zsb), NULL, &mtime, 16);
2281 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zsb), NULL, &ctime, 16);
2282
2283 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2284 ZFS_EXIT(zsb);
2285 return (error);
2286 }
2287
2288 /*
2289 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2290 * Also, if we are the owner don't bother, since owner should
2291 * always be allowed to read basic attributes of file.
2292 */
2293 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2294 (vap->va_uid != crgetuid(cr))) {
2295 if ((error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2296 skipaclchk, cr))) {
2297 ZFS_EXIT(zsb);
2298 return (error);
2299 }
2300 }
2301
2302 /*
2303 * Return all attributes. It's cheaper to provide the answer
2304 * than to determine whether we were asked the question.
2305 */
2306
2307 mutex_enter(&zp->z_lock);
2308 vap->va_type = vn_mode_to_vtype(zp->z_mode);
2309 vap->va_mode = zp->z_mode;
2310 vap->va_fsid = ZTOI(zp)->i_sb->s_dev;
2311 vap->va_nodeid = zp->z_id;
2312 if ((zp->z_id == zsb->z_root) && zfs_show_ctldir(zp))
2313 links = ZTOI(zp)->i_nlink + 1;
2314 else
2315 links = ZTOI(zp)->i_nlink;
2316 vap->va_nlink = MIN(links, ZFS_LINK_MAX);
2317 vap->va_size = i_size_read(ip);
2318 vap->va_rdev = ip->i_rdev;
2319 vap->va_seq = ip->i_generation;
2320
2321 /*
2322 * Add in any requested optional attributes and the create time.
2323 * Also set the corresponding bits in the returned attribute bitmap.
2324 */
2325 if ((xoap = xva_getxoptattr(xvap)) != NULL && zsb->z_use_fuids) {
2326 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2327 xoap->xoa_archive =
2328 ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2329 XVA_SET_RTN(xvap, XAT_ARCHIVE);
2330 }
2331
2332 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2333 xoap->xoa_readonly =
2334 ((zp->z_pflags & ZFS_READONLY) != 0);
2335 XVA_SET_RTN(xvap, XAT_READONLY);
2336 }
2337
2338 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2339 xoap->xoa_system =
2340 ((zp->z_pflags & ZFS_SYSTEM) != 0);
2341 XVA_SET_RTN(xvap, XAT_SYSTEM);
2342 }
2343
2344 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2345 xoap->xoa_hidden =
2346 ((zp->z_pflags & ZFS_HIDDEN) != 0);
2347 XVA_SET_RTN(xvap, XAT_HIDDEN);
2348 }
2349
2350 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2351 xoap->xoa_nounlink =
2352 ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2353 XVA_SET_RTN(xvap, XAT_NOUNLINK);
2354 }
2355
2356 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2357 xoap->xoa_immutable =
2358 ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2359 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2360 }
2361
2362 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2363 xoap->xoa_appendonly =
2364 ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2365 XVA_SET_RTN(xvap, XAT_APPENDONLY);
2366 }
2367
2368 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2369 xoap->xoa_nodump =
2370 ((zp->z_pflags & ZFS_NODUMP) != 0);
2371 XVA_SET_RTN(xvap, XAT_NODUMP);
2372 }
2373
2374 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2375 xoap->xoa_opaque =
2376 ((zp->z_pflags & ZFS_OPAQUE) != 0);
2377 XVA_SET_RTN(xvap, XAT_OPAQUE);
2378 }
2379
2380 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2381 xoap->xoa_av_quarantined =
2382 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2383 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2384 }
2385
2386 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2387 xoap->xoa_av_modified =
2388 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2389 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2390 }
2391
2392 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2393 S_ISREG(ip->i_mode)) {
2394 zfs_sa_get_scanstamp(zp, xvap);
2395 }
2396
2397 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2398 uint64_t times[2];
2399
2400 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zsb),
2401 times, sizeof (times));
2402 ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2403 XVA_SET_RTN(xvap, XAT_CREATETIME);
2404 }
2405
2406 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2407 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2408 XVA_SET_RTN(xvap, XAT_REPARSE);
2409 }
2410 if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2411 xoap->xoa_generation = ip->i_generation;
2412 XVA_SET_RTN(xvap, XAT_GEN);
2413 }
2414
2415 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2416 xoap->xoa_offline =
2417 ((zp->z_pflags & ZFS_OFFLINE) != 0);
2418 XVA_SET_RTN(xvap, XAT_OFFLINE);
2419 }
2420
2421 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2422 xoap->xoa_sparse =
2423 ((zp->z_pflags & ZFS_SPARSE) != 0);
2424 XVA_SET_RTN(xvap, XAT_SPARSE);
2425 }
2426 }
2427
2428 ZFS_TIME_DECODE(&vap->va_atime, atime);
2429 ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2430 ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2431
2432 mutex_exit(&zp->z_lock);
2433
2434 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2435
2436 if (zp->z_blksz == 0) {
2437 /*
2438 * Block size hasn't been set; suggest maximal I/O transfers.
2439 */
2440 vap->va_blksize = zsb->z_max_blksz;
2441 }
2442
2443 ZFS_EXIT(zsb);
2444 return (0);
2445 }
2446 EXPORT_SYMBOL(zfs_getattr);
2447
2448 /*
2449 * Get the basic file attributes and place them in the provided kstat
2450 * structure. The inode is assumed to be the authoritative source
2451 * for most of the attributes. However, the znode currently has the
2452 * authoritative atime, blksize, and block count.
2453 *
2454 * IN: ip - inode of file.
2455 *
2456 * OUT: sp - kstat values.
2457 *
2458 * RETURN: 0 (always succeeds)
2459 */
2460 /* ARGSUSED */
2461 int
2462 zfs_getattr_fast(struct inode *ip, struct kstat *sp)
2463 {
2464 znode_t *zp = ITOZ(ip);
2465 zfs_sb_t *zsb = ITOZSB(ip);
2466 uint32_t blksize;
2467 u_longlong_t nblocks;
2468
2469 ZFS_ENTER(zsb);
2470 ZFS_VERIFY_ZP(zp);
2471
2472 mutex_enter(&zp->z_lock);
2473
2474 generic_fillattr(ip, sp);
2475
2476 sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
2477 sp->blksize = blksize;
2478 sp->blocks = nblocks;
2479
2480 if (unlikely(zp->z_blksz == 0)) {
2481 /*
2482 * Block size hasn't been set; suggest maximal I/O transfers.
2483 */
2484 sp->blksize = zsb->z_max_blksz;
2485 }
2486
2487 mutex_exit(&zp->z_lock);
2488
2489 /*
2490 * Required to prevent NFS client from detecting different inode
2491 * numbers of snapshot root dentry before and after snapshot mount.
2492 */
2493 if (zsb->z_issnap) {
2494 if (ip->i_sb->s_root->d_inode == ip)
2495 sp->ino = ZFSCTL_INO_SNAPDIRS -
2496 dmu_objset_id(zsb->z_os);
2497 }
2498
2499 ZFS_EXIT(zsb);
2500
2501 return (0);
2502 }
2503 EXPORT_SYMBOL(zfs_getattr_fast);
2504
2505 /*
2506 * Set the file attributes to the values contained in the
2507 * vattr structure.
2508 *
2509 * IN: ip - inode of file to be modified.
2510 * vap - new attribute values.
2511 * If ATTR_XVATTR set, then optional attrs are being set
2512 * flags - ATTR_UTIME set if non-default time values provided.
2513 * - ATTR_NOACLCHECK (CIFS context only).
2514 * cr - credentials of caller.
2515 *
2516 * RETURN: 0 if success
2517 * error code if failure
2518 *
2519 * Timestamps:
2520 * ip - ctime updated, mtime updated if size changed.
2521 */
2522 /* ARGSUSED */
2523 int
2524 zfs_setattr(struct inode *ip, vattr_t *vap, int flags, cred_t *cr)
2525 {
2526 znode_t *zp = ITOZ(ip);
2527 zfs_sb_t *zsb = ITOZSB(ip);
2528 zilog_t *zilog;
2529 dmu_tx_t *tx;
2530 vattr_t oldva;
2531 xvattr_t *tmpxvattr;
2532 uint_t mask = vap->va_mask;
2533 uint_t saved_mask = 0;
2534 int trim_mask = 0;
2535 uint64_t new_mode;
2536 uint64_t new_kuid = 0, new_kgid = 0, new_uid, new_gid;
2537 uint64_t xattr_obj;
2538 uint64_t mtime[2], ctime[2], atime[2];
2539 znode_t *attrzp;
2540 int need_policy = FALSE;
2541 int err, err2;
2542 zfs_fuid_info_t *fuidp = NULL;
2543 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2544 xoptattr_t *xoap;
2545 zfs_acl_t *aclp;
2546 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2547 boolean_t fuid_dirtied = B_FALSE;
2548 sa_bulk_attr_t *bulk, *xattr_bulk;
2549 int count = 0, xattr_count = 0;
2550
2551 if (mask == 0)
2552 return (0);
2553
2554 ZFS_ENTER(zsb);
2555 ZFS_VERIFY_ZP(zp);
2556
2557 zilog = zsb->z_log;
2558
2559 /*
2560 * Make sure that if we have ephemeral uid/gid or xvattr specified
2561 * that file system is at proper version level
2562 */
2563
2564 if (zsb->z_use_fuids == B_FALSE &&
2565 (((mask & ATTR_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2566 ((mask & ATTR_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2567 (mask & ATTR_XVATTR))) {
2568 ZFS_EXIT(zsb);
2569 return (SET_ERROR(EINVAL));
2570 }
2571
2572 if (mask & ATTR_SIZE && S_ISDIR(ip->i_mode)) {
2573 ZFS_EXIT(zsb);
2574 return (SET_ERROR(EISDIR));
2575 }
2576
2577 if (mask & ATTR_SIZE && !S_ISREG(ip->i_mode) && !S_ISFIFO(ip->i_mode)) {
2578 ZFS_EXIT(zsb);
2579 return (SET_ERROR(EINVAL));
2580 }
2581
2582 /*
2583 * If this is an xvattr_t, then get a pointer to the structure of
2584 * optional attributes. If this is NULL, then we have a vattr_t.
2585 */
2586 xoap = xva_getxoptattr(xvap);
2587
2588 tmpxvattr = kmem_alloc(sizeof (xvattr_t), KM_SLEEP);
2589 xva_init(tmpxvattr);
2590
2591 bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * 7, KM_SLEEP);
2592 xattr_bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * 7, KM_SLEEP);
2593
2594 /*
2595 * Immutable files can only alter immutable bit and atime
2596 */
2597 if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2598 ((mask & (ATTR_SIZE|ATTR_UID|ATTR_GID|ATTR_MTIME|ATTR_MODE)) ||
2599 ((mask & ATTR_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2600 err = EPERM;
2601 goto out3;
2602 }
2603
2604 if ((mask & ATTR_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2605 err = EPERM;
2606 goto out3;
2607 }
2608
2609 /*
2610 * Verify timestamps doesn't overflow 32 bits.
2611 * ZFS can handle large timestamps, but 32bit syscalls can't
2612 * handle times greater than 2039. This check should be removed
2613 * once large timestamps are fully supported.
2614 */
2615 if (mask & (ATTR_ATIME | ATTR_MTIME)) {
2616 if (((mask & ATTR_ATIME) &&
2617 TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2618 ((mask & ATTR_MTIME) &&
2619 TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2620 err = EOVERFLOW;
2621 goto out3;
2622 }
2623 }
2624
2625 top:
2626 attrzp = NULL;
2627 aclp = NULL;
2628
2629 /* Can this be moved to before the top label? */
2630 if (zfs_is_readonly(zsb)) {
2631 err = EROFS;
2632 goto out3;
2633 }
2634
2635 /*
2636 * First validate permissions
2637 */
2638
2639 if (mask & ATTR_SIZE) {
2640 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2641 if (err)
2642 goto out3;
2643
2644 /*
2645 * XXX - Note, we are not providing any open
2646 * mode flags here (like FNDELAY), so we may
2647 * block if there are locks present... this
2648 * should be addressed in openat().
2649 */
2650 /* XXX - would it be OK to generate a log record here? */
2651 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2652 if (err)
2653 goto out3;
2654 }
2655
2656 if (mask & (ATTR_ATIME|ATTR_MTIME) ||
2657 ((mask & ATTR_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2658 XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2659 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2660 XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2661 XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2662 XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2663 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2664 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2665 skipaclchk, cr);
2666 }
2667
2668 if (mask & (ATTR_UID|ATTR_GID)) {
2669 int idmask = (mask & (ATTR_UID|ATTR_GID));
2670 int take_owner;
2671 int take_group;
2672
2673 /*
2674 * NOTE: even if a new mode is being set,
2675 * we may clear S_ISUID/S_ISGID bits.
2676 */
2677
2678 if (!(mask & ATTR_MODE))
2679 vap->va_mode = zp->z_mode;
2680
2681 /*
2682 * Take ownership or chgrp to group we are a member of
2683 */
2684
2685 take_owner = (mask & ATTR_UID) && (vap->va_uid == crgetuid(cr));
2686 take_group = (mask & ATTR_GID) &&
2687 zfs_groupmember(zsb, vap->va_gid, cr);
2688
2689 /*
2690 * If both ATTR_UID and ATTR_GID are set then take_owner and
2691 * take_group must both be set in order to allow taking
2692 * ownership.
2693 *
2694 * Otherwise, send the check through secpolicy_vnode_setattr()
2695 *
2696 */
2697
2698 if (((idmask == (ATTR_UID|ATTR_GID)) &&
2699 take_owner && take_group) ||
2700 ((idmask == ATTR_UID) && take_owner) ||
2701 ((idmask == ATTR_GID) && take_group)) {
2702 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2703 skipaclchk, cr) == 0) {
2704 /*
2705 * Remove setuid/setgid for non-privileged users
2706 */
2707 (void) secpolicy_setid_clear(vap, cr);
2708 trim_mask = (mask & (ATTR_UID|ATTR_GID));
2709 } else {
2710 need_policy = TRUE;
2711 }
2712 } else {
2713 need_policy = TRUE;
2714 }
2715 }
2716
2717 mutex_enter(&zp->z_lock);
2718 oldva.va_mode = zp->z_mode;
2719 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2720 if (mask & ATTR_XVATTR) {
2721 /*
2722 * Update xvattr mask to include only those attributes
2723 * that are actually changing.
2724 *
2725 * the bits will be restored prior to actually setting
2726 * the attributes so the caller thinks they were set.
2727 */
2728 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2729 if (xoap->xoa_appendonly !=
2730 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2731 need_policy = TRUE;
2732 } else {
2733 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2734 XVA_SET_REQ(tmpxvattr, XAT_APPENDONLY);
2735 }
2736 }
2737
2738 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2739 if (xoap->xoa_nounlink !=
2740 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2741 need_policy = TRUE;
2742 } else {
2743 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2744 XVA_SET_REQ(tmpxvattr, XAT_NOUNLINK);
2745 }
2746 }
2747
2748 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2749 if (xoap->xoa_immutable !=
2750 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2751 need_policy = TRUE;
2752 } else {
2753 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2754 XVA_SET_REQ(tmpxvattr, XAT_IMMUTABLE);
2755 }
2756 }
2757
2758 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2759 if (xoap->xoa_nodump !=
2760 ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2761 need_policy = TRUE;
2762 } else {
2763 XVA_CLR_REQ(xvap, XAT_NODUMP);
2764 XVA_SET_REQ(tmpxvattr, XAT_NODUMP);
2765 }
2766 }
2767
2768 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2769 if (xoap->xoa_av_modified !=
2770 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2771 need_policy = TRUE;
2772 } else {
2773 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2774 XVA_SET_REQ(tmpxvattr, XAT_AV_MODIFIED);
2775 }
2776 }
2777
2778 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2779 if ((!S_ISREG(ip->i_mode) &&
2780 xoap->xoa_av_quarantined) ||
2781 xoap->xoa_av_quarantined !=
2782 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2783 need_policy = TRUE;
2784 } else {
2785 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2786 XVA_SET_REQ(tmpxvattr, XAT_AV_QUARANTINED);
2787 }
2788 }
2789
2790 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2791 mutex_exit(&zp->z_lock);
2792 err = EPERM;
2793 goto out3;
2794 }
2795
2796 if (need_policy == FALSE &&
2797 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2798 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2799 need_policy = TRUE;
2800 }
2801 }
2802
2803 mutex_exit(&zp->z_lock);
2804
2805 if (mask & ATTR_MODE) {
2806 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2807 err = secpolicy_setid_setsticky_clear(ip, vap,
2808 &oldva, cr);
2809 if (err)
2810 goto out3;
2811
2812 trim_mask |= ATTR_MODE;
2813 } else {
2814 need_policy = TRUE;
2815 }
2816 }
2817
2818 if (need_policy) {
2819 /*
2820 * If trim_mask is set then take ownership
2821 * has been granted or write_acl is present and user
2822 * has the ability to modify mode. In that case remove
2823 * UID|GID and or MODE from mask so that
2824 * secpolicy_vnode_setattr() doesn't revoke it.
2825 */
2826
2827 if (trim_mask) {
2828 saved_mask = vap->va_mask;
2829 vap->va_mask &= ~trim_mask;
2830 }
2831 err = secpolicy_vnode_setattr(cr, ip, vap, &oldva, flags,
2832 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2833 if (err)
2834 goto out3;
2835
2836 if (trim_mask)
2837 vap->va_mask |= saved_mask;
2838 }
2839
2840 /*
2841 * secpolicy_vnode_setattr, or take ownership may have
2842 * changed va_mask
2843 */
2844 mask = vap->va_mask;
2845
2846 if ((mask & (ATTR_UID | ATTR_GID))) {
2847 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zsb),
2848 &xattr_obj, sizeof (xattr_obj));
2849
2850 if (err == 0 && xattr_obj) {
2851 err = zfs_zget(ZTOZSB(zp), xattr_obj, &attrzp);
2852 if (err)
2853 goto out2;
2854 }
2855 if (mask & ATTR_UID) {
2856 new_kuid = zfs_fuid_create(zsb,
2857 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2858 if (new_kuid != KUID_TO_SUID(ZTOI(zp)->i_uid) &&
2859 zfs_fuid_overquota(zsb, B_FALSE, new_kuid)) {
2860 if (attrzp)
2861 iput(ZTOI(attrzp));
2862 err = EDQUOT;
2863 goto out2;
2864 }
2865 }
2866
2867 if (mask & ATTR_GID) {
2868 new_kgid = zfs_fuid_create(zsb, (uint64_t)vap->va_gid,
2869 cr, ZFS_GROUP, &fuidp);
2870 if (new_kgid != KGID_TO_SGID(ZTOI(zp)->i_gid) &&
2871 zfs_fuid_overquota(zsb, B_TRUE, new_kgid)) {
2872 if (attrzp)
2873 iput(ZTOI(attrzp));
2874 err = EDQUOT;
2875 goto out2;
2876 }
2877 }
2878 }
2879 tx = dmu_tx_create(zsb->z_os);
2880
2881 if (mask & ATTR_MODE) {
2882 uint64_t pmode = zp->z_mode;
2883 uint64_t acl_obj;
2884 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2885
2886 zfs_acl_chmod_setattr(zp, &aclp, new_mode);
2887
2888 mutex_enter(&zp->z_lock);
2889 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
2890 /*
2891 * Are we upgrading ACL from old V0 format
2892 * to V1 format?
2893 */
2894 if (zsb->z_version >= ZPL_VERSION_FUID &&
2895 zfs_znode_acl_version(zp) ==
2896 ZFS_ACL_VERSION_INITIAL) {
2897 dmu_tx_hold_free(tx, acl_obj, 0,
2898 DMU_OBJECT_END);
2899 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2900 0, aclp->z_acl_bytes);
2901 } else {
2902 dmu_tx_hold_write(tx, acl_obj, 0,
2903 aclp->z_acl_bytes);
2904 }
2905 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2906 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2907 0, aclp->z_acl_bytes);
2908 }
2909 mutex_exit(&zp->z_lock);
2910 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2911 } else {
2912 if ((mask & ATTR_XVATTR) &&
2913 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
2914 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2915 else
2916 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2917 }
2918
2919 if (attrzp) {
2920 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
2921 }
2922
2923 fuid_dirtied = zsb->z_fuid_dirty;
2924 if (fuid_dirtied)
2925 zfs_fuid_txhold(zsb, tx);
2926
2927 zfs_sa_upgrade_txholds(tx, zp);
2928
2929 err = dmu_tx_assign(tx, TXG_WAIT);
2930 if (err)
2931 goto out;
2932
2933 count = 0;
2934 /*
2935 * Set each attribute requested.
2936 * We group settings according to the locks they need to acquire.
2937 *
2938 * Note: you cannot set ctime directly, although it will be
2939 * updated as a side-effect of calling this function.
2940 */
2941
2942
2943 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2944 mutex_enter(&zp->z_acl_lock);
2945 mutex_enter(&zp->z_lock);
2946
2947 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zsb), NULL,
2948 &zp->z_pflags, sizeof (zp->z_pflags));
2949
2950 if (attrzp) {
2951 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2952 mutex_enter(&attrzp->z_acl_lock);
2953 mutex_enter(&attrzp->z_lock);
2954 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2955 SA_ZPL_FLAGS(zsb), NULL, &attrzp->z_pflags,
2956 sizeof (attrzp->z_pflags));
2957 }
2958
2959 if (mask & (ATTR_UID|ATTR_GID)) {
2960
2961 if (mask & ATTR_UID) {
2962 ZTOI(zp)->i_uid = SUID_TO_KUID(new_kuid);
2963 new_uid = zfs_uid_read(ZTOI(zp));
2964 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zsb), NULL,
2965 &new_uid, sizeof (new_uid));
2966 if (attrzp) {
2967 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2968 SA_ZPL_UID(zsb), NULL, &new_uid,
2969 sizeof (new_uid));
2970 ZTOI(attrzp)->i_uid = SUID_TO_KUID(new_uid);
2971 }
2972 }
2973
2974 if (mask & ATTR_GID) {
2975 ZTOI(zp)->i_gid = SGID_TO_KGID(new_kgid);
2976 new_gid = zfs_gid_read(ZTOI(zp));
2977 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zsb),
2978 NULL, &new_gid, sizeof (new_gid));
2979 if (attrzp) {
2980 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2981 SA_ZPL_GID(zsb), NULL, &new_gid,
2982 sizeof (new_gid));
2983 ZTOI(attrzp)->i_gid = SGID_TO_KGID(new_kgid);
2984 }
2985 }
2986 if (!(mask & ATTR_MODE)) {
2987 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zsb),
2988 NULL, &new_mode, sizeof (new_mode));
2989 new_mode = zp->z_mode;
2990 }
2991 err = zfs_acl_chown_setattr(zp);
2992 ASSERT(err == 0);
2993 if (attrzp) {
2994 err = zfs_acl_chown_setattr(attrzp);
2995 ASSERT(err == 0);
2996 }
2997 }
2998
2999 if (mask & ATTR_MODE) {
3000 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zsb), NULL,
3001 &new_mode, sizeof (new_mode));
3002 zp->z_mode = ZTOI(zp)->i_mode = new_mode;
3003 ASSERT3P(aclp, !=, NULL);
3004 err = zfs_aclset_common(zp, aclp, cr, tx);
3005 ASSERT0(err);
3006 if (zp->z_acl_cached)
3007 zfs_acl_free(zp->z_acl_cached);
3008 zp->z_acl_cached = aclp;
3009 aclp = NULL;
3010 }
3011
3012 if ((mask & ATTR_ATIME) || zp->z_atime_dirty) {
3013 zp->z_atime_dirty = 0;
3014 ZFS_TIME_ENCODE(&ip->i_atime, atime);
3015 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zsb), NULL,
3016 &atime, sizeof (atime));
3017 }
3018
3019 if (mask & ATTR_MTIME) {
3020 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3021 ZTOI(zp)->i_mtime = timespec_trunc(vap->va_mtime,
3022 ZTOI(zp)->i_sb->s_time_gran);
3023
3024 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zsb), NULL,
3025 mtime, sizeof (mtime));
3026 }
3027
3028 if (mask & ATTR_CTIME) {
3029 ZFS_TIME_ENCODE(&vap->va_ctime, ctime);
3030 ZTOI(zp)->i_ctime = timespec_trunc(vap->va_ctime,
3031 ZTOI(zp)->i_sb->s_time_gran);
3032 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zsb), NULL,
3033 ctime, sizeof (ctime));
3034 }
3035
3036 if (attrzp && mask) {
3037 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3038 SA_ZPL_CTIME(zsb), NULL, &ctime,
3039 sizeof (ctime));
3040 }
3041
3042 /*
3043 * Do this after setting timestamps to prevent timestamp
3044 * update from toggling bit
3045 */
3046
3047 if (xoap && (mask & ATTR_XVATTR)) {
3048
3049 /*
3050 * restore trimmed off masks
3051 * so that return masks can be set for caller.
3052 */
3053
3054 if (XVA_ISSET_REQ(tmpxvattr, XAT_APPENDONLY)) {
3055 XVA_SET_REQ(xvap, XAT_APPENDONLY);
3056 }
3057 if (XVA_ISSET_REQ(tmpxvattr, XAT_NOUNLINK)) {
3058 XVA_SET_REQ(xvap, XAT_NOUNLINK);
3059 }
3060 if (XVA_ISSET_REQ(tmpxvattr, XAT_IMMUTABLE)) {
3061 XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3062 }
3063 if (XVA_ISSET_REQ(tmpxvattr, XAT_NODUMP)) {
3064 XVA_SET_REQ(xvap, XAT_NODUMP);
3065 }
3066 if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_MODIFIED)) {
3067 XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3068 }
3069 if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_QUARANTINED)) {
3070 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3071 }
3072
3073 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3074 ASSERT(S_ISREG(ip->i_mode));
3075
3076 zfs_xvattr_set(zp, xvap, tx);
3077 }
3078
3079 if (fuid_dirtied)
3080 zfs_fuid_sync(zsb, tx);
3081
3082 if (mask != 0)
3083 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3084
3085 mutex_exit(&zp->z_lock);
3086 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
3087 mutex_exit(&zp->z_acl_lock);
3088
3089 if (attrzp) {
3090 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
3091 mutex_exit(&attrzp->z_acl_lock);
3092 mutex_exit(&attrzp->z_lock);
3093 }
3094 out:
3095 if (err == 0 && attrzp) {
3096 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3097 xattr_count, tx);
3098 ASSERT(err2 == 0);
3099 }
3100
3101 if (attrzp)
3102 iput(ZTOI(attrzp));
3103 if (aclp)
3104 zfs_acl_free(aclp);
3105
3106 if (fuidp) {
3107 zfs_fuid_info_free(fuidp);
3108 fuidp = NULL;
3109 }
3110
3111 if (err) {
3112 dmu_tx_abort(tx);
3113 if (err == ERESTART)
3114 goto top;
3115 } else {
3116 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3117 dmu_tx_commit(tx);
3118 zfs_inode_update(zp);
3119 }
3120
3121 out2:
3122 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
3123 zil_commit(zilog, 0);
3124
3125 out3:
3126 kmem_free(xattr_bulk, sizeof (sa_bulk_attr_t) * 7);
3127 kmem_free(bulk, sizeof (sa_bulk_attr_t) * 7);
3128 kmem_free(tmpxvattr, sizeof (xvattr_t));
3129 ZFS_EXIT(zsb);
3130 return (err);
3131 }
3132 EXPORT_SYMBOL(zfs_setattr);
3133
3134 typedef struct zfs_zlock {
3135 krwlock_t *zl_rwlock; /* lock we acquired */
3136 znode_t *zl_znode; /* znode we held */
3137 struct zfs_zlock *zl_next; /* next in list */
3138 } zfs_zlock_t;
3139
3140 /*
3141 * Drop locks and release vnodes that were held by zfs_rename_lock().
3142 */
3143 static void
3144 zfs_rename_unlock(zfs_zlock_t **zlpp)
3145 {
3146 zfs_zlock_t *zl;
3147
3148 while ((zl = *zlpp) != NULL) {
3149 if (zl->zl_znode != NULL)
3150 iput(ZTOI(zl->zl_znode));
3151 rw_exit(zl->zl_rwlock);
3152 *zlpp = zl->zl_next;
3153 kmem_free(zl, sizeof (*zl));
3154 }
3155 }
3156
3157 /*
3158 * Search back through the directory tree, using the ".." entries.
3159 * Lock each directory in the chain to prevent concurrent renames.
3160 * Fail any attempt to move a directory into one of its own descendants.
3161 * XXX - z_parent_lock can overlap with map or grow locks
3162 */
3163 static int
3164 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3165 {
3166 zfs_zlock_t *zl;
3167 znode_t *zp = tdzp;
3168 uint64_t rootid = ZTOZSB(zp)->z_root;
3169 uint64_t oidp = zp->z_id;
3170 krwlock_t *rwlp = &szp->z_parent_lock;
3171 krw_t rw = RW_WRITER;
3172
3173 /*
3174 * First pass write-locks szp and compares to zp->z_id.
3175 * Later passes read-lock zp and compare to zp->z_parent.
3176 */
3177 do {
3178 if (!rw_tryenter(rwlp, rw)) {
3179 /*
3180 * Another thread is renaming in this path.
3181 * Note that if we are a WRITER, we don't have any
3182 * parent_locks held yet.
3183 */
3184 if (rw == RW_READER && zp->z_id > szp->z_id) {
3185 /*
3186 * Drop our locks and restart
3187 */
3188 zfs_rename_unlock(&zl);
3189 *zlpp = NULL;
3190 zp = tdzp;
3191 oidp = zp->z_id;
3192 rwlp = &szp->z_parent_lock;
3193 rw = RW_WRITER;
3194 continue;
3195 } else {
3196 /*
3197 * Wait for other thread to drop its locks
3198 */
3199 rw_enter(rwlp, rw);
3200 }
3201 }
3202
3203 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3204 zl->zl_rwlock = rwlp;
3205 zl->zl_znode = NULL;
3206 zl->zl_next = *zlpp;
3207 *zlpp = zl;
3208
3209 if (oidp == szp->z_id) /* We're a descendant of szp */
3210 return (SET_ERROR(EINVAL));
3211
3212 if (oidp == rootid) /* We've hit the top */
3213 return (0);
3214
3215 if (rw == RW_READER) { /* i.e. not the first pass */
3216 int error = zfs_zget(ZTOZSB(zp), oidp, &zp);
3217 if (error)
3218 return (error);
3219 zl->zl_znode = zp;
3220 }
3221 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(ZTOZSB(zp)),
3222 &oidp, sizeof (oidp));
3223 rwlp = &zp->z_parent_lock;
3224 rw = RW_READER;
3225
3226 } while (zp->z_id != sdzp->z_id);
3227
3228 return (0);
3229 }
3230
3231 /*
3232 * Move an entry from the provided source directory to the target
3233 * directory. Change the entry name as indicated.
3234 *
3235 * IN: sdip - Source directory containing the "old entry".
3236 * snm - Old entry name.
3237 * tdip - Target directory to contain the "new entry".
3238 * tnm - New entry name.
3239 * cr - credentials of caller.
3240 * flags - case flags
3241 *
3242 * RETURN: 0 on success, error code on failure.
3243 *
3244 * Timestamps:
3245 * sdip,tdip - ctime|mtime updated
3246 */
3247 /*ARGSUSED*/
3248 int
3249 zfs_rename(struct inode *sdip, char *snm, struct inode *tdip, char *tnm,
3250 cred_t *cr, int flags)
3251 {
3252 znode_t *tdzp, *szp, *tzp;
3253 znode_t *sdzp = ITOZ(sdip);
3254 zfs_sb_t *zsb = ITOZSB(sdip);
3255 zilog_t *zilog;
3256 zfs_dirlock_t *sdl, *tdl;
3257 dmu_tx_t *tx;
3258 zfs_zlock_t *zl;
3259 int cmp, serr, terr;
3260 int error = 0;
3261 int zflg = 0;
3262 boolean_t waited = B_FALSE;
3263
3264 ZFS_ENTER(zsb);
3265 ZFS_VERIFY_ZP(sdzp);
3266 zilog = zsb->z_log;
3267
3268 tdzp = ITOZ(tdip);
3269 ZFS_VERIFY_ZP(tdzp);
3270
3271 /*
3272 * We check i_sb because snapshots and the ctldir must have different
3273 * super blocks.
3274 */
3275 if (tdip->i_sb != sdip->i_sb || zfsctl_is_node(tdip)) {
3276 ZFS_EXIT(zsb);
3277 return (SET_ERROR(EXDEV));
3278 }
3279
3280 if (zsb->z_utf8 && u8_validate(tnm,
3281 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3282 ZFS_EXIT(zsb);
3283 return (SET_ERROR(EILSEQ));
3284 }
3285
3286 if (flags & FIGNORECASE)
3287 zflg |= ZCILOOK;
3288
3289 top:
3290 szp = NULL;
3291 tzp = NULL;
3292 zl = NULL;
3293
3294 /*
3295 * This is to prevent the creation of links into attribute space
3296 * by renaming a linked file into/outof an attribute directory.
3297 * See the comment in zfs_link() for why this is considered bad.
3298 */
3299 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3300 ZFS_EXIT(zsb);
3301 return (SET_ERROR(EINVAL));
3302 }
3303
3304 /*
3305 * Lock source and target directory entries. To prevent deadlock,
3306 * a lock ordering must be defined. We lock the directory with
3307 * the smallest object id first, or if it's a tie, the one with
3308 * the lexically first name.
3309 */
3310 if (sdzp->z_id < tdzp->z_id) {
3311 cmp = -1;
3312 } else if (sdzp->z_id > tdzp->z_id) {
3313 cmp = 1;
3314 } else {
3315 /*
3316 * First compare the two name arguments without
3317 * considering any case folding.
3318 */
3319 int nofold = (zsb->z_norm & ~U8_TEXTPREP_TOUPPER);
3320
3321 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3322 ASSERT(error == 0 || !zsb->z_utf8);
3323 if (cmp == 0) {
3324 /*
3325 * POSIX: "If the old argument and the new argument
3326 * both refer to links to the same existing file,
3327 * the rename() function shall return successfully
3328 * and perform no other action."
3329 */
3330 ZFS_EXIT(zsb);
3331 return (0);
3332 }
3333 /*
3334 * If the file system is case-folding, then we may
3335 * have some more checking to do. A case-folding file
3336 * system is either supporting mixed case sensitivity
3337 * access or is completely case-insensitive. Note
3338 * that the file system is always case preserving.
3339 *
3340 * In mixed sensitivity mode case sensitive behavior
3341 * is the default. FIGNORECASE must be used to
3342 * explicitly request case insensitive behavior.
3343 *
3344 * If the source and target names provided differ only
3345 * by case (e.g., a request to rename 'tim' to 'Tim'),
3346 * we will treat this as a special case in the
3347 * case-insensitive mode: as long as the source name
3348 * is an exact match, we will allow this to proceed as
3349 * a name-change request.
3350 */
3351 if ((zsb->z_case == ZFS_CASE_INSENSITIVE ||
3352 (zsb->z_case == ZFS_CASE_MIXED &&
3353 flags & FIGNORECASE)) &&
3354 u8_strcmp(snm, tnm, 0, zsb->z_norm, U8_UNICODE_LATEST,
3355 &error) == 0) {
3356 /*
3357 * case preserving rename request, require exact
3358 * name matches
3359 */
3360 zflg |= ZCIEXACT;
3361 zflg &= ~ZCILOOK;
3362 }
3363 }
3364
3365 /*
3366 * If the source and destination directories are the same, we should
3367 * grab the z_name_lock of that directory only once.
3368 */
3369 if (sdzp == tdzp) {
3370 zflg |= ZHAVELOCK;
3371 rw_enter(&sdzp->z_name_lock, RW_READER);
3372 }
3373
3374 if (cmp < 0) {
3375 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3376 ZEXISTS | zflg, NULL, NULL);
3377 terr = zfs_dirent_lock(&tdl,
3378 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3379 } else {
3380 terr = zfs_dirent_lock(&tdl,
3381 tdzp, tnm, &tzp, zflg, NULL, NULL);
3382 serr = zfs_dirent_lock(&sdl,
3383 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3384 NULL, NULL);
3385 }
3386
3387 if (serr) {
3388 /*
3389 * Source entry invalid or not there.
3390 */
3391 if (!terr) {
3392 zfs_dirent_unlock(tdl);
3393 if (tzp)
3394 iput(ZTOI(tzp));
3395 }
3396
3397 if (sdzp == tdzp)
3398 rw_exit(&sdzp->z_name_lock);
3399
3400 if (strcmp(snm, "..") == 0)
3401 serr = EINVAL;
3402 ZFS_EXIT(zsb);
3403 return (serr);
3404 }
3405 if (terr) {
3406 zfs_dirent_unlock(sdl);
3407 iput(ZTOI(szp));
3408
3409 if (sdzp == tdzp)
3410 rw_exit(&sdzp->z_name_lock);
3411
3412 if (strcmp(tnm, "..") == 0)
3413 terr = EINVAL;
3414 ZFS_EXIT(zsb);
3415 return (terr);
3416 }
3417
3418 /*
3419 * Must have write access at the source to remove the old entry
3420 * and write access at the target to create the new entry.
3421 * Note that if target and source are the same, this can be
3422 * done in a single check.
3423 */
3424
3425 if ((error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)))
3426 goto out;
3427
3428 if (S_ISDIR(ZTOI(szp)->i_mode)) {
3429 /*
3430 * Check to make sure rename is valid.
3431 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3432 */
3433 if ((error = zfs_rename_lock(szp, tdzp, sdzp, &zl)))
3434 goto out;
3435 }
3436
3437 /*
3438 * Does target exist?
3439 */
3440 if (tzp) {
3441 /*
3442 * Source and target must be the same type.
3443 */
3444 if (S_ISDIR(ZTOI(szp)->i_mode)) {
3445 if (!S_ISDIR(ZTOI(tzp)->i_mode)) {
3446 error = SET_ERROR(ENOTDIR);
3447 goto out;
3448 }
3449 } else {
3450 if (S_ISDIR(ZTOI(tzp)->i_mode)) {
3451 error = SET_ERROR(EISDIR);
3452 goto out;
3453 }
3454 }
3455 /*
3456 * POSIX dictates that when the source and target
3457 * entries refer to the same file object, rename
3458 * must do nothing and exit without error.
3459 */
3460 if (szp->z_id == tzp->z_id) {
3461 error = 0;
3462 goto out;
3463 }
3464 }
3465
3466 tx = dmu_tx_create(zsb->z_os);
3467 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3468 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3469 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3470 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3471 if (sdzp != tdzp) {
3472 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3473 zfs_sa_upgrade_txholds(tx, tdzp);
3474 }
3475 if (tzp) {
3476 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3477 zfs_sa_upgrade_txholds(tx, tzp);
3478 }
3479
3480 zfs_sa_upgrade_txholds(tx, szp);
3481 dmu_tx_hold_zap(tx, zsb->z_unlinkedobj, FALSE, NULL);
3482 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3483 if (error) {
3484 if (zl != NULL)
3485 zfs_rename_unlock(&zl);
3486 zfs_dirent_unlock(sdl);
3487 zfs_dirent_unlock(tdl);
3488
3489 if (sdzp == tdzp)
3490 rw_exit(&sdzp->z_name_lock);
3491
3492 iput(ZTOI(szp));
3493 if (tzp)
3494 iput(ZTOI(tzp));
3495 if (error == ERESTART) {
3496 waited = B_TRUE;
3497 dmu_tx_wait(tx);
3498 dmu_tx_abort(tx);
3499 goto top;
3500 }
3501 dmu_tx_abort(tx);
3502 ZFS_EXIT(zsb);
3503 return (error);
3504 }
3505
3506 if (tzp) /* Attempt to remove the existing target */
3507 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3508
3509 if (error == 0) {
3510 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3511 if (error == 0) {
3512 szp->z_pflags |= ZFS_AV_MODIFIED;
3513
3514 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zsb),
3515 (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3516 ASSERT0(error);
3517
3518 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3519 if (error == 0) {
3520 zfs_log_rename(zilog, tx, TX_RENAME |
3521 (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3522 sdl->dl_name, tdzp, tdl->dl_name, szp);
3523 } else {
3524 /*
3525 * At this point, we have successfully created
3526 * the target name, but have failed to remove
3527 * the source name. Since the create was done
3528 * with the ZRENAMING flag, there are
3529 * complications; for one, the link count is
3530 * wrong. The easiest way to deal with this
3531 * is to remove the newly created target, and
3532 * return the original error. This must
3533 * succeed; fortunately, it is very unlikely to
3534 * fail, since we just created it.
3535 */
3536 VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3537 ZRENAMING, NULL), ==, 0);
3538 }
3539 }
3540 }
3541
3542 dmu_tx_commit(tx);
3543 out:
3544 if (zl != NULL)
3545 zfs_rename_unlock(&zl);
3546
3547 zfs_dirent_unlock(sdl);
3548 zfs_dirent_unlock(tdl);
3549
3550 zfs_inode_update(sdzp);
3551 if (sdzp == tdzp)
3552 rw_exit(&sdzp->z_name_lock);
3553
3554 if (sdzp != tdzp)
3555 zfs_inode_update(tdzp);
3556
3557 zfs_inode_update(szp);
3558 iput(ZTOI(szp));
3559 if (tzp) {
3560 zfs_inode_update(tzp);
3561 iput(ZTOI(tzp));
3562 }
3563
3564 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
3565 zil_commit(zilog, 0);
3566
3567 ZFS_EXIT(zsb);
3568 return (error);
3569 }
3570 EXPORT_SYMBOL(zfs_rename);
3571
3572 /*
3573 * Insert the indicated symbolic reference entry into the directory.
3574 *
3575 * IN: dip - Directory to contain new symbolic link.
3576 * link - Name for new symlink entry.
3577 * vap - Attributes of new entry.
3578 * target - Target path of new symlink.
3579 *
3580 * cr - credentials of caller.
3581 * flags - case flags
3582 *
3583 * RETURN: 0 on success, error code on failure.
3584 *
3585 * Timestamps:
3586 * dip - ctime|mtime updated
3587 */
3588 /*ARGSUSED*/
3589 int
3590 zfs_symlink(struct inode *dip, char *name, vattr_t *vap, char *link,
3591 struct inode **ipp, cred_t *cr, int flags)
3592 {
3593 znode_t *zp, *dzp = ITOZ(dip);
3594 zfs_dirlock_t *dl;
3595 dmu_tx_t *tx;
3596 zfs_sb_t *zsb = ITOZSB(dip);
3597 zilog_t *zilog;
3598 uint64_t len = strlen(link);
3599 int error;
3600 int zflg = ZNEW;
3601 zfs_acl_ids_t acl_ids;
3602 boolean_t fuid_dirtied;
3603 uint64_t txtype = TX_SYMLINK;
3604 boolean_t waited = B_FALSE;
3605
3606 ASSERT(S_ISLNK(vap->va_mode));
3607
3608 ZFS_ENTER(zsb);
3609 ZFS_VERIFY_ZP(dzp);
3610 zilog = zsb->z_log;
3611
3612 if (zsb->z_utf8 && u8_validate(name, strlen(name),
3613 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3614 ZFS_EXIT(zsb);
3615 return (SET_ERROR(EILSEQ));
3616 }
3617 if (flags & FIGNORECASE)
3618 zflg |= ZCILOOK;
3619
3620 if (len > MAXPATHLEN) {
3621 ZFS_EXIT(zsb);
3622 return (SET_ERROR(ENAMETOOLONG));
3623 }
3624
3625 if ((error = zfs_acl_ids_create(dzp, 0,
3626 vap, cr, NULL, &acl_ids)) != 0) {
3627 ZFS_EXIT(zsb);
3628 return (error);
3629 }
3630 top:
3631 *ipp = NULL;
3632
3633 /*
3634 * Attempt to lock directory; fail if entry already exists.
3635 */
3636 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3637 if (error) {
3638 zfs_acl_ids_free(&acl_ids);
3639 ZFS_EXIT(zsb);
3640 return (error);
3641 }
3642
3643 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
3644 zfs_acl_ids_free(&acl_ids);
3645 zfs_dirent_unlock(dl);
3646 ZFS_EXIT(zsb);
3647 return (error);
3648 }
3649
3650 if (zfs_acl_ids_overquota(zsb, &acl_ids)) {
3651 zfs_acl_ids_free(&acl_ids);
3652 zfs_dirent_unlock(dl);
3653 ZFS_EXIT(zsb);
3654 return (SET_ERROR(EDQUOT));
3655 }
3656 tx = dmu_tx_create(zsb->z_os);
3657 fuid_dirtied = zsb->z_fuid_dirty;
3658 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3659 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3660 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3661 ZFS_SA_BASE_ATTR_SIZE + len);
3662 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3663 if (!zsb->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3664 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3665 acl_ids.z_aclp->z_acl_bytes);
3666 }
3667 if (fuid_dirtied)
3668 zfs_fuid_txhold(zsb, tx);
3669 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3670 if (error) {
3671 zfs_dirent_unlock(dl);
3672 if (error == ERESTART) {
3673 waited = B_TRUE;
3674 dmu_tx_wait(tx);
3675 dmu_tx_abort(tx);
3676 goto top;
3677 }
3678 zfs_acl_ids_free(&acl_ids);
3679 dmu_tx_abort(tx);
3680 ZFS_EXIT(zsb);
3681 return (error);
3682 }
3683
3684 /*
3685 * Create a new object for the symlink.
3686 * for version 4 ZPL datsets the symlink will be an SA attribute
3687 */
3688 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3689
3690 if (fuid_dirtied)
3691 zfs_fuid_sync(zsb, tx);
3692
3693 mutex_enter(&zp->z_lock);
3694 if (zp->z_is_sa)
3695 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zsb),
3696 link, len, tx);
3697 else
3698 zfs_sa_symlink(zp, link, len, tx);
3699 mutex_exit(&zp->z_lock);
3700
3701 zp->z_size = len;
3702 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zsb),
3703 &zp->z_size, sizeof (zp->z_size), tx);
3704 /*
3705 * Insert the new object into the directory.
3706 */
3707 (void) zfs_link_create(dl, zp, tx, ZNEW);
3708
3709 if (flags & FIGNORECASE)
3710 txtype |= TX_CI;
3711 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3712
3713 zfs_inode_update(dzp);
3714 zfs_inode_update(zp);
3715
3716 zfs_acl_ids_free(&acl_ids);
3717
3718 dmu_tx_commit(tx);
3719
3720 zfs_dirent_unlock(dl);
3721
3722 *ipp = ZTOI(zp);
3723
3724 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
3725 zil_commit(zilog, 0);
3726
3727 ZFS_EXIT(zsb);
3728 return (error);
3729 }
3730 EXPORT_SYMBOL(zfs_symlink);
3731
3732 /*
3733 * Return, in the buffer contained in the provided uio structure,
3734 * the symbolic path referred to by ip.
3735 *
3736 * IN: ip - inode of symbolic link
3737 * uio - structure to contain the link path.
3738 * cr - credentials of caller.
3739 *
3740 * RETURN: 0 if success
3741 * error code if failure
3742 *
3743 * Timestamps:
3744 * ip - atime updated
3745 */
3746 /* ARGSUSED */
3747 int
3748 zfs_readlink(struct inode *ip, uio_t *uio, cred_t *cr)
3749 {
3750 znode_t *zp = ITOZ(ip);
3751 zfs_sb_t *zsb = ITOZSB(ip);
3752 int error;
3753
3754 ZFS_ENTER(zsb);
3755 ZFS_VERIFY_ZP(zp);
3756
3757 mutex_enter(&zp->z_lock);
3758 if (zp->z_is_sa)
3759 error = sa_lookup_uio(zp->z_sa_hdl,
3760 SA_ZPL_SYMLINK(zsb), uio);
3761 else
3762 error = zfs_sa_readlink(zp, uio);
3763 mutex_exit(&zp->z_lock);
3764
3765 ZFS_EXIT(zsb);
3766 return (error);
3767 }
3768 EXPORT_SYMBOL(zfs_readlink);
3769
3770 /*
3771 * Insert a new entry into directory tdip referencing sip.
3772 *
3773 * IN: tdip - Directory to contain new entry.
3774 * sip - inode of new entry.
3775 * name - name of new entry.
3776 * cr - credentials of caller.
3777 *
3778 * RETURN: 0 if success
3779 * error code if failure
3780 *
3781 * Timestamps:
3782 * tdip - ctime|mtime updated
3783 * sip - ctime updated
3784 */
3785 /* ARGSUSED */
3786 int
3787 zfs_link(struct inode *tdip, struct inode *sip, char *name, cred_t *cr,
3788 int flags)
3789 {
3790 znode_t *dzp = ITOZ(tdip);
3791 znode_t *tzp, *szp;
3792 zfs_sb_t *zsb = ITOZSB(tdip);
3793 zilog_t *zilog;
3794 zfs_dirlock_t *dl;
3795 dmu_tx_t *tx;
3796 int error;
3797 int zf = ZNEW;
3798 uint64_t parent;
3799 uid_t owner;
3800 boolean_t waited = B_FALSE;
3801
3802 ASSERT(S_ISDIR(tdip->i_mode));
3803
3804 ZFS_ENTER(zsb);
3805 ZFS_VERIFY_ZP(dzp);
3806 zilog = zsb->z_log;
3807
3808 /*
3809 * POSIX dictates that we return EPERM here.
3810 * Better choices include ENOTSUP or EISDIR.
3811 */
3812 if (S_ISDIR(sip->i_mode)) {
3813 ZFS_EXIT(zsb);
3814 return (SET_ERROR(EPERM));
3815 }
3816
3817 szp = ITOZ(sip);
3818 ZFS_VERIFY_ZP(szp);
3819
3820 /*
3821 * We check i_sb because snapshots and the ctldir must have different
3822 * super blocks.
3823 */
3824 if (sip->i_sb != tdip->i_sb || zfsctl_is_node(sip)) {
3825 ZFS_EXIT(zsb);
3826 return (SET_ERROR(EXDEV));
3827 }
3828
3829 /* Prevent links to .zfs/shares files */
3830
3831 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zsb),
3832 &parent, sizeof (uint64_t))) != 0) {
3833 ZFS_EXIT(zsb);
3834 return (error);
3835 }
3836 if (parent == zsb->z_shares_dir) {
3837 ZFS_EXIT(zsb);
3838 return (SET_ERROR(EPERM));
3839 }
3840
3841 if (zsb->z_utf8 && u8_validate(name,
3842 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3843 ZFS_EXIT(zsb);
3844 return (SET_ERROR(EILSEQ));
3845 }
3846 if (flags & FIGNORECASE)
3847 zf |= ZCILOOK;
3848
3849 /*
3850 * We do not support links between attributes and non-attributes
3851 * because of the potential security risk of creating links
3852 * into "normal" file space in order to circumvent restrictions
3853 * imposed in attribute space.
3854 */
3855 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
3856 ZFS_EXIT(zsb);
3857 return (SET_ERROR(EINVAL));
3858 }
3859
3860 owner = zfs_fuid_map_id(zsb, KUID_TO_SUID(sip->i_uid), cr, ZFS_OWNER);
3861 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
3862 ZFS_EXIT(zsb);
3863 return (SET_ERROR(EPERM));
3864 }
3865
3866 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
3867 ZFS_EXIT(zsb);
3868 return (error);
3869 }
3870
3871 top:
3872 /*
3873 * Attempt to lock directory; fail if entry already exists.
3874 */
3875 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
3876 if (error) {
3877 ZFS_EXIT(zsb);
3878 return (error);
3879 }
3880
3881 tx = dmu_tx_create(zsb->z_os);
3882 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3883 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3884 zfs_sa_upgrade_txholds(tx, szp);
3885 zfs_sa_upgrade_txholds(tx, dzp);
3886 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3887 if (error) {
3888 zfs_dirent_unlock(dl);
3889 if (error == ERESTART) {
3890 waited = B_TRUE;
3891 dmu_tx_wait(tx);
3892 dmu_tx_abort(tx);
3893 goto top;
3894 }
3895 dmu_tx_abort(tx);
3896 ZFS_EXIT(zsb);
3897 return (error);
3898 }
3899
3900 error = zfs_link_create(dl, szp, tx, 0);
3901
3902 if (error == 0) {
3903 uint64_t txtype = TX_LINK;
3904 if (flags & FIGNORECASE)
3905 txtype |= TX_CI;
3906 zfs_log_link(zilog, tx, txtype, dzp, szp, name);
3907 }
3908
3909 dmu_tx_commit(tx);
3910
3911 zfs_dirent_unlock(dl);
3912
3913 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
3914 zil_commit(zilog, 0);
3915
3916 zfs_inode_update(dzp);
3917 zfs_inode_update(szp);
3918 ZFS_EXIT(zsb);
3919 return (error);
3920 }
3921 EXPORT_SYMBOL(zfs_link);
3922
3923 static void
3924 zfs_putpage_commit_cb(void *arg)
3925 {
3926 struct page *pp = arg;
3927
3928 ClearPageError(pp);
3929 end_page_writeback(pp);
3930 }
3931
3932 /*
3933 * Push a page out to disk, once the page is on stable storage the
3934 * registered commit callback will be run as notification of completion.
3935 *
3936 * IN: ip - page mapped for inode.
3937 * pp - page to push (page is locked)
3938 * wbc - writeback control data
3939 *
3940 * RETURN: 0 if success
3941 * error code if failure
3942 *
3943 * Timestamps:
3944 * ip - ctime|mtime updated
3945 */
3946 /* ARGSUSED */
3947 int
3948 zfs_putpage(struct inode *ip, struct page *pp, struct writeback_control *wbc)
3949 {
3950 znode_t *zp = ITOZ(ip);
3951 zfs_sb_t *zsb = ITOZSB(ip);
3952 loff_t offset;
3953 loff_t pgoff;
3954 unsigned int pglen;
3955 rl_t *rl;
3956 dmu_tx_t *tx;
3957 caddr_t va;
3958 int err = 0;
3959 uint64_t mtime[2], ctime[2];
3960 sa_bulk_attr_t bulk[3];
3961 int cnt = 0;
3962 struct address_space *mapping;
3963
3964 ZFS_ENTER(zsb);
3965 ZFS_VERIFY_ZP(zp);
3966
3967 ASSERT(PageLocked(pp));
3968
3969 pgoff = page_offset(pp); /* Page byte-offset in file */
3970 offset = i_size_read(ip); /* File length in bytes */
3971 pglen = MIN(PAGE_SIZE, /* Page length in bytes */
3972 P2ROUNDUP(offset, PAGE_SIZE)-pgoff);
3973
3974 /* Page is beyond end of file */
3975 if (pgoff >= offset) {
3976 unlock_page(pp);
3977 ZFS_EXIT(zsb);
3978 return (0);
3979 }
3980
3981 /* Truncate page length to end of file */
3982 if (pgoff + pglen > offset)
3983 pglen = offset - pgoff;
3984
3985 #if 0
3986 /*
3987 * FIXME: Allow mmap writes past its quota. The correct fix
3988 * is to register a page_mkwrite() handler to count the page
3989 * against its quota when it is about to be dirtied.
3990 */
3991 if (zfs_owner_overquota(zsb, zp, B_FALSE) ||
3992 zfs_owner_overquota(zsb, zp, B_TRUE)) {
3993 err = EDQUOT;
3994 }
3995 #endif
3996
3997 /*
3998 * The ordering here is critical and must adhere to the following
3999 * rules in order to avoid deadlocking in either zfs_read() or
4000 * zfs_free_range() due to a lock inversion.
4001 *
4002 * 1) The page must be unlocked prior to acquiring the range lock.
4003 * This is critical because zfs_read() calls find_lock_page()
4004 * which may block on the page lock while holding the range lock.
4005 *
4006 * 2) Before setting or clearing write back on a page the range lock
4007 * must be held in order to prevent a lock inversion with the
4008 * zfs_free_range() function.
4009 *
4010 * This presents a problem because upon entering this function the
4011 * page lock is already held. To safely acquire the range lock the
4012 * page lock must be dropped. This creates a window where another
4013 * process could truncate, invalidate, dirty, or write out the page.
4014 *
4015 * Therefore, after successfully reacquiring the range and page locks
4016 * the current page state is checked. In the common case everything
4017 * will be as is expected and it can be written out. However, if
4018 * the page state has changed it must be handled accordingly.
4019 */
4020 mapping = pp->mapping;
4021 redirty_page_for_writepage(wbc, pp);
4022 unlock_page(pp);
4023
4024 rl = zfs_range_lock(&zp->z_range_lock, pgoff, pglen, RL_WRITER);
4025 lock_page(pp);
4026
4027 /* Page mapping changed or it was no longer dirty, we're done */
4028 if (unlikely((mapping != pp->mapping) || !PageDirty(pp))) {
4029 unlock_page(pp);
4030 zfs_range_unlock(rl);
4031 ZFS_EXIT(zsb);
4032 return (0);
4033 }
4034
4035 /* Another process started write block if required */
4036 if (PageWriteback(pp)) {
4037 unlock_page(pp);
4038 zfs_range_unlock(rl);
4039
4040 if (wbc->sync_mode != WB_SYNC_NONE)
4041 wait_on_page_writeback(pp);
4042
4043 ZFS_EXIT(zsb);
4044 return (0);
4045 }
4046
4047 /* Clear the dirty flag the required locks are held */
4048 if (!clear_page_dirty_for_io(pp)) {
4049 unlock_page(pp);
4050 zfs_range_unlock(rl);
4051 ZFS_EXIT(zsb);
4052 return (0);
4053 }
4054
4055 /*
4056 * Counterpart for redirty_page_for_writepage() above. This page
4057 * was in fact not skipped and should not be counted as if it were.
4058 */
4059 wbc->pages_skipped--;
4060 set_page_writeback(pp);
4061 unlock_page(pp);
4062
4063 tx = dmu_tx_create(zsb->z_os);
4064 dmu_tx_hold_write(tx, zp->z_id, pgoff, pglen);
4065 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4066 zfs_sa_upgrade_txholds(tx, zp);
4067
4068 err = dmu_tx_assign(tx, TXG_NOWAIT);
4069 if (err != 0) {
4070 if (err == ERESTART)
4071 dmu_tx_wait(tx);
4072
4073 dmu_tx_abort(tx);
4074 __set_page_dirty_nobuffers(pp);
4075 ClearPageError(pp);
4076 end_page_writeback(pp);
4077 zfs_range_unlock(rl);
4078 ZFS_EXIT(zsb);
4079 return (err);
4080 }
4081
4082 va = kmap(pp);
4083 ASSERT3U(pglen, <=, PAGE_SIZE);
4084 dmu_write(zsb->z_os, zp->z_id, pgoff, pglen, va, tx);
4085 kunmap(pp);
4086
4087 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zsb), NULL, &mtime, 16);
4088 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zsb), NULL, &ctime, 16);
4089 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_FLAGS(zsb), NULL, &zp->z_pflags, 8);
4090
4091 /* Preserve the mtime and ctime provided by the inode */
4092 ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
4093 ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
4094 zp->z_atime_dirty = 0;
4095 zp->z_seq++;
4096
4097 err = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
4098
4099 zfs_log_write(zsb->z_log, tx, TX_WRITE, zp, pgoff, pglen, 0,
4100 zfs_putpage_commit_cb, pp);
4101 dmu_tx_commit(tx);
4102
4103 zfs_range_unlock(rl);
4104
4105 if (wbc->sync_mode != WB_SYNC_NONE) {
4106 /*
4107 * Note that this is rarely called under writepages(), because
4108 * writepages() normally handles the entire commit for
4109 * performance reasons.
4110 */
4111 if (zsb->z_log != NULL)
4112 zil_commit(zsb->z_log, zp->z_id);
4113 }
4114
4115 ZFS_EXIT(zsb);
4116 return (err);
4117 }
4118
4119 /*
4120 * Update the system attributes when the inode has been dirtied. For the
4121 * moment we only update the mode, atime, mtime, and ctime.
4122 */
4123 int
4124 zfs_dirty_inode(struct inode *ip, int flags)
4125 {
4126 znode_t *zp = ITOZ(ip);
4127 zfs_sb_t *zsb = ITOZSB(ip);
4128 dmu_tx_t *tx;
4129 uint64_t mode, atime[2], mtime[2], ctime[2];
4130 sa_bulk_attr_t bulk[4];
4131 int error = 0;
4132 int cnt = 0;
4133
4134 if (zfs_is_readonly(zsb) || dmu_objset_is_snapshot(zsb->z_os))
4135 return (0);
4136
4137 ZFS_ENTER(zsb);
4138 ZFS_VERIFY_ZP(zp);
4139
4140 #ifdef I_DIRTY_TIME
4141 /*
4142 * This is the lazytime semantic indroduced in Linux 4.0
4143 * This flag will only be called from update_time when lazytime is set.
4144 * (Note, I_DIRTY_SYNC will also set if not lazytime)
4145 * Fortunately mtime and ctime are managed within ZFS itself, so we
4146 * only need to dirty atime.
4147 */
4148 if (flags == I_DIRTY_TIME) {
4149 zp->z_atime_dirty = 1;
4150 goto out;
4151 }
4152 #endif
4153
4154 tx = dmu_tx_create(zsb->z_os);
4155
4156 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4157 zfs_sa_upgrade_txholds(tx, zp);
4158
4159 error = dmu_tx_assign(tx, TXG_WAIT);
4160 if (error) {
4161 dmu_tx_abort(tx);
4162 goto out;
4163 }
4164
4165 mutex_enter(&zp->z_lock);
4166 zp->z_atime_dirty = 0;
4167
4168 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MODE(zsb), NULL, &mode, 8);
4169 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_ATIME(zsb), NULL, &atime, 16);
4170 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zsb), NULL, &mtime, 16);
4171 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zsb), NULL, &ctime, 16);
4172
4173 /* Preserve the mode, mtime and ctime provided by the inode */
4174 ZFS_TIME_ENCODE(&ip->i_atime, atime);
4175 ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
4176 ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
4177 mode = ip->i_mode;
4178
4179 zp->z_mode = mode;
4180
4181 error = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
4182 mutex_exit(&zp->z_lock);
4183
4184 dmu_tx_commit(tx);
4185 out:
4186 ZFS_EXIT(zsb);
4187 return (error);
4188 }
4189 EXPORT_SYMBOL(zfs_dirty_inode);
4190
4191 /*ARGSUSED*/
4192 void
4193 zfs_inactive(struct inode *ip)
4194 {
4195 znode_t *zp = ITOZ(ip);
4196 zfs_sb_t *zsb = ITOZSB(ip);
4197 uint64_t atime[2];
4198 int error;
4199 int need_unlock = 0;
4200
4201 /* Only read lock if we haven't already write locked, e.g. rollback */
4202 if (!RW_WRITE_HELD(&zsb->z_teardown_inactive_lock)) {
4203 need_unlock = 1;
4204 rw_enter(&zsb->z_teardown_inactive_lock, RW_READER);
4205 }
4206 if (zp->z_sa_hdl == NULL) {
4207 if (need_unlock)
4208 rw_exit(&zsb->z_teardown_inactive_lock);
4209 return;
4210 }
4211
4212 if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4213 dmu_tx_t *tx = dmu_tx_create(zsb->z_os);
4214
4215 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4216 zfs_sa_upgrade_txholds(tx, zp);
4217 error = dmu_tx_assign(tx, TXG_WAIT);
4218 if (error) {
4219 dmu_tx_abort(tx);
4220 } else {
4221 ZFS_TIME_ENCODE(&ip->i_atime, atime);
4222 mutex_enter(&zp->z_lock);
4223 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zsb),
4224 (void *)&atime, sizeof (atime), tx);
4225 zp->z_atime_dirty = 0;
4226 mutex_exit(&zp->z_lock);
4227 dmu_tx_commit(tx);
4228 }
4229 }
4230
4231 zfs_zinactive(zp);
4232 if (need_unlock)
4233 rw_exit(&zsb->z_teardown_inactive_lock);
4234 }
4235 EXPORT_SYMBOL(zfs_inactive);
4236
4237 /*
4238 * Bounds-check the seek operation.
4239 *
4240 * IN: ip - inode seeking within
4241 * ooff - old file offset
4242 * noffp - pointer to new file offset
4243 * ct - caller context
4244 *
4245 * RETURN: 0 if success
4246 * EINVAL if new offset invalid
4247 */
4248 /* ARGSUSED */
4249 int
4250 zfs_seek(struct inode *ip, offset_t ooff, offset_t *noffp)
4251 {
4252 if (S_ISDIR(ip->i_mode))
4253 return (0);
4254 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4255 }
4256 EXPORT_SYMBOL(zfs_seek);
4257
4258 /*
4259 * Fill pages with data from the disk.
4260 */
4261 static int
4262 zfs_fillpage(struct inode *ip, struct page *pl[], int nr_pages)
4263 {
4264 znode_t *zp = ITOZ(ip);
4265 zfs_sb_t *zsb = ITOZSB(ip);
4266 objset_t *os;
4267 struct page *cur_pp;
4268 u_offset_t io_off, total;
4269 size_t io_len;
4270 loff_t i_size;
4271 unsigned page_idx;
4272 int err;
4273
4274 os = zsb->z_os;
4275 io_len = nr_pages << PAGE_SHIFT;
4276 i_size = i_size_read(ip);
4277 io_off = page_offset(pl[0]);
4278
4279 if (io_off + io_len > i_size)
4280 io_len = i_size - io_off;
4281
4282 /*
4283 * Iterate over list of pages and read each page individually.
4284 */
4285 page_idx = 0;
4286 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4287 caddr_t va;
4288
4289 cur_pp = pl[page_idx++];
4290 va = kmap(cur_pp);
4291 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4292 DMU_READ_PREFETCH);
4293 kunmap(cur_pp);
4294 if (err) {
4295 /* convert checksum errors into IO errors */
4296 if (err == ECKSUM)
4297 err = SET_ERROR(EIO);
4298 return (err);
4299 }
4300 }
4301
4302 return (0);
4303 }
4304
4305 /*
4306 * Uses zfs_fillpage to read data from the file and fill the pages.
4307 *
4308 * IN: ip - inode of file to get data from.
4309 * pl - list of pages to read
4310 * nr_pages - number of pages to read
4311 *
4312 * RETURN: 0 on success, error code on failure.
4313 *
4314 * Timestamps:
4315 * vp - atime updated
4316 */
4317 /* ARGSUSED */
4318 int
4319 zfs_getpage(struct inode *ip, struct page *pl[], int nr_pages)
4320 {
4321 znode_t *zp = ITOZ(ip);
4322 zfs_sb_t *zsb = ITOZSB(ip);
4323 int err;
4324
4325 if (pl == NULL)
4326 return (0);
4327
4328 ZFS_ENTER(zsb);
4329 ZFS_VERIFY_ZP(zp);
4330
4331 err = zfs_fillpage(ip, pl, nr_pages);
4332
4333 ZFS_EXIT(zsb);
4334 return (err);
4335 }
4336 EXPORT_SYMBOL(zfs_getpage);
4337
4338 /*
4339 * Check ZFS specific permissions to memory map a section of a file.
4340 *
4341 * IN: ip - inode of the file to mmap
4342 * off - file offset
4343 * addrp - start address in memory region
4344 * len - length of memory region
4345 * vm_flags- address flags
4346 *
4347 * RETURN: 0 if success
4348 * error code if failure
4349 */
4350 /*ARGSUSED*/
4351 int
4352 zfs_map(struct inode *ip, offset_t off, caddr_t *addrp, size_t len,
4353 unsigned long vm_flags)
4354 {
4355 znode_t *zp = ITOZ(ip);
4356 zfs_sb_t *zsb = ITOZSB(ip);
4357
4358 ZFS_ENTER(zsb);
4359 ZFS_VERIFY_ZP(zp);
4360
4361 if ((vm_flags & VM_WRITE) && (zp->z_pflags &
4362 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4363 ZFS_EXIT(zsb);
4364 return (SET_ERROR(EPERM));
4365 }
4366
4367 if ((vm_flags & (VM_READ | VM_EXEC)) &&
4368 (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4369 ZFS_EXIT(zsb);
4370 return (SET_ERROR(EACCES));
4371 }
4372
4373 if (off < 0 || len > MAXOFFSET_T - off) {
4374 ZFS_EXIT(zsb);
4375 return (SET_ERROR(ENXIO));
4376 }
4377
4378 ZFS_EXIT(zsb);
4379 return (0);
4380 }
4381 EXPORT_SYMBOL(zfs_map);
4382
4383 /*
4384 * convoff - converts the given data (start, whence) to the
4385 * given whence.
4386 */
4387 int
4388 convoff(struct inode *ip, flock64_t *lckdat, int whence, offset_t offset)
4389 {
4390 vattr_t vap;
4391 int error;
4392
4393 if ((lckdat->l_whence == 2) || (whence == 2)) {
4394 if ((error = zfs_getattr(ip, &vap, 0, CRED()) != 0))
4395 return (error);
4396 }
4397
4398 switch (lckdat->l_whence) {
4399 case 1:
4400 lckdat->l_start += offset;
4401 break;
4402 case 2:
4403 lckdat->l_start += vap.va_size;
4404 /* FALLTHRU */
4405 case 0:
4406 break;
4407 default:
4408 return (SET_ERROR(EINVAL));
4409 }
4410
4411 if (lckdat->l_start < 0)
4412 return (SET_ERROR(EINVAL));
4413
4414 switch (whence) {
4415 case 1:
4416 lckdat->l_start -= offset;
4417 break;
4418 case 2:
4419 lckdat->l_start -= vap.va_size;
4420 /* FALLTHRU */
4421 case 0:
4422 break;
4423 default:
4424 return (SET_ERROR(EINVAL));
4425 }
4426
4427 lckdat->l_whence = (short)whence;
4428 return (0);
4429 }
4430
4431 /*
4432 * Free or allocate space in a file. Currently, this function only
4433 * supports the `F_FREESP' command. However, this command is somewhat
4434 * misnamed, as its functionality includes the ability to allocate as
4435 * well as free space.
4436 *
4437 * IN: ip - inode of file to free data in.
4438 * cmd - action to take (only F_FREESP supported).
4439 * bfp - section of file to free/alloc.
4440 * flag - current file open mode flags.
4441 * offset - current file offset.
4442 * cr - credentials of caller [UNUSED].
4443 *
4444 * RETURN: 0 on success, error code on failure.
4445 *
4446 * Timestamps:
4447 * ip - ctime|mtime updated
4448 */
4449 /* ARGSUSED */
4450 int
4451 zfs_space(struct inode *ip, int cmd, flock64_t *bfp, int flag,
4452 offset_t offset, cred_t *cr)
4453 {
4454 znode_t *zp = ITOZ(ip);
4455 zfs_sb_t *zsb = ITOZSB(ip);
4456 uint64_t off, len;
4457 int error;
4458
4459 ZFS_ENTER(zsb);
4460 ZFS_VERIFY_ZP(zp);
4461
4462 if (cmd != F_FREESP) {
4463 ZFS_EXIT(zsb);
4464 return (SET_ERROR(EINVAL));
4465 }
4466
4467 /*
4468 * Callers might not be able to detect properly that we are read-only,
4469 * so check it explicitly here.
4470 */
4471 if (zfs_is_readonly(zsb)) {
4472 ZFS_EXIT(zsb);
4473 return (SET_ERROR(EROFS));
4474 }
4475
4476 if ((error = convoff(ip, bfp, 0, offset))) {
4477 ZFS_EXIT(zsb);
4478 return (error);
4479 }
4480
4481 if (bfp->l_len < 0) {
4482 ZFS_EXIT(zsb);
4483 return (SET_ERROR(EINVAL));
4484 }
4485
4486 /*
4487 * Permissions aren't checked on Solaris because on this OS
4488 * zfs_space() can only be called with an opened file handle.
4489 * On Linux we can get here through truncate_range() which
4490 * operates directly on inodes, so we need to check access rights.
4491 */
4492 if ((error = zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr))) {
4493 ZFS_EXIT(zsb);
4494 return (error);
4495 }
4496
4497 off = bfp->l_start;
4498 len = bfp->l_len; /* 0 means from off to end of file */
4499
4500 error = zfs_freesp(zp, off, len, flag, TRUE);
4501
4502 ZFS_EXIT(zsb);
4503 return (error);
4504 }
4505 EXPORT_SYMBOL(zfs_space);
4506
4507 /*ARGSUSED*/
4508 int
4509 zfs_fid(struct inode *ip, fid_t *fidp)
4510 {
4511 znode_t *zp = ITOZ(ip);
4512 zfs_sb_t *zsb = ITOZSB(ip);
4513 uint32_t gen;
4514 uint64_t gen64;
4515 uint64_t object = zp->z_id;
4516 zfid_short_t *zfid;
4517 int size, i, error;
4518
4519 ZFS_ENTER(zsb);
4520 ZFS_VERIFY_ZP(zp);
4521
4522 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zsb),
4523 &gen64, sizeof (uint64_t))) != 0) {
4524 ZFS_EXIT(zsb);
4525 return (error);
4526 }
4527
4528 gen = (uint32_t)gen64;
4529
4530 size = (zsb->z_parent != zsb) ? LONG_FID_LEN : SHORT_FID_LEN;
4531 if (fidp->fid_len < size) {
4532 fidp->fid_len = size;
4533 ZFS_EXIT(zsb);
4534 return (SET_ERROR(ENOSPC));
4535 }
4536
4537 zfid = (zfid_short_t *)fidp;
4538
4539 zfid->zf_len = size;
4540
4541 for (i = 0; i < sizeof (zfid->zf_object); i++)
4542 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4543
4544 /* Must have a non-zero generation number to distinguish from .zfs */
4545 if (gen == 0)
4546 gen = 1;
4547 for (i = 0; i < sizeof (zfid->zf_gen); i++)
4548 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4549
4550 if (size == LONG_FID_LEN) {
4551 uint64_t objsetid = dmu_objset_id(zsb->z_os);
4552 zfid_long_t *zlfid;
4553
4554 zlfid = (zfid_long_t *)fidp;
4555
4556 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4557 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4558
4559 /* XXX - this should be the generation number for the objset */
4560 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4561 zlfid->zf_setgen[i] = 0;
4562 }
4563
4564 ZFS_EXIT(zsb);
4565 return (0);
4566 }
4567 EXPORT_SYMBOL(zfs_fid);
4568
4569 /*ARGSUSED*/
4570 int
4571 zfs_getsecattr(struct inode *ip, vsecattr_t *vsecp, int flag, cred_t *cr)
4572 {
4573 znode_t *zp = ITOZ(ip);
4574 zfs_sb_t *zsb = ITOZSB(ip);
4575 int error;
4576 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4577
4578 ZFS_ENTER(zsb);
4579 ZFS_VERIFY_ZP(zp);
4580 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
4581 ZFS_EXIT(zsb);
4582
4583 return (error);
4584 }
4585 EXPORT_SYMBOL(zfs_getsecattr);
4586
4587 /*ARGSUSED*/
4588 int
4589 zfs_setsecattr(struct inode *ip, vsecattr_t *vsecp, int flag, cred_t *cr)
4590 {
4591 znode_t *zp = ITOZ(ip);
4592 zfs_sb_t *zsb = ITOZSB(ip);
4593 int error;
4594 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4595 zilog_t *zilog = zsb->z_log;
4596
4597 ZFS_ENTER(zsb);
4598 ZFS_VERIFY_ZP(zp);
4599
4600 error = zfs_setacl(zp, vsecp, skipaclchk, cr);
4601
4602 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
4603 zil_commit(zilog, 0);
4604
4605 ZFS_EXIT(zsb);
4606 return (error);
4607 }
4608 EXPORT_SYMBOL(zfs_setsecattr);
4609
4610 #ifdef HAVE_UIO_ZEROCOPY
4611 /*
4612 * Tunable, both must be a power of 2.
4613 *
4614 * zcr_blksz_min: the smallest read we may consider to loan out an arcbuf
4615 * zcr_blksz_max: if set to less than the file block size, allow loaning out of
4616 * an arcbuf for a partial block read
4617 */
4618 int zcr_blksz_min = (1 << 10); /* 1K */
4619 int zcr_blksz_max = (1 << 17); /* 128K */
4620
4621 /*ARGSUSED*/
4622 static int
4623 zfs_reqzcbuf(struct inode *ip, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr)
4624 {
4625 znode_t *zp = ITOZ(ip);
4626 zfs_sb_t *zsb = ITOZSB(ip);
4627 int max_blksz = zsb->z_max_blksz;
4628 uio_t *uio = &xuio->xu_uio;
4629 ssize_t size = uio->uio_resid;
4630 offset_t offset = uio->uio_loffset;
4631 int blksz;
4632 int fullblk, i;
4633 arc_buf_t *abuf;
4634 ssize_t maxsize;
4635 int preamble, postamble;
4636
4637 if (xuio->xu_type != UIOTYPE_ZEROCOPY)
4638 return (SET_ERROR(EINVAL));
4639
4640 ZFS_ENTER(zsb);
4641 ZFS_VERIFY_ZP(zp);
4642 switch (ioflag) {
4643 case UIO_WRITE:
4644 /*
4645 * Loan out an arc_buf for write if write size is bigger than
4646 * max_blksz, and the file's block size is also max_blksz.
4647 */
4648 blksz = max_blksz;
4649 if (size < blksz || zp->z_blksz != blksz) {
4650 ZFS_EXIT(zsb);
4651 return (SET_ERROR(EINVAL));
4652 }
4653 /*
4654 * Caller requests buffers for write before knowing where the
4655 * write offset might be (e.g. NFS TCP write).
4656 */
4657 if (offset == -1) {
4658 preamble = 0;
4659 } else {
4660 preamble = P2PHASE(offset, blksz);
4661 if (preamble) {
4662 preamble = blksz - preamble;
4663 size -= preamble;
4664 }
4665 }
4666
4667 postamble = P2PHASE(size, blksz);
4668 size -= postamble;
4669
4670 fullblk = size / blksz;
4671 (void) dmu_xuio_init(xuio,
4672 (preamble != 0) + fullblk + (postamble != 0));
4673
4674 /*
4675 * Have to fix iov base/len for partial buffers. They
4676 * currently represent full arc_buf's.
4677 */
4678 if (preamble) {
4679 /* data begins in the middle of the arc_buf */
4680 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4681 blksz);
4682 ASSERT(abuf);
4683 (void) dmu_xuio_add(xuio, abuf,
4684 blksz - preamble, preamble);
4685 }
4686
4687 for (i = 0; i < fullblk; i++) {
4688 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4689 blksz);
4690 ASSERT(abuf);
4691 (void) dmu_xuio_add(xuio, abuf, 0, blksz);
4692 }
4693
4694 if (postamble) {
4695 /* data ends in the middle of the arc_buf */
4696 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4697 blksz);
4698 ASSERT(abuf);
4699 (void) dmu_xuio_add(xuio, abuf, 0, postamble);
4700 }
4701 break;
4702 case UIO_READ:
4703 /*
4704 * Loan out an arc_buf for read if the read size is larger than
4705 * the current file block size. Block alignment is not
4706 * considered. Partial arc_buf will be loaned out for read.
4707 */
4708 blksz = zp->z_blksz;
4709 if (blksz < zcr_blksz_min)
4710 blksz = zcr_blksz_min;
4711 if (blksz > zcr_blksz_max)
4712 blksz = zcr_blksz_max;
4713 /* avoid potential complexity of dealing with it */
4714 if (blksz > max_blksz) {
4715 ZFS_EXIT(zsb);
4716 return (SET_ERROR(EINVAL));
4717 }
4718
4719 maxsize = zp->z_size - uio->uio_loffset;
4720 if (size > maxsize)
4721 size = maxsize;
4722
4723 if (size < blksz) {
4724 ZFS_EXIT(zsb);
4725 return (SET_ERROR(EINVAL));
4726 }
4727 break;
4728 default:
4729 ZFS_EXIT(zsb);
4730 return (SET_ERROR(EINVAL));
4731 }
4732
4733 uio->uio_extflg = UIO_XUIO;
4734 XUIO_XUZC_RW(xuio) = ioflag;
4735 ZFS_EXIT(zsb);
4736 return (0);
4737 }
4738
4739 /*ARGSUSED*/
4740 static int
4741 zfs_retzcbuf(struct inode *ip, xuio_t *xuio, cred_t *cr)
4742 {
4743 int i;
4744 arc_buf_t *abuf;
4745 int ioflag = XUIO_XUZC_RW(xuio);
4746
4747 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
4748
4749 i = dmu_xuio_cnt(xuio);
4750 while (i-- > 0) {
4751 abuf = dmu_xuio_arcbuf(xuio, i);
4752 /*
4753 * if abuf == NULL, it must be a write buffer
4754 * that has been returned in zfs_write().
4755 */
4756 if (abuf)
4757 dmu_return_arcbuf(abuf);
4758 ASSERT(abuf || ioflag == UIO_WRITE);
4759 }
4760
4761 dmu_xuio_fini(xuio);
4762 return (0);
4763 }
4764 #endif /* HAVE_UIO_ZEROCOPY */
4765
4766 #if defined(_KERNEL) && defined(HAVE_SPL)
4767 module_param(zfs_delete_blocks, ulong, 0644);
4768 MODULE_PARM_DESC(zfs_delete_blocks, "Delete files larger than N blocks async");
4769 module_param(zfs_read_chunk_size, long, 0644);
4770 MODULE_PARM_DESC(zfs_read_chunk_size, "Bytes to read per chunk");
4771 #endif