]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zfs_vnops.c
OpenZFS 9962 - zil_commit should omit cache thrash
[mirror_zfs.git] / module / zfs / zfs_vnops.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.
27 */
28
29 /* Portions Copyright 2007 Jeremy Teo */
30 /* Portions Copyright 2010 Robert Milkowski */
31
32
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/time.h>
36 #include <sys/sysmacros.h>
37 #include <sys/vfs.h>
38 #include <sys/file.h>
39 #include <sys/stat.h>
40 #include <sys/kmem.h>
41 #include <sys/taskq.h>
42 #include <sys/uio.h>
43 #include <sys/vmsystm.h>
44 #include <sys/atomic.h>
45 #include <sys/pathname.h>
46 #include <sys/cmn_err.h>
47 #include <sys/errno.h>
48 #include <sys/zfs_dir.h>
49 #include <sys/zfs_acl.h>
50 #include <sys/zfs_ioctl.h>
51 #include <sys/fs/zfs.h>
52 #include <sys/dmu.h>
53 #include <sys/dmu_objset.h>
54 #include <sys/spa.h>
55 #include <sys/txg.h>
56 #include <sys/dbuf.h>
57 #include <sys/zap.h>
58 #include <sys/sa.h>
59 #include <sys/policy.h>
60 #include <sys/sunddi.h>
61 #include <sys/sid.h>
62 #include <sys/mode.h>
63 #include <sys/zfs_ctldir.h>
64 #include <sys/zfs_fuid.h>
65 #include <sys/zfs_sa.h>
66 #include <sys/zfs_vnops.h>
67 #include <sys/zfs_rlock.h>
68 #include <sys/cred.h>
69 #include <sys/zpl.h>
70 #include <sys/zil.h>
71 #include <sys/sa_impl.h>
72
73 /*
74 * Programming rules.
75 *
76 * Each vnode op performs some logical unit of work. To do this, the ZPL must
77 * properly lock its in-core state, create a DMU transaction, do the work,
78 * record this work in the intent log (ZIL), commit the DMU transaction,
79 * and wait for the intent log to commit if it is a synchronous operation.
80 * Moreover, the vnode ops must work in both normal and log replay context.
81 * The ordering of events is important to avoid deadlocks and references
82 * to freed memory. The example below illustrates the following Big Rules:
83 *
84 * (1) A check must be made in each zfs thread for a mounted file system.
85 * This is done avoiding races using ZFS_ENTER(zfsvfs).
86 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes
87 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros
88 * can return EIO from the calling function.
89 *
90 * (2) iput() should always be the last thing except for zil_commit()
91 * (if necessary) and ZFS_EXIT(). This is for 3 reasons:
92 * First, if it's the last reference, the vnode/znode
93 * can be freed, so the zp may point to freed memory. Second, the last
94 * reference will call zfs_zinactive(), which may induce a lot of work --
95 * pushing cached pages (which acquires range locks) and syncing out
96 * cached atime changes. Third, zfs_zinactive() may require a new tx,
97 * which could deadlock the system if you were already holding one.
98 * If you must call iput() within a tx then use zfs_iput_async().
99 *
100 * (3) All range locks must be grabbed before calling dmu_tx_assign(),
101 * as they can span dmu_tx_assign() calls.
102 *
103 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
104 * dmu_tx_assign(). This is critical because we don't want to block
105 * while holding locks.
106 *
107 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This
108 * reduces lock contention and CPU usage when we must wait (note that if
109 * throughput is constrained by the storage, nearly every transaction
110 * must wait).
111 *
112 * Note, in particular, that if a lock is sometimes acquired before
113 * the tx assigns, and sometimes after (e.g. z_lock), then failing
114 * to use a non-blocking assign can deadlock the system. The scenario:
115 *
116 * Thread A has grabbed a lock before calling dmu_tx_assign().
117 * Thread B is in an already-assigned tx, and blocks for this lock.
118 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
119 * forever, because the previous txg can't quiesce until B's tx commits.
120 *
121 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
122 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent
123 * calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT,
124 * to indicate that this operation has already called dmu_tx_wait().
125 * This will ensure that we don't retry forever, waiting a short bit
126 * each time.
127 *
128 * (5) If the operation succeeded, generate the intent log entry for it
129 * before dropping locks. This ensures that the ordering of events
130 * in the intent log matches the order in which they actually occurred.
131 * During ZIL replay the zfs_log_* functions will update the sequence
132 * number to indicate the zil transaction has replayed.
133 *
134 * (6) At the end of each vnode op, the DMU tx must always commit,
135 * regardless of whether there were any errors.
136 *
137 * (7) After dropping all locks, invoke zil_commit(zilog, foid)
138 * to ensure that synchronous semantics are provided when necessary.
139 *
140 * In general, this is how things should be ordered in each vnode op:
141 *
142 * ZFS_ENTER(zfsvfs); // exit if unmounted
143 * top:
144 * zfs_dirent_lock(&dl, ...) // lock directory entry (may igrab())
145 * rw_enter(...); // grab any other locks you need
146 * tx = dmu_tx_create(...); // get DMU tx
147 * dmu_tx_hold_*(); // hold each object you might modify
148 * error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
149 * if (error) {
150 * rw_exit(...); // drop locks
151 * zfs_dirent_unlock(dl); // unlock directory entry
152 * iput(...); // release held vnodes
153 * if (error == ERESTART) {
154 * waited = B_TRUE;
155 * dmu_tx_wait(tx);
156 * dmu_tx_abort(tx);
157 * goto top;
158 * }
159 * dmu_tx_abort(tx); // abort DMU tx
160 * ZFS_EXIT(zfsvfs); // finished in zfs
161 * return (error); // really out of space
162 * }
163 * error = do_real_work(); // do whatever this VOP does
164 * if (error == 0)
165 * zfs_log_*(...); // on success, make ZIL entry
166 * dmu_tx_commit(tx); // commit DMU tx -- error or not
167 * rw_exit(...); // drop locks
168 * zfs_dirent_unlock(dl); // unlock directory entry
169 * iput(...); // release held vnodes
170 * zil_commit(zilog, foid); // synchronous when necessary
171 * ZFS_EXIT(zfsvfs); // finished in zfs
172 * return (error); // done, report error
173 */
174
175 /*
176 * Virus scanning is unsupported. It would be possible to add a hook
177 * here to performance the required virus scan. This could be done
178 * entirely in the kernel or potentially as an update to invoke a
179 * scanning utility.
180 */
181 static int
182 zfs_vscan(struct inode *ip, cred_t *cr, int async)
183 {
184 return (0);
185 }
186
187 /* ARGSUSED */
188 int
189 zfs_open(struct inode *ip, int mode, int flag, cred_t *cr)
190 {
191 znode_t *zp = ITOZ(ip);
192 zfsvfs_t *zfsvfs = ITOZSB(ip);
193
194 ZFS_ENTER(zfsvfs);
195 ZFS_VERIFY_ZP(zp);
196
197 /* Honor ZFS_APPENDONLY file attribute */
198 if ((mode & FMODE_WRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
199 ((flag & O_APPEND) == 0)) {
200 ZFS_EXIT(zfsvfs);
201 return (SET_ERROR(EPERM));
202 }
203
204 /* Virus scan eligible files on open */
205 if (!zfs_has_ctldir(zp) && zfsvfs->z_vscan && S_ISREG(ip->i_mode) &&
206 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
207 if (zfs_vscan(ip, cr, 0) != 0) {
208 ZFS_EXIT(zfsvfs);
209 return (SET_ERROR(EACCES));
210 }
211 }
212
213 /* Keep a count of the synchronous opens in the znode */
214 if (flag & O_SYNC)
215 atomic_inc_32(&zp->z_sync_cnt);
216
217 ZFS_EXIT(zfsvfs);
218 return (0);
219 }
220
221 /* ARGSUSED */
222 int
223 zfs_close(struct inode *ip, int flag, cred_t *cr)
224 {
225 znode_t *zp = ITOZ(ip);
226 zfsvfs_t *zfsvfs = ITOZSB(ip);
227
228 ZFS_ENTER(zfsvfs);
229 ZFS_VERIFY_ZP(zp);
230
231 /* Decrement the synchronous opens in the znode */
232 if (flag & O_SYNC)
233 atomic_dec_32(&zp->z_sync_cnt);
234
235 if (!zfs_has_ctldir(zp) && zfsvfs->z_vscan && S_ISREG(ip->i_mode) &&
236 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
237 VERIFY(zfs_vscan(ip, cr, 1) == 0);
238
239 ZFS_EXIT(zfsvfs);
240 return (0);
241 }
242
243 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
244 /*
245 * Lseek support for finding holes (cmd == SEEK_HOLE) and
246 * data (cmd == SEEK_DATA). "off" is an in/out parameter.
247 */
248 static int
249 zfs_holey_common(struct inode *ip, int cmd, loff_t *off)
250 {
251 znode_t *zp = ITOZ(ip);
252 uint64_t noff = (uint64_t)*off; /* new offset */
253 uint64_t file_sz;
254 int error;
255 boolean_t hole;
256
257 file_sz = zp->z_size;
258 if (noff >= file_sz) {
259 return (SET_ERROR(ENXIO));
260 }
261
262 if (cmd == SEEK_HOLE)
263 hole = B_TRUE;
264 else
265 hole = B_FALSE;
266
267 error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);
268
269 if (error == ESRCH)
270 return (SET_ERROR(ENXIO));
271
272 /* file was dirty, so fall back to using generic logic */
273 if (error == EBUSY) {
274 if (hole)
275 *off = file_sz;
276
277 return (0);
278 }
279
280 /*
281 * We could find a hole that begins after the logical end-of-file,
282 * because dmu_offset_next() only works on whole blocks. If the
283 * EOF falls mid-block, then indicate that the "virtual hole"
284 * at the end of the file begins at the logical EOF, rather than
285 * at the end of the last block.
286 */
287 if (noff > file_sz) {
288 ASSERT(hole);
289 noff = file_sz;
290 }
291
292 if (noff < *off)
293 return (error);
294 *off = noff;
295 return (error);
296 }
297
298 int
299 zfs_holey(struct inode *ip, int cmd, loff_t *off)
300 {
301 znode_t *zp = ITOZ(ip);
302 zfsvfs_t *zfsvfs = ITOZSB(ip);
303 int error;
304
305 ZFS_ENTER(zfsvfs);
306 ZFS_VERIFY_ZP(zp);
307
308 error = zfs_holey_common(ip, cmd, off);
309
310 ZFS_EXIT(zfsvfs);
311 return (error);
312 }
313 #endif /* SEEK_HOLE && SEEK_DATA */
314
315 #if defined(_KERNEL)
316 /*
317 * When a file is memory mapped, we must keep the IO data synchronized
318 * between the DMU cache and the memory mapped pages. What this means:
319 *
320 * On Write: If we find a memory mapped page, we write to *both*
321 * the page and the dmu buffer.
322 */
323 static void
324 update_pages(struct inode *ip, int64_t start, int len,
325 objset_t *os, uint64_t oid)
326 {
327 struct address_space *mp = ip->i_mapping;
328 struct page *pp;
329 uint64_t nbytes;
330 int64_t off;
331 void *pb;
332
333 off = start & (PAGE_SIZE-1);
334 for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
335 nbytes = MIN(PAGE_SIZE - off, len);
336
337 pp = find_lock_page(mp, start >> PAGE_SHIFT);
338 if (pp) {
339 if (mapping_writably_mapped(mp))
340 flush_dcache_page(pp);
341
342 pb = kmap(pp);
343 (void) dmu_read(os, oid, start+off, nbytes, pb+off,
344 DMU_READ_PREFETCH);
345 kunmap(pp);
346
347 if (mapping_writably_mapped(mp))
348 flush_dcache_page(pp);
349
350 mark_page_accessed(pp);
351 SetPageUptodate(pp);
352 ClearPageError(pp);
353 unlock_page(pp);
354 put_page(pp);
355 }
356
357 len -= nbytes;
358 off = 0;
359 }
360 }
361
362 /*
363 * When a file is memory mapped, we must keep the IO data synchronized
364 * between the DMU cache and the memory mapped pages. What this means:
365 *
366 * On Read: We "read" preferentially from memory mapped pages,
367 * else we default from the dmu buffer.
368 *
369 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
370 * the file is memory mapped.
371 */
372 static int
373 mappedread(struct inode *ip, int nbytes, uio_t *uio)
374 {
375 struct address_space *mp = ip->i_mapping;
376 struct page *pp;
377 znode_t *zp = ITOZ(ip);
378 int64_t start, off;
379 uint64_t bytes;
380 int len = nbytes;
381 int error = 0;
382 void *pb;
383
384 start = uio->uio_loffset;
385 off = start & (PAGE_SIZE-1);
386 for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
387 bytes = MIN(PAGE_SIZE - off, len);
388
389 pp = find_lock_page(mp, start >> PAGE_SHIFT);
390 if (pp) {
391 ASSERT(PageUptodate(pp));
392 unlock_page(pp);
393
394 pb = kmap(pp);
395 error = uiomove(pb + off, bytes, UIO_READ, uio);
396 kunmap(pp);
397
398 if (mapping_writably_mapped(mp))
399 flush_dcache_page(pp);
400
401 mark_page_accessed(pp);
402 put_page(pp);
403 } else {
404 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
405 uio, bytes);
406 }
407
408 len -= bytes;
409 off = 0;
410 if (error)
411 break;
412 }
413 return (error);
414 }
415 #endif /* _KERNEL */
416
417 unsigned long zfs_read_chunk_size = 1024 * 1024; /* Tunable */
418 unsigned long zfs_delete_blocks = DMU_MAX_DELETEBLKCNT;
419
420 /*
421 * Read bytes from specified file into supplied buffer.
422 *
423 * IN: ip - inode of file to be read from.
424 * uio - structure supplying read location, range info,
425 * and return buffer.
426 * ioflag - FSYNC flags; used to provide FRSYNC semantics.
427 * O_DIRECT flag; used to bypass page cache.
428 * cr - credentials of caller.
429 *
430 * OUT: uio - updated offset and range, buffer filled.
431 *
432 * RETURN: 0 on success, error code on failure.
433 *
434 * Side Effects:
435 * inode - atime updated if byte count > 0
436 */
437 /* ARGSUSED */
438 int
439 zfs_read(struct inode *ip, uio_t *uio, int ioflag, cred_t *cr)
440 {
441 int error = 0;
442
443 znode_t *zp = ITOZ(ip);
444 zfsvfs_t *zfsvfs = ITOZSB(ip);
445 ZFS_ENTER(zfsvfs);
446 ZFS_VERIFY_ZP(zp);
447
448 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
449 ZFS_EXIT(zfsvfs);
450 return (SET_ERROR(EACCES));
451 }
452
453 /*
454 * Validate file offset
455 */
456 if (uio->uio_loffset < (offset_t)0) {
457 ZFS_EXIT(zfsvfs);
458 return (SET_ERROR(EINVAL));
459 }
460
461 /*
462 * Fasttrack empty reads
463 */
464 if (uio->uio_resid == 0) {
465 ZFS_EXIT(zfsvfs);
466 return (0);
467 }
468
469 /*
470 * If we're in FRSYNC mode, sync out this znode before reading it.
471 * Only do this for non-snapshots.
472 */
473 if (zfsvfs->z_log &&
474 (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
475 zil_commit(zfsvfs->z_log, zp->z_id);
476
477 /*
478 * Lock the range against changes.
479 */
480 locked_range_t *lr = rangelock_enter(&zp->z_rangelock,
481 uio->uio_loffset, uio->uio_resid, RL_READER);
482
483 /*
484 * If we are reading past end-of-file we can skip
485 * to the end; but we might still need to set atime.
486 */
487 if (uio->uio_loffset >= zp->z_size) {
488 error = 0;
489 goto out;
490 }
491
492 ASSERT(uio->uio_loffset < zp->z_size);
493 ssize_t n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
494 ssize_t start_resid = n;
495
496 #ifdef HAVE_UIO_ZEROCOPY
497 xuio_t *xuio = NULL;
498 if ((uio->uio_extflg == UIO_XUIO) &&
499 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
500 int nblk;
501 int blksz = zp->z_blksz;
502 uint64_t offset = uio->uio_loffset;
503
504 xuio = (xuio_t *)uio;
505 if ((ISP2(blksz))) {
506 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
507 blksz)) / blksz;
508 } else {
509 ASSERT(offset + n <= blksz);
510 nblk = 1;
511 }
512 (void) dmu_xuio_init(xuio, nblk);
513
514 if (vn_has_cached_data(ip)) {
515 /*
516 * For simplicity, we always allocate a full buffer
517 * even if we only expect to read a portion of a block.
518 */
519 while (--nblk >= 0) {
520 (void) dmu_xuio_add(xuio,
521 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
522 blksz), 0, blksz);
523 }
524 }
525 }
526 #endif /* HAVE_UIO_ZEROCOPY */
527
528 while (n > 0) {
529 ssize_t nbytes = MIN(n, zfs_read_chunk_size -
530 P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
531
532 if (zp->z_is_mapped && !(ioflag & O_DIRECT)) {
533 error = mappedread(ip, nbytes, uio);
534 } else {
535 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
536 uio, nbytes);
537 }
538
539 if (error) {
540 /* convert checksum errors into IO errors */
541 if (error == ECKSUM)
542 error = SET_ERROR(EIO);
543 break;
544 }
545
546 n -= nbytes;
547 }
548
549 int64_t nread = start_resid - n;
550 dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread);
551 task_io_account_read(nread);
552 out:
553 rangelock_exit(lr);
554
555 ZFS_EXIT(zfsvfs);
556 return (error);
557 }
558
559 /*
560 * Write the bytes to a file.
561 *
562 * IN: ip - inode of file to be written to.
563 * uio - structure supplying write location, range info,
564 * and data buffer.
565 * ioflag - FAPPEND flag set if in append mode.
566 * O_DIRECT flag; used to bypass page cache.
567 * cr - credentials of caller.
568 *
569 * OUT: uio - updated offset and range.
570 *
571 * RETURN: 0 if success
572 * error code if failure
573 *
574 * Timestamps:
575 * ip - ctime|mtime updated if byte count > 0
576 */
577
578 /* ARGSUSED */
579 int
580 zfs_write(struct inode *ip, uio_t *uio, int ioflag, cred_t *cr)
581 {
582 int error = 0;
583 ssize_t start_resid = uio->uio_resid;
584
585 /*
586 * Fasttrack empty write
587 */
588 ssize_t n = start_resid;
589 if (n == 0)
590 return (0);
591
592 rlim64_t limit = uio->uio_limit;
593 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
594 limit = MAXOFFSET_T;
595
596 znode_t *zp = ITOZ(ip);
597 zfsvfs_t *zfsvfs = ZTOZSB(zp);
598 ZFS_ENTER(zfsvfs);
599 ZFS_VERIFY_ZP(zp);
600
601 sa_bulk_attr_t bulk[4];
602 int count = 0;
603 uint64_t mtime[2], ctime[2];
604 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
605 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
606 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
607 &zp->z_size, 8);
608 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
609 &zp->z_pflags, 8);
610
611 /*
612 * Callers might not be able to detect properly that we are read-only,
613 * so check it explicitly here.
614 */
615 if (zfs_is_readonly(zfsvfs)) {
616 ZFS_EXIT(zfsvfs);
617 return (SET_ERROR(EROFS));
618 }
619
620 /*
621 * If immutable or not appending then return EPERM
622 */
623 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
624 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
625 (uio->uio_loffset < zp->z_size))) {
626 ZFS_EXIT(zfsvfs);
627 return (SET_ERROR(EPERM));
628 }
629
630 /*
631 * Validate file offset
632 */
633 offset_t woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
634 if (woff < 0) {
635 ZFS_EXIT(zfsvfs);
636 return (SET_ERROR(EINVAL));
637 }
638
639 int max_blksz = zfsvfs->z_max_blksz;
640 xuio_t *xuio = NULL;
641
642 /*
643 * Pre-fault the pages to ensure slow (eg NFS) pages
644 * don't hold up txg.
645 * Skip this if uio contains loaned arc_buf.
646 */
647 #ifdef HAVE_UIO_ZEROCOPY
648 if ((uio->uio_extflg == UIO_XUIO) &&
649 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
650 xuio = (xuio_t *)uio;
651 else
652 #endif
653 if (uio_prefaultpages(MIN(n, max_blksz), uio)) {
654 ZFS_EXIT(zfsvfs);
655 return (SET_ERROR(EFAULT));
656 }
657
658 /*
659 * If in append mode, set the io offset pointer to eof.
660 */
661 locked_range_t *lr;
662 if (ioflag & FAPPEND) {
663 /*
664 * Obtain an appending range lock to guarantee file append
665 * semantics. We reset the write offset once we have the lock.
666 */
667 lr = rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND);
668 woff = lr->lr_offset;
669 if (lr->lr_length == UINT64_MAX) {
670 /*
671 * We overlocked the file because this write will cause
672 * the file block size to increase.
673 * Note that zp_size cannot change with this lock held.
674 */
675 woff = zp->z_size;
676 }
677 uio->uio_loffset = woff;
678 } else {
679 /*
680 * Note that if the file block size will change as a result of
681 * this write, then this range lock will lock the entire file
682 * so that we can re-write the block safely.
683 */
684 lr = rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER);
685 }
686
687 if (woff >= limit) {
688 rangelock_exit(lr);
689 ZFS_EXIT(zfsvfs);
690 return (SET_ERROR(EFBIG));
691 }
692
693 if ((woff + n) > limit || woff > (limit - n))
694 n = limit - woff;
695
696 /* Will this write extend the file length? */
697 int write_eof = (woff + n > zp->z_size);
698
699 uint64_t end_size = MAX(zp->z_size, woff + n);
700 zilog_t *zilog = zfsvfs->z_log;
701 #ifdef HAVE_UIO_ZEROCOPY
702 int i_iov = 0;
703 const iovec_t *iovp = uio->uio_iov;
704 ASSERTV(int iovcnt = uio->uio_iovcnt);
705 #endif
706
707
708 /*
709 * Write the file in reasonable size chunks. Each chunk is written
710 * in a separate transaction; this keeps the intent log records small
711 * and allows us to do more fine-grained space accounting.
712 */
713 while (n > 0) {
714 woff = uio->uio_loffset;
715
716 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT,
717 KUID_TO_SUID(ip->i_uid)) ||
718 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT,
719 KGID_TO_SGID(ip->i_gid)) ||
720 (zp->z_projid != ZFS_DEFAULT_PROJID &&
721 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
722 zp->z_projid))) {
723 error = SET_ERROR(EDQUOT);
724 break;
725 }
726
727 arc_buf_t *abuf = NULL;
728 const iovec_t *aiov = NULL;
729 if (xuio) {
730 #ifdef HAVE_UIO_ZEROCOPY
731 ASSERT(i_iov < iovcnt);
732 ASSERT3U(uio->uio_segflg, !=, UIO_BVEC);
733 aiov = &iovp[i_iov];
734 abuf = dmu_xuio_arcbuf(xuio, i_iov);
735 dmu_xuio_clear(xuio, i_iov);
736 ASSERT((aiov->iov_base == abuf->b_data) ||
737 ((char *)aiov->iov_base - (char *)abuf->b_data +
738 aiov->iov_len == arc_buf_size(abuf)));
739 i_iov++;
740 #endif
741 } else if (n >= max_blksz && woff >= zp->z_size &&
742 P2PHASE(woff, max_blksz) == 0 &&
743 zp->z_blksz == max_blksz) {
744 /*
745 * This write covers a full block. "Borrow" a buffer
746 * from the dmu so that we can fill it before we enter
747 * a transaction. This avoids the possibility of
748 * holding up the transaction if the data copy hangs
749 * up on a pagefault (e.g., from an NFS server mapping).
750 */
751 size_t cbytes;
752
753 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
754 max_blksz);
755 ASSERT(abuf != NULL);
756 ASSERT(arc_buf_size(abuf) == max_blksz);
757 if ((error = uiocopy(abuf->b_data, max_blksz,
758 UIO_WRITE, uio, &cbytes))) {
759 dmu_return_arcbuf(abuf);
760 break;
761 }
762 ASSERT(cbytes == max_blksz);
763 }
764
765 /*
766 * Start a transaction.
767 */
768 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
769 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
770 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
771 zfs_sa_upgrade_txholds(tx, zp);
772 error = dmu_tx_assign(tx, TXG_WAIT);
773 if (error) {
774 dmu_tx_abort(tx);
775 if (abuf != NULL)
776 dmu_return_arcbuf(abuf);
777 break;
778 }
779
780 /*
781 * If rangelock_enter() over-locked we grow the blocksize
782 * and then reduce the lock range. This will only happen
783 * on the first iteration since rangelock_reduce() will
784 * shrink down lr_length to the appropriate size.
785 */
786 if (lr->lr_length == UINT64_MAX) {
787 uint64_t new_blksz;
788
789 if (zp->z_blksz > max_blksz) {
790 /*
791 * File's blocksize is already larger than the
792 * "recordsize" property. Only let it grow to
793 * the next power of 2.
794 */
795 ASSERT(!ISP2(zp->z_blksz));
796 new_blksz = MIN(end_size,
797 1 << highbit64(zp->z_blksz));
798 } else {
799 new_blksz = MIN(end_size, max_blksz);
800 }
801 zfs_grow_blocksize(zp, new_blksz, tx);
802 rangelock_reduce(lr, woff, n);
803 }
804
805 /*
806 * XXX - should we really limit each write to z_max_blksz?
807 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
808 */
809 ssize_t nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
810
811 ssize_t tx_bytes;
812 if (abuf == NULL) {
813 tx_bytes = uio->uio_resid;
814 uio->uio_fault_disable = B_TRUE;
815 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
816 uio, nbytes, tx);
817 if (error == EFAULT) {
818 dmu_tx_commit(tx);
819 if (uio_prefaultpages(MIN(n, max_blksz), uio)) {
820 break;
821 }
822 continue;
823 } else if (error != 0) {
824 dmu_tx_commit(tx);
825 break;
826 }
827 tx_bytes -= uio->uio_resid;
828 } else {
829 tx_bytes = nbytes;
830 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
831 /*
832 * If this is not a full block write, but we are
833 * extending the file past EOF and this data starts
834 * block-aligned, use assign_arcbuf(). Otherwise,
835 * write via dmu_write().
836 */
837 if (tx_bytes < max_blksz && (!write_eof ||
838 aiov->iov_base != abuf->b_data)) {
839 ASSERT(xuio);
840 dmu_write(zfsvfs->z_os, zp->z_id, woff,
841 /* cppcheck-suppress nullPointer */
842 aiov->iov_len, aiov->iov_base, tx);
843 dmu_return_arcbuf(abuf);
844 xuio_stat_wbuf_copied();
845 } else {
846 ASSERT(xuio || tx_bytes == max_blksz);
847 dmu_assign_arcbuf_by_dbuf(
848 sa_get_db(zp->z_sa_hdl), woff, abuf, tx);
849 }
850 ASSERT(tx_bytes <= uio->uio_resid);
851 uioskip(uio, tx_bytes);
852 }
853 if (tx_bytes && zp->z_is_mapped && !(ioflag & O_DIRECT)) {
854 update_pages(ip, woff,
855 tx_bytes, zfsvfs->z_os, zp->z_id);
856 }
857
858 /*
859 * If we made no progress, we're done. If we made even
860 * partial progress, update the znode and ZIL accordingly.
861 */
862 if (tx_bytes == 0) {
863 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
864 (void *)&zp->z_size, sizeof (uint64_t), tx);
865 dmu_tx_commit(tx);
866 ASSERT(error != 0);
867 break;
868 }
869
870 /*
871 * Clear Set-UID/Set-GID bits on successful write if not
872 * privileged and at least one of the execute bits is set.
873 *
874 * It would be nice to to this after all writes have
875 * been done, but that would still expose the ISUID/ISGID
876 * to another app after the partial write is committed.
877 *
878 * Note: we don't call zfs_fuid_map_id() here because
879 * user 0 is not an ephemeral uid.
880 */
881 mutex_enter(&zp->z_acl_lock);
882 uint32_t uid = KUID_TO_SUID(ip->i_uid);
883 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
884 (S_IXUSR >> 6))) != 0 &&
885 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
886 secpolicy_vnode_setid_retain(cr,
887 ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) {
888 uint64_t newmode;
889 zp->z_mode &= ~(S_ISUID | S_ISGID);
890 ip->i_mode = newmode = zp->z_mode;
891 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
892 (void *)&newmode, sizeof (uint64_t), tx);
893 }
894 mutex_exit(&zp->z_acl_lock);
895
896 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
897
898 /*
899 * Update the file size (zp_size) if it has changed;
900 * account for possible concurrent updates.
901 */
902 while ((end_size = zp->z_size) < uio->uio_loffset) {
903 (void) atomic_cas_64(&zp->z_size, end_size,
904 uio->uio_loffset);
905 ASSERT(error == 0);
906 }
907 /*
908 * If we are replaying and eof is non zero then force
909 * the file size to the specified eof. Note, there's no
910 * concurrency during replay.
911 */
912 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
913 zp->z_size = zfsvfs->z_replay_eof;
914
915 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
916
917 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag,
918 NULL, NULL);
919 dmu_tx_commit(tx);
920
921 if (error != 0)
922 break;
923 ASSERT(tx_bytes == nbytes);
924 n -= nbytes;
925
926 if (!xuio && n > 0) {
927 if (uio_prefaultpages(MIN(n, max_blksz), uio)) {
928 error = EFAULT;
929 break;
930 }
931 }
932 }
933
934 zfs_inode_update(zp);
935 rangelock_exit(lr);
936
937 /*
938 * If we're in replay mode, or we made no progress, return error.
939 * Otherwise, it's at least a partial write, so it's successful.
940 */
941 if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
942 ZFS_EXIT(zfsvfs);
943 return (error);
944 }
945
946 if (ioflag & (FSYNC | FDSYNC) ||
947 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
948 zil_commit(zilog, zp->z_id);
949
950 int64_t nwritten = start_resid - uio->uio_resid;
951 dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten);
952 task_io_account_write(nwritten);
953
954 ZFS_EXIT(zfsvfs);
955 return (0);
956 }
957
958 /*
959 * Drop a reference on the passed inode asynchronously. This ensures
960 * that the caller will never drop the last reference on an inode in
961 * the current context. Doing so while holding open a tx could result
962 * in a deadlock if iput_final() re-enters the filesystem code.
963 */
964 void
965 zfs_iput_async(struct inode *ip)
966 {
967 objset_t *os = ITOZSB(ip)->z_os;
968
969 ASSERT(atomic_read(&ip->i_count) > 0);
970 ASSERT(os != NULL);
971
972 if (atomic_read(&ip->i_count) == 1)
973 VERIFY(taskq_dispatch(dsl_pool_iput_taskq(dmu_objset_pool(os)),
974 (task_func_t *)iput, ip, TQ_SLEEP) != TASKQID_INVALID);
975 else
976 iput(ip);
977 }
978
979 /* ARGSUSED */
980 void
981 zfs_get_done(zgd_t *zgd, int error)
982 {
983 znode_t *zp = zgd->zgd_private;
984
985 if (zgd->zgd_db)
986 dmu_buf_rele(zgd->zgd_db, zgd);
987
988 rangelock_exit(zgd->zgd_lr);
989
990 /*
991 * Release the vnode asynchronously as we currently have the
992 * txg stopped from syncing.
993 */
994 zfs_iput_async(ZTOI(zp));
995
996 kmem_free(zgd, sizeof (zgd_t));
997 }
998
999 #ifdef DEBUG
1000 static int zil_fault_io = 0;
1001 #endif
1002
1003 /*
1004 * Get data to generate a TX_WRITE intent log record.
1005 */
1006 int
1007 zfs_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio)
1008 {
1009 zfsvfs_t *zfsvfs = arg;
1010 objset_t *os = zfsvfs->z_os;
1011 znode_t *zp;
1012 uint64_t object = lr->lr_foid;
1013 uint64_t offset = lr->lr_offset;
1014 uint64_t size = lr->lr_length;
1015 dmu_buf_t *db;
1016 zgd_t *zgd;
1017 int error = 0;
1018
1019 ASSERT3P(lwb, !=, NULL);
1020 ASSERT3P(zio, !=, NULL);
1021 ASSERT3U(size, !=, 0);
1022
1023 /*
1024 * Nothing to do if the file has been removed
1025 */
1026 if (zfs_zget(zfsvfs, object, &zp) != 0)
1027 return (SET_ERROR(ENOENT));
1028 if (zp->z_unlinked) {
1029 /*
1030 * Release the vnode asynchronously as we currently have the
1031 * txg stopped from syncing.
1032 */
1033 zfs_iput_async(ZTOI(zp));
1034 return (SET_ERROR(ENOENT));
1035 }
1036
1037 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1038 zgd->zgd_lwb = lwb;
1039 zgd->zgd_private = zp;
1040
1041 /*
1042 * Write records come in two flavors: immediate and indirect.
1043 * For small writes it's cheaper to store the data with the
1044 * log record (immediate); for large writes it's cheaper to
1045 * sync the data and get a pointer to it (indirect) so that
1046 * we don't have to write the data twice.
1047 */
1048 if (buf != NULL) { /* immediate write */
1049 zgd->zgd_lr = rangelock_enter(&zp->z_rangelock,
1050 offset, size, RL_READER);
1051 /* test for truncation needs to be done while range locked */
1052 if (offset >= zp->z_size) {
1053 error = SET_ERROR(ENOENT);
1054 } else {
1055 error = dmu_read(os, object, offset, size, buf,
1056 DMU_READ_NO_PREFETCH);
1057 }
1058 ASSERT(error == 0 || error == ENOENT);
1059 } else { /* indirect write */
1060 /*
1061 * Have to lock the whole block to ensure when it's
1062 * written out and its checksum is being calculated
1063 * that no one can change the data. We need to re-check
1064 * blocksize after we get the lock in case it's changed!
1065 */
1066 for (;;) {
1067 uint64_t blkoff;
1068 size = zp->z_blksz;
1069 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1070 offset -= blkoff;
1071 zgd->zgd_lr = rangelock_enter(&zp->z_rangelock,
1072 offset, size, RL_READER);
1073 if (zp->z_blksz == size)
1074 break;
1075 offset += blkoff;
1076 rangelock_exit(zgd->zgd_lr);
1077 }
1078 /* test for truncation needs to be done while range locked */
1079 if (lr->lr_offset >= zp->z_size)
1080 error = SET_ERROR(ENOENT);
1081 #ifdef DEBUG
1082 if (zil_fault_io) {
1083 error = SET_ERROR(EIO);
1084 zil_fault_io = 0;
1085 }
1086 #endif
1087 if (error == 0)
1088 error = dmu_buf_hold(os, object, offset, zgd, &db,
1089 DMU_READ_NO_PREFETCH);
1090
1091 if (error == 0) {
1092 blkptr_t *bp = &lr->lr_blkptr;
1093
1094 zgd->zgd_db = db;
1095 zgd->zgd_bp = bp;
1096
1097 ASSERT(db->db_offset == offset);
1098 ASSERT(db->db_size == size);
1099
1100 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1101 zfs_get_done, zgd);
1102 ASSERT(error || lr->lr_length <= size);
1103
1104 /*
1105 * On success, we need to wait for the write I/O
1106 * initiated by dmu_sync() to complete before we can
1107 * release this dbuf. We will finish everything up
1108 * in the zfs_get_done() callback.
1109 */
1110 if (error == 0)
1111 return (0);
1112
1113 if (error == EALREADY) {
1114 lr->lr_common.lrc_txtype = TX_WRITE2;
1115 /*
1116 * TX_WRITE2 relies on the data previously
1117 * written by the TX_WRITE that caused
1118 * EALREADY. We zero out the BP because
1119 * it is the old, currently-on-disk BP.
1120 */
1121 zgd->zgd_bp = NULL;
1122 BP_ZERO(bp);
1123 error = 0;
1124 }
1125 }
1126 }
1127
1128 zfs_get_done(zgd, error);
1129
1130 return (error);
1131 }
1132
1133 /*ARGSUSED*/
1134 int
1135 zfs_access(struct inode *ip, int mode, int flag, cred_t *cr)
1136 {
1137 znode_t *zp = ITOZ(ip);
1138 zfsvfs_t *zfsvfs = ITOZSB(ip);
1139 int error;
1140
1141 ZFS_ENTER(zfsvfs);
1142 ZFS_VERIFY_ZP(zp);
1143
1144 if (flag & V_ACE_MASK)
1145 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1146 else
1147 error = zfs_zaccess_rwx(zp, mode, flag, cr);
1148
1149 ZFS_EXIT(zfsvfs);
1150 return (error);
1151 }
1152
1153 /*
1154 * Lookup an entry in a directory, or an extended attribute directory.
1155 * If it exists, return a held inode reference for it.
1156 *
1157 * IN: dip - inode of directory to search.
1158 * nm - name of entry to lookup.
1159 * flags - LOOKUP_XATTR set if looking for an attribute.
1160 * cr - credentials of caller.
1161 * direntflags - directory lookup flags
1162 * realpnp - returned pathname.
1163 *
1164 * OUT: ipp - inode of located entry, NULL if not found.
1165 *
1166 * RETURN: 0 on success, error code on failure.
1167 *
1168 * Timestamps:
1169 * NA
1170 */
1171 /* ARGSUSED */
1172 int
1173 zfs_lookup(struct inode *dip, char *nm, struct inode **ipp, int flags,
1174 cred_t *cr, int *direntflags, pathname_t *realpnp)
1175 {
1176 znode_t *zdp = ITOZ(dip);
1177 zfsvfs_t *zfsvfs = ITOZSB(dip);
1178 int error = 0;
1179
1180 /*
1181 * Fast path lookup, however we must skip DNLC lookup
1182 * for case folding or normalizing lookups because the
1183 * DNLC code only stores the passed in name. This means
1184 * creating 'a' and removing 'A' on a case insensitive
1185 * file system would work, but DNLC still thinks 'a'
1186 * exists and won't let you create it again on the next
1187 * pass through fast path.
1188 */
1189 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1190
1191 if (!S_ISDIR(dip->i_mode)) {
1192 return (SET_ERROR(ENOTDIR));
1193 } else if (zdp->z_sa_hdl == NULL) {
1194 return (SET_ERROR(EIO));
1195 }
1196
1197 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1198 error = zfs_fastaccesschk_execute(zdp, cr);
1199 if (!error) {
1200 *ipp = dip;
1201 igrab(*ipp);
1202 return (0);
1203 }
1204 return (error);
1205 }
1206 }
1207
1208 ZFS_ENTER(zfsvfs);
1209 ZFS_VERIFY_ZP(zdp);
1210
1211 *ipp = NULL;
1212
1213 if (flags & LOOKUP_XATTR) {
1214 /*
1215 * We don't allow recursive attributes..
1216 * Maybe someday we will.
1217 */
1218 if (zdp->z_pflags & ZFS_XATTR) {
1219 ZFS_EXIT(zfsvfs);
1220 return (SET_ERROR(EINVAL));
1221 }
1222
1223 if ((error = zfs_get_xattrdir(zdp, ipp, cr, flags))) {
1224 ZFS_EXIT(zfsvfs);
1225 return (error);
1226 }
1227
1228 /*
1229 * Do we have permission to get into attribute directory?
1230 */
1231
1232 if ((error = zfs_zaccess(ITOZ(*ipp), ACE_EXECUTE, 0,
1233 B_FALSE, cr))) {
1234 iput(*ipp);
1235 *ipp = NULL;
1236 }
1237
1238 ZFS_EXIT(zfsvfs);
1239 return (error);
1240 }
1241
1242 if (!S_ISDIR(dip->i_mode)) {
1243 ZFS_EXIT(zfsvfs);
1244 return (SET_ERROR(ENOTDIR));
1245 }
1246
1247 /*
1248 * Check accessibility of directory.
1249 */
1250
1251 if ((error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr))) {
1252 ZFS_EXIT(zfsvfs);
1253 return (error);
1254 }
1255
1256 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1257 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1258 ZFS_EXIT(zfsvfs);
1259 return (SET_ERROR(EILSEQ));
1260 }
1261
1262 error = zfs_dirlook(zdp, nm, ipp, flags, direntflags, realpnp);
1263 if ((error == 0) && (*ipp))
1264 zfs_inode_update(ITOZ(*ipp));
1265
1266 ZFS_EXIT(zfsvfs);
1267 return (error);
1268 }
1269
1270 /*
1271 * Attempt to create a new entry in a directory. If the entry
1272 * already exists, truncate the file if permissible, else return
1273 * an error. Return the ip of the created or trunc'd file.
1274 *
1275 * IN: dip - inode of directory to put new file entry in.
1276 * name - name of new file entry.
1277 * vap - attributes of new file.
1278 * excl - flag indicating exclusive or non-exclusive mode.
1279 * mode - mode to open file with.
1280 * cr - credentials of caller.
1281 * flag - large file flag [UNUSED].
1282 * vsecp - ACL to be set
1283 *
1284 * OUT: ipp - inode of created or trunc'd entry.
1285 *
1286 * RETURN: 0 on success, error code on failure.
1287 *
1288 * Timestamps:
1289 * dip - ctime|mtime updated if new entry created
1290 * ip - ctime|mtime always, atime if new
1291 */
1292
1293 /* ARGSUSED */
1294 int
1295 zfs_create(struct inode *dip, char *name, vattr_t *vap, int excl,
1296 int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp)
1297 {
1298 znode_t *zp, *dzp = ITOZ(dip);
1299 zfsvfs_t *zfsvfs = ITOZSB(dip);
1300 zilog_t *zilog;
1301 objset_t *os;
1302 zfs_dirlock_t *dl;
1303 dmu_tx_t *tx;
1304 int error;
1305 uid_t uid;
1306 gid_t gid;
1307 zfs_acl_ids_t acl_ids;
1308 boolean_t fuid_dirtied;
1309 boolean_t have_acl = B_FALSE;
1310 boolean_t waited = B_FALSE;
1311
1312 /*
1313 * If we have an ephemeral id, ACL, or XVATTR then
1314 * make sure file system is at proper version
1315 */
1316
1317 gid = crgetgid(cr);
1318 uid = crgetuid(cr);
1319
1320 if (zfsvfs->z_use_fuids == B_FALSE &&
1321 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1322 return (SET_ERROR(EINVAL));
1323
1324 if (name == NULL)
1325 return (SET_ERROR(EINVAL));
1326
1327 ZFS_ENTER(zfsvfs);
1328 ZFS_VERIFY_ZP(dzp);
1329 os = zfsvfs->z_os;
1330 zilog = zfsvfs->z_log;
1331
1332 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1333 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1334 ZFS_EXIT(zfsvfs);
1335 return (SET_ERROR(EILSEQ));
1336 }
1337
1338 if (vap->va_mask & ATTR_XVATTR) {
1339 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1340 crgetuid(cr), cr, vap->va_mode)) != 0) {
1341 ZFS_EXIT(zfsvfs);
1342 return (error);
1343 }
1344 }
1345
1346 top:
1347 *ipp = NULL;
1348 if (*name == '\0') {
1349 /*
1350 * Null component name refers to the directory itself.
1351 */
1352 igrab(dip);
1353 zp = dzp;
1354 dl = NULL;
1355 error = 0;
1356 } else {
1357 /* possible igrab(zp) */
1358 int zflg = 0;
1359
1360 if (flag & FIGNORECASE)
1361 zflg |= ZCILOOK;
1362
1363 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1364 NULL, NULL);
1365 if (error) {
1366 if (have_acl)
1367 zfs_acl_ids_free(&acl_ids);
1368 if (strcmp(name, "..") == 0)
1369 error = SET_ERROR(EISDIR);
1370 ZFS_EXIT(zfsvfs);
1371 return (error);
1372 }
1373 }
1374
1375 if (zp == NULL) {
1376 uint64_t txtype;
1377 uint64_t projid = ZFS_DEFAULT_PROJID;
1378
1379 /*
1380 * Create a new file object and update the directory
1381 * to reference it.
1382 */
1383 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
1384 if (have_acl)
1385 zfs_acl_ids_free(&acl_ids);
1386 goto out;
1387 }
1388
1389 /*
1390 * We only support the creation of regular files in
1391 * extended attribute directories.
1392 */
1393
1394 if ((dzp->z_pflags & ZFS_XATTR) && !S_ISREG(vap->va_mode)) {
1395 if (have_acl)
1396 zfs_acl_ids_free(&acl_ids);
1397 error = SET_ERROR(EINVAL);
1398 goto out;
1399 }
1400
1401 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1402 cr, vsecp, &acl_ids)) != 0)
1403 goto out;
1404 have_acl = B_TRUE;
1405
1406 if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
1407 projid = zfs_inherit_projid(dzp);
1408 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
1409 zfs_acl_ids_free(&acl_ids);
1410 error = SET_ERROR(EDQUOT);
1411 goto out;
1412 }
1413
1414 tx = dmu_tx_create(os);
1415
1416 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1417 ZFS_SA_BASE_ATTR_SIZE);
1418
1419 fuid_dirtied = zfsvfs->z_fuid_dirty;
1420 if (fuid_dirtied)
1421 zfs_fuid_txhold(zfsvfs, tx);
1422 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1423 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1424 if (!zfsvfs->z_use_sa &&
1425 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1426 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1427 0, acl_ids.z_aclp->z_acl_bytes);
1428 }
1429
1430 error = dmu_tx_assign(tx,
1431 (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1432 if (error) {
1433 zfs_dirent_unlock(dl);
1434 if (error == ERESTART) {
1435 waited = B_TRUE;
1436 dmu_tx_wait(tx);
1437 dmu_tx_abort(tx);
1438 goto top;
1439 }
1440 zfs_acl_ids_free(&acl_ids);
1441 dmu_tx_abort(tx);
1442 ZFS_EXIT(zfsvfs);
1443 return (error);
1444 }
1445 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1446
1447 error = zfs_link_create(dl, zp, tx, ZNEW);
1448 if (error != 0) {
1449 /*
1450 * Since, we failed to add the directory entry for it,
1451 * delete the newly created dnode.
1452 */
1453 zfs_znode_delete(zp, tx);
1454 remove_inode_hash(ZTOI(zp));
1455 zfs_acl_ids_free(&acl_ids);
1456 dmu_tx_commit(tx);
1457 goto out;
1458 }
1459
1460 if (fuid_dirtied)
1461 zfs_fuid_sync(zfsvfs, tx);
1462
1463 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1464 if (flag & FIGNORECASE)
1465 txtype |= TX_CI;
1466 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1467 vsecp, acl_ids.z_fuidp, vap);
1468 zfs_acl_ids_free(&acl_ids);
1469 dmu_tx_commit(tx);
1470 } else {
1471 int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1472
1473 if (have_acl)
1474 zfs_acl_ids_free(&acl_ids);
1475 have_acl = B_FALSE;
1476
1477 /*
1478 * A directory entry already exists for this name.
1479 */
1480 /*
1481 * Can't truncate an existing file if in exclusive mode.
1482 */
1483 if (excl) {
1484 error = SET_ERROR(EEXIST);
1485 goto out;
1486 }
1487 /*
1488 * Can't open a directory for writing.
1489 */
1490 if (S_ISDIR(ZTOI(zp)->i_mode)) {
1491 error = SET_ERROR(EISDIR);
1492 goto out;
1493 }
1494 /*
1495 * Verify requested access to file.
1496 */
1497 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1498 goto out;
1499 }
1500
1501 mutex_enter(&dzp->z_lock);
1502 dzp->z_seq++;
1503 mutex_exit(&dzp->z_lock);
1504
1505 /*
1506 * Truncate regular files if requested.
1507 */
1508 if (S_ISREG(ZTOI(zp)->i_mode) &&
1509 (vap->va_mask & ATTR_SIZE) && (vap->va_size == 0)) {
1510 /* we can't hold any locks when calling zfs_freesp() */
1511 if (dl) {
1512 zfs_dirent_unlock(dl);
1513 dl = NULL;
1514 }
1515 error = zfs_freesp(zp, 0, 0, mode, TRUE);
1516 }
1517 }
1518 out:
1519
1520 if (dl)
1521 zfs_dirent_unlock(dl);
1522
1523 if (error) {
1524 if (zp)
1525 iput(ZTOI(zp));
1526 } else {
1527 zfs_inode_update(dzp);
1528 zfs_inode_update(zp);
1529 *ipp = ZTOI(zp);
1530 }
1531
1532 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1533 zil_commit(zilog, 0);
1534
1535 ZFS_EXIT(zfsvfs);
1536 return (error);
1537 }
1538
1539 /* ARGSUSED */
1540 int
1541 zfs_tmpfile(struct inode *dip, vattr_t *vap, int excl,
1542 int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp)
1543 {
1544 znode_t *zp = NULL, *dzp = ITOZ(dip);
1545 zfsvfs_t *zfsvfs = ITOZSB(dip);
1546 objset_t *os;
1547 dmu_tx_t *tx;
1548 int error;
1549 uid_t uid;
1550 gid_t gid;
1551 zfs_acl_ids_t acl_ids;
1552 uint64_t projid = ZFS_DEFAULT_PROJID;
1553 boolean_t fuid_dirtied;
1554 boolean_t have_acl = B_FALSE;
1555 boolean_t waited = B_FALSE;
1556
1557 /*
1558 * If we have an ephemeral id, ACL, or XVATTR then
1559 * make sure file system is at proper version
1560 */
1561
1562 gid = crgetgid(cr);
1563 uid = crgetuid(cr);
1564
1565 if (zfsvfs->z_use_fuids == B_FALSE &&
1566 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1567 return (SET_ERROR(EINVAL));
1568
1569 ZFS_ENTER(zfsvfs);
1570 ZFS_VERIFY_ZP(dzp);
1571 os = zfsvfs->z_os;
1572
1573 if (vap->va_mask & ATTR_XVATTR) {
1574 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1575 crgetuid(cr), cr, vap->va_mode)) != 0) {
1576 ZFS_EXIT(zfsvfs);
1577 return (error);
1578 }
1579 }
1580
1581 top:
1582 *ipp = NULL;
1583
1584 /*
1585 * Create a new file object and update the directory
1586 * to reference it.
1587 */
1588 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
1589 if (have_acl)
1590 zfs_acl_ids_free(&acl_ids);
1591 goto out;
1592 }
1593
1594 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1595 cr, vsecp, &acl_ids)) != 0)
1596 goto out;
1597 have_acl = B_TRUE;
1598
1599 if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
1600 projid = zfs_inherit_projid(dzp);
1601 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
1602 zfs_acl_ids_free(&acl_ids);
1603 error = SET_ERROR(EDQUOT);
1604 goto out;
1605 }
1606
1607 tx = dmu_tx_create(os);
1608
1609 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1610 ZFS_SA_BASE_ATTR_SIZE);
1611 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1612
1613 fuid_dirtied = zfsvfs->z_fuid_dirty;
1614 if (fuid_dirtied)
1615 zfs_fuid_txhold(zfsvfs, tx);
1616 if (!zfsvfs->z_use_sa &&
1617 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1618 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1619 0, acl_ids.z_aclp->z_acl_bytes);
1620 }
1621 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1622 if (error) {
1623 if (error == ERESTART) {
1624 waited = B_TRUE;
1625 dmu_tx_wait(tx);
1626 dmu_tx_abort(tx);
1627 goto top;
1628 }
1629 zfs_acl_ids_free(&acl_ids);
1630 dmu_tx_abort(tx);
1631 ZFS_EXIT(zfsvfs);
1632 return (error);
1633 }
1634 zfs_mknode(dzp, vap, tx, cr, IS_TMPFILE, &zp, &acl_ids);
1635
1636 if (fuid_dirtied)
1637 zfs_fuid_sync(zfsvfs, tx);
1638
1639 /* Add to unlinked set */
1640 zp->z_unlinked = 1;
1641 zfs_unlinked_add(zp, tx);
1642 zfs_acl_ids_free(&acl_ids);
1643 dmu_tx_commit(tx);
1644 out:
1645
1646 if (error) {
1647 if (zp)
1648 iput(ZTOI(zp));
1649 } else {
1650 zfs_inode_update(dzp);
1651 zfs_inode_update(zp);
1652 *ipp = ZTOI(zp);
1653 }
1654
1655 ZFS_EXIT(zfsvfs);
1656 return (error);
1657 }
1658
1659 /*
1660 * Remove an entry from a directory.
1661 *
1662 * IN: dip - inode of directory to remove entry from.
1663 * name - name of entry to remove.
1664 * cr - credentials of caller.
1665 *
1666 * RETURN: 0 if success
1667 * error code if failure
1668 *
1669 * Timestamps:
1670 * dip - ctime|mtime
1671 * ip - ctime (if nlink > 0)
1672 */
1673
1674 uint64_t null_xattr = 0;
1675
1676 /*ARGSUSED*/
1677 int
1678 zfs_remove(struct inode *dip, char *name, cred_t *cr, int flags)
1679 {
1680 znode_t *zp, *dzp = ITOZ(dip);
1681 znode_t *xzp;
1682 struct inode *ip;
1683 zfsvfs_t *zfsvfs = ITOZSB(dip);
1684 zilog_t *zilog;
1685 uint64_t acl_obj, xattr_obj;
1686 uint64_t xattr_obj_unlinked = 0;
1687 uint64_t obj = 0;
1688 uint64_t links;
1689 zfs_dirlock_t *dl;
1690 dmu_tx_t *tx;
1691 boolean_t may_delete_now, delete_now = FALSE;
1692 boolean_t unlinked, toobig = FALSE;
1693 uint64_t txtype;
1694 pathname_t *realnmp = NULL;
1695 pathname_t realnm;
1696 int error;
1697 int zflg = ZEXISTS;
1698 boolean_t waited = B_FALSE;
1699
1700 if (name == NULL)
1701 return (SET_ERROR(EINVAL));
1702
1703 ZFS_ENTER(zfsvfs);
1704 ZFS_VERIFY_ZP(dzp);
1705 zilog = zfsvfs->z_log;
1706
1707 if (flags & FIGNORECASE) {
1708 zflg |= ZCILOOK;
1709 pn_alloc(&realnm);
1710 realnmp = &realnm;
1711 }
1712
1713 top:
1714 xattr_obj = 0;
1715 xzp = NULL;
1716 /*
1717 * Attempt to lock directory; fail if entry doesn't exist.
1718 */
1719 if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1720 NULL, realnmp))) {
1721 if (realnmp)
1722 pn_free(realnmp);
1723 ZFS_EXIT(zfsvfs);
1724 return (error);
1725 }
1726
1727 ip = ZTOI(zp);
1728
1729 if ((error = zfs_zaccess_delete(dzp, zp, cr))) {
1730 goto out;
1731 }
1732
1733 /*
1734 * Need to use rmdir for removing directories.
1735 */
1736 if (S_ISDIR(ip->i_mode)) {
1737 error = SET_ERROR(EPERM);
1738 goto out;
1739 }
1740
1741 mutex_enter(&zp->z_lock);
1742 may_delete_now = atomic_read(&ip->i_count) == 1 && !(zp->z_is_mapped);
1743 mutex_exit(&zp->z_lock);
1744
1745 /*
1746 * We may delete the znode now, or we may put it in the unlinked set;
1747 * it depends on whether we're the last link, and on whether there are
1748 * other holds on the inode. So we dmu_tx_hold() the right things to
1749 * allow for either case.
1750 */
1751 obj = zp->z_id;
1752 tx = dmu_tx_create(zfsvfs->z_os);
1753 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1754 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1755 zfs_sa_upgrade_txholds(tx, zp);
1756 zfs_sa_upgrade_txholds(tx, dzp);
1757 if (may_delete_now) {
1758 toobig = zp->z_size > zp->z_blksz * zfs_delete_blocks;
1759 /* if the file is too big, only hold_free a token amount */
1760 dmu_tx_hold_free(tx, zp->z_id, 0,
1761 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1762 }
1763
1764 /* are there any extended attributes? */
1765 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1766 &xattr_obj, sizeof (xattr_obj));
1767 if (error == 0 && xattr_obj) {
1768 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1769 ASSERT0(error);
1770 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1771 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1772 }
1773
1774 mutex_enter(&zp->z_lock);
1775 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1776 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1777 mutex_exit(&zp->z_lock);
1778
1779 /* charge as an update -- would be nice not to charge at all */
1780 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1781
1782 /*
1783 * Mark this transaction as typically resulting in a net free of space
1784 */
1785 dmu_tx_mark_netfree(tx);
1786
1787 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1788 if (error) {
1789 zfs_dirent_unlock(dl);
1790 if (error == ERESTART) {
1791 waited = B_TRUE;
1792 dmu_tx_wait(tx);
1793 dmu_tx_abort(tx);
1794 iput(ip);
1795 if (xzp)
1796 iput(ZTOI(xzp));
1797 goto top;
1798 }
1799 if (realnmp)
1800 pn_free(realnmp);
1801 dmu_tx_abort(tx);
1802 iput(ip);
1803 if (xzp)
1804 iput(ZTOI(xzp));
1805 ZFS_EXIT(zfsvfs);
1806 return (error);
1807 }
1808
1809 /*
1810 * Remove the directory entry.
1811 */
1812 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1813
1814 if (error) {
1815 dmu_tx_commit(tx);
1816 goto out;
1817 }
1818
1819 if (unlinked) {
1820 /*
1821 * Hold z_lock so that we can make sure that the ACL obj
1822 * hasn't changed. Could have been deleted due to
1823 * zfs_sa_upgrade().
1824 */
1825 mutex_enter(&zp->z_lock);
1826 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1827 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1828 delete_now = may_delete_now && !toobig &&
1829 atomic_read(&ip->i_count) == 1 && !(zp->z_is_mapped) &&
1830 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1831 acl_obj;
1832 }
1833
1834 if (delete_now) {
1835 if (xattr_obj_unlinked) {
1836 ASSERT3U(ZTOI(xzp)->i_nlink, ==, 2);
1837 mutex_enter(&xzp->z_lock);
1838 xzp->z_unlinked = 1;
1839 clear_nlink(ZTOI(xzp));
1840 links = 0;
1841 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1842 &links, sizeof (links), tx);
1843 ASSERT3U(error, ==, 0);
1844 mutex_exit(&xzp->z_lock);
1845 zfs_unlinked_add(xzp, tx);
1846
1847 if (zp->z_is_sa)
1848 error = sa_remove(zp->z_sa_hdl,
1849 SA_ZPL_XATTR(zfsvfs), tx);
1850 else
1851 error = sa_update(zp->z_sa_hdl,
1852 SA_ZPL_XATTR(zfsvfs), &null_xattr,
1853 sizeof (uint64_t), tx);
1854 ASSERT0(error);
1855 }
1856 /*
1857 * Add to the unlinked set because a new reference could be
1858 * taken concurrently resulting in a deferred destruction.
1859 */
1860 zfs_unlinked_add(zp, tx);
1861 mutex_exit(&zp->z_lock);
1862 } else if (unlinked) {
1863 mutex_exit(&zp->z_lock);
1864 zfs_unlinked_add(zp, tx);
1865 }
1866
1867 txtype = TX_REMOVE;
1868 if (flags & FIGNORECASE)
1869 txtype |= TX_CI;
1870 zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1871
1872 dmu_tx_commit(tx);
1873 out:
1874 if (realnmp)
1875 pn_free(realnmp);
1876
1877 zfs_dirent_unlock(dl);
1878 zfs_inode_update(dzp);
1879 zfs_inode_update(zp);
1880
1881 if (delete_now)
1882 iput(ip);
1883 else
1884 zfs_iput_async(ip);
1885
1886 if (xzp) {
1887 zfs_inode_update(xzp);
1888 zfs_iput_async(ZTOI(xzp));
1889 }
1890
1891 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1892 zil_commit(zilog, 0);
1893
1894 ZFS_EXIT(zfsvfs);
1895 return (error);
1896 }
1897
1898 /*
1899 * Create a new directory and insert it into dip using the name
1900 * provided. Return a pointer to the inserted directory.
1901 *
1902 * IN: dip - inode of directory to add subdir to.
1903 * dirname - name of new directory.
1904 * vap - attributes of new directory.
1905 * cr - credentials of caller.
1906 * vsecp - ACL to be set
1907 *
1908 * OUT: ipp - inode of created directory.
1909 *
1910 * RETURN: 0 if success
1911 * error code if failure
1912 *
1913 * Timestamps:
1914 * dip - ctime|mtime updated
1915 * ipp - ctime|mtime|atime updated
1916 */
1917 /*ARGSUSED*/
1918 int
1919 zfs_mkdir(struct inode *dip, char *dirname, vattr_t *vap, struct inode **ipp,
1920 cred_t *cr, int flags, vsecattr_t *vsecp)
1921 {
1922 znode_t *zp, *dzp = ITOZ(dip);
1923 zfsvfs_t *zfsvfs = ITOZSB(dip);
1924 zilog_t *zilog;
1925 zfs_dirlock_t *dl;
1926 uint64_t txtype;
1927 dmu_tx_t *tx;
1928 int error;
1929 int zf = ZNEW;
1930 uid_t uid;
1931 gid_t gid = crgetgid(cr);
1932 zfs_acl_ids_t acl_ids;
1933 boolean_t fuid_dirtied;
1934 boolean_t waited = B_FALSE;
1935
1936 ASSERT(S_ISDIR(vap->va_mode));
1937
1938 /*
1939 * If we have an ephemeral id, ACL, or XVATTR then
1940 * make sure file system is at proper version
1941 */
1942
1943 uid = crgetuid(cr);
1944 if (zfsvfs->z_use_fuids == B_FALSE &&
1945 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1946 return (SET_ERROR(EINVAL));
1947
1948 if (dirname == NULL)
1949 return (SET_ERROR(EINVAL));
1950
1951 ZFS_ENTER(zfsvfs);
1952 ZFS_VERIFY_ZP(dzp);
1953 zilog = zfsvfs->z_log;
1954
1955 if (dzp->z_pflags & ZFS_XATTR) {
1956 ZFS_EXIT(zfsvfs);
1957 return (SET_ERROR(EINVAL));
1958 }
1959
1960 if (zfsvfs->z_utf8 && u8_validate(dirname,
1961 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1962 ZFS_EXIT(zfsvfs);
1963 return (SET_ERROR(EILSEQ));
1964 }
1965 if (flags & FIGNORECASE)
1966 zf |= ZCILOOK;
1967
1968 if (vap->va_mask & ATTR_XVATTR) {
1969 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1970 crgetuid(cr), cr, vap->va_mode)) != 0) {
1971 ZFS_EXIT(zfsvfs);
1972 return (error);
1973 }
1974 }
1975
1976 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1977 vsecp, &acl_ids)) != 0) {
1978 ZFS_EXIT(zfsvfs);
1979 return (error);
1980 }
1981 /*
1982 * First make sure the new directory doesn't exist.
1983 *
1984 * Existence is checked first to make sure we don't return
1985 * EACCES instead of EEXIST which can cause some applications
1986 * to fail.
1987 */
1988 top:
1989 *ipp = NULL;
1990
1991 if ((error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1992 NULL, NULL))) {
1993 zfs_acl_ids_free(&acl_ids);
1994 ZFS_EXIT(zfsvfs);
1995 return (error);
1996 }
1997
1998 if ((error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr))) {
1999 zfs_acl_ids_free(&acl_ids);
2000 zfs_dirent_unlock(dl);
2001 ZFS_EXIT(zfsvfs);
2002 return (error);
2003 }
2004
2005 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zfs_inherit_projid(dzp))) {
2006 zfs_acl_ids_free(&acl_ids);
2007 zfs_dirent_unlock(dl);
2008 ZFS_EXIT(zfsvfs);
2009 return (SET_ERROR(EDQUOT));
2010 }
2011
2012 /*
2013 * Add a new entry to the directory.
2014 */
2015 tx = dmu_tx_create(zfsvfs->z_os);
2016 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
2017 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2018 fuid_dirtied = zfsvfs->z_fuid_dirty;
2019 if (fuid_dirtied)
2020 zfs_fuid_txhold(zfsvfs, tx);
2021 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2022 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
2023 acl_ids.z_aclp->z_acl_bytes);
2024 }
2025
2026 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
2027 ZFS_SA_BASE_ATTR_SIZE);
2028
2029 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
2030 if (error) {
2031 zfs_dirent_unlock(dl);
2032 if (error == ERESTART) {
2033 waited = B_TRUE;
2034 dmu_tx_wait(tx);
2035 dmu_tx_abort(tx);
2036 goto top;
2037 }
2038 zfs_acl_ids_free(&acl_ids);
2039 dmu_tx_abort(tx);
2040 ZFS_EXIT(zfsvfs);
2041 return (error);
2042 }
2043
2044 /*
2045 * Create new node.
2046 */
2047 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
2048
2049 /*
2050 * Now put new name in parent dir.
2051 */
2052 error = zfs_link_create(dl, zp, tx, ZNEW);
2053 if (error != 0) {
2054 zfs_znode_delete(zp, tx);
2055 remove_inode_hash(ZTOI(zp));
2056 goto out;
2057 }
2058
2059 if (fuid_dirtied)
2060 zfs_fuid_sync(zfsvfs, tx);
2061
2062 *ipp = ZTOI(zp);
2063
2064 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2065 if (flags & FIGNORECASE)
2066 txtype |= TX_CI;
2067 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2068 acl_ids.z_fuidp, vap);
2069
2070 out:
2071 zfs_acl_ids_free(&acl_ids);
2072
2073 dmu_tx_commit(tx);
2074
2075 zfs_dirent_unlock(dl);
2076
2077 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2078 zil_commit(zilog, 0);
2079
2080 if (error != 0) {
2081 iput(ZTOI(zp));
2082 } else {
2083 zfs_inode_update(dzp);
2084 zfs_inode_update(zp);
2085 }
2086 ZFS_EXIT(zfsvfs);
2087 return (error);
2088 }
2089
2090 /*
2091 * Remove a directory subdir entry. If the current working
2092 * directory is the same as the subdir to be removed, the
2093 * remove will fail.
2094 *
2095 * IN: dip - inode of directory to remove from.
2096 * name - name of directory to be removed.
2097 * cwd - inode of current working directory.
2098 * cr - credentials of caller.
2099 * flags - case flags
2100 *
2101 * RETURN: 0 on success, error code on failure.
2102 *
2103 * Timestamps:
2104 * dip - ctime|mtime updated
2105 */
2106 /*ARGSUSED*/
2107 int
2108 zfs_rmdir(struct inode *dip, char *name, struct inode *cwd, cred_t *cr,
2109 int flags)
2110 {
2111 znode_t *dzp = ITOZ(dip);
2112 znode_t *zp;
2113 struct inode *ip;
2114 zfsvfs_t *zfsvfs = ITOZSB(dip);
2115 zilog_t *zilog;
2116 zfs_dirlock_t *dl;
2117 dmu_tx_t *tx;
2118 int error;
2119 int zflg = ZEXISTS;
2120 boolean_t waited = B_FALSE;
2121
2122 if (name == NULL)
2123 return (SET_ERROR(EINVAL));
2124
2125 ZFS_ENTER(zfsvfs);
2126 ZFS_VERIFY_ZP(dzp);
2127 zilog = zfsvfs->z_log;
2128
2129 if (flags & FIGNORECASE)
2130 zflg |= ZCILOOK;
2131 top:
2132 zp = NULL;
2133
2134 /*
2135 * Attempt to lock directory; fail if entry doesn't exist.
2136 */
2137 if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2138 NULL, NULL))) {
2139 ZFS_EXIT(zfsvfs);
2140 return (error);
2141 }
2142
2143 ip = ZTOI(zp);
2144
2145 if ((error = zfs_zaccess_delete(dzp, zp, cr))) {
2146 goto out;
2147 }
2148
2149 if (!S_ISDIR(ip->i_mode)) {
2150 error = SET_ERROR(ENOTDIR);
2151 goto out;
2152 }
2153
2154 if (ip == cwd) {
2155 error = SET_ERROR(EINVAL);
2156 goto out;
2157 }
2158
2159 /*
2160 * Grab a lock on the directory to make sure that no one is
2161 * trying to add (or lookup) entries while we are removing it.
2162 */
2163 rw_enter(&zp->z_name_lock, RW_WRITER);
2164
2165 /*
2166 * Grab a lock on the parent pointer to make sure we play well
2167 * with the treewalk and directory rename code.
2168 */
2169 rw_enter(&zp->z_parent_lock, RW_WRITER);
2170
2171 tx = dmu_tx_create(zfsvfs->z_os);
2172 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2173 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2174 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2175 zfs_sa_upgrade_txholds(tx, zp);
2176 zfs_sa_upgrade_txholds(tx, dzp);
2177 dmu_tx_mark_netfree(tx);
2178 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
2179 if (error) {
2180 rw_exit(&zp->z_parent_lock);
2181 rw_exit(&zp->z_name_lock);
2182 zfs_dirent_unlock(dl);
2183 if (error == ERESTART) {
2184 waited = B_TRUE;
2185 dmu_tx_wait(tx);
2186 dmu_tx_abort(tx);
2187 iput(ip);
2188 goto top;
2189 }
2190 dmu_tx_abort(tx);
2191 iput(ip);
2192 ZFS_EXIT(zfsvfs);
2193 return (error);
2194 }
2195
2196 error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2197
2198 if (error == 0) {
2199 uint64_t txtype = TX_RMDIR;
2200 if (flags & FIGNORECASE)
2201 txtype |= TX_CI;
2202 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2203 }
2204
2205 dmu_tx_commit(tx);
2206
2207 rw_exit(&zp->z_parent_lock);
2208 rw_exit(&zp->z_name_lock);
2209 out:
2210 zfs_dirent_unlock(dl);
2211
2212 zfs_inode_update(dzp);
2213 zfs_inode_update(zp);
2214 iput(ip);
2215
2216 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2217 zil_commit(zilog, 0);
2218
2219 ZFS_EXIT(zfsvfs);
2220 return (error);
2221 }
2222
2223 /*
2224 * Read as many directory entries as will fit into the provided
2225 * dirent buffer from the given directory cursor position.
2226 *
2227 * IN: ip - inode of directory to read.
2228 * dirent - buffer for directory entries.
2229 *
2230 * OUT: dirent - filler buffer of directory entries.
2231 *
2232 * RETURN: 0 if success
2233 * error code if failure
2234 *
2235 * Timestamps:
2236 * ip - atime updated
2237 *
2238 * Note that the low 4 bits of the cookie returned by zap is always zero.
2239 * This allows us to use the low range for "special" directory entries:
2240 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem,
2241 * we use the offset 2 for the '.zfs' directory.
2242 */
2243 /* ARGSUSED */
2244 int
2245 zfs_readdir(struct inode *ip, zpl_dir_context_t *ctx, cred_t *cr)
2246 {
2247 znode_t *zp = ITOZ(ip);
2248 zfsvfs_t *zfsvfs = ITOZSB(ip);
2249 objset_t *os;
2250 zap_cursor_t zc;
2251 zap_attribute_t zap;
2252 int error;
2253 uint8_t prefetch;
2254 uint8_t type;
2255 int done = 0;
2256 uint64_t parent;
2257 uint64_t offset; /* must be unsigned; checks for < 1 */
2258
2259 ZFS_ENTER(zfsvfs);
2260 ZFS_VERIFY_ZP(zp);
2261
2262 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2263 &parent, sizeof (parent))) != 0)
2264 goto out;
2265
2266 /*
2267 * Quit if directory has been removed (posix)
2268 */
2269 if (zp->z_unlinked)
2270 goto out;
2271
2272 error = 0;
2273 os = zfsvfs->z_os;
2274 offset = ctx->pos;
2275 prefetch = zp->z_zn_prefetch;
2276
2277 /*
2278 * Initialize the iterator cursor.
2279 */
2280 if (offset <= 3) {
2281 /*
2282 * Start iteration from the beginning of the directory.
2283 */
2284 zap_cursor_init(&zc, os, zp->z_id);
2285 } else {
2286 /*
2287 * The offset is a serialized cursor.
2288 */
2289 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2290 }
2291
2292 /*
2293 * Transform to file-system independent format
2294 */
2295 while (!done) {
2296 uint64_t objnum;
2297 /*
2298 * Special case `.', `..', and `.zfs'.
2299 */
2300 if (offset == 0) {
2301 (void) strcpy(zap.za_name, ".");
2302 zap.za_normalization_conflict = 0;
2303 objnum = zp->z_id;
2304 type = DT_DIR;
2305 } else if (offset == 1) {
2306 (void) strcpy(zap.za_name, "..");
2307 zap.za_normalization_conflict = 0;
2308 objnum = parent;
2309 type = DT_DIR;
2310 } else if (offset == 2 && zfs_show_ctldir(zp)) {
2311 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2312 zap.za_normalization_conflict = 0;
2313 objnum = ZFSCTL_INO_ROOT;
2314 type = DT_DIR;
2315 } else {
2316 /*
2317 * Grab next entry.
2318 */
2319 if ((error = zap_cursor_retrieve(&zc, &zap))) {
2320 if (error == ENOENT)
2321 break;
2322 else
2323 goto update;
2324 }
2325
2326 /*
2327 * Allow multiple entries provided the first entry is
2328 * the object id. Non-zpl consumers may safely make
2329 * use of the additional space.
2330 *
2331 * XXX: This should be a feature flag for compatibility
2332 */
2333 if (zap.za_integer_length != 8 ||
2334 zap.za_num_integers == 0) {
2335 cmn_err(CE_WARN, "zap_readdir: bad directory "
2336 "entry, obj = %lld, offset = %lld, "
2337 "length = %d, num = %lld\n",
2338 (u_longlong_t)zp->z_id,
2339 (u_longlong_t)offset,
2340 zap.za_integer_length,
2341 (u_longlong_t)zap.za_num_integers);
2342 error = SET_ERROR(ENXIO);
2343 goto update;
2344 }
2345
2346 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2347 type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2348 }
2349
2350 done = !zpl_dir_emit(ctx, zap.za_name, strlen(zap.za_name),
2351 objnum, type);
2352 if (done)
2353 break;
2354
2355 /* Prefetch znode */
2356 if (prefetch) {
2357 dmu_prefetch(os, objnum, 0, 0, 0,
2358 ZIO_PRIORITY_SYNC_READ);
2359 }
2360
2361 /*
2362 * Move to the next entry, fill in the previous offset.
2363 */
2364 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2365 zap_cursor_advance(&zc);
2366 offset = zap_cursor_serialize(&zc);
2367 } else {
2368 offset += 1;
2369 }
2370 ctx->pos = offset;
2371 }
2372 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2373
2374 update:
2375 zap_cursor_fini(&zc);
2376 if (error == ENOENT)
2377 error = 0;
2378 out:
2379 ZFS_EXIT(zfsvfs);
2380
2381 return (error);
2382 }
2383
2384 ulong_t zfs_fsync_sync_cnt = 4;
2385
2386 int
2387 zfs_fsync(struct inode *ip, int syncflag, cred_t *cr)
2388 {
2389 znode_t *zp = ITOZ(ip);
2390 zfsvfs_t *zfsvfs = ITOZSB(ip);
2391
2392 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2393
2394 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2395 ZFS_ENTER(zfsvfs);
2396 ZFS_VERIFY_ZP(zp);
2397 zil_commit(zfsvfs->z_log, zp->z_id);
2398 ZFS_EXIT(zfsvfs);
2399 }
2400 tsd_set(zfs_fsyncer_key, NULL);
2401
2402 return (0);
2403 }
2404
2405
2406 /*
2407 * Get the requested file attributes and place them in the provided
2408 * vattr structure.
2409 *
2410 * IN: ip - inode of file.
2411 * vap - va_mask identifies requested attributes.
2412 * If ATTR_XVATTR set, then optional attrs are requested
2413 * flags - ATTR_NOACLCHECK (CIFS server context)
2414 * cr - credentials of caller.
2415 *
2416 * OUT: vap - attribute values.
2417 *
2418 * RETURN: 0 (always succeeds)
2419 */
2420 /* ARGSUSED */
2421 int
2422 zfs_getattr(struct inode *ip, vattr_t *vap, int flags, cred_t *cr)
2423 {
2424 znode_t *zp = ITOZ(ip);
2425 zfsvfs_t *zfsvfs = ITOZSB(ip);
2426 int error = 0;
2427 uint64_t links;
2428 uint64_t atime[2], mtime[2], ctime[2];
2429 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2430 xoptattr_t *xoap = NULL;
2431 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2432 sa_bulk_attr_t bulk[3];
2433 int count = 0;
2434
2435 ZFS_ENTER(zfsvfs);
2436 ZFS_VERIFY_ZP(zp);
2437
2438 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2439
2440 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
2441 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2442 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2443
2444 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2445 ZFS_EXIT(zfsvfs);
2446 return (error);
2447 }
2448
2449 /*
2450 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2451 * Also, if we are the owner don't bother, since owner should
2452 * always be allowed to read basic attributes of file.
2453 */
2454 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2455 (vap->va_uid != crgetuid(cr))) {
2456 if ((error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2457 skipaclchk, cr))) {
2458 ZFS_EXIT(zfsvfs);
2459 return (error);
2460 }
2461 }
2462
2463 /*
2464 * Return all attributes. It's cheaper to provide the answer
2465 * than to determine whether we were asked the question.
2466 */
2467
2468 mutex_enter(&zp->z_lock);
2469 vap->va_type = vn_mode_to_vtype(zp->z_mode);
2470 vap->va_mode = zp->z_mode;
2471 vap->va_fsid = ZTOI(zp)->i_sb->s_dev;
2472 vap->va_nodeid = zp->z_id;
2473 if ((zp->z_id == zfsvfs->z_root) && zfs_show_ctldir(zp))
2474 links = ZTOI(zp)->i_nlink + 1;
2475 else
2476 links = ZTOI(zp)->i_nlink;
2477 vap->va_nlink = MIN(links, ZFS_LINK_MAX);
2478 vap->va_size = i_size_read(ip);
2479 vap->va_rdev = ip->i_rdev;
2480 vap->va_seq = ip->i_generation;
2481
2482 /*
2483 * Add in any requested optional attributes and the create time.
2484 * Also set the corresponding bits in the returned attribute bitmap.
2485 */
2486 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2487 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2488 xoap->xoa_archive =
2489 ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2490 XVA_SET_RTN(xvap, XAT_ARCHIVE);
2491 }
2492
2493 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2494 xoap->xoa_readonly =
2495 ((zp->z_pflags & ZFS_READONLY) != 0);
2496 XVA_SET_RTN(xvap, XAT_READONLY);
2497 }
2498
2499 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2500 xoap->xoa_system =
2501 ((zp->z_pflags & ZFS_SYSTEM) != 0);
2502 XVA_SET_RTN(xvap, XAT_SYSTEM);
2503 }
2504
2505 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2506 xoap->xoa_hidden =
2507 ((zp->z_pflags & ZFS_HIDDEN) != 0);
2508 XVA_SET_RTN(xvap, XAT_HIDDEN);
2509 }
2510
2511 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2512 xoap->xoa_nounlink =
2513 ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2514 XVA_SET_RTN(xvap, XAT_NOUNLINK);
2515 }
2516
2517 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2518 xoap->xoa_immutable =
2519 ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2520 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2521 }
2522
2523 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2524 xoap->xoa_appendonly =
2525 ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2526 XVA_SET_RTN(xvap, XAT_APPENDONLY);
2527 }
2528
2529 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2530 xoap->xoa_nodump =
2531 ((zp->z_pflags & ZFS_NODUMP) != 0);
2532 XVA_SET_RTN(xvap, XAT_NODUMP);
2533 }
2534
2535 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2536 xoap->xoa_opaque =
2537 ((zp->z_pflags & ZFS_OPAQUE) != 0);
2538 XVA_SET_RTN(xvap, XAT_OPAQUE);
2539 }
2540
2541 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2542 xoap->xoa_av_quarantined =
2543 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2544 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2545 }
2546
2547 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2548 xoap->xoa_av_modified =
2549 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2550 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2551 }
2552
2553 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2554 S_ISREG(ip->i_mode)) {
2555 zfs_sa_get_scanstamp(zp, xvap);
2556 }
2557
2558 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2559 uint64_t times[2];
2560
2561 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2562 times, sizeof (times));
2563 ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2564 XVA_SET_RTN(xvap, XAT_CREATETIME);
2565 }
2566
2567 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2568 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2569 XVA_SET_RTN(xvap, XAT_REPARSE);
2570 }
2571 if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2572 xoap->xoa_generation = ip->i_generation;
2573 XVA_SET_RTN(xvap, XAT_GEN);
2574 }
2575
2576 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2577 xoap->xoa_offline =
2578 ((zp->z_pflags & ZFS_OFFLINE) != 0);
2579 XVA_SET_RTN(xvap, XAT_OFFLINE);
2580 }
2581
2582 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2583 xoap->xoa_sparse =
2584 ((zp->z_pflags & ZFS_SPARSE) != 0);
2585 XVA_SET_RTN(xvap, XAT_SPARSE);
2586 }
2587
2588 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
2589 xoap->xoa_projinherit =
2590 ((zp->z_pflags & ZFS_PROJINHERIT) != 0);
2591 XVA_SET_RTN(xvap, XAT_PROJINHERIT);
2592 }
2593
2594 if (XVA_ISSET_REQ(xvap, XAT_PROJID)) {
2595 xoap->xoa_projid = zp->z_projid;
2596 XVA_SET_RTN(xvap, XAT_PROJID);
2597 }
2598 }
2599
2600 ZFS_TIME_DECODE(&vap->va_atime, atime);
2601 ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2602 ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2603
2604 mutex_exit(&zp->z_lock);
2605
2606 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2607
2608 if (zp->z_blksz == 0) {
2609 /*
2610 * Block size hasn't been set; suggest maximal I/O transfers.
2611 */
2612 vap->va_blksize = zfsvfs->z_max_blksz;
2613 }
2614
2615 ZFS_EXIT(zfsvfs);
2616 return (0);
2617 }
2618
2619 /*
2620 * Get the basic file attributes and place them in the provided kstat
2621 * structure. The inode is assumed to be the authoritative source
2622 * for most of the attributes. However, the znode currently has the
2623 * authoritative atime, blksize, and block count.
2624 *
2625 * IN: ip - inode of file.
2626 *
2627 * OUT: sp - kstat values.
2628 *
2629 * RETURN: 0 (always succeeds)
2630 */
2631 /* ARGSUSED */
2632 int
2633 zfs_getattr_fast(struct inode *ip, struct kstat *sp)
2634 {
2635 znode_t *zp = ITOZ(ip);
2636 zfsvfs_t *zfsvfs = ITOZSB(ip);
2637 uint32_t blksize;
2638 u_longlong_t nblocks;
2639
2640 ZFS_ENTER(zfsvfs);
2641 ZFS_VERIFY_ZP(zp);
2642
2643 mutex_enter(&zp->z_lock);
2644
2645 generic_fillattr(ip, sp);
2646
2647 sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
2648 sp->blksize = blksize;
2649 sp->blocks = nblocks;
2650
2651 if (unlikely(zp->z_blksz == 0)) {
2652 /*
2653 * Block size hasn't been set; suggest maximal I/O transfers.
2654 */
2655 sp->blksize = zfsvfs->z_max_blksz;
2656 }
2657
2658 mutex_exit(&zp->z_lock);
2659
2660 /*
2661 * Required to prevent NFS client from detecting different inode
2662 * numbers of snapshot root dentry before and after snapshot mount.
2663 */
2664 if (zfsvfs->z_issnap) {
2665 if (ip->i_sb->s_root->d_inode == ip)
2666 sp->ino = ZFSCTL_INO_SNAPDIRS -
2667 dmu_objset_id(zfsvfs->z_os);
2668 }
2669
2670 ZFS_EXIT(zfsvfs);
2671
2672 return (0);
2673 }
2674
2675 /*
2676 * For the operation of changing file's user/group/project, we need to
2677 * handle not only the main object that is assigned to the file directly,
2678 * but also the ones that are used by the file via hidden xattr directory.
2679 *
2680 * Because the xattr directory may contains many EA entries, as to it may
2681 * be impossible to change all of them via the transaction of changing the
2682 * main object's user/group/project attributes. Then we have to change them
2683 * via other multiple independent transactions one by one. It may be not good
2684 * solution, but we have no better idea yet.
2685 */
2686 static int
2687 zfs_setattr_dir(znode_t *dzp)
2688 {
2689 struct inode *dxip = ZTOI(dzp);
2690 struct inode *xip = NULL;
2691 zfsvfs_t *zfsvfs = ITOZSB(dxip);
2692 objset_t *os = zfsvfs->z_os;
2693 zap_cursor_t zc;
2694 zap_attribute_t zap;
2695 zfs_dirlock_t *dl;
2696 znode_t *zp;
2697 dmu_tx_t *tx = NULL;
2698 uint64_t uid, gid;
2699 sa_bulk_attr_t bulk[4];
2700 int count = 0;
2701 int err;
2702
2703 zap_cursor_init(&zc, os, dzp->z_id);
2704 while ((err = zap_cursor_retrieve(&zc, &zap)) == 0) {
2705 if (zap.za_integer_length != 8 || zap.za_num_integers != 1) {
2706 err = ENXIO;
2707 break;
2708 }
2709
2710 err = zfs_dirent_lock(&dl, dzp, (char *)zap.za_name, &zp,
2711 ZEXISTS, NULL, NULL);
2712 if (err == ENOENT)
2713 goto next;
2714 if (err)
2715 break;
2716
2717 xip = ZTOI(zp);
2718 if (KUID_TO_SUID(xip->i_uid) == KUID_TO_SUID(dxip->i_uid) &&
2719 KGID_TO_SGID(xip->i_gid) == KGID_TO_SGID(dxip->i_gid) &&
2720 zp->z_projid == dzp->z_projid)
2721 goto next;
2722
2723 tx = dmu_tx_create(os);
2724 if (!(zp->z_pflags & ZFS_PROJID))
2725 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2726 else
2727 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2728
2729 err = dmu_tx_assign(tx, TXG_WAIT);
2730 if (err)
2731 break;
2732
2733 mutex_enter(&dzp->z_lock);
2734
2735 if (KUID_TO_SUID(xip->i_uid) != KUID_TO_SUID(dxip->i_uid)) {
2736 xip->i_uid = dxip->i_uid;
2737 uid = zfs_uid_read(dxip);
2738 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
2739 &uid, sizeof (uid));
2740 }
2741
2742 if (KGID_TO_SGID(xip->i_gid) != KGID_TO_SGID(dxip->i_gid)) {
2743 xip->i_gid = dxip->i_gid;
2744 gid = zfs_gid_read(dxip);
2745 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
2746 &gid, sizeof (gid));
2747 }
2748
2749 if (zp->z_projid != dzp->z_projid) {
2750 if (!(zp->z_pflags & ZFS_PROJID)) {
2751 zp->z_pflags |= ZFS_PROJID;
2752 SA_ADD_BULK_ATTR(bulk, count,
2753 SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags,
2754 sizeof (zp->z_pflags));
2755 }
2756
2757 zp->z_projid = dzp->z_projid;
2758 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PROJID(zfsvfs),
2759 NULL, &zp->z_projid, sizeof (zp->z_projid));
2760 }
2761
2762 mutex_exit(&dzp->z_lock);
2763
2764 if (likely(count > 0)) {
2765 err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
2766 dmu_tx_commit(tx);
2767 } else {
2768 dmu_tx_abort(tx);
2769 }
2770 tx = NULL;
2771 if (err != 0 && err != ENOENT)
2772 break;
2773
2774 next:
2775 if (xip) {
2776 iput(xip);
2777 xip = NULL;
2778 zfs_dirent_unlock(dl);
2779 }
2780 zap_cursor_advance(&zc);
2781 }
2782
2783 if (tx)
2784 dmu_tx_abort(tx);
2785 if (xip) {
2786 iput(xip);
2787 zfs_dirent_unlock(dl);
2788 }
2789 zap_cursor_fini(&zc);
2790
2791 return (err == ENOENT ? 0 : err);
2792 }
2793
2794 /*
2795 * Set the file attributes to the values contained in the
2796 * vattr structure.
2797 *
2798 * IN: ip - inode of file to be modified.
2799 * vap - new attribute values.
2800 * If ATTR_XVATTR set, then optional attrs are being set
2801 * flags - ATTR_UTIME set if non-default time values provided.
2802 * - ATTR_NOACLCHECK (CIFS context only).
2803 * cr - credentials of caller.
2804 *
2805 * RETURN: 0 if success
2806 * error code if failure
2807 *
2808 * Timestamps:
2809 * ip - ctime updated, mtime updated if size changed.
2810 */
2811 /* ARGSUSED */
2812 int
2813 zfs_setattr(struct inode *ip, vattr_t *vap, int flags, cred_t *cr)
2814 {
2815 znode_t *zp = ITOZ(ip);
2816 zfsvfs_t *zfsvfs = ITOZSB(ip);
2817 objset_t *os = zfsvfs->z_os;
2818 zilog_t *zilog;
2819 dmu_tx_t *tx;
2820 vattr_t oldva;
2821 xvattr_t *tmpxvattr;
2822 uint_t mask = vap->va_mask;
2823 uint_t saved_mask = 0;
2824 int trim_mask = 0;
2825 uint64_t new_mode;
2826 uint64_t new_kuid = 0, new_kgid = 0, new_uid, new_gid;
2827 uint64_t xattr_obj;
2828 uint64_t mtime[2], ctime[2], atime[2];
2829 uint64_t projid = ZFS_INVALID_PROJID;
2830 znode_t *attrzp;
2831 int need_policy = FALSE;
2832 int err, err2 = 0;
2833 zfs_fuid_info_t *fuidp = NULL;
2834 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2835 xoptattr_t *xoap;
2836 zfs_acl_t *aclp;
2837 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2838 boolean_t fuid_dirtied = B_FALSE;
2839 boolean_t handle_eadir = B_FALSE;
2840 sa_bulk_attr_t *bulk, *xattr_bulk;
2841 int count = 0, xattr_count = 0, bulks = 8;
2842
2843 if (mask == 0)
2844 return (0);
2845
2846 ZFS_ENTER(zfsvfs);
2847 ZFS_VERIFY_ZP(zp);
2848
2849 /*
2850 * If this is a xvattr_t, then get a pointer to the structure of
2851 * optional attributes. If this is NULL, then we have a vattr_t.
2852 */
2853 xoap = xva_getxoptattr(xvap);
2854 if (xoap != NULL && (mask & ATTR_XVATTR)) {
2855 if (XVA_ISSET_REQ(xvap, XAT_PROJID)) {
2856 if (!dmu_objset_projectquota_enabled(os) ||
2857 (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode))) {
2858 ZFS_EXIT(zfsvfs);
2859 return (SET_ERROR(ENOTSUP));
2860 }
2861
2862 projid = xoap->xoa_projid;
2863 if (unlikely(projid == ZFS_INVALID_PROJID)) {
2864 ZFS_EXIT(zfsvfs);
2865 return (SET_ERROR(EINVAL));
2866 }
2867
2868 if (projid == zp->z_projid && zp->z_pflags & ZFS_PROJID)
2869 projid = ZFS_INVALID_PROJID;
2870 else
2871 need_policy = TRUE;
2872 }
2873
2874 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT) &&
2875 (xoap->xoa_projinherit !=
2876 ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) &&
2877 (!dmu_objset_projectquota_enabled(os) ||
2878 (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode)))) {
2879 ZFS_EXIT(zfsvfs);
2880 return (SET_ERROR(ENOTSUP));
2881 }
2882 }
2883
2884 zilog = zfsvfs->z_log;
2885
2886 /*
2887 * Make sure that if we have ephemeral uid/gid or xvattr specified
2888 * that file system is at proper version level
2889 */
2890
2891 if (zfsvfs->z_use_fuids == B_FALSE &&
2892 (((mask & ATTR_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2893 ((mask & ATTR_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2894 (mask & ATTR_XVATTR))) {
2895 ZFS_EXIT(zfsvfs);
2896 return (SET_ERROR(EINVAL));
2897 }
2898
2899 if (mask & ATTR_SIZE && S_ISDIR(ip->i_mode)) {
2900 ZFS_EXIT(zfsvfs);
2901 return (SET_ERROR(EISDIR));
2902 }
2903
2904 if (mask & ATTR_SIZE && !S_ISREG(ip->i_mode) && !S_ISFIFO(ip->i_mode)) {
2905 ZFS_EXIT(zfsvfs);
2906 return (SET_ERROR(EINVAL));
2907 }
2908
2909 tmpxvattr = kmem_alloc(sizeof (xvattr_t), KM_SLEEP);
2910 xva_init(tmpxvattr);
2911
2912 bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
2913 xattr_bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
2914
2915 /*
2916 * Immutable files can only alter immutable bit and atime
2917 */
2918 if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2919 ((mask & (ATTR_SIZE|ATTR_UID|ATTR_GID|ATTR_MTIME|ATTR_MODE)) ||
2920 ((mask & ATTR_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2921 err = SET_ERROR(EPERM);
2922 goto out3;
2923 }
2924
2925 if ((mask & ATTR_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2926 err = SET_ERROR(EPERM);
2927 goto out3;
2928 }
2929
2930 /*
2931 * Verify timestamps doesn't overflow 32 bits.
2932 * ZFS can handle large timestamps, but 32bit syscalls can't
2933 * handle times greater than 2039. This check should be removed
2934 * once large timestamps are fully supported.
2935 */
2936 if (mask & (ATTR_ATIME | ATTR_MTIME)) {
2937 if (((mask & ATTR_ATIME) &&
2938 TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2939 ((mask & ATTR_MTIME) &&
2940 TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2941 err = SET_ERROR(EOVERFLOW);
2942 goto out3;
2943 }
2944 }
2945
2946 top:
2947 attrzp = NULL;
2948 aclp = NULL;
2949
2950 /* Can this be moved to before the top label? */
2951 if (zfs_is_readonly(zfsvfs)) {
2952 err = SET_ERROR(EROFS);
2953 goto out3;
2954 }
2955
2956 /*
2957 * First validate permissions
2958 */
2959
2960 if (mask & ATTR_SIZE) {
2961 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2962 if (err)
2963 goto out3;
2964
2965 /*
2966 * XXX - Note, we are not providing any open
2967 * mode flags here (like FNDELAY), so we may
2968 * block if there are locks present... this
2969 * should be addressed in openat().
2970 */
2971 /* XXX - would it be OK to generate a log record here? */
2972 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2973 if (err)
2974 goto out3;
2975 }
2976
2977 if (mask & (ATTR_ATIME|ATTR_MTIME) ||
2978 ((mask & ATTR_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2979 XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2980 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2981 XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2982 XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2983 XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2984 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2985 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2986 skipaclchk, cr);
2987 }
2988
2989 if (mask & (ATTR_UID|ATTR_GID)) {
2990 int idmask = (mask & (ATTR_UID|ATTR_GID));
2991 int take_owner;
2992 int take_group;
2993
2994 /*
2995 * NOTE: even if a new mode is being set,
2996 * we may clear S_ISUID/S_ISGID bits.
2997 */
2998
2999 if (!(mask & ATTR_MODE))
3000 vap->va_mode = zp->z_mode;
3001
3002 /*
3003 * Take ownership or chgrp to group we are a member of
3004 */
3005
3006 take_owner = (mask & ATTR_UID) && (vap->va_uid == crgetuid(cr));
3007 take_group = (mask & ATTR_GID) &&
3008 zfs_groupmember(zfsvfs, vap->va_gid, cr);
3009
3010 /*
3011 * If both ATTR_UID and ATTR_GID are set then take_owner and
3012 * take_group must both be set in order to allow taking
3013 * ownership.
3014 *
3015 * Otherwise, send the check through secpolicy_vnode_setattr()
3016 *
3017 */
3018
3019 if (((idmask == (ATTR_UID|ATTR_GID)) &&
3020 take_owner && take_group) ||
3021 ((idmask == ATTR_UID) && take_owner) ||
3022 ((idmask == ATTR_GID) && take_group)) {
3023 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
3024 skipaclchk, cr) == 0) {
3025 /*
3026 * Remove setuid/setgid for non-privileged users
3027 */
3028 (void) secpolicy_setid_clear(vap, cr);
3029 trim_mask = (mask & (ATTR_UID|ATTR_GID));
3030 } else {
3031 need_policy = TRUE;
3032 }
3033 } else {
3034 need_policy = TRUE;
3035 }
3036 }
3037
3038 mutex_enter(&zp->z_lock);
3039 oldva.va_mode = zp->z_mode;
3040 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
3041 if (mask & ATTR_XVATTR) {
3042 /*
3043 * Update xvattr mask to include only those attributes
3044 * that are actually changing.
3045 *
3046 * the bits will be restored prior to actually setting
3047 * the attributes so the caller thinks they were set.
3048 */
3049 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
3050 if (xoap->xoa_appendonly !=
3051 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
3052 need_policy = TRUE;
3053 } else {
3054 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
3055 XVA_SET_REQ(tmpxvattr, XAT_APPENDONLY);
3056 }
3057 }
3058
3059 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
3060 if (xoap->xoa_projinherit !=
3061 ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) {
3062 need_policy = TRUE;
3063 } else {
3064 XVA_CLR_REQ(xvap, XAT_PROJINHERIT);
3065 XVA_SET_REQ(tmpxvattr, XAT_PROJINHERIT);
3066 }
3067 }
3068
3069 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
3070 if (xoap->xoa_nounlink !=
3071 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
3072 need_policy = TRUE;
3073 } else {
3074 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
3075 XVA_SET_REQ(tmpxvattr, XAT_NOUNLINK);
3076 }
3077 }
3078
3079 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
3080 if (xoap->xoa_immutable !=
3081 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
3082 need_policy = TRUE;
3083 } else {
3084 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
3085 XVA_SET_REQ(tmpxvattr, XAT_IMMUTABLE);
3086 }
3087 }
3088
3089 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
3090 if (xoap->xoa_nodump !=
3091 ((zp->z_pflags & ZFS_NODUMP) != 0)) {
3092 need_policy = TRUE;
3093 } else {
3094 XVA_CLR_REQ(xvap, XAT_NODUMP);
3095 XVA_SET_REQ(tmpxvattr, XAT_NODUMP);
3096 }
3097 }
3098
3099 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
3100 if (xoap->xoa_av_modified !=
3101 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
3102 need_policy = TRUE;
3103 } else {
3104 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
3105 XVA_SET_REQ(tmpxvattr, XAT_AV_MODIFIED);
3106 }
3107 }
3108
3109 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
3110 if ((!S_ISREG(ip->i_mode) &&
3111 xoap->xoa_av_quarantined) ||
3112 xoap->xoa_av_quarantined !=
3113 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
3114 need_policy = TRUE;
3115 } else {
3116 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
3117 XVA_SET_REQ(tmpxvattr, XAT_AV_QUARANTINED);
3118 }
3119 }
3120
3121 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
3122 mutex_exit(&zp->z_lock);
3123 err = SET_ERROR(EPERM);
3124 goto out3;
3125 }
3126
3127 if (need_policy == FALSE &&
3128 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
3129 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
3130 need_policy = TRUE;
3131 }
3132 }
3133
3134 mutex_exit(&zp->z_lock);
3135
3136 if (mask & ATTR_MODE) {
3137 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
3138 err = secpolicy_setid_setsticky_clear(ip, vap,
3139 &oldva, cr);
3140 if (err)
3141 goto out3;
3142
3143 trim_mask |= ATTR_MODE;
3144 } else {
3145 need_policy = TRUE;
3146 }
3147 }
3148
3149 if (need_policy) {
3150 /*
3151 * If trim_mask is set then take ownership
3152 * has been granted or write_acl is present and user
3153 * has the ability to modify mode. In that case remove
3154 * UID|GID and or MODE from mask so that
3155 * secpolicy_vnode_setattr() doesn't revoke it.
3156 */
3157
3158 if (trim_mask) {
3159 saved_mask = vap->va_mask;
3160 vap->va_mask &= ~trim_mask;
3161 }
3162 err = secpolicy_vnode_setattr(cr, ip, vap, &oldva, flags,
3163 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
3164 if (err)
3165 goto out3;
3166
3167 if (trim_mask)
3168 vap->va_mask |= saved_mask;
3169 }
3170
3171 /*
3172 * secpolicy_vnode_setattr, or take ownership may have
3173 * changed va_mask
3174 */
3175 mask = vap->va_mask;
3176
3177 if ((mask & (ATTR_UID | ATTR_GID)) || projid != ZFS_INVALID_PROJID) {
3178 handle_eadir = B_TRUE;
3179 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
3180 &xattr_obj, sizeof (xattr_obj));
3181
3182 if (err == 0 && xattr_obj) {
3183 err = zfs_zget(ZTOZSB(zp), xattr_obj, &attrzp);
3184 if (err)
3185 goto out2;
3186 }
3187 if (mask & ATTR_UID) {
3188 new_kuid = zfs_fuid_create(zfsvfs,
3189 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3190 if (new_kuid != KUID_TO_SUID(ZTOI(zp)->i_uid) &&
3191 zfs_id_overquota(zfsvfs, DMU_USERUSED_OBJECT,
3192 new_kuid)) {
3193 if (attrzp)
3194 iput(ZTOI(attrzp));
3195 err = SET_ERROR(EDQUOT);
3196 goto out2;
3197 }
3198 }
3199
3200 if (mask & ATTR_GID) {
3201 new_kgid = zfs_fuid_create(zfsvfs,
3202 (uint64_t)vap->va_gid, cr, ZFS_GROUP, &fuidp);
3203 if (new_kgid != KGID_TO_SGID(ZTOI(zp)->i_gid) &&
3204 zfs_id_overquota(zfsvfs, DMU_GROUPUSED_OBJECT,
3205 new_kgid)) {
3206 if (attrzp)
3207 iput(ZTOI(attrzp));
3208 err = SET_ERROR(EDQUOT);
3209 goto out2;
3210 }
3211 }
3212
3213 if (projid != ZFS_INVALID_PROJID &&
3214 zfs_id_overquota(zfsvfs, DMU_PROJECTUSED_OBJECT, projid)) {
3215 if (attrzp)
3216 iput(ZTOI(attrzp));
3217 err = EDQUOT;
3218 goto out2;
3219 }
3220 }
3221 tx = dmu_tx_create(os);
3222
3223 if (mask & ATTR_MODE) {
3224 uint64_t pmode = zp->z_mode;
3225 uint64_t acl_obj;
3226 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3227
3228 zfs_acl_chmod_setattr(zp, &aclp, new_mode);
3229
3230 mutex_enter(&zp->z_lock);
3231 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3232 /*
3233 * Are we upgrading ACL from old V0 format
3234 * to V1 format?
3235 */
3236 if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3237 zfs_znode_acl_version(zp) ==
3238 ZFS_ACL_VERSION_INITIAL) {
3239 dmu_tx_hold_free(tx, acl_obj, 0,
3240 DMU_OBJECT_END);
3241 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3242 0, aclp->z_acl_bytes);
3243 } else {
3244 dmu_tx_hold_write(tx, acl_obj, 0,
3245 aclp->z_acl_bytes);
3246 }
3247 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3248 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3249 0, aclp->z_acl_bytes);
3250 }
3251 mutex_exit(&zp->z_lock);
3252 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3253 } else {
3254 if (((mask & ATTR_XVATTR) &&
3255 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) ||
3256 (projid != ZFS_INVALID_PROJID &&
3257 !(zp->z_pflags & ZFS_PROJID)))
3258 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3259 else
3260 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3261 }
3262
3263 if (attrzp) {
3264 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3265 }
3266
3267 fuid_dirtied = zfsvfs->z_fuid_dirty;
3268 if (fuid_dirtied)
3269 zfs_fuid_txhold(zfsvfs, tx);
3270
3271 zfs_sa_upgrade_txholds(tx, zp);
3272
3273 err = dmu_tx_assign(tx, TXG_WAIT);
3274 if (err)
3275 goto out;
3276
3277 count = 0;
3278 /*
3279 * Set each attribute requested.
3280 * We group settings according to the locks they need to acquire.
3281 *
3282 * Note: you cannot set ctime directly, although it will be
3283 * updated as a side-effect of calling this function.
3284 */
3285
3286 if (projid != ZFS_INVALID_PROJID && !(zp->z_pflags & ZFS_PROJID)) {
3287 /*
3288 * For the existed object that is upgraded from old system,
3289 * its on-disk layout has no slot for the project ID attribute.
3290 * But quota accounting logic needs to access related slots by
3291 * offset directly. So we need to adjust old objects' layout
3292 * to make the project ID to some unified and fixed offset.
3293 */
3294 if (attrzp)
3295 err = sa_add_projid(attrzp->z_sa_hdl, tx, projid);
3296 if (err == 0)
3297 err = sa_add_projid(zp->z_sa_hdl, tx, projid);
3298
3299 if (unlikely(err == EEXIST))
3300 err = 0;
3301 else if (err != 0)
3302 goto out;
3303 else
3304 projid = ZFS_INVALID_PROJID;
3305 }
3306
3307 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
3308 mutex_enter(&zp->z_acl_lock);
3309 mutex_enter(&zp->z_lock);
3310
3311 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3312 &zp->z_pflags, sizeof (zp->z_pflags));
3313
3314 if (attrzp) {
3315 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
3316 mutex_enter(&attrzp->z_acl_lock);
3317 mutex_enter(&attrzp->z_lock);
3318 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3319 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3320 sizeof (attrzp->z_pflags));
3321 if (projid != ZFS_INVALID_PROJID) {
3322 attrzp->z_projid = projid;
3323 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3324 SA_ZPL_PROJID(zfsvfs), NULL, &attrzp->z_projid,
3325 sizeof (attrzp->z_projid));
3326 }
3327 }
3328
3329 if (mask & (ATTR_UID|ATTR_GID)) {
3330
3331 if (mask & ATTR_UID) {
3332 ZTOI(zp)->i_uid = SUID_TO_KUID(new_kuid);
3333 new_uid = zfs_uid_read(ZTOI(zp));
3334 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3335 &new_uid, sizeof (new_uid));
3336 if (attrzp) {
3337 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3338 SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3339 sizeof (new_uid));
3340 ZTOI(attrzp)->i_uid = SUID_TO_KUID(new_uid);
3341 }
3342 }
3343
3344 if (mask & ATTR_GID) {
3345 ZTOI(zp)->i_gid = SGID_TO_KGID(new_kgid);
3346 new_gid = zfs_gid_read(ZTOI(zp));
3347 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3348 NULL, &new_gid, sizeof (new_gid));
3349 if (attrzp) {
3350 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3351 SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3352 sizeof (new_gid));
3353 ZTOI(attrzp)->i_gid = SGID_TO_KGID(new_kgid);
3354 }
3355 }
3356 if (!(mask & ATTR_MODE)) {
3357 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3358 NULL, &new_mode, sizeof (new_mode));
3359 new_mode = zp->z_mode;
3360 }
3361 err = zfs_acl_chown_setattr(zp);
3362 ASSERT(err == 0);
3363 if (attrzp) {
3364 err = zfs_acl_chown_setattr(attrzp);
3365 ASSERT(err == 0);
3366 }
3367 }
3368
3369 if (mask & ATTR_MODE) {
3370 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3371 &new_mode, sizeof (new_mode));
3372 zp->z_mode = ZTOI(zp)->i_mode = new_mode;
3373 ASSERT3P(aclp, !=, NULL);
3374 err = zfs_aclset_common(zp, aclp, cr, tx);
3375 ASSERT0(err);
3376 if (zp->z_acl_cached)
3377 zfs_acl_free(zp->z_acl_cached);
3378 zp->z_acl_cached = aclp;
3379 aclp = NULL;
3380 }
3381
3382 if ((mask & ATTR_ATIME) || zp->z_atime_dirty) {
3383 zp->z_atime_dirty = 0;
3384 ZFS_TIME_ENCODE(&ip->i_atime, atime);
3385 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3386 &atime, sizeof (atime));
3387 }
3388
3389 if (mask & (ATTR_MTIME | ATTR_SIZE)) {
3390 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3391 ZTOI(zp)->i_mtime = zpl_inode_timespec_trunc(vap->va_mtime,
3392 ZTOI(zp)->i_sb->s_time_gran);
3393
3394 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3395 mtime, sizeof (mtime));
3396 }
3397
3398 if (mask & (ATTR_CTIME | ATTR_SIZE)) {
3399 ZFS_TIME_ENCODE(&vap->va_ctime, ctime);
3400 ZTOI(zp)->i_ctime = zpl_inode_timespec_trunc(vap->va_ctime,
3401 ZTOI(zp)->i_sb->s_time_gran);
3402 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3403 ctime, sizeof (ctime));
3404 }
3405
3406 if (projid != ZFS_INVALID_PROJID) {
3407 zp->z_projid = projid;
3408 SA_ADD_BULK_ATTR(bulk, count,
3409 SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid,
3410 sizeof (zp->z_projid));
3411 }
3412
3413 if (attrzp && mask) {
3414 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3415 SA_ZPL_CTIME(zfsvfs), NULL, &ctime,
3416 sizeof (ctime));
3417 }
3418
3419 /*
3420 * Do this after setting timestamps to prevent timestamp
3421 * update from toggling bit
3422 */
3423
3424 if (xoap && (mask & ATTR_XVATTR)) {
3425
3426 /*
3427 * restore trimmed off masks
3428 * so that return masks can be set for caller.
3429 */
3430
3431 if (XVA_ISSET_REQ(tmpxvattr, XAT_APPENDONLY)) {
3432 XVA_SET_REQ(xvap, XAT_APPENDONLY);
3433 }
3434 if (XVA_ISSET_REQ(tmpxvattr, XAT_NOUNLINK)) {
3435 XVA_SET_REQ(xvap, XAT_NOUNLINK);
3436 }
3437 if (XVA_ISSET_REQ(tmpxvattr, XAT_IMMUTABLE)) {
3438 XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3439 }
3440 if (XVA_ISSET_REQ(tmpxvattr, XAT_NODUMP)) {
3441 XVA_SET_REQ(xvap, XAT_NODUMP);
3442 }
3443 if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_MODIFIED)) {
3444 XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3445 }
3446 if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_QUARANTINED)) {
3447 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3448 }
3449 if (XVA_ISSET_REQ(tmpxvattr, XAT_PROJINHERIT)) {
3450 XVA_SET_REQ(xvap, XAT_PROJINHERIT);
3451 }
3452
3453 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3454 ASSERT(S_ISREG(ip->i_mode));
3455
3456 zfs_xvattr_set(zp, xvap, tx);
3457 }
3458
3459 if (fuid_dirtied)
3460 zfs_fuid_sync(zfsvfs, tx);
3461
3462 if (mask != 0)
3463 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3464
3465 mutex_exit(&zp->z_lock);
3466 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
3467 mutex_exit(&zp->z_acl_lock);
3468
3469 if (attrzp) {
3470 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
3471 mutex_exit(&attrzp->z_acl_lock);
3472 mutex_exit(&attrzp->z_lock);
3473 }
3474 out:
3475 if (err == 0 && xattr_count > 0) {
3476 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3477 xattr_count, tx);
3478 ASSERT(err2 == 0);
3479 }
3480
3481 if (aclp)
3482 zfs_acl_free(aclp);
3483
3484 if (fuidp) {
3485 zfs_fuid_info_free(fuidp);
3486 fuidp = NULL;
3487 }
3488
3489 if (err) {
3490 dmu_tx_abort(tx);
3491 if (attrzp)
3492 iput(ZTOI(attrzp));
3493 if (err == ERESTART)
3494 goto top;
3495 } else {
3496 if (count > 0)
3497 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3498 dmu_tx_commit(tx);
3499 if (attrzp) {
3500 if (err2 == 0 && handle_eadir)
3501 err2 = zfs_setattr_dir(attrzp);
3502 iput(ZTOI(attrzp));
3503 }
3504 zfs_inode_update(zp);
3505 }
3506
3507 out2:
3508 if (os->os_sync == ZFS_SYNC_ALWAYS)
3509 zil_commit(zilog, 0);
3510
3511 out3:
3512 kmem_free(xattr_bulk, sizeof (sa_bulk_attr_t) * bulks);
3513 kmem_free(bulk, sizeof (sa_bulk_attr_t) * bulks);
3514 kmem_free(tmpxvattr, sizeof (xvattr_t));
3515 ZFS_EXIT(zfsvfs);
3516 return (err);
3517 }
3518
3519 typedef struct zfs_zlock {
3520 krwlock_t *zl_rwlock; /* lock we acquired */
3521 znode_t *zl_znode; /* znode we held */
3522 struct zfs_zlock *zl_next; /* next in list */
3523 } zfs_zlock_t;
3524
3525 /*
3526 * Drop locks and release vnodes that were held by zfs_rename_lock().
3527 */
3528 static void
3529 zfs_rename_unlock(zfs_zlock_t **zlpp)
3530 {
3531 zfs_zlock_t *zl;
3532
3533 while ((zl = *zlpp) != NULL) {
3534 if (zl->zl_znode != NULL)
3535 zfs_iput_async(ZTOI(zl->zl_znode));
3536 rw_exit(zl->zl_rwlock);
3537 *zlpp = zl->zl_next;
3538 kmem_free(zl, sizeof (*zl));
3539 }
3540 }
3541
3542 /*
3543 * Search back through the directory tree, using the ".." entries.
3544 * Lock each directory in the chain to prevent concurrent renames.
3545 * Fail any attempt to move a directory into one of its own descendants.
3546 * XXX - z_parent_lock can overlap with map or grow locks
3547 */
3548 static int
3549 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3550 {
3551 zfs_zlock_t *zl;
3552 znode_t *zp = tdzp;
3553 uint64_t rootid = ZTOZSB(zp)->z_root;
3554 uint64_t oidp = zp->z_id;
3555 krwlock_t *rwlp = &szp->z_parent_lock;
3556 krw_t rw = RW_WRITER;
3557
3558 /*
3559 * First pass write-locks szp and compares to zp->z_id.
3560 * Later passes read-lock zp and compare to zp->z_parent.
3561 */
3562 do {
3563 if (!rw_tryenter(rwlp, rw)) {
3564 /*
3565 * Another thread is renaming in this path.
3566 * Note that if we are a WRITER, we don't have any
3567 * parent_locks held yet.
3568 */
3569 if (rw == RW_READER && zp->z_id > szp->z_id) {
3570 /*
3571 * Drop our locks and restart
3572 */
3573 zfs_rename_unlock(&zl);
3574 *zlpp = NULL;
3575 zp = tdzp;
3576 oidp = zp->z_id;
3577 rwlp = &szp->z_parent_lock;
3578 rw = RW_WRITER;
3579 continue;
3580 } else {
3581 /*
3582 * Wait for other thread to drop its locks
3583 */
3584 rw_enter(rwlp, rw);
3585 }
3586 }
3587
3588 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3589 zl->zl_rwlock = rwlp;
3590 zl->zl_znode = NULL;
3591 zl->zl_next = *zlpp;
3592 *zlpp = zl;
3593
3594 if (oidp == szp->z_id) /* We're a descendant of szp */
3595 return (SET_ERROR(EINVAL));
3596
3597 if (oidp == rootid) /* We've hit the top */
3598 return (0);
3599
3600 if (rw == RW_READER) { /* i.e. not the first pass */
3601 int error = zfs_zget(ZTOZSB(zp), oidp, &zp);
3602 if (error)
3603 return (error);
3604 zl->zl_znode = zp;
3605 }
3606 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(ZTOZSB(zp)),
3607 &oidp, sizeof (oidp));
3608 rwlp = &zp->z_parent_lock;
3609 rw = RW_READER;
3610
3611 } while (zp->z_id != sdzp->z_id);
3612
3613 return (0);
3614 }
3615
3616 /*
3617 * Move an entry from the provided source directory to the target
3618 * directory. Change the entry name as indicated.
3619 *
3620 * IN: sdip - Source directory containing the "old entry".
3621 * snm - Old entry name.
3622 * tdip - Target directory to contain the "new entry".
3623 * tnm - New entry name.
3624 * cr - credentials of caller.
3625 * flags - case flags
3626 *
3627 * RETURN: 0 on success, error code on failure.
3628 *
3629 * Timestamps:
3630 * sdip,tdip - ctime|mtime updated
3631 */
3632 /*ARGSUSED*/
3633 int
3634 zfs_rename(struct inode *sdip, char *snm, struct inode *tdip, char *tnm,
3635 cred_t *cr, int flags)
3636 {
3637 znode_t *tdzp, *szp, *tzp;
3638 znode_t *sdzp = ITOZ(sdip);
3639 zfsvfs_t *zfsvfs = ITOZSB(sdip);
3640 zilog_t *zilog;
3641 zfs_dirlock_t *sdl, *tdl;
3642 dmu_tx_t *tx;
3643 zfs_zlock_t *zl;
3644 int cmp, serr, terr;
3645 int error = 0;
3646 int zflg = 0;
3647 boolean_t waited = B_FALSE;
3648
3649 if (snm == NULL || tnm == NULL)
3650 return (SET_ERROR(EINVAL));
3651
3652 ZFS_ENTER(zfsvfs);
3653 ZFS_VERIFY_ZP(sdzp);
3654 zilog = zfsvfs->z_log;
3655
3656 tdzp = ITOZ(tdip);
3657 ZFS_VERIFY_ZP(tdzp);
3658
3659 /*
3660 * We check i_sb because snapshots and the ctldir must have different
3661 * super blocks.
3662 */
3663 if (tdip->i_sb != sdip->i_sb || zfsctl_is_node(tdip)) {
3664 ZFS_EXIT(zfsvfs);
3665 return (SET_ERROR(EXDEV));
3666 }
3667
3668 if (zfsvfs->z_utf8 && u8_validate(tnm,
3669 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3670 ZFS_EXIT(zfsvfs);
3671 return (SET_ERROR(EILSEQ));
3672 }
3673
3674 if (flags & FIGNORECASE)
3675 zflg |= ZCILOOK;
3676
3677 top:
3678 szp = NULL;
3679 tzp = NULL;
3680 zl = NULL;
3681
3682 /*
3683 * This is to prevent the creation of links into attribute space
3684 * by renaming a linked file into/outof an attribute directory.
3685 * See the comment in zfs_link() for why this is considered bad.
3686 */
3687 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3688 ZFS_EXIT(zfsvfs);
3689 return (SET_ERROR(EINVAL));
3690 }
3691
3692 /*
3693 * Lock source and target directory entries. To prevent deadlock,
3694 * a lock ordering must be defined. We lock the directory with
3695 * the smallest object id first, or if it's a tie, the one with
3696 * the lexically first name.
3697 */
3698 if (sdzp->z_id < tdzp->z_id) {
3699 cmp = -1;
3700 } else if (sdzp->z_id > tdzp->z_id) {
3701 cmp = 1;
3702 } else {
3703 /*
3704 * First compare the two name arguments without
3705 * considering any case folding.
3706 */
3707 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3708
3709 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3710 ASSERT(error == 0 || !zfsvfs->z_utf8);
3711 if (cmp == 0) {
3712 /*
3713 * POSIX: "If the old argument and the new argument
3714 * both refer to links to the same existing file,
3715 * the rename() function shall return successfully
3716 * and perform no other action."
3717 */
3718 ZFS_EXIT(zfsvfs);
3719 return (0);
3720 }
3721 /*
3722 * If the file system is case-folding, then we may
3723 * have some more checking to do. A case-folding file
3724 * system is either supporting mixed case sensitivity
3725 * access or is completely case-insensitive. Note
3726 * that the file system is always case preserving.
3727 *
3728 * In mixed sensitivity mode case sensitive behavior
3729 * is the default. FIGNORECASE must be used to
3730 * explicitly request case insensitive behavior.
3731 *
3732 * If the source and target names provided differ only
3733 * by case (e.g., a request to rename 'tim' to 'Tim'),
3734 * we will treat this as a special case in the
3735 * case-insensitive mode: as long as the source name
3736 * is an exact match, we will allow this to proceed as
3737 * a name-change request.
3738 */
3739 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3740 (zfsvfs->z_case == ZFS_CASE_MIXED &&
3741 flags & FIGNORECASE)) &&
3742 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3743 &error) == 0) {
3744 /*
3745 * case preserving rename request, require exact
3746 * name matches
3747 */
3748 zflg |= ZCIEXACT;
3749 zflg &= ~ZCILOOK;
3750 }
3751 }
3752
3753 /*
3754 * If the source and destination directories are the same, we should
3755 * grab the z_name_lock of that directory only once.
3756 */
3757 if (sdzp == tdzp) {
3758 zflg |= ZHAVELOCK;
3759 rw_enter(&sdzp->z_name_lock, RW_READER);
3760 }
3761
3762 if (cmp < 0) {
3763 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3764 ZEXISTS | zflg, NULL, NULL);
3765 terr = zfs_dirent_lock(&tdl,
3766 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3767 } else {
3768 terr = zfs_dirent_lock(&tdl,
3769 tdzp, tnm, &tzp, zflg, NULL, NULL);
3770 serr = zfs_dirent_lock(&sdl,
3771 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3772 NULL, NULL);
3773 }
3774
3775 if (serr) {
3776 /*
3777 * Source entry invalid or not there.
3778 */
3779 if (!terr) {
3780 zfs_dirent_unlock(tdl);
3781 if (tzp)
3782 iput(ZTOI(tzp));
3783 }
3784
3785 if (sdzp == tdzp)
3786 rw_exit(&sdzp->z_name_lock);
3787
3788 if (strcmp(snm, "..") == 0)
3789 serr = EINVAL;
3790 ZFS_EXIT(zfsvfs);
3791 return (serr);
3792 }
3793 if (terr) {
3794 zfs_dirent_unlock(sdl);
3795 iput(ZTOI(szp));
3796
3797 if (sdzp == tdzp)
3798 rw_exit(&sdzp->z_name_lock);
3799
3800 if (strcmp(tnm, "..") == 0)
3801 terr = EINVAL;
3802 ZFS_EXIT(zfsvfs);
3803 return (terr);
3804 }
3805
3806 /*
3807 * If we are using project inheritance, means if the directory has
3808 * ZFS_PROJINHERIT set, then its descendant directories will inherit
3809 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
3810 * such case, we only allow renames into our tree when the project
3811 * IDs are the same.
3812 */
3813 if (tdzp->z_pflags & ZFS_PROJINHERIT &&
3814 tdzp->z_projid != szp->z_projid) {
3815 error = SET_ERROR(EXDEV);
3816 goto out;
3817 }
3818
3819 /*
3820 * Must have write access at the source to remove the old entry
3821 * and write access at the target to create the new entry.
3822 * Note that if target and source are the same, this can be
3823 * done in a single check.
3824 */
3825
3826 if ((error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)))
3827 goto out;
3828
3829 if (S_ISDIR(ZTOI(szp)->i_mode)) {
3830 /*
3831 * Check to make sure rename is valid.
3832 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3833 */
3834 if ((error = zfs_rename_lock(szp, tdzp, sdzp, &zl)))
3835 goto out;
3836 }
3837
3838 /*
3839 * Does target exist?
3840 */
3841 if (tzp) {
3842 /*
3843 * Source and target must be the same type.
3844 */
3845 if (S_ISDIR(ZTOI(szp)->i_mode)) {
3846 if (!S_ISDIR(ZTOI(tzp)->i_mode)) {
3847 error = SET_ERROR(ENOTDIR);
3848 goto out;
3849 }
3850 } else {
3851 if (S_ISDIR(ZTOI(tzp)->i_mode)) {
3852 error = SET_ERROR(EISDIR);
3853 goto out;
3854 }
3855 }
3856 /*
3857 * POSIX dictates that when the source and target
3858 * entries refer to the same file object, rename
3859 * must do nothing and exit without error.
3860 */
3861 if (szp->z_id == tzp->z_id) {
3862 error = 0;
3863 goto out;
3864 }
3865 }
3866
3867 tx = dmu_tx_create(zfsvfs->z_os);
3868 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3869 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3870 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3871 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3872 if (sdzp != tdzp) {
3873 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3874 zfs_sa_upgrade_txholds(tx, tdzp);
3875 }
3876 if (tzp) {
3877 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3878 zfs_sa_upgrade_txholds(tx, tzp);
3879 }
3880
3881 zfs_sa_upgrade_txholds(tx, szp);
3882 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3883 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3884 if (error) {
3885 if (zl != NULL)
3886 zfs_rename_unlock(&zl);
3887 zfs_dirent_unlock(sdl);
3888 zfs_dirent_unlock(tdl);
3889
3890 if (sdzp == tdzp)
3891 rw_exit(&sdzp->z_name_lock);
3892
3893 if (error == ERESTART) {
3894 waited = B_TRUE;
3895 dmu_tx_wait(tx);
3896 dmu_tx_abort(tx);
3897 iput(ZTOI(szp));
3898 if (tzp)
3899 iput(ZTOI(tzp));
3900 goto top;
3901 }
3902 dmu_tx_abort(tx);
3903 iput(ZTOI(szp));
3904 if (tzp)
3905 iput(ZTOI(tzp));
3906 ZFS_EXIT(zfsvfs);
3907 return (error);
3908 }
3909
3910 if (tzp) /* Attempt to remove the existing target */
3911 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3912
3913 if (error == 0) {
3914 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3915 if (error == 0) {
3916 szp->z_pflags |= ZFS_AV_MODIFIED;
3917 if (tdzp->z_pflags & ZFS_PROJINHERIT)
3918 szp->z_pflags |= ZFS_PROJINHERIT;
3919
3920 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3921 (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3922 ASSERT0(error);
3923
3924 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3925 if (error == 0) {
3926 zfs_log_rename(zilog, tx, TX_RENAME |
3927 (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3928 sdl->dl_name, tdzp, tdl->dl_name, szp);
3929 } else {
3930 /*
3931 * At this point, we have successfully created
3932 * the target name, but have failed to remove
3933 * the source name. Since the create was done
3934 * with the ZRENAMING flag, there are
3935 * complications; for one, the link count is
3936 * wrong. The easiest way to deal with this
3937 * is to remove the newly created target, and
3938 * return the original error. This must
3939 * succeed; fortunately, it is very unlikely to
3940 * fail, since we just created it.
3941 */
3942 VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3943 ZRENAMING, NULL), ==, 0);
3944 }
3945 } else {
3946 /*
3947 * If we had removed the existing target, subsequent
3948 * call to zfs_link_create() to add back the same entry
3949 * but, the new dnode (szp) should not fail.
3950 */
3951 ASSERT(tzp == NULL);
3952 }
3953 }
3954
3955 dmu_tx_commit(tx);
3956 out:
3957 if (zl != NULL)
3958 zfs_rename_unlock(&zl);
3959
3960 zfs_dirent_unlock(sdl);
3961 zfs_dirent_unlock(tdl);
3962
3963 zfs_inode_update(sdzp);
3964 if (sdzp == tdzp)
3965 rw_exit(&sdzp->z_name_lock);
3966
3967 if (sdzp != tdzp)
3968 zfs_inode_update(tdzp);
3969
3970 zfs_inode_update(szp);
3971 iput(ZTOI(szp));
3972 if (tzp) {
3973 zfs_inode_update(tzp);
3974 iput(ZTOI(tzp));
3975 }
3976
3977 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3978 zil_commit(zilog, 0);
3979
3980 ZFS_EXIT(zfsvfs);
3981 return (error);
3982 }
3983
3984 /*
3985 * Insert the indicated symbolic reference entry into the directory.
3986 *
3987 * IN: dip - Directory to contain new symbolic link.
3988 * link - Name for new symlink entry.
3989 * vap - Attributes of new entry.
3990 * target - Target path of new symlink.
3991 *
3992 * cr - credentials of caller.
3993 * flags - case flags
3994 *
3995 * RETURN: 0 on success, error code on failure.
3996 *
3997 * Timestamps:
3998 * dip - ctime|mtime updated
3999 */
4000 /*ARGSUSED*/
4001 int
4002 zfs_symlink(struct inode *dip, char *name, vattr_t *vap, char *link,
4003 struct inode **ipp, cred_t *cr, int flags)
4004 {
4005 znode_t *zp, *dzp = ITOZ(dip);
4006 zfs_dirlock_t *dl;
4007 dmu_tx_t *tx;
4008 zfsvfs_t *zfsvfs = ITOZSB(dip);
4009 zilog_t *zilog;
4010 uint64_t len = strlen(link);
4011 int error;
4012 int zflg = ZNEW;
4013 zfs_acl_ids_t acl_ids;
4014 boolean_t fuid_dirtied;
4015 uint64_t txtype = TX_SYMLINK;
4016 boolean_t waited = B_FALSE;
4017
4018 ASSERT(S_ISLNK(vap->va_mode));
4019
4020 if (name == NULL)
4021 return (SET_ERROR(EINVAL));
4022
4023 ZFS_ENTER(zfsvfs);
4024 ZFS_VERIFY_ZP(dzp);
4025 zilog = zfsvfs->z_log;
4026
4027 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
4028 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4029 ZFS_EXIT(zfsvfs);
4030 return (SET_ERROR(EILSEQ));
4031 }
4032 if (flags & FIGNORECASE)
4033 zflg |= ZCILOOK;
4034
4035 if (len > MAXPATHLEN) {
4036 ZFS_EXIT(zfsvfs);
4037 return (SET_ERROR(ENAMETOOLONG));
4038 }
4039
4040 if ((error = zfs_acl_ids_create(dzp, 0,
4041 vap, cr, NULL, &acl_ids)) != 0) {
4042 ZFS_EXIT(zfsvfs);
4043 return (error);
4044 }
4045 top:
4046 *ipp = NULL;
4047
4048 /*
4049 * Attempt to lock directory; fail if entry already exists.
4050 */
4051 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
4052 if (error) {
4053 zfs_acl_ids_free(&acl_ids);
4054 ZFS_EXIT(zfsvfs);
4055 return (error);
4056 }
4057
4058 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
4059 zfs_acl_ids_free(&acl_ids);
4060 zfs_dirent_unlock(dl);
4061 ZFS_EXIT(zfsvfs);
4062 return (error);
4063 }
4064
4065 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, ZFS_DEFAULT_PROJID)) {
4066 zfs_acl_ids_free(&acl_ids);
4067 zfs_dirent_unlock(dl);
4068 ZFS_EXIT(zfsvfs);
4069 return (SET_ERROR(EDQUOT));
4070 }
4071 tx = dmu_tx_create(zfsvfs->z_os);
4072 fuid_dirtied = zfsvfs->z_fuid_dirty;
4073 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
4074 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4075 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
4076 ZFS_SA_BASE_ATTR_SIZE + len);
4077 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
4078 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
4079 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
4080 acl_ids.z_aclp->z_acl_bytes);
4081 }
4082 if (fuid_dirtied)
4083 zfs_fuid_txhold(zfsvfs, tx);
4084 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
4085 if (error) {
4086 zfs_dirent_unlock(dl);
4087 if (error == ERESTART) {
4088 waited = B_TRUE;
4089 dmu_tx_wait(tx);
4090 dmu_tx_abort(tx);
4091 goto top;
4092 }
4093 zfs_acl_ids_free(&acl_ids);
4094 dmu_tx_abort(tx);
4095 ZFS_EXIT(zfsvfs);
4096 return (error);
4097 }
4098
4099 /*
4100 * Create a new object for the symlink.
4101 * for version 4 ZPL datsets the symlink will be an SA attribute
4102 */
4103 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
4104
4105 if (fuid_dirtied)
4106 zfs_fuid_sync(zfsvfs, tx);
4107
4108 mutex_enter(&zp->z_lock);
4109 if (zp->z_is_sa)
4110 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
4111 link, len, tx);
4112 else
4113 zfs_sa_symlink(zp, link, len, tx);
4114 mutex_exit(&zp->z_lock);
4115
4116 zp->z_size = len;
4117 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
4118 &zp->z_size, sizeof (zp->z_size), tx);
4119 /*
4120 * Insert the new object into the directory.
4121 */
4122 error = zfs_link_create(dl, zp, tx, ZNEW);
4123 if (error != 0) {
4124 zfs_znode_delete(zp, tx);
4125 remove_inode_hash(ZTOI(zp));
4126 } else {
4127 if (flags & FIGNORECASE)
4128 txtype |= TX_CI;
4129 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
4130
4131 zfs_inode_update(dzp);
4132 zfs_inode_update(zp);
4133 }
4134
4135 zfs_acl_ids_free(&acl_ids);
4136
4137 dmu_tx_commit(tx);
4138
4139 zfs_dirent_unlock(dl);
4140
4141 if (error == 0) {
4142 *ipp = ZTOI(zp);
4143
4144 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4145 zil_commit(zilog, 0);
4146 } else {
4147 iput(ZTOI(zp));
4148 }
4149
4150 ZFS_EXIT(zfsvfs);
4151 return (error);
4152 }
4153
4154 /*
4155 * Return, in the buffer contained in the provided uio structure,
4156 * the symbolic path referred to by ip.
4157 *
4158 * IN: ip - inode of symbolic link
4159 * uio - structure to contain the link path.
4160 * cr - credentials of caller.
4161 *
4162 * RETURN: 0 if success
4163 * error code if failure
4164 *
4165 * Timestamps:
4166 * ip - atime updated
4167 */
4168 /* ARGSUSED */
4169 int
4170 zfs_readlink(struct inode *ip, uio_t *uio, cred_t *cr)
4171 {
4172 znode_t *zp = ITOZ(ip);
4173 zfsvfs_t *zfsvfs = ITOZSB(ip);
4174 int error;
4175
4176 ZFS_ENTER(zfsvfs);
4177 ZFS_VERIFY_ZP(zp);
4178
4179 mutex_enter(&zp->z_lock);
4180 if (zp->z_is_sa)
4181 error = sa_lookup_uio(zp->z_sa_hdl,
4182 SA_ZPL_SYMLINK(zfsvfs), uio);
4183 else
4184 error = zfs_sa_readlink(zp, uio);
4185 mutex_exit(&zp->z_lock);
4186
4187 ZFS_EXIT(zfsvfs);
4188 return (error);
4189 }
4190
4191 /*
4192 * Insert a new entry into directory tdip referencing sip.
4193 *
4194 * IN: tdip - Directory to contain new entry.
4195 * sip - inode of new entry.
4196 * name - name of new entry.
4197 * cr - credentials of caller.
4198 *
4199 * RETURN: 0 if success
4200 * error code if failure
4201 *
4202 * Timestamps:
4203 * tdip - ctime|mtime updated
4204 * sip - ctime updated
4205 */
4206 /* ARGSUSED */
4207 int
4208 zfs_link(struct inode *tdip, struct inode *sip, char *name, cred_t *cr,
4209 int flags)
4210 {
4211 znode_t *dzp = ITOZ(tdip);
4212 znode_t *tzp, *szp;
4213 zfsvfs_t *zfsvfs = ITOZSB(tdip);
4214 zilog_t *zilog;
4215 zfs_dirlock_t *dl;
4216 dmu_tx_t *tx;
4217 int error;
4218 int zf = ZNEW;
4219 uint64_t parent;
4220 uid_t owner;
4221 boolean_t waited = B_FALSE;
4222 boolean_t is_tmpfile = 0;
4223 uint64_t txg;
4224 #ifdef HAVE_TMPFILE
4225 is_tmpfile = (sip->i_nlink == 0 && (sip->i_state & I_LINKABLE));
4226 #endif
4227 ASSERT(S_ISDIR(tdip->i_mode));
4228
4229 if (name == NULL)
4230 return (SET_ERROR(EINVAL));
4231
4232 ZFS_ENTER(zfsvfs);
4233 ZFS_VERIFY_ZP(dzp);
4234 zilog = zfsvfs->z_log;
4235
4236 /*
4237 * POSIX dictates that we return EPERM here.
4238 * Better choices include ENOTSUP or EISDIR.
4239 */
4240 if (S_ISDIR(sip->i_mode)) {
4241 ZFS_EXIT(zfsvfs);
4242 return (SET_ERROR(EPERM));
4243 }
4244
4245 szp = ITOZ(sip);
4246 ZFS_VERIFY_ZP(szp);
4247
4248 /*
4249 * If we are using project inheritance, means if the directory has
4250 * ZFS_PROJINHERIT set, then its descendant directories will inherit
4251 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
4252 * such case, we only allow hard link creation in our tree when the
4253 * project IDs are the same.
4254 */
4255 if (dzp->z_pflags & ZFS_PROJINHERIT && dzp->z_projid != szp->z_projid) {
4256 ZFS_EXIT(zfsvfs);
4257 return (SET_ERROR(EXDEV));
4258 }
4259
4260 /*
4261 * We check i_sb because snapshots and the ctldir must have different
4262 * super blocks.
4263 */
4264 if (sip->i_sb != tdip->i_sb || zfsctl_is_node(sip)) {
4265 ZFS_EXIT(zfsvfs);
4266 return (SET_ERROR(EXDEV));
4267 }
4268
4269 /* Prevent links to .zfs/shares files */
4270
4271 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
4272 &parent, sizeof (uint64_t))) != 0) {
4273 ZFS_EXIT(zfsvfs);
4274 return (error);
4275 }
4276 if (parent == zfsvfs->z_shares_dir) {
4277 ZFS_EXIT(zfsvfs);
4278 return (SET_ERROR(EPERM));
4279 }
4280
4281 if (zfsvfs->z_utf8 && u8_validate(name,
4282 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4283 ZFS_EXIT(zfsvfs);
4284 return (SET_ERROR(EILSEQ));
4285 }
4286 if (flags & FIGNORECASE)
4287 zf |= ZCILOOK;
4288
4289 /*
4290 * We do not support links between attributes and non-attributes
4291 * because of the potential security risk of creating links
4292 * into "normal" file space in order to circumvent restrictions
4293 * imposed in attribute space.
4294 */
4295 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4296 ZFS_EXIT(zfsvfs);
4297 return (SET_ERROR(EINVAL));
4298 }
4299
4300 owner = zfs_fuid_map_id(zfsvfs, KUID_TO_SUID(sip->i_uid),
4301 cr, ZFS_OWNER);
4302 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
4303 ZFS_EXIT(zfsvfs);
4304 return (SET_ERROR(EPERM));
4305 }
4306
4307 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
4308 ZFS_EXIT(zfsvfs);
4309 return (error);
4310 }
4311
4312 top:
4313 /*
4314 * Attempt to lock directory; fail if entry already exists.
4315 */
4316 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4317 if (error) {
4318 ZFS_EXIT(zfsvfs);
4319 return (error);
4320 }
4321
4322 tx = dmu_tx_create(zfsvfs->z_os);
4323 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4324 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4325 if (is_tmpfile)
4326 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
4327
4328 zfs_sa_upgrade_txholds(tx, szp);
4329 zfs_sa_upgrade_txholds(tx, dzp);
4330 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
4331 if (error) {
4332 zfs_dirent_unlock(dl);
4333 if (error == ERESTART) {
4334 waited = B_TRUE;
4335 dmu_tx_wait(tx);
4336 dmu_tx_abort(tx);
4337 goto top;
4338 }
4339 dmu_tx_abort(tx);
4340 ZFS_EXIT(zfsvfs);
4341 return (error);
4342 }
4343 /* unmark z_unlinked so zfs_link_create will not reject */
4344 if (is_tmpfile)
4345 szp->z_unlinked = 0;
4346 error = zfs_link_create(dl, szp, tx, 0);
4347
4348 if (error == 0) {
4349 uint64_t txtype = TX_LINK;
4350 /*
4351 * tmpfile is created to be in z_unlinkedobj, so remove it.
4352 * Also, we don't log in ZIL, be cause all previous file
4353 * operation on the tmpfile are ignored by ZIL. Instead we
4354 * always wait for txg to sync to make sure all previous
4355 * operation are sync safe.
4356 */
4357 if (is_tmpfile) {
4358 VERIFY(zap_remove_int(zfsvfs->z_os,
4359 zfsvfs->z_unlinkedobj, szp->z_id, tx) == 0);
4360 } else {
4361 if (flags & FIGNORECASE)
4362 txtype |= TX_CI;
4363 zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4364 }
4365 } else if (is_tmpfile) {
4366 /* restore z_unlinked since when linking failed */
4367 szp->z_unlinked = 1;
4368 }
4369 txg = dmu_tx_get_txg(tx);
4370 dmu_tx_commit(tx);
4371
4372 zfs_dirent_unlock(dl);
4373
4374 if (!is_tmpfile && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4375 zil_commit(zilog, 0);
4376
4377 if (is_tmpfile)
4378 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), txg);
4379
4380 zfs_inode_update(dzp);
4381 zfs_inode_update(szp);
4382 ZFS_EXIT(zfsvfs);
4383 return (error);
4384 }
4385
4386 static void
4387 zfs_putpage_commit_cb(void *arg)
4388 {
4389 struct page *pp = arg;
4390
4391 ClearPageError(pp);
4392 end_page_writeback(pp);
4393 }
4394
4395 /*
4396 * Push a page out to disk, once the page is on stable storage the
4397 * registered commit callback will be run as notification of completion.
4398 *
4399 * IN: ip - page mapped for inode.
4400 * pp - page to push (page is locked)
4401 * wbc - writeback control data
4402 *
4403 * RETURN: 0 if success
4404 * error code if failure
4405 *
4406 * Timestamps:
4407 * ip - ctime|mtime updated
4408 */
4409 /* ARGSUSED */
4410 int
4411 zfs_putpage(struct inode *ip, struct page *pp, struct writeback_control *wbc)
4412 {
4413 znode_t *zp = ITOZ(ip);
4414 zfsvfs_t *zfsvfs = ITOZSB(ip);
4415 loff_t offset;
4416 loff_t pgoff;
4417 unsigned int pglen;
4418 dmu_tx_t *tx;
4419 caddr_t va;
4420 int err = 0;
4421 uint64_t mtime[2], ctime[2];
4422 sa_bulk_attr_t bulk[3];
4423 int cnt = 0;
4424 struct address_space *mapping;
4425
4426 ZFS_ENTER(zfsvfs);
4427 ZFS_VERIFY_ZP(zp);
4428
4429 ASSERT(PageLocked(pp));
4430
4431 pgoff = page_offset(pp); /* Page byte-offset in file */
4432 offset = i_size_read(ip); /* File length in bytes */
4433 pglen = MIN(PAGE_SIZE, /* Page length in bytes */
4434 P2ROUNDUP(offset, PAGE_SIZE)-pgoff);
4435
4436 /* Page is beyond end of file */
4437 if (pgoff >= offset) {
4438 unlock_page(pp);
4439 ZFS_EXIT(zfsvfs);
4440 return (0);
4441 }
4442
4443 /* Truncate page length to end of file */
4444 if (pgoff + pglen > offset)
4445 pglen = offset - pgoff;
4446
4447 #if 0
4448 /*
4449 * FIXME: Allow mmap writes past its quota. The correct fix
4450 * is to register a page_mkwrite() handler to count the page
4451 * against its quota when it is about to be dirtied.
4452 */
4453 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT,
4454 KUID_TO_SUID(ip->i_uid)) ||
4455 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT,
4456 KGID_TO_SGID(ip->i_gid)) ||
4457 (zp->z_projid != ZFS_DEFAULT_PROJID &&
4458 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
4459 zp->z_projid))) {
4460 err = EDQUOT;
4461 }
4462 #endif
4463
4464 /*
4465 * The ordering here is critical and must adhere to the following
4466 * rules in order to avoid deadlocking in either zfs_read() or
4467 * zfs_free_range() due to a lock inversion.
4468 *
4469 * 1) The page must be unlocked prior to acquiring the range lock.
4470 * This is critical because zfs_read() calls find_lock_page()
4471 * which may block on the page lock while holding the range lock.
4472 *
4473 * 2) Before setting or clearing write back on a page the range lock
4474 * must be held in order to prevent a lock inversion with the
4475 * zfs_free_range() function.
4476 *
4477 * This presents a problem because upon entering this function the
4478 * page lock is already held. To safely acquire the range lock the
4479 * page lock must be dropped. This creates a window where another
4480 * process could truncate, invalidate, dirty, or write out the page.
4481 *
4482 * Therefore, after successfully reacquiring the range and page locks
4483 * the current page state is checked. In the common case everything
4484 * will be as is expected and it can be written out. However, if
4485 * the page state has changed it must be handled accordingly.
4486 */
4487 mapping = pp->mapping;
4488 redirty_page_for_writepage(wbc, pp);
4489 unlock_page(pp);
4490
4491 locked_range_t *lr = rangelock_enter(&zp->z_rangelock,
4492 pgoff, pglen, RL_WRITER);
4493 lock_page(pp);
4494
4495 /* Page mapping changed or it was no longer dirty, we're done */
4496 if (unlikely((mapping != pp->mapping) || !PageDirty(pp))) {
4497 unlock_page(pp);
4498 rangelock_exit(lr);
4499 ZFS_EXIT(zfsvfs);
4500 return (0);
4501 }
4502
4503 /* Another process started write block if required */
4504 if (PageWriteback(pp)) {
4505 unlock_page(pp);
4506 rangelock_exit(lr);
4507
4508 if (wbc->sync_mode != WB_SYNC_NONE)
4509 wait_on_page_writeback(pp);
4510
4511 ZFS_EXIT(zfsvfs);
4512 return (0);
4513 }
4514
4515 /* Clear the dirty flag the required locks are held */
4516 if (!clear_page_dirty_for_io(pp)) {
4517 unlock_page(pp);
4518 rangelock_exit(lr);
4519 ZFS_EXIT(zfsvfs);
4520 return (0);
4521 }
4522
4523 /*
4524 * Counterpart for redirty_page_for_writepage() above. This page
4525 * was in fact not skipped and should not be counted as if it were.
4526 */
4527 wbc->pages_skipped--;
4528 set_page_writeback(pp);
4529 unlock_page(pp);
4530
4531 tx = dmu_tx_create(zfsvfs->z_os);
4532 dmu_tx_hold_write(tx, zp->z_id, pgoff, pglen);
4533 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4534 zfs_sa_upgrade_txholds(tx, zp);
4535
4536 err = dmu_tx_assign(tx, TXG_NOWAIT);
4537 if (err != 0) {
4538 if (err == ERESTART)
4539 dmu_tx_wait(tx);
4540
4541 dmu_tx_abort(tx);
4542 __set_page_dirty_nobuffers(pp);
4543 ClearPageError(pp);
4544 end_page_writeback(pp);
4545 rangelock_exit(lr);
4546 ZFS_EXIT(zfsvfs);
4547 return (err);
4548 }
4549
4550 va = kmap(pp);
4551 ASSERT3U(pglen, <=, PAGE_SIZE);
4552 dmu_write(zfsvfs->z_os, zp->z_id, pgoff, pglen, va, tx);
4553 kunmap(pp);
4554
4555 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
4556 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
4557 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_FLAGS(zfsvfs), NULL,
4558 &zp->z_pflags, 8);
4559
4560 /* Preserve the mtime and ctime provided by the inode */
4561 ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
4562 ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
4563 zp->z_atime_dirty = 0;
4564 zp->z_seq++;
4565
4566 err = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
4567
4568 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, pgoff, pglen, 0,
4569 zfs_putpage_commit_cb, pp);
4570 dmu_tx_commit(tx);
4571
4572 rangelock_exit(lr);
4573
4574 if (wbc->sync_mode != WB_SYNC_NONE) {
4575 /*
4576 * Note that this is rarely called under writepages(), because
4577 * writepages() normally handles the entire commit for
4578 * performance reasons.
4579 */
4580 zil_commit(zfsvfs->z_log, zp->z_id);
4581 }
4582
4583 ZFS_EXIT(zfsvfs);
4584 return (err);
4585 }
4586
4587 /*
4588 * Update the system attributes when the inode has been dirtied. For the
4589 * moment we only update the mode, atime, mtime, and ctime.
4590 */
4591 int
4592 zfs_dirty_inode(struct inode *ip, int flags)
4593 {
4594 znode_t *zp = ITOZ(ip);
4595 zfsvfs_t *zfsvfs = ITOZSB(ip);
4596 dmu_tx_t *tx;
4597 uint64_t mode, atime[2], mtime[2], ctime[2];
4598 sa_bulk_attr_t bulk[4];
4599 int error = 0;
4600 int cnt = 0;
4601
4602 if (zfs_is_readonly(zfsvfs) || dmu_objset_is_snapshot(zfsvfs->z_os))
4603 return (0);
4604
4605 ZFS_ENTER(zfsvfs);
4606 ZFS_VERIFY_ZP(zp);
4607
4608 #ifdef I_DIRTY_TIME
4609 /*
4610 * This is the lazytime semantic indroduced in Linux 4.0
4611 * This flag will only be called from update_time when lazytime is set.
4612 * (Note, I_DIRTY_SYNC will also set if not lazytime)
4613 * Fortunately mtime and ctime are managed within ZFS itself, so we
4614 * only need to dirty atime.
4615 */
4616 if (flags == I_DIRTY_TIME) {
4617 zp->z_atime_dirty = 1;
4618 goto out;
4619 }
4620 #endif
4621
4622 tx = dmu_tx_create(zfsvfs->z_os);
4623
4624 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4625 zfs_sa_upgrade_txholds(tx, zp);
4626
4627 error = dmu_tx_assign(tx, TXG_WAIT);
4628 if (error) {
4629 dmu_tx_abort(tx);
4630 goto out;
4631 }
4632
4633 mutex_enter(&zp->z_lock);
4634 zp->z_atime_dirty = 0;
4635
4636 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
4637 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
4638 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
4639 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
4640
4641 /* Preserve the mode, mtime and ctime provided by the inode */
4642 ZFS_TIME_ENCODE(&ip->i_atime, atime);
4643 ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
4644 ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
4645 mode = ip->i_mode;
4646
4647 zp->z_mode = mode;
4648
4649 error = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
4650 mutex_exit(&zp->z_lock);
4651
4652 dmu_tx_commit(tx);
4653 out:
4654 ZFS_EXIT(zfsvfs);
4655 return (error);
4656 }
4657
4658 /*ARGSUSED*/
4659 void
4660 zfs_inactive(struct inode *ip)
4661 {
4662 znode_t *zp = ITOZ(ip);
4663 zfsvfs_t *zfsvfs = ITOZSB(ip);
4664 uint64_t atime[2];
4665 int error;
4666 int need_unlock = 0;
4667
4668 /* Only read lock if we haven't already write locked, e.g. rollback */
4669 if (!RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)) {
4670 need_unlock = 1;
4671 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4672 }
4673 if (zp->z_sa_hdl == NULL) {
4674 if (need_unlock)
4675 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4676 return;
4677 }
4678
4679 if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4680 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4681
4682 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4683 zfs_sa_upgrade_txholds(tx, zp);
4684 error = dmu_tx_assign(tx, TXG_WAIT);
4685 if (error) {
4686 dmu_tx_abort(tx);
4687 } else {
4688 ZFS_TIME_ENCODE(&ip->i_atime, atime);
4689 mutex_enter(&zp->z_lock);
4690 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4691 (void *)&atime, sizeof (atime), tx);
4692 zp->z_atime_dirty = 0;
4693 mutex_exit(&zp->z_lock);
4694 dmu_tx_commit(tx);
4695 }
4696 }
4697
4698 zfs_zinactive(zp);
4699 if (need_unlock)
4700 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4701 }
4702
4703 /*
4704 * Bounds-check the seek operation.
4705 *
4706 * IN: ip - inode seeking within
4707 * ooff - old file offset
4708 * noffp - pointer to new file offset
4709 * ct - caller context
4710 *
4711 * RETURN: 0 if success
4712 * EINVAL if new offset invalid
4713 */
4714 /* ARGSUSED */
4715 int
4716 zfs_seek(struct inode *ip, offset_t ooff, offset_t *noffp)
4717 {
4718 if (S_ISDIR(ip->i_mode))
4719 return (0);
4720 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4721 }
4722
4723 /*
4724 * Fill pages with data from the disk.
4725 */
4726 static int
4727 zfs_fillpage(struct inode *ip, struct page *pl[], int nr_pages)
4728 {
4729 znode_t *zp = ITOZ(ip);
4730 zfsvfs_t *zfsvfs = ITOZSB(ip);
4731 objset_t *os;
4732 struct page *cur_pp;
4733 u_offset_t io_off, total;
4734 size_t io_len;
4735 loff_t i_size;
4736 unsigned page_idx;
4737 int err;
4738
4739 os = zfsvfs->z_os;
4740 io_len = nr_pages << PAGE_SHIFT;
4741 i_size = i_size_read(ip);
4742 io_off = page_offset(pl[0]);
4743
4744 if (io_off + io_len > i_size)
4745 io_len = i_size - io_off;
4746
4747 /*
4748 * Iterate over list of pages and read each page individually.
4749 */
4750 page_idx = 0;
4751 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4752 caddr_t va;
4753
4754 cur_pp = pl[page_idx++];
4755 va = kmap(cur_pp);
4756 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4757 DMU_READ_PREFETCH);
4758 kunmap(cur_pp);
4759 if (err) {
4760 /* convert checksum errors into IO errors */
4761 if (err == ECKSUM)
4762 err = SET_ERROR(EIO);
4763 return (err);
4764 }
4765 }
4766
4767 return (0);
4768 }
4769
4770 /*
4771 * Uses zfs_fillpage to read data from the file and fill the pages.
4772 *
4773 * IN: ip - inode of file to get data from.
4774 * pl - list of pages to read
4775 * nr_pages - number of pages to read
4776 *
4777 * RETURN: 0 on success, error code on failure.
4778 *
4779 * Timestamps:
4780 * vp - atime updated
4781 */
4782 /* ARGSUSED */
4783 int
4784 zfs_getpage(struct inode *ip, struct page *pl[], int nr_pages)
4785 {
4786 znode_t *zp = ITOZ(ip);
4787 zfsvfs_t *zfsvfs = ITOZSB(ip);
4788 int err;
4789
4790 if (pl == NULL)
4791 return (0);
4792
4793 ZFS_ENTER(zfsvfs);
4794 ZFS_VERIFY_ZP(zp);
4795
4796 err = zfs_fillpage(ip, pl, nr_pages);
4797
4798 ZFS_EXIT(zfsvfs);
4799 return (err);
4800 }
4801
4802 /*
4803 * Check ZFS specific permissions to memory map a section of a file.
4804 *
4805 * IN: ip - inode of the file to mmap
4806 * off - file offset
4807 * addrp - start address in memory region
4808 * len - length of memory region
4809 * vm_flags- address flags
4810 *
4811 * RETURN: 0 if success
4812 * error code if failure
4813 */
4814 /*ARGSUSED*/
4815 int
4816 zfs_map(struct inode *ip, offset_t off, caddr_t *addrp, size_t len,
4817 unsigned long vm_flags)
4818 {
4819 znode_t *zp = ITOZ(ip);
4820 zfsvfs_t *zfsvfs = ITOZSB(ip);
4821
4822 ZFS_ENTER(zfsvfs);
4823 ZFS_VERIFY_ZP(zp);
4824
4825 if ((vm_flags & VM_WRITE) && (zp->z_pflags &
4826 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4827 ZFS_EXIT(zfsvfs);
4828 return (SET_ERROR(EPERM));
4829 }
4830
4831 if ((vm_flags & (VM_READ | VM_EXEC)) &&
4832 (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4833 ZFS_EXIT(zfsvfs);
4834 return (SET_ERROR(EACCES));
4835 }
4836
4837 if (off < 0 || len > MAXOFFSET_T - off) {
4838 ZFS_EXIT(zfsvfs);
4839 return (SET_ERROR(ENXIO));
4840 }
4841
4842 ZFS_EXIT(zfsvfs);
4843 return (0);
4844 }
4845
4846 /*
4847 * convoff - converts the given data (start, whence) to the
4848 * given whence.
4849 */
4850 int
4851 convoff(struct inode *ip, flock64_t *lckdat, int whence, offset_t offset)
4852 {
4853 vattr_t vap;
4854 int error;
4855
4856 if ((lckdat->l_whence == 2) || (whence == 2)) {
4857 if ((error = zfs_getattr(ip, &vap, 0, CRED())))
4858 return (error);
4859 }
4860
4861 switch (lckdat->l_whence) {
4862 case 1:
4863 lckdat->l_start += offset;
4864 break;
4865 case 2:
4866 lckdat->l_start += vap.va_size;
4867 /* FALLTHRU */
4868 case 0:
4869 break;
4870 default:
4871 return (SET_ERROR(EINVAL));
4872 }
4873
4874 if (lckdat->l_start < 0)
4875 return (SET_ERROR(EINVAL));
4876
4877 switch (whence) {
4878 case 1:
4879 lckdat->l_start -= offset;
4880 break;
4881 case 2:
4882 lckdat->l_start -= vap.va_size;
4883 /* FALLTHRU */
4884 case 0:
4885 break;
4886 default:
4887 return (SET_ERROR(EINVAL));
4888 }
4889
4890 lckdat->l_whence = (short)whence;
4891 return (0);
4892 }
4893
4894 /*
4895 * Free or allocate space in a file. Currently, this function only
4896 * supports the `F_FREESP' command. However, this command is somewhat
4897 * misnamed, as its functionality includes the ability to allocate as
4898 * well as free space.
4899 *
4900 * IN: ip - inode of file to free data in.
4901 * cmd - action to take (only F_FREESP supported).
4902 * bfp - section of file to free/alloc.
4903 * flag - current file open mode flags.
4904 * offset - current file offset.
4905 * cr - credentials of caller [UNUSED].
4906 *
4907 * RETURN: 0 on success, error code on failure.
4908 *
4909 * Timestamps:
4910 * ip - ctime|mtime updated
4911 */
4912 /* ARGSUSED */
4913 int
4914 zfs_space(struct inode *ip, int cmd, flock64_t *bfp, int flag,
4915 offset_t offset, cred_t *cr)
4916 {
4917 znode_t *zp = ITOZ(ip);
4918 zfsvfs_t *zfsvfs = ITOZSB(ip);
4919 uint64_t off, len;
4920 int error;
4921
4922 ZFS_ENTER(zfsvfs);
4923 ZFS_VERIFY_ZP(zp);
4924
4925 if (cmd != F_FREESP) {
4926 ZFS_EXIT(zfsvfs);
4927 return (SET_ERROR(EINVAL));
4928 }
4929
4930 /*
4931 * Callers might not be able to detect properly that we are read-only,
4932 * so check it explicitly here.
4933 */
4934 if (zfs_is_readonly(zfsvfs)) {
4935 ZFS_EXIT(zfsvfs);
4936 return (SET_ERROR(EROFS));
4937 }
4938
4939 if ((error = convoff(ip, bfp, 0, offset))) {
4940 ZFS_EXIT(zfsvfs);
4941 return (error);
4942 }
4943
4944 if (bfp->l_len < 0) {
4945 ZFS_EXIT(zfsvfs);
4946 return (SET_ERROR(EINVAL));
4947 }
4948
4949 /*
4950 * Permissions aren't checked on Solaris because on this OS
4951 * zfs_space() can only be called with an opened file handle.
4952 * On Linux we can get here through truncate_range() which
4953 * operates directly on inodes, so we need to check access rights.
4954 */
4955 if ((error = zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr))) {
4956 ZFS_EXIT(zfsvfs);
4957 return (error);
4958 }
4959
4960 off = bfp->l_start;
4961 len = bfp->l_len; /* 0 means from off to end of file */
4962
4963 error = zfs_freesp(zp, off, len, flag, TRUE);
4964
4965 ZFS_EXIT(zfsvfs);
4966 return (error);
4967 }
4968
4969 /*ARGSUSED*/
4970 int
4971 zfs_fid(struct inode *ip, fid_t *fidp)
4972 {
4973 znode_t *zp = ITOZ(ip);
4974 zfsvfs_t *zfsvfs = ITOZSB(ip);
4975 uint32_t gen;
4976 uint64_t gen64;
4977 uint64_t object = zp->z_id;
4978 zfid_short_t *zfid;
4979 int size, i, error;
4980
4981 ZFS_ENTER(zfsvfs);
4982 ZFS_VERIFY_ZP(zp);
4983
4984 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4985 &gen64, sizeof (uint64_t))) != 0) {
4986 ZFS_EXIT(zfsvfs);
4987 return (error);
4988 }
4989
4990 gen = (uint32_t)gen64;
4991
4992 size = SHORT_FID_LEN;
4993
4994 zfid = (zfid_short_t *)fidp;
4995
4996 zfid->zf_len = size;
4997
4998 for (i = 0; i < sizeof (zfid->zf_object); i++)
4999 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
5000
5001 /* Must have a non-zero generation number to distinguish from .zfs */
5002 if (gen == 0)
5003 gen = 1;
5004 for (i = 0; i < sizeof (zfid->zf_gen); i++)
5005 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
5006
5007 ZFS_EXIT(zfsvfs);
5008 return (0);
5009 }
5010
5011 /*ARGSUSED*/
5012 int
5013 zfs_getsecattr(struct inode *ip, vsecattr_t *vsecp, int flag, cred_t *cr)
5014 {
5015 znode_t *zp = ITOZ(ip);
5016 zfsvfs_t *zfsvfs = ITOZSB(ip);
5017 int error;
5018 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5019
5020 ZFS_ENTER(zfsvfs);
5021 ZFS_VERIFY_ZP(zp);
5022 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
5023 ZFS_EXIT(zfsvfs);
5024
5025 return (error);
5026 }
5027
5028 /*ARGSUSED*/
5029 int
5030 zfs_setsecattr(struct inode *ip, vsecattr_t *vsecp, int flag, cred_t *cr)
5031 {
5032 znode_t *zp = ITOZ(ip);
5033 zfsvfs_t *zfsvfs = ITOZSB(ip);
5034 int error;
5035 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5036 zilog_t *zilog = zfsvfs->z_log;
5037
5038 ZFS_ENTER(zfsvfs);
5039 ZFS_VERIFY_ZP(zp);
5040
5041 error = zfs_setacl(zp, vsecp, skipaclchk, cr);
5042
5043 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5044 zil_commit(zilog, 0);
5045
5046 ZFS_EXIT(zfsvfs);
5047 return (error);
5048 }
5049
5050 #ifdef HAVE_UIO_ZEROCOPY
5051 /*
5052 * Tunable, both must be a power of 2.
5053 *
5054 * zcr_blksz_min: the smallest read we may consider to loan out an arcbuf
5055 * zcr_blksz_max: if set to less than the file block size, allow loaning out of
5056 * an arcbuf for a partial block read
5057 */
5058 int zcr_blksz_min = (1 << 10); /* 1K */
5059 int zcr_blksz_max = (1 << 17); /* 128K */
5060
5061 /*ARGSUSED*/
5062 static int
5063 zfs_reqzcbuf(struct inode *ip, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr)
5064 {
5065 znode_t *zp = ITOZ(ip);
5066 zfsvfs_t *zfsvfs = ITOZSB(ip);
5067 int max_blksz = zfsvfs->z_max_blksz;
5068 uio_t *uio = &xuio->xu_uio;
5069 ssize_t size = uio->uio_resid;
5070 offset_t offset = uio->uio_loffset;
5071 int blksz;
5072 int fullblk, i;
5073 arc_buf_t *abuf;
5074 ssize_t maxsize;
5075 int preamble, postamble;
5076
5077 if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5078 return (SET_ERROR(EINVAL));
5079
5080 ZFS_ENTER(zfsvfs);
5081 ZFS_VERIFY_ZP(zp);
5082 switch (ioflag) {
5083 case UIO_WRITE:
5084 /*
5085 * Loan out an arc_buf for write if write size is bigger than
5086 * max_blksz, and the file's block size is also max_blksz.
5087 */
5088 blksz = max_blksz;
5089 if (size < blksz || zp->z_blksz != blksz) {
5090 ZFS_EXIT(zfsvfs);
5091 return (SET_ERROR(EINVAL));
5092 }
5093 /*
5094 * Caller requests buffers for write before knowing where the
5095 * write offset might be (e.g. NFS TCP write).
5096 */
5097 if (offset == -1) {
5098 preamble = 0;
5099 } else {
5100 preamble = P2PHASE(offset, blksz);
5101 if (preamble) {
5102 preamble = blksz - preamble;
5103 size -= preamble;
5104 }
5105 }
5106
5107 postamble = P2PHASE(size, blksz);
5108 size -= postamble;
5109
5110 fullblk = size / blksz;
5111 (void) dmu_xuio_init(xuio,
5112 (preamble != 0) + fullblk + (postamble != 0));
5113
5114 /*
5115 * Have to fix iov base/len for partial buffers. They
5116 * currently represent full arc_buf's.
5117 */
5118 if (preamble) {
5119 /* data begins in the middle of the arc_buf */
5120 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5121 blksz);
5122 ASSERT(abuf);
5123 (void) dmu_xuio_add(xuio, abuf,
5124 blksz - preamble, preamble);
5125 }
5126
5127 for (i = 0; i < fullblk; i++) {
5128 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5129 blksz);
5130 ASSERT(abuf);
5131 (void) dmu_xuio_add(xuio, abuf, 0, blksz);
5132 }
5133
5134 if (postamble) {
5135 /* data ends in the middle of the arc_buf */
5136 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5137 blksz);
5138 ASSERT(abuf);
5139 (void) dmu_xuio_add(xuio, abuf, 0, postamble);
5140 }
5141 break;
5142 case UIO_READ:
5143 /*
5144 * Loan out an arc_buf for read if the read size is larger than
5145 * the current file block size. Block alignment is not
5146 * considered. Partial arc_buf will be loaned out for read.
5147 */
5148 blksz = zp->z_blksz;
5149 if (blksz < zcr_blksz_min)
5150 blksz = zcr_blksz_min;
5151 if (blksz > zcr_blksz_max)
5152 blksz = zcr_blksz_max;
5153 /* avoid potential complexity of dealing with it */
5154 if (blksz > max_blksz) {
5155 ZFS_EXIT(zfsvfs);
5156 return (SET_ERROR(EINVAL));
5157 }
5158
5159 maxsize = zp->z_size - uio->uio_loffset;
5160 if (size > maxsize)
5161 size = maxsize;
5162
5163 if (size < blksz) {
5164 ZFS_EXIT(zfsvfs);
5165 return (SET_ERROR(EINVAL));
5166 }
5167 break;
5168 default:
5169 ZFS_EXIT(zfsvfs);
5170 return (SET_ERROR(EINVAL));
5171 }
5172
5173 uio->uio_extflg = UIO_XUIO;
5174 XUIO_XUZC_RW(xuio) = ioflag;
5175 ZFS_EXIT(zfsvfs);
5176 return (0);
5177 }
5178
5179 /*ARGSUSED*/
5180 static int
5181 zfs_retzcbuf(struct inode *ip, xuio_t *xuio, cred_t *cr)
5182 {
5183 int i;
5184 arc_buf_t *abuf;
5185 int ioflag = XUIO_XUZC_RW(xuio);
5186
5187 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5188
5189 i = dmu_xuio_cnt(xuio);
5190 while (i-- > 0) {
5191 abuf = dmu_xuio_arcbuf(xuio, i);
5192 /*
5193 * if abuf == NULL, it must be a write buffer
5194 * that has been returned in zfs_write().
5195 */
5196 if (abuf)
5197 dmu_return_arcbuf(abuf);
5198 ASSERT(abuf || ioflag == UIO_WRITE);
5199 }
5200
5201 dmu_xuio_fini(xuio);
5202 return (0);
5203 }
5204 #endif /* HAVE_UIO_ZEROCOPY */
5205
5206 #if defined(_KERNEL)
5207 EXPORT_SYMBOL(zfs_open);
5208 EXPORT_SYMBOL(zfs_close);
5209 EXPORT_SYMBOL(zfs_read);
5210 EXPORT_SYMBOL(zfs_write);
5211 EXPORT_SYMBOL(zfs_access);
5212 EXPORT_SYMBOL(zfs_lookup);
5213 EXPORT_SYMBOL(zfs_create);
5214 EXPORT_SYMBOL(zfs_tmpfile);
5215 EXPORT_SYMBOL(zfs_remove);
5216 EXPORT_SYMBOL(zfs_mkdir);
5217 EXPORT_SYMBOL(zfs_rmdir);
5218 EXPORT_SYMBOL(zfs_readdir);
5219 EXPORT_SYMBOL(zfs_fsync);
5220 EXPORT_SYMBOL(zfs_getattr);
5221 EXPORT_SYMBOL(zfs_getattr_fast);
5222 EXPORT_SYMBOL(zfs_setattr);
5223 EXPORT_SYMBOL(zfs_rename);
5224 EXPORT_SYMBOL(zfs_symlink);
5225 EXPORT_SYMBOL(zfs_readlink);
5226 EXPORT_SYMBOL(zfs_link);
5227 EXPORT_SYMBOL(zfs_inactive);
5228 EXPORT_SYMBOL(zfs_space);
5229 EXPORT_SYMBOL(zfs_fid);
5230 EXPORT_SYMBOL(zfs_getsecattr);
5231 EXPORT_SYMBOL(zfs_setsecattr);
5232 EXPORT_SYMBOL(zfs_getpage);
5233 EXPORT_SYMBOL(zfs_putpage);
5234 EXPORT_SYMBOL(zfs_dirty_inode);
5235 EXPORT_SYMBOL(zfs_map);
5236
5237 /* CSTYLED */
5238 module_param(zfs_delete_blocks, ulong, 0644);
5239 MODULE_PARM_DESC(zfs_delete_blocks, "Delete files larger than N blocks async");
5240 module_param(zfs_read_chunk_size, long, 0644);
5241 MODULE_PARM_DESC(zfs_read_chunk_size, "Bytes to read per chunk");
5242 #endif