]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zfs_vnops.c
Deny block cloning is dbuf size doesn't match BP size.
[mirror_zfs.git] / module / zfs / zfs_vnops.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.
27 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
28 */
29
30 /* Portions Copyright 2007 Jeremy Teo */
31 /* Portions Copyright 2010 Robert Milkowski */
32
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/time.h>
36 #include <sys/sysmacros.h>
37 #include <sys/vfs.h>
38 #include <sys/uio_impl.h>
39 #include <sys/file.h>
40 #include <sys/stat.h>
41 #include <sys/kmem.h>
42 #include <sys/cmn_err.h>
43 #include <sys/errno.h>
44 #include <sys/zfs_dir.h>
45 #include <sys/zfs_acl.h>
46 #include <sys/zfs_ioctl.h>
47 #include <sys/fs/zfs.h>
48 #include <sys/dmu.h>
49 #include <sys/dmu_objset.h>
50 #include <sys/spa.h>
51 #include <sys/txg.h>
52 #include <sys/dbuf.h>
53 #include <sys/policy.h>
54 #include <sys/zfeature.h>
55 #include <sys/zfs_vnops.h>
56 #include <sys/zfs_quota.h>
57 #include <sys/zfs_vfsops.h>
58 #include <sys/zfs_znode.h>
59
60
61 static ulong_t zfs_fsync_sync_cnt = 4;
62
63 int
64 zfs_fsync(znode_t *zp, int syncflag, cred_t *cr)
65 {
66 int error = 0;
67 zfsvfs_t *zfsvfs = ZTOZSB(zp);
68
69 (void) tsd_set(zfs_fsyncer_key, (void *)(uintptr_t)zfs_fsync_sync_cnt);
70
71 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
72 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
73 goto out;
74 atomic_inc_32(&zp->z_sync_writes_cnt);
75 zil_commit(zfsvfs->z_log, zp->z_id);
76 atomic_dec_32(&zp->z_sync_writes_cnt);
77 zfs_exit(zfsvfs, FTAG);
78 }
79 out:
80 tsd_set(zfs_fsyncer_key, NULL);
81
82 return (error);
83 }
84
85
86 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
87 /*
88 * Lseek support for finding holes (cmd == SEEK_HOLE) and
89 * data (cmd == SEEK_DATA). "off" is an in/out parameter.
90 */
91 static int
92 zfs_holey_common(znode_t *zp, ulong_t cmd, loff_t *off)
93 {
94 zfs_locked_range_t *lr;
95 uint64_t noff = (uint64_t)*off; /* new offset */
96 uint64_t file_sz;
97 int error;
98 boolean_t hole;
99
100 file_sz = zp->z_size;
101 if (noff >= file_sz) {
102 return (SET_ERROR(ENXIO));
103 }
104
105 if (cmd == F_SEEK_HOLE)
106 hole = B_TRUE;
107 else
108 hole = B_FALSE;
109
110 /* Flush any mmap()'d data to disk */
111 if (zn_has_cached_data(zp, 0, file_sz - 1))
112 zn_flush_cached_data(zp, B_FALSE);
113
114 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_READER);
115 error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);
116 zfs_rangelock_exit(lr);
117
118 if (error == ESRCH)
119 return (SET_ERROR(ENXIO));
120
121 /* File was dirty, so fall back to using generic logic */
122 if (error == EBUSY) {
123 if (hole)
124 *off = file_sz;
125
126 return (0);
127 }
128
129 /*
130 * We could find a hole that begins after the logical end-of-file,
131 * because dmu_offset_next() only works on whole blocks. If the
132 * EOF falls mid-block, then indicate that the "virtual hole"
133 * at the end of the file begins at the logical EOF, rather than
134 * at the end of the last block.
135 */
136 if (noff > file_sz) {
137 ASSERT(hole);
138 noff = file_sz;
139 }
140
141 if (noff < *off)
142 return (error);
143 *off = noff;
144 return (error);
145 }
146
147 int
148 zfs_holey(znode_t *zp, ulong_t cmd, loff_t *off)
149 {
150 zfsvfs_t *zfsvfs = ZTOZSB(zp);
151 int error;
152
153 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
154 return (error);
155
156 error = zfs_holey_common(zp, cmd, off);
157
158 zfs_exit(zfsvfs, FTAG);
159 return (error);
160 }
161 #endif /* SEEK_HOLE && SEEK_DATA */
162
163 int
164 zfs_access(znode_t *zp, int mode, int flag, cred_t *cr)
165 {
166 zfsvfs_t *zfsvfs = ZTOZSB(zp);
167 int error;
168
169 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
170 return (error);
171
172 if (flag & V_ACE_MASK)
173 #if defined(__linux__)
174 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr,
175 zfs_init_idmap);
176 #else
177 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr,
178 NULL);
179 #endif
180 else
181 #if defined(__linux__)
182 error = zfs_zaccess_rwx(zp, mode, flag, cr, zfs_init_idmap);
183 #else
184 error = zfs_zaccess_rwx(zp, mode, flag, cr, NULL);
185 #endif
186
187 zfs_exit(zfsvfs, FTAG);
188 return (error);
189 }
190
191 static uint64_t zfs_vnops_read_chunk_size = 1024 * 1024; /* Tunable */
192
193 /*
194 * Read bytes from specified file into supplied buffer.
195 *
196 * IN: zp - inode of file to be read from.
197 * uio - structure supplying read location, range info,
198 * and return buffer.
199 * ioflag - O_SYNC flags; used to provide FRSYNC semantics.
200 * O_DIRECT flag; used to bypass page cache.
201 * cr - credentials of caller.
202 *
203 * OUT: uio - updated offset and range, buffer filled.
204 *
205 * RETURN: 0 on success, error code on failure.
206 *
207 * Side Effects:
208 * inode - atime updated if byte count > 0
209 */
210 int
211 zfs_read(struct znode *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
212 {
213 (void) cr;
214 int error = 0;
215 boolean_t frsync = B_FALSE;
216
217 zfsvfs_t *zfsvfs = ZTOZSB(zp);
218 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
219 return (error);
220
221 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
222 zfs_exit(zfsvfs, FTAG);
223 return (SET_ERROR(EACCES));
224 }
225
226 /* We don't copy out anything useful for directories. */
227 if (Z_ISDIR(ZTOTYPE(zp))) {
228 zfs_exit(zfsvfs, FTAG);
229 return (SET_ERROR(EISDIR));
230 }
231
232 /*
233 * Validate file offset
234 */
235 if (zfs_uio_offset(uio) < (offset_t)0) {
236 zfs_exit(zfsvfs, FTAG);
237 return (SET_ERROR(EINVAL));
238 }
239
240 /*
241 * Fasttrack empty reads
242 */
243 if (zfs_uio_resid(uio) == 0) {
244 zfs_exit(zfsvfs, FTAG);
245 return (0);
246 }
247
248 #ifdef FRSYNC
249 /*
250 * If we're in FRSYNC mode, sync out this znode before reading it.
251 * Only do this for non-snapshots.
252 *
253 * Some platforms do not support FRSYNC and instead map it
254 * to O_SYNC, which results in unnecessary calls to zil_commit. We
255 * only honor FRSYNC requests on platforms which support it.
256 */
257 frsync = !!(ioflag & FRSYNC);
258 #endif
259 if (zfsvfs->z_log &&
260 (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
261 zil_commit(zfsvfs->z_log, zp->z_id);
262
263 /*
264 * Lock the range against changes.
265 */
266 zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
267 zfs_uio_offset(uio), zfs_uio_resid(uio), RL_READER);
268
269 /*
270 * If we are reading past end-of-file we can skip
271 * to the end; but we might still need to set atime.
272 */
273 if (zfs_uio_offset(uio) >= zp->z_size) {
274 error = 0;
275 goto out;
276 }
277
278 ASSERT(zfs_uio_offset(uio) < zp->z_size);
279 #if defined(__linux__)
280 ssize_t start_offset = zfs_uio_offset(uio);
281 #endif
282 ssize_t n = MIN(zfs_uio_resid(uio), zp->z_size - zfs_uio_offset(uio));
283 ssize_t start_resid = n;
284
285 while (n > 0) {
286 ssize_t nbytes = MIN(n, zfs_vnops_read_chunk_size -
287 P2PHASE(zfs_uio_offset(uio), zfs_vnops_read_chunk_size));
288 #ifdef UIO_NOCOPY
289 if (zfs_uio_segflg(uio) == UIO_NOCOPY)
290 error = mappedread_sf(zp, nbytes, uio);
291 else
292 #endif
293 if (zn_has_cached_data(zp, zfs_uio_offset(uio),
294 zfs_uio_offset(uio) + nbytes - 1) && !(ioflag & O_DIRECT)) {
295 error = mappedread(zp, nbytes, uio);
296 } else {
297 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
298 uio, nbytes);
299 }
300
301 if (error) {
302 /* convert checksum errors into IO errors */
303 if (error == ECKSUM)
304 error = SET_ERROR(EIO);
305
306 #if defined(__linux__)
307 /*
308 * if we actually read some bytes, bubbling EFAULT
309 * up to become EAGAIN isn't what we want here...
310 *
311 * ...on Linux, at least. On FBSD, doing this breaks.
312 */
313 if (error == EFAULT &&
314 (zfs_uio_offset(uio) - start_offset) != 0)
315 error = 0;
316 #endif
317 break;
318 }
319
320 n -= nbytes;
321 }
322
323 int64_t nread = start_resid - n;
324 dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread);
325 task_io_account_read(nread);
326 out:
327 zfs_rangelock_exit(lr);
328
329 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
330 zfs_exit(zfsvfs, FTAG);
331 return (error);
332 }
333
334 static void
335 zfs_clear_setid_bits_if_necessary(zfsvfs_t *zfsvfs, znode_t *zp, cred_t *cr,
336 uint64_t *clear_setid_bits_txgp, dmu_tx_t *tx)
337 {
338 zilog_t *zilog = zfsvfs->z_log;
339 const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
340
341 ASSERT(clear_setid_bits_txgp != NULL);
342 ASSERT(tx != NULL);
343
344 /*
345 * Clear Set-UID/Set-GID bits on successful write if not
346 * privileged and at least one of the execute bits is set.
347 *
348 * It would be nice to do this after all writes have
349 * been done, but that would still expose the ISUID/ISGID
350 * to another app after the partial write is committed.
351 *
352 * Note: we don't call zfs_fuid_map_id() here because
353 * user 0 is not an ephemeral uid.
354 */
355 mutex_enter(&zp->z_acl_lock);
356 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | (S_IXUSR >> 6))) != 0 &&
357 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
358 secpolicy_vnode_setid_retain(zp, cr,
359 ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) {
360 uint64_t newmode;
361
362 zp->z_mode &= ~(S_ISUID | S_ISGID);
363 newmode = zp->z_mode;
364 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
365 (void *)&newmode, sizeof (uint64_t), tx);
366
367 mutex_exit(&zp->z_acl_lock);
368
369 /*
370 * Make sure SUID/SGID bits will be removed when we replay the
371 * log. If the setid bits are keep coming back, don't log more
372 * than one TX_SETATTR per transaction group.
373 */
374 if (*clear_setid_bits_txgp != dmu_tx_get_txg(tx)) {
375 vattr_t va = {0};
376
377 va.va_mask = ATTR_MODE;
378 va.va_nodeid = zp->z_id;
379 va.va_mode = newmode;
380 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, &va,
381 ATTR_MODE, NULL);
382 *clear_setid_bits_txgp = dmu_tx_get_txg(tx);
383 }
384 } else {
385 mutex_exit(&zp->z_acl_lock);
386 }
387 }
388
389 /*
390 * Write the bytes to a file.
391 *
392 * IN: zp - znode of file to be written to.
393 * uio - structure supplying write location, range info,
394 * and data buffer.
395 * ioflag - O_APPEND flag set if in append mode.
396 * O_DIRECT flag; used to bypass page cache.
397 * cr - credentials of caller.
398 *
399 * OUT: uio - updated offset and range.
400 *
401 * RETURN: 0 if success
402 * error code if failure
403 *
404 * Timestamps:
405 * ip - ctime|mtime updated if byte count > 0
406 */
407 int
408 zfs_write(znode_t *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
409 {
410 int error = 0, error1;
411 ssize_t start_resid = zfs_uio_resid(uio);
412 uint64_t clear_setid_bits_txg = 0;
413
414 /*
415 * Fasttrack empty write
416 */
417 ssize_t n = start_resid;
418 if (n == 0)
419 return (0);
420
421 zfsvfs_t *zfsvfs = ZTOZSB(zp);
422 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
423 return (error);
424
425 sa_bulk_attr_t bulk[4];
426 int count = 0;
427 uint64_t mtime[2], ctime[2];
428 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
429 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
430 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
431 &zp->z_size, 8);
432 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
433 &zp->z_pflags, 8);
434
435 /*
436 * Callers might not be able to detect properly that we are read-only,
437 * so check it explicitly here.
438 */
439 if (zfs_is_readonly(zfsvfs)) {
440 zfs_exit(zfsvfs, FTAG);
441 return (SET_ERROR(EROFS));
442 }
443
444 /*
445 * If immutable or not appending then return EPERM.
446 * Intentionally allow ZFS_READONLY through here.
447 * See zfs_zaccess_common()
448 */
449 if ((zp->z_pflags & ZFS_IMMUTABLE) ||
450 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & O_APPEND) &&
451 (zfs_uio_offset(uio) < zp->z_size))) {
452 zfs_exit(zfsvfs, FTAG);
453 return (SET_ERROR(EPERM));
454 }
455
456 /*
457 * Validate file offset
458 */
459 offset_t woff = ioflag & O_APPEND ? zp->z_size : zfs_uio_offset(uio);
460 if (woff < 0) {
461 zfs_exit(zfsvfs, FTAG);
462 return (SET_ERROR(EINVAL));
463 }
464
465 const uint64_t max_blksz = zfsvfs->z_max_blksz;
466
467 /*
468 * Pre-fault the pages to ensure slow (eg NFS) pages
469 * don't hold up txg.
470 * Skip this if uio contains loaned arc_buf.
471 */
472 if (zfs_uio_prefaultpages(MIN(n, max_blksz), uio)) {
473 zfs_exit(zfsvfs, FTAG);
474 return (SET_ERROR(EFAULT));
475 }
476
477 /*
478 * If in append mode, set the io offset pointer to eof.
479 */
480 zfs_locked_range_t *lr;
481 if (ioflag & O_APPEND) {
482 /*
483 * Obtain an appending range lock to guarantee file append
484 * semantics. We reset the write offset once we have the lock.
485 */
486 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND);
487 woff = lr->lr_offset;
488 if (lr->lr_length == UINT64_MAX) {
489 /*
490 * We overlocked the file because this write will cause
491 * the file block size to increase.
492 * Note that zp_size cannot change with this lock held.
493 */
494 woff = zp->z_size;
495 }
496 zfs_uio_setoffset(uio, woff);
497 } else {
498 /*
499 * Note that if the file block size will change as a result of
500 * this write, then this range lock will lock the entire file
501 * so that we can re-write the block safely.
502 */
503 lr = zfs_rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER);
504 }
505
506 if (zn_rlimit_fsize_uio(zp, uio)) {
507 zfs_rangelock_exit(lr);
508 zfs_exit(zfsvfs, FTAG);
509 return (SET_ERROR(EFBIG));
510 }
511
512 const rlim64_t limit = MAXOFFSET_T;
513
514 if (woff >= limit) {
515 zfs_rangelock_exit(lr);
516 zfs_exit(zfsvfs, FTAG);
517 return (SET_ERROR(EFBIG));
518 }
519
520 if (n > limit - woff)
521 n = limit - woff;
522
523 uint64_t end_size = MAX(zp->z_size, woff + n);
524 zilog_t *zilog = zfsvfs->z_log;
525
526 const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
527 const uint64_t gid = KGID_TO_SGID(ZTOGID(zp));
528 const uint64_t projid = zp->z_projid;
529
530 /*
531 * Write the file in reasonable size chunks. Each chunk is written
532 * in a separate transaction; this keeps the intent log records small
533 * and allows us to do more fine-grained space accounting.
534 */
535 while (n > 0) {
536 woff = zfs_uio_offset(uio);
537
538 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) ||
539 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) ||
540 (projid != ZFS_DEFAULT_PROJID &&
541 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
542 projid))) {
543 error = SET_ERROR(EDQUOT);
544 break;
545 }
546
547 arc_buf_t *abuf = NULL;
548 if (n >= max_blksz && woff >= zp->z_size &&
549 P2PHASE(woff, max_blksz) == 0 &&
550 zp->z_blksz == max_blksz) {
551 /*
552 * This write covers a full block. "Borrow" a buffer
553 * from the dmu so that we can fill it before we enter
554 * a transaction. This avoids the possibility of
555 * holding up the transaction if the data copy hangs
556 * up on a pagefault (e.g., from an NFS server mapping).
557 */
558 size_t cbytes;
559
560 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
561 max_blksz);
562 ASSERT(abuf != NULL);
563 ASSERT(arc_buf_size(abuf) == max_blksz);
564 if ((error = zfs_uiocopy(abuf->b_data, max_blksz,
565 UIO_WRITE, uio, &cbytes))) {
566 dmu_return_arcbuf(abuf);
567 break;
568 }
569 ASSERT3S(cbytes, ==, max_blksz);
570 }
571
572 /*
573 * Start a transaction.
574 */
575 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
576 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
577 dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
578 DB_DNODE_ENTER(db);
579 dmu_tx_hold_write_by_dnode(tx, DB_DNODE(db), woff,
580 MIN(n, max_blksz));
581 DB_DNODE_EXIT(db);
582 zfs_sa_upgrade_txholds(tx, zp);
583 error = dmu_tx_assign(tx, TXG_WAIT);
584 if (error) {
585 dmu_tx_abort(tx);
586 if (abuf != NULL)
587 dmu_return_arcbuf(abuf);
588 break;
589 }
590
591 /*
592 * NB: We must call zfs_clear_setid_bits_if_necessary before
593 * committing the transaction!
594 */
595
596 /*
597 * If rangelock_enter() over-locked we grow the blocksize
598 * and then reduce the lock range. This will only happen
599 * on the first iteration since rangelock_reduce() will
600 * shrink down lr_length to the appropriate size.
601 */
602 if (lr->lr_length == UINT64_MAX) {
603 uint64_t new_blksz;
604
605 if (zp->z_blksz > max_blksz) {
606 /*
607 * File's blocksize is already larger than the
608 * "recordsize" property. Only let it grow to
609 * the next power of 2.
610 */
611 ASSERT(!ISP2(zp->z_blksz));
612 new_blksz = MIN(end_size,
613 1 << highbit64(zp->z_blksz));
614 } else {
615 new_blksz = MIN(end_size, max_blksz);
616 }
617 zfs_grow_blocksize(zp, new_blksz, tx);
618 zfs_rangelock_reduce(lr, woff, n);
619 }
620
621 /*
622 * XXX - should we really limit each write to z_max_blksz?
623 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
624 */
625 const ssize_t nbytes =
626 MIN(n, max_blksz - P2PHASE(woff, max_blksz));
627
628 ssize_t tx_bytes;
629 if (abuf == NULL) {
630 tx_bytes = zfs_uio_resid(uio);
631 zfs_uio_fault_disable(uio, B_TRUE);
632 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
633 uio, nbytes, tx);
634 zfs_uio_fault_disable(uio, B_FALSE);
635 #ifdef __linux__
636 if (error == EFAULT) {
637 zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
638 cr, &clear_setid_bits_txg, tx);
639 dmu_tx_commit(tx);
640 /*
641 * Account for partial writes before
642 * continuing the loop.
643 * Update needs to occur before the next
644 * zfs_uio_prefaultpages, or prefaultpages may
645 * error, and we may break the loop early.
646 */
647 if (tx_bytes != zfs_uio_resid(uio))
648 n -= tx_bytes - zfs_uio_resid(uio);
649 if (zfs_uio_prefaultpages(MIN(n, max_blksz),
650 uio)) {
651 break;
652 }
653 continue;
654 }
655 #endif
656 /*
657 * On FreeBSD, EFAULT should be propagated back to the
658 * VFS, which will handle faulting and will retry.
659 */
660 if (error != 0 && error != EFAULT) {
661 zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
662 cr, &clear_setid_bits_txg, tx);
663 dmu_tx_commit(tx);
664 break;
665 }
666 tx_bytes -= zfs_uio_resid(uio);
667 } else {
668 /* Implied by abuf != NULL: */
669 ASSERT3S(n, >=, max_blksz);
670 ASSERT0(P2PHASE(woff, max_blksz));
671 /*
672 * We can simplify nbytes to MIN(n, max_blksz) since
673 * P2PHASE(woff, max_blksz) is 0, and knowing
674 * n >= max_blksz lets us simplify further:
675 */
676 ASSERT3S(nbytes, ==, max_blksz);
677 /*
678 * Thus, we're writing a full block at a block-aligned
679 * offset and extending the file past EOF.
680 *
681 * dmu_assign_arcbuf_by_dbuf() will directly assign the
682 * arc buffer to a dbuf.
683 */
684 error = dmu_assign_arcbuf_by_dbuf(
685 sa_get_db(zp->z_sa_hdl), woff, abuf, tx);
686 if (error != 0) {
687 /*
688 * XXX This might not be necessary if
689 * dmu_assign_arcbuf_by_dbuf is guaranteed
690 * to be atomic.
691 */
692 zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
693 cr, &clear_setid_bits_txg, tx);
694 dmu_return_arcbuf(abuf);
695 dmu_tx_commit(tx);
696 break;
697 }
698 ASSERT3S(nbytes, <=, zfs_uio_resid(uio));
699 zfs_uioskip(uio, nbytes);
700 tx_bytes = nbytes;
701 }
702 if (tx_bytes &&
703 zn_has_cached_data(zp, woff, woff + tx_bytes - 1) &&
704 !(ioflag & O_DIRECT)) {
705 update_pages(zp, woff, tx_bytes, zfsvfs->z_os);
706 }
707
708 /*
709 * If we made no progress, we're done. If we made even
710 * partial progress, update the znode and ZIL accordingly.
711 */
712 if (tx_bytes == 0) {
713 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
714 (void *)&zp->z_size, sizeof (uint64_t), tx);
715 dmu_tx_commit(tx);
716 ASSERT(error != 0);
717 break;
718 }
719
720 zfs_clear_setid_bits_if_necessary(zfsvfs, zp, cr,
721 &clear_setid_bits_txg, tx);
722
723 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
724
725 /*
726 * Update the file size (zp_size) if it has changed;
727 * account for possible concurrent updates.
728 */
729 while ((end_size = zp->z_size) < zfs_uio_offset(uio)) {
730 (void) atomic_cas_64(&zp->z_size, end_size,
731 zfs_uio_offset(uio));
732 ASSERT(error == 0 || error == EFAULT);
733 }
734 /*
735 * If we are replaying and eof is non zero then force
736 * the file size to the specified eof. Note, there's no
737 * concurrency during replay.
738 */
739 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
740 zp->z_size = zfsvfs->z_replay_eof;
741
742 error1 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
743 if (error1 != 0)
744 /* Avoid clobbering EFAULT. */
745 error = error1;
746
747 /*
748 * NB: During replay, the TX_SETATTR record logged by
749 * zfs_clear_setid_bits_if_necessary must precede any of
750 * the TX_WRITE records logged here.
751 */
752 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag,
753 NULL, NULL);
754
755 dmu_tx_commit(tx);
756
757 if (error != 0)
758 break;
759 ASSERT3S(tx_bytes, ==, nbytes);
760 n -= nbytes;
761
762 if (n > 0) {
763 if (zfs_uio_prefaultpages(MIN(n, max_blksz), uio)) {
764 error = SET_ERROR(EFAULT);
765 break;
766 }
767 }
768 }
769
770 zfs_znode_update_vfs(zp);
771 zfs_rangelock_exit(lr);
772
773 /*
774 * If we're in replay mode, or we made no progress, or the
775 * uio data is inaccessible return an error. Otherwise, it's
776 * at least a partial write, so it's successful.
777 */
778 if (zfsvfs->z_replay || zfs_uio_resid(uio) == start_resid ||
779 error == EFAULT) {
780 zfs_exit(zfsvfs, FTAG);
781 return (error);
782 }
783
784 if (ioflag & (O_SYNC | O_DSYNC) ||
785 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
786 zil_commit(zilog, zp->z_id);
787
788 const int64_t nwritten = start_resid - zfs_uio_resid(uio);
789 dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten);
790 task_io_account_write(nwritten);
791
792 zfs_exit(zfsvfs, FTAG);
793 return (0);
794 }
795
796 int
797 zfs_getsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
798 {
799 zfsvfs_t *zfsvfs = ZTOZSB(zp);
800 int error;
801 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
802
803 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
804 return (error);
805 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
806 zfs_exit(zfsvfs, FTAG);
807
808 return (error);
809 }
810
811 int
812 zfs_setsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
813 {
814 zfsvfs_t *zfsvfs = ZTOZSB(zp);
815 int error;
816 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
817 zilog_t *zilog = zfsvfs->z_log;
818
819 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
820 return (error);
821
822 error = zfs_setacl(zp, vsecp, skipaclchk, cr);
823
824 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
825 zil_commit(zilog, 0);
826
827 zfs_exit(zfsvfs, FTAG);
828 return (error);
829 }
830
831 #ifdef ZFS_DEBUG
832 static int zil_fault_io = 0;
833 #endif
834
835 static void zfs_get_done(zgd_t *zgd, int error);
836
837 /*
838 * Get data to generate a TX_WRITE intent log record.
839 */
840 int
841 zfs_get_data(void *arg, uint64_t gen, lr_write_t *lr, char *buf,
842 struct lwb *lwb, zio_t *zio)
843 {
844 zfsvfs_t *zfsvfs = arg;
845 objset_t *os = zfsvfs->z_os;
846 znode_t *zp;
847 uint64_t object = lr->lr_foid;
848 uint64_t offset = lr->lr_offset;
849 uint64_t size = lr->lr_length;
850 dmu_buf_t *db;
851 zgd_t *zgd;
852 int error = 0;
853 uint64_t zp_gen;
854
855 ASSERT3P(lwb, !=, NULL);
856 ASSERT3P(zio, !=, NULL);
857 ASSERT3U(size, !=, 0);
858
859 /*
860 * Nothing to do if the file has been removed
861 */
862 if (zfs_zget(zfsvfs, object, &zp) != 0)
863 return (SET_ERROR(ENOENT));
864 if (zp->z_unlinked) {
865 /*
866 * Release the vnode asynchronously as we currently have the
867 * txg stopped from syncing.
868 */
869 zfs_zrele_async(zp);
870 return (SET_ERROR(ENOENT));
871 }
872 /* check if generation number matches */
873 if (sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
874 sizeof (zp_gen)) != 0) {
875 zfs_zrele_async(zp);
876 return (SET_ERROR(EIO));
877 }
878 if (zp_gen != gen) {
879 zfs_zrele_async(zp);
880 return (SET_ERROR(ENOENT));
881 }
882
883 zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
884 zgd->zgd_lwb = lwb;
885 zgd->zgd_private = zp;
886
887 /*
888 * Write records come in two flavors: immediate and indirect.
889 * For small writes it's cheaper to store the data with the
890 * log record (immediate); for large writes it's cheaper to
891 * sync the data and get a pointer to it (indirect) so that
892 * we don't have to write the data twice.
893 */
894 if (buf != NULL) { /* immediate write */
895 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
896 offset, size, RL_READER);
897 /* test for truncation needs to be done while range locked */
898 if (offset >= zp->z_size) {
899 error = SET_ERROR(ENOENT);
900 } else {
901 error = dmu_read(os, object, offset, size, buf,
902 DMU_READ_NO_PREFETCH);
903 }
904 ASSERT(error == 0 || error == ENOENT);
905 } else { /* indirect write */
906 /*
907 * Have to lock the whole block to ensure when it's
908 * written out and its checksum is being calculated
909 * that no one can change the data. We need to re-check
910 * blocksize after we get the lock in case it's changed!
911 */
912 for (;;) {
913 uint64_t blkoff;
914 size = zp->z_blksz;
915 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
916 offset -= blkoff;
917 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
918 offset, size, RL_READER);
919 if (zp->z_blksz == size)
920 break;
921 offset += blkoff;
922 zfs_rangelock_exit(zgd->zgd_lr);
923 }
924 /* test for truncation needs to be done while range locked */
925 if (lr->lr_offset >= zp->z_size)
926 error = SET_ERROR(ENOENT);
927 #ifdef ZFS_DEBUG
928 if (zil_fault_io) {
929 error = SET_ERROR(EIO);
930 zil_fault_io = 0;
931 }
932 #endif
933 if (error == 0)
934 error = dmu_buf_hold(os, object, offset, zgd, &db,
935 DMU_READ_NO_PREFETCH);
936
937 if (error == 0) {
938 blkptr_t *bp = &lr->lr_blkptr;
939
940 zgd->zgd_db = db;
941 zgd->zgd_bp = bp;
942
943 ASSERT(db->db_offset == offset);
944 ASSERT(db->db_size == size);
945
946 error = dmu_sync(zio, lr->lr_common.lrc_txg,
947 zfs_get_done, zgd);
948 ASSERT(error || lr->lr_length <= size);
949
950 /*
951 * On success, we need to wait for the write I/O
952 * initiated by dmu_sync() to complete before we can
953 * release this dbuf. We will finish everything up
954 * in the zfs_get_done() callback.
955 */
956 if (error == 0)
957 return (0);
958
959 if (error == EALREADY) {
960 lr->lr_common.lrc_txtype = TX_WRITE2;
961 /*
962 * TX_WRITE2 relies on the data previously
963 * written by the TX_WRITE that caused
964 * EALREADY. We zero out the BP because
965 * it is the old, currently-on-disk BP.
966 */
967 zgd->zgd_bp = NULL;
968 BP_ZERO(bp);
969 error = 0;
970 }
971 }
972 }
973
974 zfs_get_done(zgd, error);
975
976 return (error);
977 }
978
979
980 static void
981 zfs_get_done(zgd_t *zgd, int error)
982 {
983 (void) error;
984 znode_t *zp = zgd->zgd_private;
985
986 if (zgd->zgd_db)
987 dmu_buf_rele(zgd->zgd_db, zgd);
988
989 zfs_rangelock_exit(zgd->zgd_lr);
990
991 /*
992 * Release the vnode asynchronously as we currently have the
993 * txg stopped from syncing.
994 */
995 zfs_zrele_async(zp);
996
997 kmem_free(zgd, sizeof (zgd_t));
998 }
999
1000 static int
1001 zfs_enter_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag)
1002 {
1003 int error;
1004
1005 /* Swap. Not sure if the order of zfs_enter()s is important. */
1006 if (zfsvfs1 > zfsvfs2) {
1007 zfsvfs_t *tmpzfsvfs;
1008
1009 tmpzfsvfs = zfsvfs2;
1010 zfsvfs2 = zfsvfs1;
1011 zfsvfs1 = tmpzfsvfs;
1012 }
1013
1014 error = zfs_enter(zfsvfs1, tag);
1015 if (error != 0)
1016 return (error);
1017 if (zfsvfs1 != zfsvfs2) {
1018 error = zfs_enter(zfsvfs2, tag);
1019 if (error != 0) {
1020 zfs_exit(zfsvfs1, tag);
1021 return (error);
1022 }
1023 }
1024
1025 return (0);
1026 }
1027
1028 static void
1029 zfs_exit_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag)
1030 {
1031
1032 zfs_exit(zfsvfs1, tag);
1033 if (zfsvfs1 != zfsvfs2)
1034 zfs_exit(zfsvfs2, tag);
1035 }
1036
1037 /*
1038 * We split each clone request in chunks that can fit into a single ZIL
1039 * log entry. Each ZIL log entry can fit 130816 bytes for a block cloning
1040 * operation (see zil_max_log_data() and zfs_log_clone_range()). This gives
1041 * us room for storing 1022 block pointers.
1042 *
1043 * On success, the function return the number of bytes copied in *lenp.
1044 * Note, it doesn't return how much bytes are left to be copied.
1045 */
1046 int
1047 zfs_clone_range(znode_t *inzp, uint64_t *inoffp, znode_t *outzp,
1048 uint64_t *outoffp, uint64_t *lenp, cred_t *cr)
1049 {
1050 zfsvfs_t *inzfsvfs, *outzfsvfs;
1051 objset_t *inos, *outos;
1052 zfs_locked_range_t *inlr, *outlr;
1053 dmu_buf_impl_t *db;
1054 dmu_tx_t *tx;
1055 zilog_t *zilog;
1056 uint64_t inoff, outoff, len, done;
1057 uint64_t outsize, size;
1058 int error;
1059 int count = 0;
1060 sa_bulk_attr_t bulk[3];
1061 uint64_t mtime[2], ctime[2];
1062 uint64_t uid, gid, projid;
1063 blkptr_t *bps;
1064 size_t maxblocks, nbps;
1065 uint_t inblksz;
1066 uint64_t clear_setid_bits_txg = 0;
1067
1068 inoff = *inoffp;
1069 outoff = *outoffp;
1070 len = *lenp;
1071 done = 0;
1072
1073 inzfsvfs = ZTOZSB(inzp);
1074 outzfsvfs = ZTOZSB(outzp);
1075 inos = inzfsvfs->z_os;
1076 outos = outzfsvfs->z_os;
1077
1078 /*
1079 * Both source and destination have to belong to the same storage pool.
1080 */
1081 if (dmu_objset_spa(inos) != dmu_objset_spa(outos)) {
1082 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1083 return (SET_ERROR(EXDEV));
1084 }
1085
1086 /*
1087 * We need to call zfs_enter() potentially on two different datasets,
1088 * so we need a dedicated function for that.
1089 */
1090 error = zfs_enter_two(inzfsvfs, outzfsvfs, FTAG);
1091 if (error != 0)
1092 return (error);
1093
1094 ASSERT(!outzfsvfs->z_replay);
1095
1096 error = zfs_verify_zp(inzp);
1097 if (error == 0)
1098 error = zfs_verify_zp(outzp);
1099 if (error != 0) {
1100 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1101 return (error);
1102 }
1103
1104 if (!spa_feature_is_enabled(dmu_objset_spa(outos),
1105 SPA_FEATURE_BLOCK_CLONING)) {
1106 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1107 return (SET_ERROR(EXDEV));
1108 }
1109
1110 /*
1111 * We don't copy source file's flags that's why we don't allow to clone
1112 * files that are in quarantine.
1113 */
1114 if (inzp->z_pflags & ZFS_AV_QUARANTINED) {
1115 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1116 return (SET_ERROR(EACCES));
1117 }
1118
1119 if (inoff >= inzp->z_size) {
1120 *lenp = 0;
1121 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1122 return (0);
1123 }
1124 if (len > inzp->z_size - inoff) {
1125 len = inzp->z_size - inoff;
1126 }
1127 if (len == 0) {
1128 *lenp = 0;
1129 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1130 return (0);
1131 }
1132
1133 /*
1134 * Callers might not be able to detect properly that we are read-only,
1135 * so check it explicitly here.
1136 */
1137 if (zfs_is_readonly(outzfsvfs)) {
1138 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1139 return (SET_ERROR(EROFS));
1140 }
1141
1142 /*
1143 * If immutable or not appending then return EPERM.
1144 * Intentionally allow ZFS_READONLY through here.
1145 * See zfs_zaccess_common()
1146 */
1147 if ((outzp->z_pflags & ZFS_IMMUTABLE) != 0) {
1148 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1149 return (SET_ERROR(EPERM));
1150 }
1151
1152 /*
1153 * No overlapping if we are cloning within the same file.
1154 */
1155 if (inzp == outzp) {
1156 if (inoff < outoff + len && outoff < inoff + len) {
1157 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1158 return (SET_ERROR(EINVAL));
1159 }
1160 }
1161
1162 /*
1163 * Maintain predictable lock order.
1164 */
1165 if (inzp < outzp || (inzp == outzp && inoff < outoff)) {
1166 inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len,
1167 RL_READER);
1168 outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len,
1169 RL_WRITER);
1170 } else {
1171 outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len,
1172 RL_WRITER);
1173 inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len,
1174 RL_READER);
1175 }
1176
1177 inblksz = inzp->z_blksz;
1178
1179 /*
1180 * We cannot clone into files with different block size.
1181 */
1182 if (inblksz != outzp->z_blksz && outzp->z_size > inblksz) {
1183 error = SET_ERROR(EXDEV);
1184 goto unlock;
1185 }
1186
1187 /*
1188 * Offsets and len must be at block boundries.
1189 */
1190 if ((inoff % inblksz) != 0 || (outoff % inblksz) != 0) {
1191 error = SET_ERROR(EXDEV);
1192 goto unlock;
1193 }
1194 /*
1195 * Length must be multipe of blksz, except for the end of the file.
1196 */
1197 if ((len % inblksz) != 0 &&
1198 (len < inzp->z_size - inoff || len < outzp->z_size - outoff)) {
1199 error = SET_ERROR(EXDEV);
1200 goto unlock;
1201 }
1202
1203 error = zn_rlimit_fsize(outoff + len);
1204 if (error != 0) {
1205 goto unlock;
1206 }
1207
1208 if (inoff >= MAXOFFSET_T || outoff >= MAXOFFSET_T) {
1209 error = SET_ERROR(EFBIG);
1210 goto unlock;
1211 }
1212
1213 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(outzfsvfs), NULL,
1214 &mtime, 16);
1215 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(outzfsvfs), NULL,
1216 &ctime, 16);
1217 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(outzfsvfs), NULL,
1218 &outzp->z_size, 8);
1219
1220 zilog = outzfsvfs->z_log;
1221 maxblocks = zil_max_log_data(zilog, sizeof (lr_clone_range_t)) /
1222 sizeof (bps[0]);
1223
1224 uid = KUID_TO_SUID(ZTOUID(outzp));
1225 gid = KGID_TO_SGID(ZTOGID(outzp));
1226 projid = outzp->z_projid;
1227
1228 bps = kmem_alloc(sizeof (bps[0]) * maxblocks, KM_SLEEP);
1229
1230 /*
1231 * Clone the file in reasonable size chunks. Each chunk is cloned
1232 * in a separate transaction; this keeps the intent log records small
1233 * and allows us to do more fine-grained space accounting.
1234 */
1235 while (len > 0) {
1236 size = MIN(inblksz * maxblocks, len);
1237
1238 if (zfs_id_overblockquota(outzfsvfs, DMU_USERUSED_OBJECT,
1239 uid) ||
1240 zfs_id_overblockquota(outzfsvfs, DMU_GROUPUSED_OBJECT,
1241 gid) ||
1242 (projid != ZFS_DEFAULT_PROJID &&
1243 zfs_id_overblockquota(outzfsvfs, DMU_PROJECTUSED_OBJECT,
1244 projid))) {
1245 error = SET_ERROR(EDQUOT);
1246 break;
1247 }
1248
1249 /*
1250 * Start a transaction.
1251 */
1252 tx = dmu_tx_create(outos);
1253
1254 nbps = maxblocks;
1255 error = dmu_read_l0_bps(inos, inzp->z_id, inoff, size, tx, bps,
1256 &nbps);
1257 if (error != 0) {
1258 dmu_tx_abort(tx);
1259 /*
1260 * If we are tyring to clone a block that was created
1261 * in the current transaction group. Return an error,
1262 * so the caller can fallback to just copying the data.
1263 */
1264 if (error == EAGAIN) {
1265 error = SET_ERROR(EXDEV);
1266 }
1267 break;
1268 }
1269 /*
1270 * Encrypted data is fine as long as it comes from the same
1271 * dataset.
1272 * TODO: We want to extend it in the future to allow cloning to
1273 * datasets with the same keys, like clones or to be able to
1274 * clone a file from a snapshot of an encrypted dataset into the
1275 * dataset itself.
1276 */
1277 if (BP_IS_PROTECTED(&bps[0])) {
1278 if (inzfsvfs != outzfsvfs) {
1279 dmu_tx_abort(tx);
1280 error = SET_ERROR(EXDEV);
1281 break;
1282 }
1283 }
1284
1285 dmu_tx_hold_sa(tx, outzp->z_sa_hdl, B_FALSE);
1286 db = (dmu_buf_impl_t *)sa_get_db(outzp->z_sa_hdl);
1287 DB_DNODE_ENTER(db);
1288 dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), outoff, size);
1289 DB_DNODE_EXIT(db);
1290 zfs_sa_upgrade_txholds(tx, outzp);
1291 error = dmu_tx_assign(tx, TXG_WAIT);
1292 if (error != 0) {
1293 dmu_tx_abort(tx);
1294 break;
1295 }
1296
1297 /*
1298 * Copy source znode's block size. This only happens on the
1299 * first iteration since zfs_rangelock_reduce() will shrink down
1300 * lr_len to the appropriate size.
1301 */
1302 if (outlr->lr_length == UINT64_MAX) {
1303 zfs_grow_blocksize(outzp, inblksz, tx);
1304 /*
1305 * Round range lock up to the block boundary, so we
1306 * prevent appends until we are done.
1307 */
1308 zfs_rangelock_reduce(outlr, outoff,
1309 ((len - 1) / inblksz + 1) * inblksz);
1310 }
1311
1312 error = dmu_brt_clone(outos, outzp->z_id, outoff, size, tx,
1313 bps, nbps, B_FALSE);
1314 if (error != 0) {
1315 dmu_tx_commit(tx);
1316 break;
1317 }
1318
1319 zfs_clear_setid_bits_if_necessary(outzfsvfs, outzp, cr,
1320 &clear_setid_bits_txg, tx);
1321
1322 zfs_tstamp_update_setup(outzp, CONTENT_MODIFIED, mtime, ctime);
1323
1324 /*
1325 * Update the file size (zp_size) if it has changed;
1326 * account for possible concurrent updates.
1327 */
1328 while ((outsize = outzp->z_size) < outoff + size) {
1329 (void) atomic_cas_64(&outzp->z_size, outsize,
1330 outoff + size);
1331 }
1332
1333 error = sa_bulk_update(outzp->z_sa_hdl, bulk, count, tx);
1334
1335 zfs_log_clone_range(zilog, tx, TX_CLONE_RANGE, outzp, outoff,
1336 size, inblksz, bps, nbps);
1337
1338 dmu_tx_commit(tx);
1339
1340 if (error != 0)
1341 break;
1342
1343 inoff += size;
1344 outoff += size;
1345 len -= size;
1346 done += size;
1347 }
1348
1349 kmem_free(bps, sizeof (bps[0]) * maxblocks);
1350 zfs_znode_update_vfs(outzp);
1351
1352 unlock:
1353 zfs_rangelock_exit(outlr);
1354 zfs_rangelock_exit(inlr);
1355
1356 if (done > 0) {
1357 /*
1358 * If we have made at least partial progress, reset the error.
1359 */
1360 error = 0;
1361
1362 ZFS_ACCESSTIME_STAMP(inzfsvfs, inzp);
1363
1364 if (outos->os_sync == ZFS_SYNC_ALWAYS) {
1365 zil_commit(zilog, outzp->z_id);
1366 }
1367
1368 *inoffp += done;
1369 *outoffp += done;
1370 *lenp = done;
1371 }
1372
1373 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1374
1375 return (error);
1376 }
1377
1378 /*
1379 * Usual pattern would be to call zfs_clone_range() from zfs_replay_clone(),
1380 * but we cannot do that, because when replaying we don't have source znode
1381 * available. This is why we need a dedicated replay function.
1382 */
1383 int
1384 zfs_clone_range_replay(znode_t *zp, uint64_t off, uint64_t len, uint64_t blksz,
1385 const blkptr_t *bps, size_t nbps)
1386 {
1387 zfsvfs_t *zfsvfs;
1388 dmu_buf_impl_t *db;
1389 dmu_tx_t *tx;
1390 int error;
1391 int count = 0;
1392 sa_bulk_attr_t bulk[3];
1393 uint64_t mtime[2], ctime[2];
1394
1395 ASSERT3U(off, <, MAXOFFSET_T);
1396 ASSERT3U(len, >, 0);
1397 ASSERT3U(nbps, >, 0);
1398
1399 zfsvfs = ZTOZSB(zp);
1400
1401 ASSERT(spa_feature_is_enabled(dmu_objset_spa(zfsvfs->z_os),
1402 SPA_FEATURE_BLOCK_CLONING));
1403
1404 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1405 return (error);
1406
1407 ASSERT(zfsvfs->z_replay);
1408 ASSERT(!zfs_is_readonly(zfsvfs));
1409
1410 if ((off % blksz) != 0) {
1411 zfs_exit(zfsvfs, FTAG);
1412 return (SET_ERROR(EINVAL));
1413 }
1414
1415 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
1416 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
1417 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
1418 &zp->z_size, 8);
1419
1420 /*
1421 * Start a transaction.
1422 */
1423 tx = dmu_tx_create(zfsvfs->z_os);
1424
1425 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1426 db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
1427 DB_DNODE_ENTER(db);
1428 dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), off, len);
1429 DB_DNODE_EXIT(db);
1430 zfs_sa_upgrade_txholds(tx, zp);
1431 error = dmu_tx_assign(tx, TXG_WAIT);
1432 if (error != 0) {
1433 dmu_tx_abort(tx);
1434 zfs_exit(zfsvfs, FTAG);
1435 return (error);
1436 }
1437
1438 if (zp->z_blksz < blksz)
1439 zfs_grow_blocksize(zp, blksz, tx);
1440
1441 dmu_brt_clone(zfsvfs->z_os, zp->z_id, off, len, tx, bps, nbps, B_TRUE);
1442
1443 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
1444
1445 if (zp->z_size < off + len)
1446 zp->z_size = off + len;
1447
1448 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1449
1450 /*
1451 * zil_replaying() not only check if we are replaying ZIL, but also
1452 * updates the ZIL header to record replay progress.
1453 */
1454 VERIFY(zil_replaying(zfsvfs->z_log, tx));
1455
1456 dmu_tx_commit(tx);
1457
1458 zfs_znode_update_vfs(zp);
1459
1460 zfs_exit(zfsvfs, FTAG);
1461
1462 return (error);
1463 }
1464
1465 EXPORT_SYMBOL(zfs_access);
1466 EXPORT_SYMBOL(zfs_fsync);
1467 EXPORT_SYMBOL(zfs_holey);
1468 EXPORT_SYMBOL(zfs_read);
1469 EXPORT_SYMBOL(zfs_write);
1470 EXPORT_SYMBOL(zfs_getsecattr);
1471 EXPORT_SYMBOL(zfs_setsecattr);
1472 EXPORT_SYMBOL(zfs_clone_range);
1473 EXPORT_SYMBOL(zfs_clone_range_replay);
1474
1475 ZFS_MODULE_PARAM(zfs_vnops, zfs_vnops_, read_chunk_size, U64, ZMOD_RW,
1476 "Bytes to read per chunk");