]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zfs_vnops.c
Fix iput() calls within a tx
[mirror_zfs.git] / module / zfs / zfs_vnops.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.
27 */
28
29 /* Portions Copyright 2007 Jeremy Teo */
30 /* Portions Copyright 2010 Robert Milkowski */
31
32
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/time.h>
36 #include <sys/systm.h>
37 #include <sys/sysmacros.h>
38 #include <sys/resource.h>
39 #include <sys/vfs.h>
40 #include <sys/vfs_opreg.h>
41 #include <sys/file.h>
42 #include <sys/stat.h>
43 #include <sys/kmem.h>
44 #include <sys/taskq.h>
45 #include <sys/uio.h>
46 #include <sys/vmsystm.h>
47 #include <sys/atomic.h>
48 #include <vm/pvn.h>
49 #include <sys/pathname.h>
50 #include <sys/cmn_err.h>
51 #include <sys/errno.h>
52 #include <sys/unistd.h>
53 #include <sys/zfs_dir.h>
54 #include <sys/zfs_acl.h>
55 #include <sys/zfs_ioctl.h>
56 #include <sys/fs/zfs.h>
57 #include <sys/dmu.h>
58 #include <sys/dmu_objset.h>
59 #include <sys/spa.h>
60 #include <sys/txg.h>
61 #include <sys/dbuf.h>
62 #include <sys/zap.h>
63 #include <sys/sa.h>
64 #include <sys/dirent.h>
65 #include <sys/policy.h>
66 #include <sys/sunddi.h>
67 #include <sys/sid.h>
68 #include <sys/mode.h>
69 #include "fs/fs_subr.h"
70 #include <sys/zfs_ctldir.h>
71 #include <sys/zfs_fuid.h>
72 #include <sys/zfs_sa.h>
73 #include <sys/zfs_vnops.h>
74 #include <sys/dnlc.h>
75 #include <sys/zfs_rlock.h>
76 #include <sys/extdirent.h>
77 #include <sys/kidmap.h>
78 #include <sys/cred.h>
79 #include <sys/attr.h>
80 #include <sys/zpl.h>
81
82 /*
83 * Programming rules.
84 *
85 * Each vnode op performs some logical unit of work. To do this, the ZPL must
86 * properly lock its in-core state, create a DMU transaction, do the work,
87 * record this work in the intent log (ZIL), commit the DMU transaction,
88 * and wait for the intent log to commit if it is a synchronous operation.
89 * Moreover, the vnode ops must work in both normal and log replay context.
90 * The ordering of events is important to avoid deadlocks and references
91 * to freed memory. The example below illustrates the following Big Rules:
92 *
93 * (1) A check must be made in each zfs thread for a mounted file system.
94 * This is done avoiding races using ZFS_ENTER(zsb).
95 * A ZFS_EXIT(zsb) is needed before all returns. Any znodes
96 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros
97 * can return EIO from the calling function.
98 *
99 * (2) iput() should always be the last thing except for zil_commit()
100 * (if necessary) and ZFS_EXIT(). This is for 3 reasons:
101 * First, if it's the last reference, the vnode/znode
102 * can be freed, so the zp may point to freed memory. Second, the last
103 * reference will call zfs_zinactive(), which may induce a lot of work --
104 * pushing cached pages (which acquires range locks) and syncing out
105 * cached atime changes. Third, zfs_zinactive() may require a new tx,
106 * which could deadlock the system if you were already holding one.
107 * If you must call iput() within a tx then use zfs_iput_async().
108 *
109 * (3) All range locks must be grabbed before calling dmu_tx_assign(),
110 * as they can span dmu_tx_assign() calls.
111 *
112 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
113 * dmu_tx_assign(). This is critical because we don't want to block
114 * while holding locks.
115 *
116 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This
117 * reduces lock contention and CPU usage when we must wait (note that if
118 * throughput is constrained by the storage, nearly every transaction
119 * must wait).
120 *
121 * Note, in particular, that if a lock is sometimes acquired before
122 * the tx assigns, and sometimes after (e.g. z_lock), then failing
123 * to use a non-blocking assign can deadlock the system. The scenario:
124 *
125 * Thread A has grabbed a lock before calling dmu_tx_assign().
126 * Thread B is in an already-assigned tx, and blocks for this lock.
127 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
128 * forever, because the previous txg can't quiesce until B's tx commits.
129 *
130 * If dmu_tx_assign() returns ERESTART and zsb->z_assign is TXG_NOWAIT,
131 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent
132 * calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT,
133 * to indicate that this operation has already called dmu_tx_wait().
134 * This will ensure that we don't retry forever, waiting a short bit
135 * each time.
136 *
137 * (5) If the operation succeeded, generate the intent log entry for it
138 * before dropping locks. This ensures that the ordering of events
139 * in the intent log matches the order in which they actually occurred.
140 * During ZIL replay the zfs_log_* functions will update the sequence
141 * number to indicate the zil transaction has replayed.
142 *
143 * (6) At the end of each vnode op, the DMU tx must always commit,
144 * regardless of whether there were any errors.
145 *
146 * (7) After dropping all locks, invoke zil_commit(zilog, foid)
147 * to ensure that synchronous semantics are provided when necessary.
148 *
149 * In general, this is how things should be ordered in each vnode op:
150 *
151 * ZFS_ENTER(zsb); // exit if unmounted
152 * top:
153 * zfs_dirent_lock(&dl, ...) // lock directory entry (may igrab())
154 * rw_enter(...); // grab any other locks you need
155 * tx = dmu_tx_create(...); // get DMU tx
156 * dmu_tx_hold_*(); // hold each object you might modify
157 * error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
158 * if (error) {
159 * rw_exit(...); // drop locks
160 * zfs_dirent_unlock(dl); // unlock directory entry
161 * iput(...); // release held vnodes
162 * if (error == ERESTART) {
163 * waited = B_TRUE;
164 * dmu_tx_wait(tx);
165 * dmu_tx_abort(tx);
166 * goto top;
167 * }
168 * dmu_tx_abort(tx); // abort DMU tx
169 * ZFS_EXIT(zsb); // finished in zfs
170 * return (error); // really out of space
171 * }
172 * error = do_real_work(); // do whatever this VOP does
173 * if (error == 0)
174 * zfs_log_*(...); // on success, make ZIL entry
175 * dmu_tx_commit(tx); // commit DMU tx -- error or not
176 * rw_exit(...); // drop locks
177 * zfs_dirent_unlock(dl); // unlock directory entry
178 * iput(...); // release held vnodes
179 * zil_commit(zilog, foid); // synchronous when necessary
180 * ZFS_EXIT(zsb); // finished in zfs
181 * return (error); // done, report error
182 */
183
184 /*
185 * Virus scanning is unsupported. It would be possible to add a hook
186 * here to performance the required virus scan. This could be done
187 * entirely in the kernel or potentially as an update to invoke a
188 * scanning utility.
189 */
190 static int
191 zfs_vscan(struct inode *ip, cred_t *cr, int async)
192 {
193 return (0);
194 }
195
196 /* ARGSUSED */
197 int
198 zfs_open(struct inode *ip, int mode, int flag, cred_t *cr)
199 {
200 znode_t *zp = ITOZ(ip);
201 zfs_sb_t *zsb = ITOZSB(ip);
202
203 ZFS_ENTER(zsb);
204 ZFS_VERIFY_ZP(zp);
205
206 /* Honor ZFS_APPENDONLY file attribute */
207 if ((mode & FMODE_WRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
208 ((flag & O_APPEND) == 0)) {
209 ZFS_EXIT(zsb);
210 return (SET_ERROR(EPERM));
211 }
212
213 /* Virus scan eligible files on open */
214 if (!zfs_has_ctldir(zp) && zsb->z_vscan && S_ISREG(ip->i_mode) &&
215 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
216 if (zfs_vscan(ip, cr, 0) != 0) {
217 ZFS_EXIT(zsb);
218 return (SET_ERROR(EACCES));
219 }
220 }
221
222 /* Keep a count of the synchronous opens in the znode */
223 if (flag & O_SYNC)
224 atomic_inc_32(&zp->z_sync_cnt);
225
226 ZFS_EXIT(zsb);
227 return (0);
228 }
229 EXPORT_SYMBOL(zfs_open);
230
231 /* ARGSUSED */
232 int
233 zfs_close(struct inode *ip, int flag, cred_t *cr)
234 {
235 znode_t *zp = ITOZ(ip);
236 zfs_sb_t *zsb = ITOZSB(ip);
237
238 ZFS_ENTER(zsb);
239 ZFS_VERIFY_ZP(zp);
240
241 /* Decrement the synchronous opens in the znode */
242 if (flag & O_SYNC)
243 atomic_dec_32(&zp->z_sync_cnt);
244
245 if (!zfs_has_ctldir(zp) && zsb->z_vscan && S_ISREG(ip->i_mode) &&
246 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
247 VERIFY(zfs_vscan(ip, cr, 1) == 0);
248
249 ZFS_EXIT(zsb);
250 return (0);
251 }
252 EXPORT_SYMBOL(zfs_close);
253
254 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
255 /*
256 * Lseek support for finding holes (cmd == SEEK_HOLE) and
257 * data (cmd == SEEK_DATA). "off" is an in/out parameter.
258 */
259 static int
260 zfs_holey_common(struct inode *ip, int cmd, loff_t *off)
261 {
262 znode_t *zp = ITOZ(ip);
263 uint64_t noff = (uint64_t)*off; /* new offset */
264 uint64_t file_sz;
265 int error;
266 boolean_t hole;
267
268 file_sz = zp->z_size;
269 if (noff >= file_sz) {
270 return (SET_ERROR(ENXIO));
271 }
272
273 if (cmd == SEEK_HOLE)
274 hole = B_TRUE;
275 else
276 hole = B_FALSE;
277
278 error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);
279
280 if (error == ESRCH)
281 return (SET_ERROR(ENXIO));
282
283 /*
284 * We could find a hole that begins after the logical end-of-file,
285 * because dmu_offset_next() only works on whole blocks. If the
286 * EOF falls mid-block, then indicate that the "virtual hole"
287 * at the end of the file begins at the logical EOF, rather than
288 * at the end of the last block.
289 */
290 if (noff > file_sz) {
291 ASSERT(hole);
292 noff = file_sz;
293 }
294
295 if (noff < *off)
296 return (error);
297 *off = noff;
298 return (error);
299 }
300
301 int
302 zfs_holey(struct inode *ip, int cmd, loff_t *off)
303 {
304 znode_t *zp = ITOZ(ip);
305 zfs_sb_t *zsb = ITOZSB(ip);
306 int error;
307
308 ZFS_ENTER(zsb);
309 ZFS_VERIFY_ZP(zp);
310
311 error = zfs_holey_common(ip, cmd, off);
312
313 ZFS_EXIT(zsb);
314 return (error);
315 }
316 EXPORT_SYMBOL(zfs_holey);
317 #endif /* SEEK_HOLE && SEEK_DATA */
318
319 #if defined(_KERNEL)
320 /*
321 * When a file is memory mapped, we must keep the IO data synchronized
322 * between the DMU cache and the memory mapped pages. What this means:
323 *
324 * On Write: If we find a memory mapped page, we write to *both*
325 * the page and the dmu buffer.
326 */
327 static void
328 update_pages(struct inode *ip, int64_t start, int len,
329 objset_t *os, uint64_t oid)
330 {
331 struct address_space *mp = ip->i_mapping;
332 struct page *pp;
333 uint64_t nbytes;
334 int64_t off;
335 void *pb;
336
337 off = start & (PAGE_SIZE-1);
338 for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
339 nbytes = MIN(PAGE_SIZE - off, len);
340
341 pp = find_lock_page(mp, start >> PAGE_SHIFT);
342 if (pp) {
343 if (mapping_writably_mapped(mp))
344 flush_dcache_page(pp);
345
346 pb = kmap(pp);
347 (void) dmu_read(os, oid, start+off, nbytes, pb+off,
348 DMU_READ_PREFETCH);
349 kunmap(pp);
350
351 if (mapping_writably_mapped(mp))
352 flush_dcache_page(pp);
353
354 mark_page_accessed(pp);
355 SetPageUptodate(pp);
356 ClearPageError(pp);
357 unlock_page(pp);
358 put_page(pp);
359 }
360
361 len -= nbytes;
362 off = 0;
363 }
364 }
365
366 /*
367 * When a file is memory mapped, we must keep the IO data synchronized
368 * between the DMU cache and the memory mapped pages. What this means:
369 *
370 * On Read: We "read" preferentially from memory mapped pages,
371 * else we default from the dmu buffer.
372 *
373 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
374 * the file is memory mapped.
375 */
376 static int
377 mappedread(struct inode *ip, int nbytes, uio_t *uio)
378 {
379 struct address_space *mp = ip->i_mapping;
380 struct page *pp;
381 znode_t *zp = ITOZ(ip);
382 int64_t start, off;
383 uint64_t bytes;
384 int len = nbytes;
385 int error = 0;
386 void *pb;
387
388 start = uio->uio_loffset;
389 off = start & (PAGE_SIZE-1);
390 for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
391 bytes = MIN(PAGE_SIZE - off, len);
392
393 pp = find_lock_page(mp, start >> PAGE_SHIFT);
394 if (pp) {
395 ASSERT(PageUptodate(pp));
396
397 pb = kmap(pp);
398 error = uiomove(pb + off, bytes, UIO_READ, uio);
399 kunmap(pp);
400
401 if (mapping_writably_mapped(mp))
402 flush_dcache_page(pp);
403
404 mark_page_accessed(pp);
405 unlock_page(pp);
406 put_page(pp);
407 } else {
408 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
409 uio, bytes);
410 }
411
412 len -= bytes;
413 off = 0;
414 if (error)
415 break;
416 }
417 return (error);
418 }
419 #endif /* _KERNEL */
420
421 unsigned long zfs_read_chunk_size = 1024 * 1024; /* Tunable */
422 unsigned long zfs_delete_blocks = DMU_MAX_DELETEBLKCNT;
423
424 /*
425 * Read bytes from specified file into supplied buffer.
426 *
427 * IN: ip - inode of file to be read from.
428 * uio - structure supplying read location, range info,
429 * and return buffer.
430 * ioflag - FSYNC flags; used to provide FRSYNC semantics.
431 * O_DIRECT flag; used to bypass page cache.
432 * cr - credentials of caller.
433 *
434 * OUT: uio - updated offset and range, buffer filled.
435 *
436 * RETURN: 0 on success, error code on failure.
437 *
438 * Side Effects:
439 * inode - atime updated if byte count > 0
440 */
441 /* ARGSUSED */
442 int
443 zfs_read(struct inode *ip, uio_t *uio, int ioflag, cred_t *cr)
444 {
445 znode_t *zp = ITOZ(ip);
446 zfs_sb_t *zsb = ITOZSB(ip);
447 ssize_t n, nbytes;
448 int error = 0;
449 rl_t *rl;
450 #ifdef HAVE_UIO_ZEROCOPY
451 xuio_t *xuio = NULL;
452 #endif /* HAVE_UIO_ZEROCOPY */
453
454 ZFS_ENTER(zsb);
455 ZFS_VERIFY_ZP(zp);
456
457 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
458 ZFS_EXIT(zsb);
459 return (SET_ERROR(EACCES));
460 }
461
462 /*
463 * Validate file offset
464 */
465 if (uio->uio_loffset < (offset_t)0) {
466 ZFS_EXIT(zsb);
467 return (SET_ERROR(EINVAL));
468 }
469
470 /*
471 * Fasttrack empty reads
472 */
473 if (uio->uio_resid == 0) {
474 ZFS_EXIT(zsb);
475 return (0);
476 }
477
478 /*
479 * If we're in FRSYNC mode, sync out this znode before reading it.
480 */
481 if (ioflag & FRSYNC || zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
482 zil_commit(zsb->z_log, zp->z_id);
483
484 /*
485 * Lock the range against changes.
486 */
487 rl = zfs_range_lock(&zp->z_range_lock, uio->uio_loffset, uio->uio_resid,
488 RL_READER);
489
490 /*
491 * If we are reading past end-of-file we can skip
492 * to the end; but we might still need to set atime.
493 */
494 if (uio->uio_loffset >= zp->z_size) {
495 error = 0;
496 goto out;
497 }
498
499 ASSERT(uio->uio_loffset < zp->z_size);
500 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
501
502 #ifdef HAVE_UIO_ZEROCOPY
503 if ((uio->uio_extflg == UIO_XUIO) &&
504 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
505 int nblk;
506 int blksz = zp->z_blksz;
507 uint64_t offset = uio->uio_loffset;
508
509 xuio = (xuio_t *)uio;
510 if ((ISP2(blksz))) {
511 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
512 blksz)) / blksz;
513 } else {
514 ASSERT(offset + n <= blksz);
515 nblk = 1;
516 }
517 (void) dmu_xuio_init(xuio, nblk);
518
519 if (vn_has_cached_data(ip)) {
520 /*
521 * For simplicity, we always allocate a full buffer
522 * even if we only expect to read a portion of a block.
523 */
524 while (--nblk >= 0) {
525 (void) dmu_xuio_add(xuio,
526 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
527 blksz), 0, blksz);
528 }
529 }
530 }
531 #endif /* HAVE_UIO_ZEROCOPY */
532
533 while (n > 0) {
534 nbytes = MIN(n, zfs_read_chunk_size -
535 P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
536
537 if (zp->z_is_mapped && !(ioflag & O_DIRECT)) {
538 error = mappedread(ip, nbytes, uio);
539 } else {
540 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
541 uio, nbytes);
542 }
543
544 if (error) {
545 /* convert checksum errors into IO errors */
546 if (error == ECKSUM)
547 error = SET_ERROR(EIO);
548 break;
549 }
550
551 n -= nbytes;
552 }
553 out:
554 zfs_range_unlock(rl);
555
556 ZFS_EXIT(zsb);
557 return (error);
558 }
559 EXPORT_SYMBOL(zfs_read);
560
561 /*
562 * Write the bytes to a file.
563 *
564 * IN: ip - inode of file to be written to.
565 * uio - structure supplying write location, range info,
566 * and data buffer.
567 * ioflag - FAPPEND flag set if in append mode.
568 * O_DIRECT flag; used to bypass page cache.
569 * cr - credentials of caller.
570 *
571 * OUT: uio - updated offset and range.
572 *
573 * RETURN: 0 if success
574 * error code if failure
575 *
576 * Timestamps:
577 * ip - ctime|mtime updated if byte count > 0
578 */
579
580 /* ARGSUSED */
581 int
582 zfs_write(struct inode *ip, uio_t *uio, int ioflag, cred_t *cr)
583 {
584 znode_t *zp = ITOZ(ip);
585 rlim64_t limit = uio->uio_limit;
586 ssize_t start_resid = uio->uio_resid;
587 ssize_t tx_bytes;
588 uint64_t end_size;
589 dmu_tx_t *tx;
590 zfs_sb_t *zsb = ZTOZSB(zp);
591 zilog_t *zilog;
592 offset_t woff;
593 ssize_t n, nbytes;
594 rl_t *rl;
595 int max_blksz = zsb->z_max_blksz;
596 int error = 0;
597 arc_buf_t *abuf;
598 const iovec_t *aiov = NULL;
599 xuio_t *xuio = NULL;
600 int write_eof;
601 int count = 0;
602 sa_bulk_attr_t bulk[4];
603 uint64_t mtime[2], ctime[2];
604 uint32_t uid;
605 #ifdef HAVE_UIO_ZEROCOPY
606 int i_iov = 0;
607 const iovec_t *iovp = uio->uio_iov;
608 ASSERTV(int iovcnt = uio->uio_iovcnt);
609 #endif
610
611 /*
612 * Fasttrack empty write
613 */
614 n = start_resid;
615 if (n == 0)
616 return (0);
617
618 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
619 limit = MAXOFFSET_T;
620
621 ZFS_ENTER(zsb);
622 ZFS_VERIFY_ZP(zp);
623
624 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zsb), NULL, &mtime, 16);
625 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zsb), NULL, &ctime, 16);
626 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zsb), NULL, &zp->z_size, 8);
627 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zsb), NULL,
628 &zp->z_pflags, 8);
629
630 /*
631 * Callers might not be able to detect properly that we are read-only,
632 * so check it explicitly here.
633 */
634 if (zfs_is_readonly(zsb)) {
635 ZFS_EXIT(zsb);
636 return (SET_ERROR(EROFS));
637 }
638
639 /*
640 * If immutable or not appending then return EPERM
641 */
642 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
643 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
644 (uio->uio_loffset < zp->z_size))) {
645 ZFS_EXIT(zsb);
646 return (SET_ERROR(EPERM));
647 }
648
649 zilog = zsb->z_log;
650
651 /*
652 * Validate file offset
653 */
654 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
655 if (woff < 0) {
656 ZFS_EXIT(zsb);
657 return (SET_ERROR(EINVAL));
658 }
659
660 /*
661 * Pre-fault the pages to ensure slow (eg NFS) pages
662 * don't hold up txg.
663 * Skip this if uio contains loaned arc_buf.
664 */
665 #ifdef HAVE_UIO_ZEROCOPY
666 if ((uio->uio_extflg == UIO_XUIO) &&
667 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
668 xuio = (xuio_t *)uio;
669 else
670 #endif
671 uio_prefaultpages(MIN(n, max_blksz), uio);
672
673 /*
674 * If in append mode, set the io offset pointer to eof.
675 */
676 if (ioflag & FAPPEND) {
677 /*
678 * Obtain an appending range lock to guarantee file append
679 * semantics. We reset the write offset once we have the lock.
680 */
681 rl = zfs_range_lock(&zp->z_range_lock, 0, n, RL_APPEND);
682 woff = rl->r_off;
683 if (rl->r_len == UINT64_MAX) {
684 /*
685 * We overlocked the file because this write will cause
686 * the file block size to increase.
687 * Note that zp_size cannot change with this lock held.
688 */
689 woff = zp->z_size;
690 }
691 uio->uio_loffset = woff;
692 } else {
693 /*
694 * Note that if the file block size will change as a result of
695 * this write, then this range lock will lock the entire file
696 * so that we can re-write the block safely.
697 */
698 rl = zfs_range_lock(&zp->z_range_lock, woff, n, RL_WRITER);
699 }
700
701 if (woff >= limit) {
702 zfs_range_unlock(rl);
703 ZFS_EXIT(zsb);
704 return (SET_ERROR(EFBIG));
705 }
706
707 if ((woff + n) > limit || woff > (limit - n))
708 n = limit - woff;
709
710 /* Will this write extend the file length? */
711 write_eof = (woff + n > zp->z_size);
712
713 end_size = MAX(zp->z_size, woff + n);
714
715 /*
716 * Write the file in reasonable size chunks. Each chunk is written
717 * in a separate transaction; this keeps the intent log records small
718 * and allows us to do more fine-grained space accounting.
719 */
720 while (n > 0) {
721 abuf = NULL;
722 woff = uio->uio_loffset;
723 if (zfs_owner_overquota(zsb, zp, B_FALSE) ||
724 zfs_owner_overquota(zsb, zp, B_TRUE)) {
725 if (abuf != NULL)
726 dmu_return_arcbuf(abuf);
727 error = SET_ERROR(EDQUOT);
728 break;
729 }
730
731 if (xuio && abuf == NULL) {
732 #ifdef HAVE_UIO_ZEROCOPY
733 ASSERT(i_iov < iovcnt);
734 ASSERT3U(uio->uio_segflg, !=, UIO_BVEC);
735 aiov = &iovp[i_iov];
736 abuf = dmu_xuio_arcbuf(xuio, i_iov);
737 dmu_xuio_clear(xuio, i_iov);
738 ASSERT((aiov->iov_base == abuf->b_data) ||
739 ((char *)aiov->iov_base - (char *)abuf->b_data +
740 aiov->iov_len == arc_buf_size(abuf)));
741 i_iov++;
742 #endif
743 } else if (abuf == NULL && n >= max_blksz &&
744 woff >= zp->z_size &&
745 P2PHASE(woff, max_blksz) == 0 &&
746 zp->z_blksz == max_blksz) {
747 /*
748 * This write covers a full block. "Borrow" a buffer
749 * from the dmu so that we can fill it before we enter
750 * a transaction. This avoids the possibility of
751 * holding up the transaction if the data copy hangs
752 * up on a pagefault (e.g., from an NFS server mapping).
753 */
754 size_t cbytes;
755
756 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
757 max_blksz);
758 ASSERT(abuf != NULL);
759 ASSERT(arc_buf_size(abuf) == max_blksz);
760 if ((error = uiocopy(abuf->b_data, max_blksz,
761 UIO_WRITE, uio, &cbytes))) {
762 dmu_return_arcbuf(abuf);
763 break;
764 }
765 ASSERT(cbytes == max_blksz);
766 }
767
768 /*
769 * Start a transaction.
770 */
771 tx = dmu_tx_create(zsb->z_os);
772 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
773 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
774 zfs_sa_upgrade_txholds(tx, zp);
775 error = dmu_tx_assign(tx, TXG_WAIT);
776 if (error) {
777 dmu_tx_abort(tx);
778 if (abuf != NULL)
779 dmu_return_arcbuf(abuf);
780 break;
781 }
782
783 /*
784 * If zfs_range_lock() over-locked we grow the blocksize
785 * and then reduce the lock range. This will only happen
786 * on the first iteration since zfs_range_reduce() will
787 * shrink down r_len to the appropriate size.
788 */
789 if (rl->r_len == UINT64_MAX) {
790 uint64_t new_blksz;
791
792 if (zp->z_blksz > max_blksz) {
793 /*
794 * File's blocksize is already larger than the
795 * "recordsize" property. Only let it grow to
796 * the next power of 2.
797 */
798 ASSERT(!ISP2(zp->z_blksz));
799 new_blksz = MIN(end_size,
800 1 << highbit64(zp->z_blksz));
801 } else {
802 new_blksz = MIN(end_size, max_blksz);
803 }
804 zfs_grow_blocksize(zp, new_blksz, tx);
805 zfs_range_reduce(rl, woff, n);
806 }
807
808 /*
809 * XXX - should we really limit each write to z_max_blksz?
810 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
811 */
812 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
813
814 if (abuf == NULL) {
815 tx_bytes = uio->uio_resid;
816 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
817 uio, nbytes, tx);
818 tx_bytes -= uio->uio_resid;
819 } else {
820 tx_bytes = nbytes;
821 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
822 /*
823 * If this is not a full block write, but we are
824 * extending the file past EOF and this data starts
825 * block-aligned, use assign_arcbuf(). Otherwise,
826 * write via dmu_write().
827 */
828 if (tx_bytes < max_blksz && (!write_eof ||
829 aiov->iov_base != abuf->b_data)) {
830 ASSERT(xuio);
831 dmu_write(zsb->z_os, zp->z_id, woff,
832 aiov->iov_len, aiov->iov_base, tx);
833 dmu_return_arcbuf(abuf);
834 xuio_stat_wbuf_copied();
835 } else {
836 ASSERT(xuio || tx_bytes == max_blksz);
837 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
838 woff, abuf, tx);
839 }
840 ASSERT(tx_bytes <= uio->uio_resid);
841 uioskip(uio, tx_bytes);
842 }
843
844 if (tx_bytes && zp->z_is_mapped && !(ioflag & O_DIRECT))
845 update_pages(ip, woff, tx_bytes, zsb->z_os, zp->z_id);
846
847 /*
848 * If we made no progress, we're done. If we made even
849 * partial progress, update the znode and ZIL accordingly.
850 */
851 if (tx_bytes == 0) {
852 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zsb),
853 (void *)&zp->z_size, sizeof (uint64_t), tx);
854 dmu_tx_commit(tx);
855 ASSERT(error != 0);
856 break;
857 }
858
859 /*
860 * Clear Set-UID/Set-GID bits on successful write if not
861 * privileged and at least one of the execute bits is set.
862 *
863 * It would be nice to to this after all writes have
864 * been done, but that would still expose the ISUID/ISGID
865 * to another app after the partial write is committed.
866 *
867 * Note: we don't call zfs_fuid_map_id() here because
868 * user 0 is not an ephemeral uid.
869 */
870 mutex_enter(&zp->z_acl_lock);
871 uid = KUID_TO_SUID(ip->i_uid);
872 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
873 (S_IXUSR >> 6))) != 0 &&
874 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
875 secpolicy_vnode_setid_retain(cr,
876 ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) {
877 uint64_t newmode;
878 zp->z_mode &= ~(S_ISUID | S_ISGID);
879 ip->i_mode = newmode = zp->z_mode;
880 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zsb),
881 (void *)&newmode, sizeof (uint64_t), tx);
882 }
883 mutex_exit(&zp->z_acl_lock);
884
885 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
886
887 /*
888 * Update the file size (zp_size) if it has changed;
889 * account for possible concurrent updates.
890 */
891 while ((end_size = zp->z_size) < uio->uio_loffset) {
892 (void) atomic_cas_64(&zp->z_size, end_size,
893 uio->uio_loffset);
894 ASSERT(error == 0);
895 }
896 /*
897 * If we are replaying and eof is non zero then force
898 * the file size to the specified eof. Note, there's no
899 * concurrency during replay.
900 */
901 if (zsb->z_replay && zsb->z_replay_eof != 0)
902 zp->z_size = zsb->z_replay_eof;
903
904 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
905
906 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag,
907 NULL, NULL);
908 dmu_tx_commit(tx);
909
910 if (error != 0)
911 break;
912 ASSERT(tx_bytes == nbytes);
913 n -= nbytes;
914
915 if (!xuio && n > 0)
916 uio_prefaultpages(MIN(n, max_blksz), uio);
917 }
918
919 zfs_inode_update(zp);
920 zfs_range_unlock(rl);
921
922 /*
923 * If we're in replay mode, or we made no progress, return error.
924 * Otherwise, it's at least a partial write, so it's successful.
925 */
926 if (zsb->z_replay || uio->uio_resid == start_resid) {
927 ZFS_EXIT(zsb);
928 return (error);
929 }
930
931 if (ioflag & (FSYNC | FDSYNC) ||
932 zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
933 zil_commit(zilog, zp->z_id);
934
935 ZFS_EXIT(zsb);
936 return (0);
937 }
938 EXPORT_SYMBOL(zfs_write);
939
940 /*
941 * Drop a reference on the passed inode asynchronously. This ensures
942 * that the caller will never drop the last reference on an inode in
943 * the current context. Doing so while holding open a tx could result
944 * in a deadlock if iput_final() re-enters the filesystem code.
945 */
946 void
947 zfs_iput_async(struct inode *ip)
948 {
949 objset_t *os = ITOZSB(ip)->z_os;
950
951 ASSERT(atomic_read(&ip->i_count) > 0);
952 ASSERT(os != NULL);
953
954 if (atomic_read(&ip->i_count) == 1)
955 VERIFY(taskq_dispatch(dsl_pool_iput_taskq(dmu_objset_pool(os)),
956 (task_func_t *)iput, ip, TQ_SLEEP) != TASKQID_INVALID);
957 else
958 iput(ip);
959 }
960
961 void
962 zfs_get_done(zgd_t *zgd, int error)
963 {
964 znode_t *zp = zgd->zgd_private;
965
966 if (zgd->zgd_db)
967 dmu_buf_rele(zgd->zgd_db, zgd);
968
969 zfs_range_unlock(zgd->zgd_rl);
970
971 /*
972 * Release the vnode asynchronously as we currently have the
973 * txg stopped from syncing.
974 */
975 zfs_iput_async(ZTOI(zp));
976
977 if (error == 0 && zgd->zgd_bp)
978 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
979
980 kmem_free(zgd, sizeof (zgd_t));
981 }
982
983 #ifdef DEBUG
984 static int zil_fault_io = 0;
985 #endif
986
987 /*
988 * Get data to generate a TX_WRITE intent log record.
989 */
990 int
991 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
992 {
993 zfs_sb_t *zsb = arg;
994 objset_t *os = zsb->z_os;
995 znode_t *zp;
996 uint64_t object = lr->lr_foid;
997 uint64_t offset = lr->lr_offset;
998 uint64_t size = lr->lr_length;
999 blkptr_t *bp = &lr->lr_blkptr;
1000 dmu_buf_t *db;
1001 zgd_t *zgd;
1002 int error = 0;
1003
1004 ASSERT(zio != NULL);
1005 ASSERT(size != 0);
1006
1007 /*
1008 * Nothing to do if the file has been removed
1009 */
1010 if (zfs_zget(zsb, object, &zp) != 0)
1011 return (SET_ERROR(ENOENT));
1012 if (zp->z_unlinked) {
1013 /*
1014 * Release the vnode asynchronously as we currently have the
1015 * txg stopped from syncing.
1016 */
1017 zfs_iput_async(ZTOI(zp));
1018 return (SET_ERROR(ENOENT));
1019 }
1020
1021 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1022 zgd->zgd_zilog = zsb->z_log;
1023 zgd->zgd_private = zp;
1024
1025 /*
1026 * Write records come in two flavors: immediate and indirect.
1027 * For small writes it's cheaper to store the data with the
1028 * log record (immediate); for large writes it's cheaper to
1029 * sync the data and get a pointer to it (indirect) so that
1030 * we don't have to write the data twice.
1031 */
1032 if (buf != NULL) { /* immediate write */
1033 zgd->zgd_rl = zfs_range_lock(&zp->z_range_lock, offset, size,
1034 RL_READER);
1035 /* test for truncation needs to be done while range locked */
1036 if (offset >= zp->z_size) {
1037 error = SET_ERROR(ENOENT);
1038 } else {
1039 error = dmu_read(os, object, offset, size, buf,
1040 DMU_READ_NO_PREFETCH);
1041 }
1042 ASSERT(error == 0 || error == ENOENT);
1043 } else { /* indirect write */
1044 /*
1045 * Have to lock the whole block to ensure when it's
1046 * written out and it's checksum is being calculated
1047 * that no one can change the data. We need to re-check
1048 * blocksize after we get the lock in case it's changed!
1049 */
1050 for (;;) {
1051 uint64_t blkoff;
1052 size = zp->z_blksz;
1053 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1054 offset -= blkoff;
1055 zgd->zgd_rl = zfs_range_lock(&zp->z_range_lock, offset,
1056 size, RL_READER);
1057 if (zp->z_blksz == size)
1058 break;
1059 offset += blkoff;
1060 zfs_range_unlock(zgd->zgd_rl);
1061 }
1062 /* test for truncation needs to be done while range locked */
1063 if (lr->lr_offset >= zp->z_size)
1064 error = SET_ERROR(ENOENT);
1065 #ifdef DEBUG
1066 if (zil_fault_io) {
1067 error = SET_ERROR(EIO);
1068 zil_fault_io = 0;
1069 }
1070 #endif
1071 if (error == 0)
1072 error = dmu_buf_hold(os, object, offset, zgd, &db,
1073 DMU_READ_NO_PREFETCH);
1074
1075 if (error == 0) {
1076 blkptr_t *obp = dmu_buf_get_blkptr(db);
1077 if (obp) {
1078 ASSERT(BP_IS_HOLE(bp));
1079 *bp = *obp;
1080 }
1081
1082 zgd->zgd_db = db;
1083 zgd->zgd_bp = bp;
1084
1085 ASSERT(db->db_offset == offset);
1086 ASSERT(db->db_size == size);
1087
1088 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1089 zfs_get_done, zgd);
1090 ASSERT(error || lr->lr_length <= size);
1091
1092 /*
1093 * On success, we need to wait for the write I/O
1094 * initiated by dmu_sync() to complete before we can
1095 * release this dbuf. We will finish everything up
1096 * in the zfs_get_done() callback.
1097 */
1098 if (error == 0)
1099 return (0);
1100
1101 if (error == EALREADY) {
1102 lr->lr_common.lrc_txtype = TX_WRITE2;
1103 error = 0;
1104 }
1105 }
1106 }
1107
1108 zfs_get_done(zgd, error);
1109
1110 return (error);
1111 }
1112
1113 /*ARGSUSED*/
1114 int
1115 zfs_access(struct inode *ip, int mode, int flag, cred_t *cr)
1116 {
1117 znode_t *zp = ITOZ(ip);
1118 zfs_sb_t *zsb = ITOZSB(ip);
1119 int error;
1120
1121 ZFS_ENTER(zsb);
1122 ZFS_VERIFY_ZP(zp);
1123
1124 if (flag & V_ACE_MASK)
1125 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1126 else
1127 error = zfs_zaccess_rwx(zp, mode, flag, cr);
1128
1129 ZFS_EXIT(zsb);
1130 return (error);
1131 }
1132 EXPORT_SYMBOL(zfs_access);
1133
1134 /*
1135 * Lookup an entry in a directory, or an extended attribute directory.
1136 * If it exists, return a held inode reference for it.
1137 *
1138 * IN: dip - inode of directory to search.
1139 * nm - name of entry to lookup.
1140 * flags - LOOKUP_XATTR set if looking for an attribute.
1141 * cr - credentials of caller.
1142 * direntflags - directory lookup flags
1143 * realpnp - returned pathname.
1144 *
1145 * OUT: ipp - inode of located entry, NULL if not found.
1146 *
1147 * RETURN: 0 on success, error code on failure.
1148 *
1149 * Timestamps:
1150 * NA
1151 */
1152 /* ARGSUSED */
1153 int
1154 zfs_lookup(struct inode *dip, char *nm, struct inode **ipp, int flags,
1155 cred_t *cr, int *direntflags, pathname_t *realpnp)
1156 {
1157 znode_t *zdp = ITOZ(dip);
1158 zfs_sb_t *zsb = ITOZSB(dip);
1159 int error = 0;
1160
1161 /*
1162 * Fast path lookup, however we must skip DNLC lookup
1163 * for case folding or normalizing lookups because the
1164 * DNLC code only stores the passed in name. This means
1165 * creating 'a' and removing 'A' on a case insensitive
1166 * file system would work, but DNLC still thinks 'a'
1167 * exists and won't let you create it again on the next
1168 * pass through fast path.
1169 */
1170 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1171
1172 if (!S_ISDIR(dip->i_mode)) {
1173 return (SET_ERROR(ENOTDIR));
1174 } else if (zdp->z_sa_hdl == NULL) {
1175 return (SET_ERROR(EIO));
1176 }
1177
1178 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1179 error = zfs_fastaccesschk_execute(zdp, cr);
1180 if (!error) {
1181 *ipp = dip;
1182 igrab(*ipp);
1183 return (0);
1184 }
1185 return (error);
1186 #ifdef HAVE_DNLC
1187 } else if (!zdp->z_zfsvfs->z_norm &&
1188 (zdp->z_zfsvfs->z_case == ZFS_CASE_SENSITIVE)) {
1189
1190 vnode_t *tvp = dnlc_lookup(dvp, nm);
1191
1192 if (tvp) {
1193 error = zfs_fastaccesschk_execute(zdp, cr);
1194 if (error) {
1195 iput(tvp);
1196 return (error);
1197 }
1198 if (tvp == DNLC_NO_VNODE) {
1199 iput(tvp);
1200 return (SET_ERROR(ENOENT));
1201 } else {
1202 *vpp = tvp;
1203 return (specvp_check(vpp, cr));
1204 }
1205 }
1206 #endif /* HAVE_DNLC */
1207 }
1208 }
1209
1210 ZFS_ENTER(zsb);
1211 ZFS_VERIFY_ZP(zdp);
1212
1213 *ipp = NULL;
1214
1215 if (flags & LOOKUP_XATTR) {
1216 /*
1217 * We don't allow recursive attributes..
1218 * Maybe someday we will.
1219 */
1220 if (zdp->z_pflags & ZFS_XATTR) {
1221 ZFS_EXIT(zsb);
1222 return (SET_ERROR(EINVAL));
1223 }
1224
1225 if ((error = zfs_get_xattrdir(zdp, ipp, cr, flags))) {
1226 ZFS_EXIT(zsb);
1227 return (error);
1228 }
1229
1230 /*
1231 * Do we have permission to get into attribute directory?
1232 */
1233
1234 if ((error = zfs_zaccess(ITOZ(*ipp), ACE_EXECUTE, 0,
1235 B_FALSE, cr))) {
1236 iput(*ipp);
1237 *ipp = NULL;
1238 }
1239
1240 ZFS_EXIT(zsb);
1241 return (error);
1242 }
1243
1244 if (!S_ISDIR(dip->i_mode)) {
1245 ZFS_EXIT(zsb);
1246 return (SET_ERROR(ENOTDIR));
1247 }
1248
1249 /*
1250 * Check accessibility of directory.
1251 */
1252
1253 if ((error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr))) {
1254 ZFS_EXIT(zsb);
1255 return (error);
1256 }
1257
1258 if (zsb->z_utf8 && u8_validate(nm, strlen(nm),
1259 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1260 ZFS_EXIT(zsb);
1261 return (SET_ERROR(EILSEQ));
1262 }
1263
1264 error = zfs_dirlook(zdp, nm, ipp, flags, direntflags, realpnp);
1265 if ((error == 0) && (*ipp))
1266 zfs_inode_update(ITOZ(*ipp));
1267
1268 ZFS_EXIT(zsb);
1269 return (error);
1270 }
1271 EXPORT_SYMBOL(zfs_lookup);
1272
1273 /*
1274 * Attempt to create a new entry in a directory. If the entry
1275 * already exists, truncate the file if permissible, else return
1276 * an error. Return the ip of the created or trunc'd file.
1277 *
1278 * IN: dip - inode of directory to put new file entry in.
1279 * name - name of new file entry.
1280 * vap - attributes of new file.
1281 * excl - flag indicating exclusive or non-exclusive mode.
1282 * mode - mode to open file with.
1283 * cr - credentials of caller.
1284 * flag - large file flag [UNUSED].
1285 * vsecp - ACL to be set
1286 *
1287 * OUT: ipp - inode of created or trunc'd entry.
1288 *
1289 * RETURN: 0 on success, error code on failure.
1290 *
1291 * Timestamps:
1292 * dip - ctime|mtime updated if new entry created
1293 * ip - ctime|mtime always, atime if new
1294 */
1295
1296 /* ARGSUSED */
1297 int
1298 zfs_create(struct inode *dip, char *name, vattr_t *vap, int excl,
1299 int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp)
1300 {
1301 znode_t *zp, *dzp = ITOZ(dip);
1302 zfs_sb_t *zsb = ITOZSB(dip);
1303 zilog_t *zilog;
1304 objset_t *os;
1305 zfs_dirlock_t *dl;
1306 dmu_tx_t *tx;
1307 int error;
1308 uid_t uid;
1309 gid_t gid;
1310 zfs_acl_ids_t acl_ids;
1311 boolean_t fuid_dirtied;
1312 boolean_t have_acl = B_FALSE;
1313 boolean_t waited = B_FALSE;
1314
1315 /*
1316 * If we have an ephemeral id, ACL, or XVATTR then
1317 * make sure file system is at proper version
1318 */
1319
1320 gid = crgetgid(cr);
1321 uid = crgetuid(cr);
1322
1323 if (zsb->z_use_fuids == B_FALSE &&
1324 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1325 return (SET_ERROR(EINVAL));
1326
1327 if (name == NULL)
1328 return (SET_ERROR(EINVAL));
1329
1330 ZFS_ENTER(zsb);
1331 ZFS_VERIFY_ZP(dzp);
1332 os = zsb->z_os;
1333 zilog = zsb->z_log;
1334
1335 if (zsb->z_utf8 && u8_validate(name, strlen(name),
1336 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1337 ZFS_EXIT(zsb);
1338 return (SET_ERROR(EILSEQ));
1339 }
1340
1341 if (vap->va_mask & ATTR_XVATTR) {
1342 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1343 crgetuid(cr), cr, vap->va_mode)) != 0) {
1344 ZFS_EXIT(zsb);
1345 return (error);
1346 }
1347 }
1348
1349 top:
1350 *ipp = NULL;
1351 if (*name == '\0') {
1352 /*
1353 * Null component name refers to the directory itself.
1354 */
1355 igrab(dip);
1356 zp = dzp;
1357 dl = NULL;
1358 error = 0;
1359 } else {
1360 /* possible igrab(zp) */
1361 int zflg = 0;
1362
1363 if (flag & FIGNORECASE)
1364 zflg |= ZCILOOK;
1365
1366 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1367 NULL, NULL);
1368 if (error) {
1369 if (have_acl)
1370 zfs_acl_ids_free(&acl_ids);
1371 if (strcmp(name, "..") == 0)
1372 error = SET_ERROR(EISDIR);
1373 ZFS_EXIT(zsb);
1374 return (error);
1375 }
1376 }
1377
1378 if (zp == NULL) {
1379 uint64_t txtype;
1380
1381 /*
1382 * Create a new file object and update the directory
1383 * to reference it.
1384 */
1385 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
1386 if (have_acl)
1387 zfs_acl_ids_free(&acl_ids);
1388 goto out;
1389 }
1390
1391 /*
1392 * We only support the creation of regular files in
1393 * extended attribute directories.
1394 */
1395
1396 if ((dzp->z_pflags & ZFS_XATTR) && !S_ISREG(vap->va_mode)) {
1397 if (have_acl)
1398 zfs_acl_ids_free(&acl_ids);
1399 error = SET_ERROR(EINVAL);
1400 goto out;
1401 }
1402
1403 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1404 cr, vsecp, &acl_ids)) != 0)
1405 goto out;
1406 have_acl = B_TRUE;
1407
1408 if (zfs_acl_ids_overquota(zsb, &acl_ids)) {
1409 zfs_acl_ids_free(&acl_ids);
1410 error = SET_ERROR(EDQUOT);
1411 goto out;
1412 }
1413
1414 tx = dmu_tx_create(os);
1415
1416 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1417 ZFS_SA_BASE_ATTR_SIZE);
1418
1419 fuid_dirtied = zsb->z_fuid_dirty;
1420 if (fuid_dirtied)
1421 zfs_fuid_txhold(zsb, tx);
1422 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1423 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1424 if (!zsb->z_use_sa &&
1425 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1426 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1427 0, acl_ids.z_aclp->z_acl_bytes);
1428 }
1429 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1430 if (error) {
1431 zfs_dirent_unlock(dl);
1432 if (error == ERESTART) {
1433 waited = B_TRUE;
1434 dmu_tx_wait(tx);
1435 dmu_tx_abort(tx);
1436 goto top;
1437 }
1438 zfs_acl_ids_free(&acl_ids);
1439 dmu_tx_abort(tx);
1440 ZFS_EXIT(zsb);
1441 return (error);
1442 }
1443 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1444
1445 if (fuid_dirtied)
1446 zfs_fuid_sync(zsb, tx);
1447
1448 (void) zfs_link_create(dl, zp, tx, ZNEW);
1449 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1450 if (flag & FIGNORECASE)
1451 txtype |= TX_CI;
1452 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1453 vsecp, acl_ids.z_fuidp, vap);
1454 zfs_acl_ids_free(&acl_ids);
1455 dmu_tx_commit(tx);
1456 } else {
1457 int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1458
1459 if (have_acl)
1460 zfs_acl_ids_free(&acl_ids);
1461 have_acl = B_FALSE;
1462
1463 /*
1464 * A directory entry already exists for this name.
1465 */
1466 /*
1467 * Can't truncate an existing file if in exclusive mode.
1468 */
1469 if (excl) {
1470 error = SET_ERROR(EEXIST);
1471 goto out;
1472 }
1473 /*
1474 * Can't open a directory for writing.
1475 */
1476 if (S_ISDIR(ZTOI(zp)->i_mode)) {
1477 error = SET_ERROR(EISDIR);
1478 goto out;
1479 }
1480 /*
1481 * Verify requested access to file.
1482 */
1483 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1484 goto out;
1485 }
1486
1487 mutex_enter(&dzp->z_lock);
1488 dzp->z_seq++;
1489 mutex_exit(&dzp->z_lock);
1490
1491 /*
1492 * Truncate regular files if requested.
1493 */
1494 if (S_ISREG(ZTOI(zp)->i_mode) &&
1495 (vap->va_mask & ATTR_SIZE) && (vap->va_size == 0)) {
1496 /* we can't hold any locks when calling zfs_freesp() */
1497 if (dl) {
1498 zfs_dirent_unlock(dl);
1499 dl = NULL;
1500 }
1501 error = zfs_freesp(zp, 0, 0, mode, TRUE);
1502 }
1503 }
1504 out:
1505
1506 if (dl)
1507 zfs_dirent_unlock(dl);
1508
1509 if (error) {
1510 if (zp)
1511 iput(ZTOI(zp));
1512 } else {
1513 zfs_inode_update(dzp);
1514 zfs_inode_update(zp);
1515 *ipp = ZTOI(zp);
1516 }
1517
1518 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
1519 zil_commit(zilog, 0);
1520
1521 ZFS_EXIT(zsb);
1522 return (error);
1523 }
1524 EXPORT_SYMBOL(zfs_create);
1525
1526 /* ARGSUSED */
1527 int
1528 zfs_tmpfile(struct inode *dip, vattr_t *vap, int excl,
1529 int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp)
1530 {
1531 znode_t *zp = NULL, *dzp = ITOZ(dip);
1532 zfs_sb_t *zsb = ITOZSB(dip);
1533 objset_t *os;
1534 dmu_tx_t *tx;
1535 int error;
1536 uid_t uid;
1537 gid_t gid;
1538 zfs_acl_ids_t acl_ids;
1539 boolean_t fuid_dirtied;
1540 boolean_t have_acl = B_FALSE;
1541 boolean_t waited = B_FALSE;
1542
1543 /*
1544 * If we have an ephemeral id, ACL, or XVATTR then
1545 * make sure file system is at proper version
1546 */
1547
1548 gid = crgetgid(cr);
1549 uid = crgetuid(cr);
1550
1551 if (zsb->z_use_fuids == B_FALSE &&
1552 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1553 return (SET_ERROR(EINVAL));
1554
1555 ZFS_ENTER(zsb);
1556 ZFS_VERIFY_ZP(dzp);
1557 os = zsb->z_os;
1558
1559 if (vap->va_mask & ATTR_XVATTR) {
1560 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1561 crgetuid(cr), cr, vap->va_mode)) != 0) {
1562 ZFS_EXIT(zsb);
1563 return (error);
1564 }
1565 }
1566
1567 top:
1568 *ipp = NULL;
1569
1570 /*
1571 * Create a new file object and update the directory
1572 * to reference it.
1573 */
1574 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
1575 if (have_acl)
1576 zfs_acl_ids_free(&acl_ids);
1577 goto out;
1578 }
1579
1580 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1581 cr, vsecp, &acl_ids)) != 0)
1582 goto out;
1583 have_acl = B_TRUE;
1584
1585 if (zfs_acl_ids_overquota(zsb, &acl_ids)) {
1586 zfs_acl_ids_free(&acl_ids);
1587 error = SET_ERROR(EDQUOT);
1588 goto out;
1589 }
1590
1591 tx = dmu_tx_create(os);
1592
1593 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1594 ZFS_SA_BASE_ATTR_SIZE);
1595 dmu_tx_hold_zap(tx, zsb->z_unlinkedobj, FALSE, NULL);
1596
1597 fuid_dirtied = zsb->z_fuid_dirty;
1598 if (fuid_dirtied)
1599 zfs_fuid_txhold(zsb, tx);
1600 if (!zsb->z_use_sa &&
1601 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1602 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1603 0, acl_ids.z_aclp->z_acl_bytes);
1604 }
1605 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1606 if (error) {
1607 if (error == ERESTART) {
1608 waited = B_TRUE;
1609 dmu_tx_wait(tx);
1610 dmu_tx_abort(tx);
1611 goto top;
1612 }
1613 zfs_acl_ids_free(&acl_ids);
1614 dmu_tx_abort(tx);
1615 ZFS_EXIT(zsb);
1616 return (error);
1617 }
1618 zfs_mknode(dzp, vap, tx, cr, IS_TMPFILE, &zp, &acl_ids);
1619
1620 if (fuid_dirtied)
1621 zfs_fuid_sync(zsb, tx);
1622
1623 /* Add to unlinked set */
1624 zp->z_unlinked = 1;
1625 zfs_unlinked_add(zp, tx);
1626 zfs_acl_ids_free(&acl_ids);
1627 dmu_tx_commit(tx);
1628 out:
1629
1630 if (error) {
1631 if (zp)
1632 iput(ZTOI(zp));
1633 } else {
1634 zfs_inode_update(dzp);
1635 zfs_inode_update(zp);
1636 *ipp = ZTOI(zp);
1637 }
1638
1639 ZFS_EXIT(zsb);
1640 return (error);
1641 }
1642
1643 /*
1644 * Remove an entry from a directory.
1645 *
1646 * IN: dip - inode of directory to remove entry from.
1647 * name - name of entry to remove.
1648 * cr - credentials of caller.
1649 *
1650 * RETURN: 0 if success
1651 * error code if failure
1652 *
1653 * Timestamps:
1654 * dip - ctime|mtime
1655 * ip - ctime (if nlink > 0)
1656 */
1657
1658 uint64_t null_xattr = 0;
1659
1660 /*ARGSUSED*/
1661 int
1662 zfs_remove(struct inode *dip, char *name, cred_t *cr, int flags)
1663 {
1664 znode_t *zp, *dzp = ITOZ(dip);
1665 znode_t *xzp;
1666 struct inode *ip;
1667 zfs_sb_t *zsb = ITOZSB(dip);
1668 zilog_t *zilog;
1669 uint64_t acl_obj, xattr_obj;
1670 uint64_t xattr_obj_unlinked = 0;
1671 uint64_t obj = 0;
1672 uint64_t links;
1673 zfs_dirlock_t *dl;
1674 dmu_tx_t *tx;
1675 boolean_t may_delete_now, delete_now = FALSE;
1676 boolean_t unlinked, toobig = FALSE;
1677 uint64_t txtype;
1678 pathname_t *realnmp = NULL;
1679 pathname_t realnm;
1680 int error;
1681 int zflg = ZEXISTS;
1682 boolean_t waited = B_FALSE;
1683
1684 if (name == NULL)
1685 return (SET_ERROR(EINVAL));
1686
1687 ZFS_ENTER(zsb);
1688 ZFS_VERIFY_ZP(dzp);
1689 zilog = zsb->z_log;
1690
1691 if (flags & FIGNORECASE) {
1692 zflg |= ZCILOOK;
1693 pn_alloc(&realnm);
1694 realnmp = &realnm;
1695 }
1696
1697 top:
1698 xattr_obj = 0;
1699 xzp = NULL;
1700 /*
1701 * Attempt to lock directory; fail if entry doesn't exist.
1702 */
1703 if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1704 NULL, realnmp))) {
1705 if (realnmp)
1706 pn_free(realnmp);
1707 ZFS_EXIT(zsb);
1708 return (error);
1709 }
1710
1711 ip = ZTOI(zp);
1712
1713 if ((error = zfs_zaccess_delete(dzp, zp, cr))) {
1714 goto out;
1715 }
1716
1717 /*
1718 * Need to use rmdir for removing directories.
1719 */
1720 if (S_ISDIR(ip->i_mode)) {
1721 error = SET_ERROR(EPERM);
1722 goto out;
1723 }
1724
1725 #ifdef HAVE_DNLC
1726 if (realnmp)
1727 dnlc_remove(dvp, realnmp->pn_buf);
1728 else
1729 dnlc_remove(dvp, name);
1730 #endif /* HAVE_DNLC */
1731
1732 mutex_enter(&zp->z_lock);
1733 may_delete_now = atomic_read(&ip->i_count) == 1 && !(zp->z_is_mapped);
1734 mutex_exit(&zp->z_lock);
1735
1736 /*
1737 * We may delete the znode now, or we may put it in the unlinked set;
1738 * it depends on whether we're the last link, and on whether there are
1739 * other holds on the inode. So we dmu_tx_hold() the right things to
1740 * allow for either case.
1741 */
1742 obj = zp->z_id;
1743 tx = dmu_tx_create(zsb->z_os);
1744 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1745 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1746 zfs_sa_upgrade_txholds(tx, zp);
1747 zfs_sa_upgrade_txholds(tx, dzp);
1748 if (may_delete_now) {
1749 toobig = zp->z_size > zp->z_blksz * zfs_delete_blocks;
1750 /* if the file is too big, only hold_free a token amount */
1751 dmu_tx_hold_free(tx, zp->z_id, 0,
1752 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1753 }
1754
1755 /* are there any extended attributes? */
1756 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zsb),
1757 &xattr_obj, sizeof (xattr_obj));
1758 if (error == 0 && xattr_obj) {
1759 error = zfs_zget(zsb, xattr_obj, &xzp);
1760 ASSERT0(error);
1761 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1762 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1763 }
1764
1765 mutex_enter(&zp->z_lock);
1766 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1767 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1768 mutex_exit(&zp->z_lock);
1769
1770 /* charge as an update -- would be nice not to charge at all */
1771 dmu_tx_hold_zap(tx, zsb->z_unlinkedobj, FALSE, NULL);
1772
1773 /*
1774 * Mark this transaction as typically resulting in a net free of space
1775 */
1776 dmu_tx_mark_netfree(tx);
1777
1778 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1779 if (error) {
1780 zfs_dirent_unlock(dl);
1781 if (error == ERESTART) {
1782 waited = B_TRUE;
1783 dmu_tx_wait(tx);
1784 dmu_tx_abort(tx);
1785 iput(ip);
1786 if (xzp)
1787 iput(ZTOI(xzp));
1788 goto top;
1789 }
1790 if (realnmp)
1791 pn_free(realnmp);
1792 dmu_tx_abort(tx);
1793 iput(ip);
1794 if (xzp)
1795 iput(ZTOI(xzp));
1796 ZFS_EXIT(zsb);
1797 return (error);
1798 }
1799
1800 /*
1801 * Remove the directory entry.
1802 */
1803 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1804
1805 if (error) {
1806 dmu_tx_commit(tx);
1807 goto out;
1808 }
1809
1810 if (unlinked) {
1811 /*
1812 * Hold z_lock so that we can make sure that the ACL obj
1813 * hasn't changed. Could have been deleted due to
1814 * zfs_sa_upgrade().
1815 */
1816 mutex_enter(&zp->z_lock);
1817 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zsb),
1818 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1819 delete_now = may_delete_now && !toobig &&
1820 atomic_read(&ip->i_count) == 1 && !(zp->z_is_mapped) &&
1821 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1822 acl_obj;
1823 }
1824
1825 if (delete_now) {
1826 if (xattr_obj_unlinked) {
1827 ASSERT3U(ZTOI(xzp)->i_nlink, ==, 2);
1828 mutex_enter(&xzp->z_lock);
1829 xzp->z_unlinked = 1;
1830 clear_nlink(ZTOI(xzp));
1831 links = 0;
1832 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zsb),
1833 &links, sizeof (links), tx);
1834 ASSERT3U(error, ==, 0);
1835 mutex_exit(&xzp->z_lock);
1836 zfs_unlinked_add(xzp, tx);
1837
1838 if (zp->z_is_sa)
1839 error = sa_remove(zp->z_sa_hdl,
1840 SA_ZPL_XATTR(zsb), tx);
1841 else
1842 error = sa_update(zp->z_sa_hdl,
1843 SA_ZPL_XATTR(zsb), &null_xattr,
1844 sizeof (uint64_t), tx);
1845 ASSERT0(error);
1846 }
1847 /*
1848 * Add to the unlinked set because a new reference could be
1849 * taken concurrently resulting in a deferred destruction.
1850 */
1851 zfs_unlinked_add(zp, tx);
1852 mutex_exit(&zp->z_lock);
1853 } else if (unlinked) {
1854 mutex_exit(&zp->z_lock);
1855 zfs_unlinked_add(zp, tx);
1856 }
1857
1858 txtype = TX_REMOVE;
1859 if (flags & FIGNORECASE)
1860 txtype |= TX_CI;
1861 zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1862
1863 dmu_tx_commit(tx);
1864 out:
1865 if (realnmp)
1866 pn_free(realnmp);
1867
1868 zfs_dirent_unlock(dl);
1869 zfs_inode_update(dzp);
1870 zfs_inode_update(zp);
1871
1872 if (delete_now)
1873 iput(ip);
1874 else
1875 zfs_iput_async(ip);
1876
1877 if (xzp) {
1878 zfs_inode_update(xzp);
1879 zfs_iput_async(ZTOI(xzp));
1880 }
1881
1882 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
1883 zil_commit(zilog, 0);
1884
1885 ZFS_EXIT(zsb);
1886 return (error);
1887 }
1888 EXPORT_SYMBOL(zfs_remove);
1889
1890 /*
1891 * Create a new directory and insert it into dip using the name
1892 * provided. Return a pointer to the inserted directory.
1893 *
1894 * IN: dip - inode of directory to add subdir to.
1895 * dirname - name of new directory.
1896 * vap - attributes of new directory.
1897 * cr - credentials of caller.
1898 * vsecp - ACL to be set
1899 *
1900 * OUT: ipp - inode of created directory.
1901 *
1902 * RETURN: 0 if success
1903 * error code if failure
1904 *
1905 * Timestamps:
1906 * dip - ctime|mtime updated
1907 * ipp - ctime|mtime|atime updated
1908 */
1909 /*ARGSUSED*/
1910 int
1911 zfs_mkdir(struct inode *dip, char *dirname, vattr_t *vap, struct inode **ipp,
1912 cred_t *cr, int flags, vsecattr_t *vsecp)
1913 {
1914 znode_t *zp, *dzp = ITOZ(dip);
1915 zfs_sb_t *zsb = ITOZSB(dip);
1916 zilog_t *zilog;
1917 zfs_dirlock_t *dl;
1918 uint64_t txtype;
1919 dmu_tx_t *tx;
1920 int error;
1921 int zf = ZNEW;
1922 uid_t uid;
1923 gid_t gid = crgetgid(cr);
1924 zfs_acl_ids_t acl_ids;
1925 boolean_t fuid_dirtied;
1926 boolean_t waited = B_FALSE;
1927
1928 ASSERT(S_ISDIR(vap->va_mode));
1929
1930 /*
1931 * If we have an ephemeral id, ACL, or XVATTR then
1932 * make sure file system is at proper version
1933 */
1934
1935 uid = crgetuid(cr);
1936 if (zsb->z_use_fuids == B_FALSE &&
1937 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1938 return (SET_ERROR(EINVAL));
1939
1940 if (dirname == NULL)
1941 return (SET_ERROR(EINVAL));
1942
1943 ZFS_ENTER(zsb);
1944 ZFS_VERIFY_ZP(dzp);
1945 zilog = zsb->z_log;
1946
1947 if (dzp->z_pflags & ZFS_XATTR) {
1948 ZFS_EXIT(zsb);
1949 return (SET_ERROR(EINVAL));
1950 }
1951
1952 if (zsb->z_utf8 && u8_validate(dirname,
1953 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1954 ZFS_EXIT(zsb);
1955 return (SET_ERROR(EILSEQ));
1956 }
1957 if (flags & FIGNORECASE)
1958 zf |= ZCILOOK;
1959
1960 if (vap->va_mask & ATTR_XVATTR) {
1961 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1962 crgetuid(cr), cr, vap->va_mode)) != 0) {
1963 ZFS_EXIT(zsb);
1964 return (error);
1965 }
1966 }
1967
1968 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1969 vsecp, &acl_ids)) != 0) {
1970 ZFS_EXIT(zsb);
1971 return (error);
1972 }
1973 /*
1974 * First make sure the new directory doesn't exist.
1975 *
1976 * Existence is checked first to make sure we don't return
1977 * EACCES instead of EEXIST which can cause some applications
1978 * to fail.
1979 */
1980 top:
1981 *ipp = NULL;
1982
1983 if ((error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1984 NULL, NULL))) {
1985 zfs_acl_ids_free(&acl_ids);
1986 ZFS_EXIT(zsb);
1987 return (error);
1988 }
1989
1990 if ((error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr))) {
1991 zfs_acl_ids_free(&acl_ids);
1992 zfs_dirent_unlock(dl);
1993 ZFS_EXIT(zsb);
1994 return (error);
1995 }
1996
1997 if (zfs_acl_ids_overquota(zsb, &acl_ids)) {
1998 zfs_acl_ids_free(&acl_ids);
1999 zfs_dirent_unlock(dl);
2000 ZFS_EXIT(zsb);
2001 return (SET_ERROR(EDQUOT));
2002 }
2003
2004 /*
2005 * Add a new entry to the directory.
2006 */
2007 tx = dmu_tx_create(zsb->z_os);
2008 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
2009 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2010 fuid_dirtied = zsb->z_fuid_dirty;
2011 if (fuid_dirtied)
2012 zfs_fuid_txhold(zsb, tx);
2013 if (!zsb->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2014 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
2015 acl_ids.z_aclp->z_acl_bytes);
2016 }
2017
2018 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
2019 ZFS_SA_BASE_ATTR_SIZE);
2020
2021 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2022 if (error) {
2023 zfs_dirent_unlock(dl);
2024 if (error == ERESTART) {
2025 waited = B_TRUE;
2026 dmu_tx_wait(tx);
2027 dmu_tx_abort(tx);
2028 goto top;
2029 }
2030 zfs_acl_ids_free(&acl_ids);
2031 dmu_tx_abort(tx);
2032 ZFS_EXIT(zsb);
2033 return (error);
2034 }
2035
2036 /*
2037 * Create new node.
2038 */
2039 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
2040
2041 if (fuid_dirtied)
2042 zfs_fuid_sync(zsb, tx);
2043
2044 /*
2045 * Now put new name in parent dir.
2046 */
2047 (void) zfs_link_create(dl, zp, tx, ZNEW);
2048
2049 *ipp = ZTOI(zp);
2050
2051 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2052 if (flags & FIGNORECASE)
2053 txtype |= TX_CI;
2054 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2055 acl_ids.z_fuidp, vap);
2056
2057 zfs_acl_ids_free(&acl_ids);
2058
2059 dmu_tx_commit(tx);
2060
2061 zfs_dirent_unlock(dl);
2062
2063 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
2064 zil_commit(zilog, 0);
2065
2066 zfs_inode_update(dzp);
2067 zfs_inode_update(zp);
2068 ZFS_EXIT(zsb);
2069 return (0);
2070 }
2071 EXPORT_SYMBOL(zfs_mkdir);
2072
2073 /*
2074 * Remove a directory subdir entry. If the current working
2075 * directory is the same as the subdir to be removed, the
2076 * remove will fail.
2077 *
2078 * IN: dip - inode of directory to remove from.
2079 * name - name of directory to be removed.
2080 * cwd - inode of current working directory.
2081 * cr - credentials of caller.
2082 * flags - case flags
2083 *
2084 * RETURN: 0 on success, error code on failure.
2085 *
2086 * Timestamps:
2087 * dip - ctime|mtime updated
2088 */
2089 /*ARGSUSED*/
2090 int
2091 zfs_rmdir(struct inode *dip, char *name, struct inode *cwd, cred_t *cr,
2092 int flags)
2093 {
2094 znode_t *dzp = ITOZ(dip);
2095 znode_t *zp;
2096 struct inode *ip;
2097 zfs_sb_t *zsb = ITOZSB(dip);
2098 zilog_t *zilog;
2099 zfs_dirlock_t *dl;
2100 dmu_tx_t *tx;
2101 int error;
2102 int zflg = ZEXISTS;
2103 boolean_t waited = B_FALSE;
2104
2105 if (name == NULL)
2106 return (SET_ERROR(EINVAL));
2107
2108 ZFS_ENTER(zsb);
2109 ZFS_VERIFY_ZP(dzp);
2110 zilog = zsb->z_log;
2111
2112 if (flags & FIGNORECASE)
2113 zflg |= ZCILOOK;
2114 top:
2115 zp = NULL;
2116
2117 /*
2118 * Attempt to lock directory; fail if entry doesn't exist.
2119 */
2120 if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2121 NULL, NULL))) {
2122 ZFS_EXIT(zsb);
2123 return (error);
2124 }
2125
2126 ip = ZTOI(zp);
2127
2128 if ((error = zfs_zaccess_delete(dzp, zp, cr))) {
2129 goto out;
2130 }
2131
2132 if (!S_ISDIR(ip->i_mode)) {
2133 error = SET_ERROR(ENOTDIR);
2134 goto out;
2135 }
2136
2137 if (ip == cwd) {
2138 error = SET_ERROR(EINVAL);
2139 goto out;
2140 }
2141
2142 /*
2143 * Grab a lock on the directory to make sure that no one is
2144 * trying to add (or lookup) entries while we are removing it.
2145 */
2146 rw_enter(&zp->z_name_lock, RW_WRITER);
2147
2148 /*
2149 * Grab a lock on the parent pointer to make sure we play well
2150 * with the treewalk and directory rename code.
2151 */
2152 rw_enter(&zp->z_parent_lock, RW_WRITER);
2153
2154 tx = dmu_tx_create(zsb->z_os);
2155 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2156 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2157 dmu_tx_hold_zap(tx, zsb->z_unlinkedobj, FALSE, NULL);
2158 zfs_sa_upgrade_txholds(tx, zp);
2159 zfs_sa_upgrade_txholds(tx, dzp);
2160 dmu_tx_mark_netfree(tx);
2161 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2162 if (error) {
2163 rw_exit(&zp->z_parent_lock);
2164 rw_exit(&zp->z_name_lock);
2165 zfs_dirent_unlock(dl);
2166 if (error == ERESTART) {
2167 waited = B_TRUE;
2168 dmu_tx_wait(tx);
2169 dmu_tx_abort(tx);
2170 iput(ip);
2171 goto top;
2172 }
2173 dmu_tx_abort(tx);
2174 iput(ip);
2175 ZFS_EXIT(zsb);
2176 return (error);
2177 }
2178
2179 error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2180
2181 if (error == 0) {
2182 uint64_t txtype = TX_RMDIR;
2183 if (flags & FIGNORECASE)
2184 txtype |= TX_CI;
2185 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2186 }
2187
2188 dmu_tx_commit(tx);
2189
2190 rw_exit(&zp->z_parent_lock);
2191 rw_exit(&zp->z_name_lock);
2192 out:
2193 zfs_dirent_unlock(dl);
2194
2195 zfs_inode_update(dzp);
2196 zfs_inode_update(zp);
2197 iput(ip);
2198
2199 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
2200 zil_commit(zilog, 0);
2201
2202 ZFS_EXIT(zsb);
2203 return (error);
2204 }
2205 EXPORT_SYMBOL(zfs_rmdir);
2206
2207 /*
2208 * Read as many directory entries as will fit into the provided
2209 * dirent buffer from the given directory cursor position.
2210 *
2211 * IN: ip - inode of directory to read.
2212 * dirent - buffer for directory entries.
2213 *
2214 * OUT: dirent - filler buffer of directory entries.
2215 *
2216 * RETURN: 0 if success
2217 * error code if failure
2218 *
2219 * Timestamps:
2220 * ip - atime updated
2221 *
2222 * Note that the low 4 bits of the cookie returned by zap is always zero.
2223 * This allows us to use the low range for "special" directory entries:
2224 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem,
2225 * we use the offset 2 for the '.zfs' directory.
2226 */
2227 /* ARGSUSED */
2228 int
2229 zfs_readdir(struct inode *ip, struct dir_context *ctx, cred_t *cr)
2230 {
2231 znode_t *zp = ITOZ(ip);
2232 zfs_sb_t *zsb = ITOZSB(ip);
2233 objset_t *os;
2234 zap_cursor_t zc;
2235 zap_attribute_t zap;
2236 int error;
2237 uint8_t prefetch;
2238 uint8_t type;
2239 int done = 0;
2240 uint64_t parent;
2241 uint64_t offset; /* must be unsigned; checks for < 1 */
2242
2243 ZFS_ENTER(zsb);
2244 ZFS_VERIFY_ZP(zp);
2245
2246 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zsb),
2247 &parent, sizeof (parent))) != 0)
2248 goto out;
2249
2250 /*
2251 * Quit if directory has been removed (posix)
2252 */
2253 if (zp->z_unlinked)
2254 goto out;
2255
2256 error = 0;
2257 os = zsb->z_os;
2258 offset = ctx->pos;
2259 prefetch = zp->z_zn_prefetch;
2260
2261 /*
2262 * Initialize the iterator cursor.
2263 */
2264 if (offset <= 3) {
2265 /*
2266 * Start iteration from the beginning of the directory.
2267 */
2268 zap_cursor_init(&zc, os, zp->z_id);
2269 } else {
2270 /*
2271 * The offset is a serialized cursor.
2272 */
2273 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2274 }
2275
2276 /*
2277 * Transform to file-system independent format
2278 */
2279 while (!done) {
2280 uint64_t objnum;
2281 /*
2282 * Special case `.', `..', and `.zfs'.
2283 */
2284 if (offset == 0) {
2285 (void) strcpy(zap.za_name, ".");
2286 zap.za_normalization_conflict = 0;
2287 objnum = zp->z_id;
2288 type = DT_DIR;
2289 } else if (offset == 1) {
2290 (void) strcpy(zap.za_name, "..");
2291 zap.za_normalization_conflict = 0;
2292 objnum = parent;
2293 type = DT_DIR;
2294 } else if (offset == 2 && zfs_show_ctldir(zp)) {
2295 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2296 zap.za_normalization_conflict = 0;
2297 objnum = ZFSCTL_INO_ROOT;
2298 type = DT_DIR;
2299 } else {
2300 /*
2301 * Grab next entry.
2302 */
2303 if ((error = zap_cursor_retrieve(&zc, &zap))) {
2304 if (error == ENOENT)
2305 break;
2306 else
2307 goto update;
2308 }
2309
2310 /*
2311 * Allow multiple entries provided the first entry is
2312 * the object id. Non-zpl consumers may safely make
2313 * use of the additional space.
2314 *
2315 * XXX: This should be a feature flag for compatibility
2316 */
2317 if (zap.za_integer_length != 8 ||
2318 zap.za_num_integers == 0) {
2319 cmn_err(CE_WARN, "zap_readdir: bad directory "
2320 "entry, obj = %lld, offset = %lld, "
2321 "length = %d, num = %lld\n",
2322 (u_longlong_t)zp->z_id,
2323 (u_longlong_t)offset,
2324 zap.za_integer_length,
2325 (u_longlong_t)zap.za_num_integers);
2326 error = SET_ERROR(ENXIO);
2327 goto update;
2328 }
2329
2330 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2331 type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2332 }
2333
2334 done = !dir_emit(ctx, zap.za_name, strlen(zap.za_name),
2335 objnum, type);
2336 if (done)
2337 break;
2338
2339 /* Prefetch znode */
2340 if (prefetch) {
2341 dmu_prefetch(os, objnum, 0, 0, 0,
2342 ZIO_PRIORITY_SYNC_READ);
2343 }
2344
2345 /*
2346 * Move to the next entry, fill in the previous offset.
2347 */
2348 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2349 zap_cursor_advance(&zc);
2350 offset = zap_cursor_serialize(&zc);
2351 } else {
2352 offset += 1;
2353 }
2354 ctx->pos = offset;
2355 }
2356 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2357
2358 update:
2359 zap_cursor_fini(&zc);
2360 if (error == ENOENT)
2361 error = 0;
2362 out:
2363 ZFS_EXIT(zsb);
2364
2365 return (error);
2366 }
2367 EXPORT_SYMBOL(zfs_readdir);
2368
2369 ulong_t zfs_fsync_sync_cnt = 4;
2370
2371 int
2372 zfs_fsync(struct inode *ip, int syncflag, cred_t *cr)
2373 {
2374 znode_t *zp = ITOZ(ip);
2375 zfs_sb_t *zsb = ITOZSB(ip);
2376
2377 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2378
2379 if (zsb->z_os->os_sync != ZFS_SYNC_DISABLED) {
2380 ZFS_ENTER(zsb);
2381 ZFS_VERIFY_ZP(zp);
2382 zil_commit(zsb->z_log, zp->z_id);
2383 ZFS_EXIT(zsb);
2384 }
2385 tsd_set(zfs_fsyncer_key, NULL);
2386
2387 return (0);
2388 }
2389 EXPORT_SYMBOL(zfs_fsync);
2390
2391
2392 /*
2393 * Get the requested file attributes and place them in the provided
2394 * vattr structure.
2395 *
2396 * IN: ip - inode of file.
2397 * vap - va_mask identifies requested attributes.
2398 * If ATTR_XVATTR set, then optional attrs are requested
2399 * flags - ATTR_NOACLCHECK (CIFS server context)
2400 * cr - credentials of caller.
2401 *
2402 * OUT: vap - attribute values.
2403 *
2404 * RETURN: 0 (always succeeds)
2405 */
2406 /* ARGSUSED */
2407 int
2408 zfs_getattr(struct inode *ip, vattr_t *vap, int flags, cred_t *cr)
2409 {
2410 znode_t *zp = ITOZ(ip);
2411 zfs_sb_t *zsb = ITOZSB(ip);
2412 int error = 0;
2413 uint64_t links;
2414 uint64_t atime[2], mtime[2], ctime[2];
2415 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2416 xoptattr_t *xoap = NULL;
2417 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2418 sa_bulk_attr_t bulk[3];
2419 int count = 0;
2420
2421 ZFS_ENTER(zsb);
2422 ZFS_VERIFY_ZP(zp);
2423
2424 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2425
2426 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zsb), NULL, &atime, 16);
2427 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zsb), NULL, &mtime, 16);
2428 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zsb), NULL, &ctime, 16);
2429
2430 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2431 ZFS_EXIT(zsb);
2432 return (error);
2433 }
2434
2435 /*
2436 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2437 * Also, if we are the owner don't bother, since owner should
2438 * always be allowed to read basic attributes of file.
2439 */
2440 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2441 (vap->va_uid != crgetuid(cr))) {
2442 if ((error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2443 skipaclchk, cr))) {
2444 ZFS_EXIT(zsb);
2445 return (error);
2446 }
2447 }
2448
2449 /*
2450 * Return all attributes. It's cheaper to provide the answer
2451 * than to determine whether we were asked the question.
2452 */
2453
2454 mutex_enter(&zp->z_lock);
2455 vap->va_type = vn_mode_to_vtype(zp->z_mode);
2456 vap->va_mode = zp->z_mode;
2457 vap->va_fsid = ZTOI(zp)->i_sb->s_dev;
2458 vap->va_nodeid = zp->z_id;
2459 if ((zp->z_id == zsb->z_root) && zfs_show_ctldir(zp))
2460 links = ZTOI(zp)->i_nlink + 1;
2461 else
2462 links = ZTOI(zp)->i_nlink;
2463 vap->va_nlink = MIN(links, ZFS_LINK_MAX);
2464 vap->va_size = i_size_read(ip);
2465 vap->va_rdev = ip->i_rdev;
2466 vap->va_seq = ip->i_generation;
2467
2468 /*
2469 * Add in any requested optional attributes and the create time.
2470 * Also set the corresponding bits in the returned attribute bitmap.
2471 */
2472 if ((xoap = xva_getxoptattr(xvap)) != NULL && zsb->z_use_fuids) {
2473 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2474 xoap->xoa_archive =
2475 ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2476 XVA_SET_RTN(xvap, XAT_ARCHIVE);
2477 }
2478
2479 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2480 xoap->xoa_readonly =
2481 ((zp->z_pflags & ZFS_READONLY) != 0);
2482 XVA_SET_RTN(xvap, XAT_READONLY);
2483 }
2484
2485 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2486 xoap->xoa_system =
2487 ((zp->z_pflags & ZFS_SYSTEM) != 0);
2488 XVA_SET_RTN(xvap, XAT_SYSTEM);
2489 }
2490
2491 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2492 xoap->xoa_hidden =
2493 ((zp->z_pflags & ZFS_HIDDEN) != 0);
2494 XVA_SET_RTN(xvap, XAT_HIDDEN);
2495 }
2496
2497 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2498 xoap->xoa_nounlink =
2499 ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2500 XVA_SET_RTN(xvap, XAT_NOUNLINK);
2501 }
2502
2503 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2504 xoap->xoa_immutable =
2505 ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2506 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2507 }
2508
2509 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2510 xoap->xoa_appendonly =
2511 ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2512 XVA_SET_RTN(xvap, XAT_APPENDONLY);
2513 }
2514
2515 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2516 xoap->xoa_nodump =
2517 ((zp->z_pflags & ZFS_NODUMP) != 0);
2518 XVA_SET_RTN(xvap, XAT_NODUMP);
2519 }
2520
2521 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2522 xoap->xoa_opaque =
2523 ((zp->z_pflags & ZFS_OPAQUE) != 0);
2524 XVA_SET_RTN(xvap, XAT_OPAQUE);
2525 }
2526
2527 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2528 xoap->xoa_av_quarantined =
2529 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2530 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2531 }
2532
2533 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2534 xoap->xoa_av_modified =
2535 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2536 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2537 }
2538
2539 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2540 S_ISREG(ip->i_mode)) {
2541 zfs_sa_get_scanstamp(zp, xvap);
2542 }
2543
2544 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2545 uint64_t times[2];
2546
2547 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zsb),
2548 times, sizeof (times));
2549 ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2550 XVA_SET_RTN(xvap, XAT_CREATETIME);
2551 }
2552
2553 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2554 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2555 XVA_SET_RTN(xvap, XAT_REPARSE);
2556 }
2557 if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2558 xoap->xoa_generation = ip->i_generation;
2559 XVA_SET_RTN(xvap, XAT_GEN);
2560 }
2561
2562 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2563 xoap->xoa_offline =
2564 ((zp->z_pflags & ZFS_OFFLINE) != 0);
2565 XVA_SET_RTN(xvap, XAT_OFFLINE);
2566 }
2567
2568 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2569 xoap->xoa_sparse =
2570 ((zp->z_pflags & ZFS_SPARSE) != 0);
2571 XVA_SET_RTN(xvap, XAT_SPARSE);
2572 }
2573 }
2574
2575 ZFS_TIME_DECODE(&vap->va_atime, atime);
2576 ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2577 ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2578
2579 mutex_exit(&zp->z_lock);
2580
2581 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2582
2583 if (zp->z_blksz == 0) {
2584 /*
2585 * Block size hasn't been set; suggest maximal I/O transfers.
2586 */
2587 vap->va_blksize = zsb->z_max_blksz;
2588 }
2589
2590 ZFS_EXIT(zsb);
2591 return (0);
2592 }
2593 EXPORT_SYMBOL(zfs_getattr);
2594
2595 /*
2596 * Get the basic file attributes and place them in the provided kstat
2597 * structure. The inode is assumed to be the authoritative source
2598 * for most of the attributes. However, the znode currently has the
2599 * authoritative atime, blksize, and block count.
2600 *
2601 * IN: ip - inode of file.
2602 *
2603 * OUT: sp - kstat values.
2604 *
2605 * RETURN: 0 (always succeeds)
2606 */
2607 /* ARGSUSED */
2608 int
2609 zfs_getattr_fast(struct inode *ip, struct kstat *sp)
2610 {
2611 znode_t *zp = ITOZ(ip);
2612 zfs_sb_t *zsb = ITOZSB(ip);
2613 uint32_t blksize;
2614 u_longlong_t nblocks;
2615
2616 ZFS_ENTER(zsb);
2617 ZFS_VERIFY_ZP(zp);
2618
2619 mutex_enter(&zp->z_lock);
2620
2621 generic_fillattr(ip, sp);
2622
2623 sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
2624 sp->blksize = blksize;
2625 sp->blocks = nblocks;
2626
2627 if (unlikely(zp->z_blksz == 0)) {
2628 /*
2629 * Block size hasn't been set; suggest maximal I/O transfers.
2630 */
2631 sp->blksize = zsb->z_max_blksz;
2632 }
2633
2634 mutex_exit(&zp->z_lock);
2635
2636 /*
2637 * Required to prevent NFS client from detecting different inode
2638 * numbers of snapshot root dentry before and after snapshot mount.
2639 */
2640 if (zsb->z_issnap) {
2641 if (ip->i_sb->s_root->d_inode == ip)
2642 sp->ino = ZFSCTL_INO_SNAPDIRS -
2643 dmu_objset_id(zsb->z_os);
2644 }
2645
2646 ZFS_EXIT(zsb);
2647
2648 return (0);
2649 }
2650 EXPORT_SYMBOL(zfs_getattr_fast);
2651
2652 /*
2653 * Set the file attributes to the values contained in the
2654 * vattr structure.
2655 *
2656 * IN: ip - inode of file to be modified.
2657 * vap - new attribute values.
2658 * If ATTR_XVATTR set, then optional attrs are being set
2659 * flags - ATTR_UTIME set if non-default time values provided.
2660 * - ATTR_NOACLCHECK (CIFS context only).
2661 * cr - credentials of caller.
2662 *
2663 * RETURN: 0 if success
2664 * error code if failure
2665 *
2666 * Timestamps:
2667 * ip - ctime updated, mtime updated if size changed.
2668 */
2669 /* ARGSUSED */
2670 int
2671 zfs_setattr(struct inode *ip, vattr_t *vap, int flags, cred_t *cr)
2672 {
2673 znode_t *zp = ITOZ(ip);
2674 zfs_sb_t *zsb = ITOZSB(ip);
2675 zilog_t *zilog;
2676 dmu_tx_t *tx;
2677 vattr_t oldva;
2678 xvattr_t *tmpxvattr;
2679 uint_t mask = vap->va_mask;
2680 uint_t saved_mask = 0;
2681 int trim_mask = 0;
2682 uint64_t new_mode;
2683 uint64_t new_kuid = 0, new_kgid = 0, new_uid, new_gid;
2684 uint64_t xattr_obj;
2685 uint64_t mtime[2], ctime[2], atime[2];
2686 znode_t *attrzp;
2687 int need_policy = FALSE;
2688 int err, err2;
2689 zfs_fuid_info_t *fuidp = NULL;
2690 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2691 xoptattr_t *xoap;
2692 zfs_acl_t *aclp;
2693 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2694 boolean_t fuid_dirtied = B_FALSE;
2695 sa_bulk_attr_t *bulk, *xattr_bulk;
2696 int count = 0, xattr_count = 0;
2697
2698 if (mask == 0)
2699 return (0);
2700
2701 ZFS_ENTER(zsb);
2702 ZFS_VERIFY_ZP(zp);
2703
2704 zilog = zsb->z_log;
2705
2706 /*
2707 * Make sure that if we have ephemeral uid/gid or xvattr specified
2708 * that file system is at proper version level
2709 */
2710
2711 if (zsb->z_use_fuids == B_FALSE &&
2712 (((mask & ATTR_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2713 ((mask & ATTR_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2714 (mask & ATTR_XVATTR))) {
2715 ZFS_EXIT(zsb);
2716 return (SET_ERROR(EINVAL));
2717 }
2718
2719 if (mask & ATTR_SIZE && S_ISDIR(ip->i_mode)) {
2720 ZFS_EXIT(zsb);
2721 return (SET_ERROR(EISDIR));
2722 }
2723
2724 if (mask & ATTR_SIZE && !S_ISREG(ip->i_mode) && !S_ISFIFO(ip->i_mode)) {
2725 ZFS_EXIT(zsb);
2726 return (SET_ERROR(EINVAL));
2727 }
2728
2729 /*
2730 * If this is an xvattr_t, then get a pointer to the structure of
2731 * optional attributes. If this is NULL, then we have a vattr_t.
2732 */
2733 xoap = xva_getxoptattr(xvap);
2734
2735 tmpxvattr = kmem_alloc(sizeof (xvattr_t), KM_SLEEP);
2736 xva_init(tmpxvattr);
2737
2738 bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * 7, KM_SLEEP);
2739 xattr_bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * 7, KM_SLEEP);
2740
2741 /*
2742 * Immutable files can only alter immutable bit and atime
2743 */
2744 if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2745 ((mask & (ATTR_SIZE|ATTR_UID|ATTR_GID|ATTR_MTIME|ATTR_MODE)) ||
2746 ((mask & ATTR_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2747 err = EPERM;
2748 goto out3;
2749 }
2750
2751 if ((mask & ATTR_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2752 err = EPERM;
2753 goto out3;
2754 }
2755
2756 /*
2757 * Verify timestamps doesn't overflow 32 bits.
2758 * ZFS can handle large timestamps, but 32bit syscalls can't
2759 * handle times greater than 2039. This check should be removed
2760 * once large timestamps are fully supported.
2761 */
2762 if (mask & (ATTR_ATIME | ATTR_MTIME)) {
2763 if (((mask & ATTR_ATIME) &&
2764 TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2765 ((mask & ATTR_MTIME) &&
2766 TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2767 err = EOVERFLOW;
2768 goto out3;
2769 }
2770 }
2771
2772 top:
2773 attrzp = NULL;
2774 aclp = NULL;
2775
2776 /* Can this be moved to before the top label? */
2777 if (zfs_is_readonly(zsb)) {
2778 err = EROFS;
2779 goto out3;
2780 }
2781
2782 /*
2783 * First validate permissions
2784 */
2785
2786 if (mask & ATTR_SIZE) {
2787 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2788 if (err)
2789 goto out3;
2790
2791 /*
2792 * XXX - Note, we are not providing any open
2793 * mode flags here (like FNDELAY), so we may
2794 * block if there are locks present... this
2795 * should be addressed in openat().
2796 */
2797 /* XXX - would it be OK to generate a log record here? */
2798 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2799 if (err)
2800 goto out3;
2801 }
2802
2803 if (mask & (ATTR_ATIME|ATTR_MTIME) ||
2804 ((mask & ATTR_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2805 XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2806 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2807 XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2808 XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2809 XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2810 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2811 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2812 skipaclchk, cr);
2813 }
2814
2815 if (mask & (ATTR_UID|ATTR_GID)) {
2816 int idmask = (mask & (ATTR_UID|ATTR_GID));
2817 int take_owner;
2818 int take_group;
2819
2820 /*
2821 * NOTE: even if a new mode is being set,
2822 * we may clear S_ISUID/S_ISGID bits.
2823 */
2824
2825 if (!(mask & ATTR_MODE))
2826 vap->va_mode = zp->z_mode;
2827
2828 /*
2829 * Take ownership or chgrp to group we are a member of
2830 */
2831
2832 take_owner = (mask & ATTR_UID) && (vap->va_uid == crgetuid(cr));
2833 take_group = (mask & ATTR_GID) &&
2834 zfs_groupmember(zsb, vap->va_gid, cr);
2835
2836 /*
2837 * If both ATTR_UID and ATTR_GID are set then take_owner and
2838 * take_group must both be set in order to allow taking
2839 * ownership.
2840 *
2841 * Otherwise, send the check through secpolicy_vnode_setattr()
2842 *
2843 */
2844
2845 if (((idmask == (ATTR_UID|ATTR_GID)) &&
2846 take_owner && take_group) ||
2847 ((idmask == ATTR_UID) && take_owner) ||
2848 ((idmask == ATTR_GID) && take_group)) {
2849 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2850 skipaclchk, cr) == 0) {
2851 /*
2852 * Remove setuid/setgid for non-privileged users
2853 */
2854 (void) secpolicy_setid_clear(vap, cr);
2855 trim_mask = (mask & (ATTR_UID|ATTR_GID));
2856 } else {
2857 need_policy = TRUE;
2858 }
2859 } else {
2860 need_policy = TRUE;
2861 }
2862 }
2863
2864 mutex_enter(&zp->z_lock);
2865 oldva.va_mode = zp->z_mode;
2866 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2867 if (mask & ATTR_XVATTR) {
2868 /*
2869 * Update xvattr mask to include only those attributes
2870 * that are actually changing.
2871 *
2872 * the bits will be restored prior to actually setting
2873 * the attributes so the caller thinks they were set.
2874 */
2875 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2876 if (xoap->xoa_appendonly !=
2877 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2878 need_policy = TRUE;
2879 } else {
2880 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2881 XVA_SET_REQ(tmpxvattr, XAT_APPENDONLY);
2882 }
2883 }
2884
2885 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2886 if (xoap->xoa_nounlink !=
2887 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2888 need_policy = TRUE;
2889 } else {
2890 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2891 XVA_SET_REQ(tmpxvattr, XAT_NOUNLINK);
2892 }
2893 }
2894
2895 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2896 if (xoap->xoa_immutable !=
2897 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2898 need_policy = TRUE;
2899 } else {
2900 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2901 XVA_SET_REQ(tmpxvattr, XAT_IMMUTABLE);
2902 }
2903 }
2904
2905 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2906 if (xoap->xoa_nodump !=
2907 ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2908 need_policy = TRUE;
2909 } else {
2910 XVA_CLR_REQ(xvap, XAT_NODUMP);
2911 XVA_SET_REQ(tmpxvattr, XAT_NODUMP);
2912 }
2913 }
2914
2915 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2916 if (xoap->xoa_av_modified !=
2917 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2918 need_policy = TRUE;
2919 } else {
2920 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2921 XVA_SET_REQ(tmpxvattr, XAT_AV_MODIFIED);
2922 }
2923 }
2924
2925 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2926 if ((!S_ISREG(ip->i_mode) &&
2927 xoap->xoa_av_quarantined) ||
2928 xoap->xoa_av_quarantined !=
2929 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2930 need_policy = TRUE;
2931 } else {
2932 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2933 XVA_SET_REQ(tmpxvattr, XAT_AV_QUARANTINED);
2934 }
2935 }
2936
2937 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2938 mutex_exit(&zp->z_lock);
2939 err = EPERM;
2940 goto out3;
2941 }
2942
2943 if (need_policy == FALSE &&
2944 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2945 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2946 need_policy = TRUE;
2947 }
2948 }
2949
2950 mutex_exit(&zp->z_lock);
2951
2952 if (mask & ATTR_MODE) {
2953 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2954 err = secpolicy_setid_setsticky_clear(ip, vap,
2955 &oldva, cr);
2956 if (err)
2957 goto out3;
2958
2959 trim_mask |= ATTR_MODE;
2960 } else {
2961 need_policy = TRUE;
2962 }
2963 }
2964
2965 if (need_policy) {
2966 /*
2967 * If trim_mask is set then take ownership
2968 * has been granted or write_acl is present and user
2969 * has the ability to modify mode. In that case remove
2970 * UID|GID and or MODE from mask so that
2971 * secpolicy_vnode_setattr() doesn't revoke it.
2972 */
2973
2974 if (trim_mask) {
2975 saved_mask = vap->va_mask;
2976 vap->va_mask &= ~trim_mask;
2977 }
2978 err = secpolicy_vnode_setattr(cr, ip, vap, &oldva, flags,
2979 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2980 if (err)
2981 goto out3;
2982
2983 if (trim_mask)
2984 vap->va_mask |= saved_mask;
2985 }
2986
2987 /*
2988 * secpolicy_vnode_setattr, or take ownership may have
2989 * changed va_mask
2990 */
2991 mask = vap->va_mask;
2992
2993 if ((mask & (ATTR_UID | ATTR_GID))) {
2994 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zsb),
2995 &xattr_obj, sizeof (xattr_obj));
2996
2997 if (err == 0 && xattr_obj) {
2998 err = zfs_zget(ZTOZSB(zp), xattr_obj, &attrzp);
2999 if (err)
3000 goto out2;
3001 }
3002 if (mask & ATTR_UID) {
3003 new_kuid = zfs_fuid_create(zsb,
3004 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3005 if (new_kuid != KUID_TO_SUID(ZTOI(zp)->i_uid) &&
3006 zfs_fuid_overquota(zsb, B_FALSE, new_kuid)) {
3007 if (attrzp)
3008 iput(ZTOI(attrzp));
3009 err = EDQUOT;
3010 goto out2;
3011 }
3012 }
3013
3014 if (mask & ATTR_GID) {
3015 new_kgid = zfs_fuid_create(zsb, (uint64_t)vap->va_gid,
3016 cr, ZFS_GROUP, &fuidp);
3017 if (new_kgid != KGID_TO_SGID(ZTOI(zp)->i_gid) &&
3018 zfs_fuid_overquota(zsb, B_TRUE, new_kgid)) {
3019 if (attrzp)
3020 iput(ZTOI(attrzp));
3021 err = EDQUOT;
3022 goto out2;
3023 }
3024 }
3025 }
3026 tx = dmu_tx_create(zsb->z_os);
3027
3028 if (mask & ATTR_MODE) {
3029 uint64_t pmode = zp->z_mode;
3030 uint64_t acl_obj;
3031 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3032
3033 zfs_acl_chmod_setattr(zp, &aclp, new_mode);
3034
3035 mutex_enter(&zp->z_lock);
3036 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3037 /*
3038 * Are we upgrading ACL from old V0 format
3039 * to V1 format?
3040 */
3041 if (zsb->z_version >= ZPL_VERSION_FUID &&
3042 zfs_znode_acl_version(zp) ==
3043 ZFS_ACL_VERSION_INITIAL) {
3044 dmu_tx_hold_free(tx, acl_obj, 0,
3045 DMU_OBJECT_END);
3046 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3047 0, aclp->z_acl_bytes);
3048 } else {
3049 dmu_tx_hold_write(tx, acl_obj, 0,
3050 aclp->z_acl_bytes);
3051 }
3052 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3053 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3054 0, aclp->z_acl_bytes);
3055 }
3056 mutex_exit(&zp->z_lock);
3057 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3058 } else {
3059 if ((mask & ATTR_XVATTR) &&
3060 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3061 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3062 else
3063 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3064 }
3065
3066 if (attrzp) {
3067 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3068 }
3069
3070 fuid_dirtied = zsb->z_fuid_dirty;
3071 if (fuid_dirtied)
3072 zfs_fuid_txhold(zsb, tx);
3073
3074 zfs_sa_upgrade_txholds(tx, zp);
3075
3076 err = dmu_tx_assign(tx, TXG_WAIT);
3077 if (err)
3078 goto out;
3079
3080 count = 0;
3081 /*
3082 * Set each attribute requested.
3083 * We group settings according to the locks they need to acquire.
3084 *
3085 * Note: you cannot set ctime directly, although it will be
3086 * updated as a side-effect of calling this function.
3087 */
3088
3089
3090 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
3091 mutex_enter(&zp->z_acl_lock);
3092 mutex_enter(&zp->z_lock);
3093
3094 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zsb), NULL,
3095 &zp->z_pflags, sizeof (zp->z_pflags));
3096
3097 if (attrzp) {
3098 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
3099 mutex_enter(&attrzp->z_acl_lock);
3100 mutex_enter(&attrzp->z_lock);
3101 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3102 SA_ZPL_FLAGS(zsb), NULL, &attrzp->z_pflags,
3103 sizeof (attrzp->z_pflags));
3104 }
3105
3106 if (mask & (ATTR_UID|ATTR_GID)) {
3107
3108 if (mask & ATTR_UID) {
3109 ZTOI(zp)->i_uid = SUID_TO_KUID(new_kuid);
3110 new_uid = zfs_uid_read(ZTOI(zp));
3111 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zsb), NULL,
3112 &new_uid, sizeof (new_uid));
3113 if (attrzp) {
3114 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3115 SA_ZPL_UID(zsb), NULL, &new_uid,
3116 sizeof (new_uid));
3117 ZTOI(attrzp)->i_uid = SUID_TO_KUID(new_uid);
3118 }
3119 }
3120
3121 if (mask & ATTR_GID) {
3122 ZTOI(zp)->i_gid = SGID_TO_KGID(new_kgid);
3123 new_gid = zfs_gid_read(ZTOI(zp));
3124 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zsb),
3125 NULL, &new_gid, sizeof (new_gid));
3126 if (attrzp) {
3127 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3128 SA_ZPL_GID(zsb), NULL, &new_gid,
3129 sizeof (new_gid));
3130 ZTOI(attrzp)->i_gid = SGID_TO_KGID(new_kgid);
3131 }
3132 }
3133 if (!(mask & ATTR_MODE)) {
3134 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zsb),
3135 NULL, &new_mode, sizeof (new_mode));
3136 new_mode = zp->z_mode;
3137 }
3138 err = zfs_acl_chown_setattr(zp);
3139 ASSERT(err == 0);
3140 if (attrzp) {
3141 err = zfs_acl_chown_setattr(attrzp);
3142 ASSERT(err == 0);
3143 }
3144 }
3145
3146 if (mask & ATTR_MODE) {
3147 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zsb), NULL,
3148 &new_mode, sizeof (new_mode));
3149 zp->z_mode = ZTOI(zp)->i_mode = new_mode;
3150 ASSERT3P(aclp, !=, NULL);
3151 err = zfs_aclset_common(zp, aclp, cr, tx);
3152 ASSERT0(err);
3153 if (zp->z_acl_cached)
3154 zfs_acl_free(zp->z_acl_cached);
3155 zp->z_acl_cached = aclp;
3156 aclp = NULL;
3157 }
3158
3159 if ((mask & ATTR_ATIME) || zp->z_atime_dirty) {
3160 zp->z_atime_dirty = 0;
3161 ZFS_TIME_ENCODE(&ip->i_atime, atime);
3162 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zsb), NULL,
3163 &atime, sizeof (atime));
3164 }
3165
3166 if (mask & ATTR_MTIME) {
3167 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3168 ZTOI(zp)->i_mtime = timespec_trunc(vap->va_mtime,
3169 ZTOI(zp)->i_sb->s_time_gran);
3170
3171 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zsb), NULL,
3172 mtime, sizeof (mtime));
3173 }
3174
3175 if (mask & ATTR_CTIME) {
3176 ZFS_TIME_ENCODE(&vap->va_ctime, ctime);
3177 ZTOI(zp)->i_ctime = timespec_trunc(vap->va_ctime,
3178 ZTOI(zp)->i_sb->s_time_gran);
3179 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zsb), NULL,
3180 ctime, sizeof (ctime));
3181 }
3182
3183 if (attrzp && mask) {
3184 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3185 SA_ZPL_CTIME(zsb), NULL, &ctime,
3186 sizeof (ctime));
3187 }
3188
3189 /*
3190 * Do this after setting timestamps to prevent timestamp
3191 * update from toggling bit
3192 */
3193
3194 if (xoap && (mask & ATTR_XVATTR)) {
3195
3196 /*
3197 * restore trimmed off masks
3198 * so that return masks can be set for caller.
3199 */
3200
3201 if (XVA_ISSET_REQ(tmpxvattr, XAT_APPENDONLY)) {
3202 XVA_SET_REQ(xvap, XAT_APPENDONLY);
3203 }
3204 if (XVA_ISSET_REQ(tmpxvattr, XAT_NOUNLINK)) {
3205 XVA_SET_REQ(xvap, XAT_NOUNLINK);
3206 }
3207 if (XVA_ISSET_REQ(tmpxvattr, XAT_IMMUTABLE)) {
3208 XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3209 }
3210 if (XVA_ISSET_REQ(tmpxvattr, XAT_NODUMP)) {
3211 XVA_SET_REQ(xvap, XAT_NODUMP);
3212 }
3213 if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_MODIFIED)) {
3214 XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3215 }
3216 if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_QUARANTINED)) {
3217 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3218 }
3219
3220 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3221 ASSERT(S_ISREG(ip->i_mode));
3222
3223 zfs_xvattr_set(zp, xvap, tx);
3224 }
3225
3226 if (fuid_dirtied)
3227 zfs_fuid_sync(zsb, tx);
3228
3229 if (mask != 0)
3230 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3231
3232 mutex_exit(&zp->z_lock);
3233 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
3234 mutex_exit(&zp->z_acl_lock);
3235
3236 if (attrzp) {
3237 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
3238 mutex_exit(&attrzp->z_acl_lock);
3239 mutex_exit(&attrzp->z_lock);
3240 }
3241 out:
3242 if (err == 0 && attrzp) {
3243 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3244 xattr_count, tx);
3245 ASSERT(err2 == 0);
3246 }
3247
3248 if (aclp)
3249 zfs_acl_free(aclp);
3250
3251 if (fuidp) {
3252 zfs_fuid_info_free(fuidp);
3253 fuidp = NULL;
3254 }
3255
3256 if (err) {
3257 dmu_tx_abort(tx);
3258 if (attrzp)
3259 iput(ZTOI(attrzp));
3260 if (err == ERESTART)
3261 goto top;
3262 } else {
3263 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3264 dmu_tx_commit(tx);
3265 if (attrzp)
3266 iput(ZTOI(attrzp));
3267 zfs_inode_update(zp);
3268 }
3269
3270 out2:
3271 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
3272 zil_commit(zilog, 0);
3273
3274 out3:
3275 kmem_free(xattr_bulk, sizeof (sa_bulk_attr_t) * 7);
3276 kmem_free(bulk, sizeof (sa_bulk_attr_t) * 7);
3277 kmem_free(tmpxvattr, sizeof (xvattr_t));
3278 ZFS_EXIT(zsb);
3279 return (err);
3280 }
3281 EXPORT_SYMBOL(zfs_setattr);
3282
3283 typedef struct zfs_zlock {
3284 krwlock_t *zl_rwlock; /* lock we acquired */
3285 znode_t *zl_znode; /* znode we held */
3286 struct zfs_zlock *zl_next; /* next in list */
3287 } zfs_zlock_t;
3288
3289 /*
3290 * Drop locks and release vnodes that were held by zfs_rename_lock().
3291 */
3292 static void
3293 zfs_rename_unlock(zfs_zlock_t **zlpp)
3294 {
3295 zfs_zlock_t *zl;
3296
3297 while ((zl = *zlpp) != NULL) {
3298 if (zl->zl_znode != NULL)
3299 zfs_iput_async(ZTOI(zl->zl_znode));
3300 rw_exit(zl->zl_rwlock);
3301 *zlpp = zl->zl_next;
3302 kmem_free(zl, sizeof (*zl));
3303 }
3304 }
3305
3306 /*
3307 * Search back through the directory tree, using the ".." entries.
3308 * Lock each directory in the chain to prevent concurrent renames.
3309 * Fail any attempt to move a directory into one of its own descendants.
3310 * XXX - z_parent_lock can overlap with map or grow locks
3311 */
3312 static int
3313 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3314 {
3315 zfs_zlock_t *zl;
3316 znode_t *zp = tdzp;
3317 uint64_t rootid = ZTOZSB(zp)->z_root;
3318 uint64_t oidp = zp->z_id;
3319 krwlock_t *rwlp = &szp->z_parent_lock;
3320 krw_t rw = RW_WRITER;
3321
3322 /*
3323 * First pass write-locks szp and compares to zp->z_id.
3324 * Later passes read-lock zp and compare to zp->z_parent.
3325 */
3326 do {
3327 if (!rw_tryenter(rwlp, rw)) {
3328 /*
3329 * Another thread is renaming in this path.
3330 * Note that if we are a WRITER, we don't have any
3331 * parent_locks held yet.
3332 */
3333 if (rw == RW_READER && zp->z_id > szp->z_id) {
3334 /*
3335 * Drop our locks and restart
3336 */
3337 zfs_rename_unlock(&zl);
3338 *zlpp = NULL;
3339 zp = tdzp;
3340 oidp = zp->z_id;
3341 rwlp = &szp->z_parent_lock;
3342 rw = RW_WRITER;
3343 continue;
3344 } else {
3345 /*
3346 * Wait for other thread to drop its locks
3347 */
3348 rw_enter(rwlp, rw);
3349 }
3350 }
3351
3352 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3353 zl->zl_rwlock = rwlp;
3354 zl->zl_znode = NULL;
3355 zl->zl_next = *zlpp;
3356 *zlpp = zl;
3357
3358 if (oidp == szp->z_id) /* We're a descendant of szp */
3359 return (SET_ERROR(EINVAL));
3360
3361 if (oidp == rootid) /* We've hit the top */
3362 return (0);
3363
3364 if (rw == RW_READER) { /* i.e. not the first pass */
3365 int error = zfs_zget(ZTOZSB(zp), oidp, &zp);
3366 if (error)
3367 return (error);
3368 zl->zl_znode = zp;
3369 }
3370 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(ZTOZSB(zp)),
3371 &oidp, sizeof (oidp));
3372 rwlp = &zp->z_parent_lock;
3373 rw = RW_READER;
3374
3375 } while (zp->z_id != sdzp->z_id);
3376
3377 return (0);
3378 }
3379
3380 /*
3381 * Move an entry from the provided source directory to the target
3382 * directory. Change the entry name as indicated.
3383 *
3384 * IN: sdip - Source directory containing the "old entry".
3385 * snm - Old entry name.
3386 * tdip - Target directory to contain the "new entry".
3387 * tnm - New entry name.
3388 * cr - credentials of caller.
3389 * flags - case flags
3390 *
3391 * RETURN: 0 on success, error code on failure.
3392 *
3393 * Timestamps:
3394 * sdip,tdip - ctime|mtime updated
3395 */
3396 /*ARGSUSED*/
3397 int
3398 zfs_rename(struct inode *sdip, char *snm, struct inode *tdip, char *tnm,
3399 cred_t *cr, int flags)
3400 {
3401 znode_t *tdzp, *szp, *tzp;
3402 znode_t *sdzp = ITOZ(sdip);
3403 zfs_sb_t *zsb = ITOZSB(sdip);
3404 zilog_t *zilog;
3405 zfs_dirlock_t *sdl, *tdl;
3406 dmu_tx_t *tx;
3407 zfs_zlock_t *zl;
3408 int cmp, serr, terr;
3409 int error = 0;
3410 int zflg = 0;
3411 boolean_t waited = B_FALSE;
3412
3413 if (snm == NULL || tnm == NULL)
3414 return (SET_ERROR(EINVAL));
3415
3416 ZFS_ENTER(zsb);
3417 ZFS_VERIFY_ZP(sdzp);
3418 zilog = zsb->z_log;
3419
3420 tdzp = ITOZ(tdip);
3421 ZFS_VERIFY_ZP(tdzp);
3422
3423 /*
3424 * We check i_sb because snapshots and the ctldir must have different
3425 * super blocks.
3426 */
3427 if (tdip->i_sb != sdip->i_sb || zfsctl_is_node(tdip)) {
3428 ZFS_EXIT(zsb);
3429 return (SET_ERROR(EXDEV));
3430 }
3431
3432 if (zsb->z_utf8 && u8_validate(tnm,
3433 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3434 ZFS_EXIT(zsb);
3435 return (SET_ERROR(EILSEQ));
3436 }
3437
3438 if (flags & FIGNORECASE)
3439 zflg |= ZCILOOK;
3440
3441 top:
3442 szp = NULL;
3443 tzp = NULL;
3444 zl = NULL;
3445
3446 /*
3447 * This is to prevent the creation of links into attribute space
3448 * by renaming a linked file into/outof an attribute directory.
3449 * See the comment in zfs_link() for why this is considered bad.
3450 */
3451 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3452 ZFS_EXIT(zsb);
3453 return (SET_ERROR(EINVAL));
3454 }
3455
3456 /*
3457 * Lock source and target directory entries. To prevent deadlock,
3458 * a lock ordering must be defined. We lock the directory with
3459 * the smallest object id first, or if it's a tie, the one with
3460 * the lexically first name.
3461 */
3462 if (sdzp->z_id < tdzp->z_id) {
3463 cmp = -1;
3464 } else if (sdzp->z_id > tdzp->z_id) {
3465 cmp = 1;
3466 } else {
3467 /*
3468 * First compare the two name arguments without
3469 * considering any case folding.
3470 */
3471 int nofold = (zsb->z_norm & ~U8_TEXTPREP_TOUPPER);
3472
3473 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3474 ASSERT(error == 0 || !zsb->z_utf8);
3475 if (cmp == 0) {
3476 /*
3477 * POSIX: "If the old argument and the new argument
3478 * both refer to links to the same existing file,
3479 * the rename() function shall return successfully
3480 * and perform no other action."
3481 */
3482 ZFS_EXIT(zsb);
3483 return (0);
3484 }
3485 /*
3486 * If the file system is case-folding, then we may
3487 * have some more checking to do. A case-folding file
3488 * system is either supporting mixed case sensitivity
3489 * access or is completely case-insensitive. Note
3490 * that the file system is always case preserving.
3491 *
3492 * In mixed sensitivity mode case sensitive behavior
3493 * is the default. FIGNORECASE must be used to
3494 * explicitly request case insensitive behavior.
3495 *
3496 * If the source and target names provided differ only
3497 * by case (e.g., a request to rename 'tim' to 'Tim'),
3498 * we will treat this as a special case in the
3499 * case-insensitive mode: as long as the source name
3500 * is an exact match, we will allow this to proceed as
3501 * a name-change request.
3502 */
3503 if ((zsb->z_case == ZFS_CASE_INSENSITIVE ||
3504 (zsb->z_case == ZFS_CASE_MIXED &&
3505 flags & FIGNORECASE)) &&
3506 u8_strcmp(snm, tnm, 0, zsb->z_norm, U8_UNICODE_LATEST,
3507 &error) == 0) {
3508 /*
3509 * case preserving rename request, require exact
3510 * name matches
3511 */
3512 zflg |= ZCIEXACT;
3513 zflg &= ~ZCILOOK;
3514 }
3515 }
3516
3517 /*
3518 * If the source and destination directories are the same, we should
3519 * grab the z_name_lock of that directory only once.
3520 */
3521 if (sdzp == tdzp) {
3522 zflg |= ZHAVELOCK;
3523 rw_enter(&sdzp->z_name_lock, RW_READER);
3524 }
3525
3526 if (cmp < 0) {
3527 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3528 ZEXISTS | zflg, NULL, NULL);
3529 terr = zfs_dirent_lock(&tdl,
3530 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3531 } else {
3532 terr = zfs_dirent_lock(&tdl,
3533 tdzp, tnm, &tzp, zflg, NULL, NULL);
3534 serr = zfs_dirent_lock(&sdl,
3535 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3536 NULL, NULL);
3537 }
3538
3539 if (serr) {
3540 /*
3541 * Source entry invalid or not there.
3542 */
3543 if (!terr) {
3544 zfs_dirent_unlock(tdl);
3545 if (tzp)
3546 iput(ZTOI(tzp));
3547 }
3548
3549 if (sdzp == tdzp)
3550 rw_exit(&sdzp->z_name_lock);
3551
3552 if (strcmp(snm, "..") == 0)
3553 serr = EINVAL;
3554 ZFS_EXIT(zsb);
3555 return (serr);
3556 }
3557 if (terr) {
3558 zfs_dirent_unlock(sdl);
3559 iput(ZTOI(szp));
3560
3561 if (sdzp == tdzp)
3562 rw_exit(&sdzp->z_name_lock);
3563
3564 if (strcmp(tnm, "..") == 0)
3565 terr = EINVAL;
3566 ZFS_EXIT(zsb);
3567 return (terr);
3568 }
3569
3570 /*
3571 * Must have write access at the source to remove the old entry
3572 * and write access at the target to create the new entry.
3573 * Note that if target and source are the same, this can be
3574 * done in a single check.
3575 */
3576
3577 if ((error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)))
3578 goto out;
3579
3580 if (S_ISDIR(ZTOI(szp)->i_mode)) {
3581 /*
3582 * Check to make sure rename is valid.
3583 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3584 */
3585 if ((error = zfs_rename_lock(szp, tdzp, sdzp, &zl)))
3586 goto out;
3587 }
3588
3589 /*
3590 * Does target exist?
3591 */
3592 if (tzp) {
3593 /*
3594 * Source and target must be the same type.
3595 */
3596 if (S_ISDIR(ZTOI(szp)->i_mode)) {
3597 if (!S_ISDIR(ZTOI(tzp)->i_mode)) {
3598 error = SET_ERROR(ENOTDIR);
3599 goto out;
3600 }
3601 } else {
3602 if (S_ISDIR(ZTOI(tzp)->i_mode)) {
3603 error = SET_ERROR(EISDIR);
3604 goto out;
3605 }
3606 }
3607 /*
3608 * POSIX dictates that when the source and target
3609 * entries refer to the same file object, rename
3610 * must do nothing and exit without error.
3611 */
3612 if (szp->z_id == tzp->z_id) {
3613 error = 0;
3614 goto out;
3615 }
3616 }
3617
3618 tx = dmu_tx_create(zsb->z_os);
3619 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3620 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3621 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3622 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3623 if (sdzp != tdzp) {
3624 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3625 zfs_sa_upgrade_txholds(tx, tdzp);
3626 }
3627 if (tzp) {
3628 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3629 zfs_sa_upgrade_txholds(tx, tzp);
3630 }
3631
3632 zfs_sa_upgrade_txholds(tx, szp);
3633 dmu_tx_hold_zap(tx, zsb->z_unlinkedobj, FALSE, NULL);
3634 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3635 if (error) {
3636 if (zl != NULL)
3637 zfs_rename_unlock(&zl);
3638 zfs_dirent_unlock(sdl);
3639 zfs_dirent_unlock(tdl);
3640
3641 if (sdzp == tdzp)
3642 rw_exit(&sdzp->z_name_lock);
3643
3644 if (error == ERESTART) {
3645 waited = B_TRUE;
3646 dmu_tx_wait(tx);
3647 dmu_tx_abort(tx);
3648 iput(ZTOI(szp));
3649 if (tzp)
3650 iput(ZTOI(tzp));
3651 goto top;
3652 }
3653 dmu_tx_abort(tx);
3654 iput(ZTOI(szp));
3655 if (tzp)
3656 iput(ZTOI(tzp));
3657 ZFS_EXIT(zsb);
3658 return (error);
3659 }
3660
3661 if (tzp) /* Attempt to remove the existing target */
3662 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3663
3664 if (error == 0) {
3665 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3666 if (error == 0) {
3667 szp->z_pflags |= ZFS_AV_MODIFIED;
3668
3669 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zsb),
3670 (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3671 ASSERT0(error);
3672
3673 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3674 if (error == 0) {
3675 zfs_log_rename(zilog, tx, TX_RENAME |
3676 (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3677 sdl->dl_name, tdzp, tdl->dl_name, szp);
3678 } else {
3679 /*
3680 * At this point, we have successfully created
3681 * the target name, but have failed to remove
3682 * the source name. Since the create was done
3683 * with the ZRENAMING flag, there are
3684 * complications; for one, the link count is
3685 * wrong. The easiest way to deal with this
3686 * is to remove the newly created target, and
3687 * return the original error. This must
3688 * succeed; fortunately, it is very unlikely to
3689 * fail, since we just created it.
3690 */
3691 VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3692 ZRENAMING, NULL), ==, 0);
3693 }
3694 }
3695 }
3696
3697 dmu_tx_commit(tx);
3698 out:
3699 if (zl != NULL)
3700 zfs_rename_unlock(&zl);
3701
3702 zfs_dirent_unlock(sdl);
3703 zfs_dirent_unlock(tdl);
3704
3705 zfs_inode_update(sdzp);
3706 if (sdzp == tdzp)
3707 rw_exit(&sdzp->z_name_lock);
3708
3709 if (sdzp != tdzp)
3710 zfs_inode_update(tdzp);
3711
3712 zfs_inode_update(szp);
3713 iput(ZTOI(szp));
3714 if (tzp) {
3715 zfs_inode_update(tzp);
3716 iput(ZTOI(tzp));
3717 }
3718
3719 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
3720 zil_commit(zilog, 0);
3721
3722 ZFS_EXIT(zsb);
3723 return (error);
3724 }
3725 EXPORT_SYMBOL(zfs_rename);
3726
3727 /*
3728 * Insert the indicated symbolic reference entry into the directory.
3729 *
3730 * IN: dip - Directory to contain new symbolic link.
3731 * link - Name for new symlink entry.
3732 * vap - Attributes of new entry.
3733 * target - Target path of new symlink.
3734 *
3735 * cr - credentials of caller.
3736 * flags - case flags
3737 *
3738 * RETURN: 0 on success, error code on failure.
3739 *
3740 * Timestamps:
3741 * dip - ctime|mtime updated
3742 */
3743 /*ARGSUSED*/
3744 int
3745 zfs_symlink(struct inode *dip, char *name, vattr_t *vap, char *link,
3746 struct inode **ipp, cred_t *cr, int flags)
3747 {
3748 znode_t *zp, *dzp = ITOZ(dip);
3749 zfs_dirlock_t *dl;
3750 dmu_tx_t *tx;
3751 zfs_sb_t *zsb = ITOZSB(dip);
3752 zilog_t *zilog;
3753 uint64_t len = strlen(link);
3754 int error;
3755 int zflg = ZNEW;
3756 zfs_acl_ids_t acl_ids;
3757 boolean_t fuid_dirtied;
3758 uint64_t txtype = TX_SYMLINK;
3759 boolean_t waited = B_FALSE;
3760
3761 ASSERT(S_ISLNK(vap->va_mode));
3762
3763 if (name == NULL)
3764 return (SET_ERROR(EINVAL));
3765
3766 ZFS_ENTER(zsb);
3767 ZFS_VERIFY_ZP(dzp);
3768 zilog = zsb->z_log;
3769
3770 if (zsb->z_utf8 && u8_validate(name, strlen(name),
3771 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3772 ZFS_EXIT(zsb);
3773 return (SET_ERROR(EILSEQ));
3774 }
3775 if (flags & FIGNORECASE)
3776 zflg |= ZCILOOK;
3777
3778 if (len > MAXPATHLEN) {
3779 ZFS_EXIT(zsb);
3780 return (SET_ERROR(ENAMETOOLONG));
3781 }
3782
3783 if ((error = zfs_acl_ids_create(dzp, 0,
3784 vap, cr, NULL, &acl_ids)) != 0) {
3785 ZFS_EXIT(zsb);
3786 return (error);
3787 }
3788 top:
3789 *ipp = NULL;
3790
3791 /*
3792 * Attempt to lock directory; fail if entry already exists.
3793 */
3794 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3795 if (error) {
3796 zfs_acl_ids_free(&acl_ids);
3797 ZFS_EXIT(zsb);
3798 return (error);
3799 }
3800
3801 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
3802 zfs_acl_ids_free(&acl_ids);
3803 zfs_dirent_unlock(dl);
3804 ZFS_EXIT(zsb);
3805 return (error);
3806 }
3807
3808 if (zfs_acl_ids_overquota(zsb, &acl_ids)) {
3809 zfs_acl_ids_free(&acl_ids);
3810 zfs_dirent_unlock(dl);
3811 ZFS_EXIT(zsb);
3812 return (SET_ERROR(EDQUOT));
3813 }
3814 tx = dmu_tx_create(zsb->z_os);
3815 fuid_dirtied = zsb->z_fuid_dirty;
3816 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3817 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3818 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3819 ZFS_SA_BASE_ATTR_SIZE + len);
3820 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3821 if (!zsb->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3822 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3823 acl_ids.z_aclp->z_acl_bytes);
3824 }
3825 if (fuid_dirtied)
3826 zfs_fuid_txhold(zsb, tx);
3827 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3828 if (error) {
3829 zfs_dirent_unlock(dl);
3830 if (error == ERESTART) {
3831 waited = B_TRUE;
3832 dmu_tx_wait(tx);
3833 dmu_tx_abort(tx);
3834 goto top;
3835 }
3836 zfs_acl_ids_free(&acl_ids);
3837 dmu_tx_abort(tx);
3838 ZFS_EXIT(zsb);
3839 return (error);
3840 }
3841
3842 /*
3843 * Create a new object for the symlink.
3844 * for version 4 ZPL datsets the symlink will be an SA attribute
3845 */
3846 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3847
3848 if (fuid_dirtied)
3849 zfs_fuid_sync(zsb, tx);
3850
3851 mutex_enter(&zp->z_lock);
3852 if (zp->z_is_sa)
3853 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zsb),
3854 link, len, tx);
3855 else
3856 zfs_sa_symlink(zp, link, len, tx);
3857 mutex_exit(&zp->z_lock);
3858
3859 zp->z_size = len;
3860 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zsb),
3861 &zp->z_size, sizeof (zp->z_size), tx);
3862 /*
3863 * Insert the new object into the directory.
3864 */
3865 (void) zfs_link_create(dl, zp, tx, ZNEW);
3866
3867 if (flags & FIGNORECASE)
3868 txtype |= TX_CI;
3869 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3870
3871 zfs_inode_update(dzp);
3872 zfs_inode_update(zp);
3873
3874 zfs_acl_ids_free(&acl_ids);
3875
3876 dmu_tx_commit(tx);
3877
3878 zfs_dirent_unlock(dl);
3879
3880 *ipp = ZTOI(zp);
3881
3882 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
3883 zil_commit(zilog, 0);
3884
3885 ZFS_EXIT(zsb);
3886 return (error);
3887 }
3888 EXPORT_SYMBOL(zfs_symlink);
3889
3890 /*
3891 * Return, in the buffer contained in the provided uio structure,
3892 * the symbolic path referred to by ip.
3893 *
3894 * IN: ip - inode of symbolic link
3895 * uio - structure to contain the link path.
3896 * cr - credentials of caller.
3897 *
3898 * RETURN: 0 if success
3899 * error code if failure
3900 *
3901 * Timestamps:
3902 * ip - atime updated
3903 */
3904 /* ARGSUSED */
3905 int
3906 zfs_readlink(struct inode *ip, uio_t *uio, cred_t *cr)
3907 {
3908 znode_t *zp = ITOZ(ip);
3909 zfs_sb_t *zsb = ITOZSB(ip);
3910 int error;
3911
3912 ZFS_ENTER(zsb);
3913 ZFS_VERIFY_ZP(zp);
3914
3915 mutex_enter(&zp->z_lock);
3916 if (zp->z_is_sa)
3917 error = sa_lookup_uio(zp->z_sa_hdl,
3918 SA_ZPL_SYMLINK(zsb), uio);
3919 else
3920 error = zfs_sa_readlink(zp, uio);
3921 mutex_exit(&zp->z_lock);
3922
3923 ZFS_EXIT(zsb);
3924 return (error);
3925 }
3926 EXPORT_SYMBOL(zfs_readlink);
3927
3928 /*
3929 * Insert a new entry into directory tdip referencing sip.
3930 *
3931 * IN: tdip - Directory to contain new entry.
3932 * sip - inode of new entry.
3933 * name - name of new entry.
3934 * cr - credentials of caller.
3935 *
3936 * RETURN: 0 if success
3937 * error code if failure
3938 *
3939 * Timestamps:
3940 * tdip - ctime|mtime updated
3941 * sip - ctime updated
3942 */
3943 /* ARGSUSED */
3944 int
3945 zfs_link(struct inode *tdip, struct inode *sip, char *name, cred_t *cr,
3946 int flags)
3947 {
3948 znode_t *dzp = ITOZ(tdip);
3949 znode_t *tzp, *szp;
3950 zfs_sb_t *zsb = ITOZSB(tdip);
3951 zilog_t *zilog;
3952 zfs_dirlock_t *dl;
3953 dmu_tx_t *tx;
3954 int error;
3955 int zf = ZNEW;
3956 uint64_t parent;
3957 uid_t owner;
3958 boolean_t waited = B_FALSE;
3959 boolean_t is_tmpfile = 0;
3960 uint64_t txg;
3961 #ifdef HAVE_TMPFILE
3962 is_tmpfile = (sip->i_nlink == 0 && (sip->i_state & I_LINKABLE));
3963 #endif
3964 ASSERT(S_ISDIR(tdip->i_mode));
3965
3966 if (name == NULL)
3967 return (SET_ERROR(EINVAL));
3968
3969 ZFS_ENTER(zsb);
3970 ZFS_VERIFY_ZP(dzp);
3971 zilog = zsb->z_log;
3972
3973 /*
3974 * POSIX dictates that we return EPERM here.
3975 * Better choices include ENOTSUP or EISDIR.
3976 */
3977 if (S_ISDIR(sip->i_mode)) {
3978 ZFS_EXIT(zsb);
3979 return (SET_ERROR(EPERM));
3980 }
3981
3982 szp = ITOZ(sip);
3983 ZFS_VERIFY_ZP(szp);
3984
3985 /*
3986 * We check i_sb because snapshots and the ctldir must have different
3987 * super blocks.
3988 */
3989 if (sip->i_sb != tdip->i_sb || zfsctl_is_node(sip)) {
3990 ZFS_EXIT(zsb);
3991 return (SET_ERROR(EXDEV));
3992 }
3993
3994 /* Prevent links to .zfs/shares files */
3995
3996 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zsb),
3997 &parent, sizeof (uint64_t))) != 0) {
3998 ZFS_EXIT(zsb);
3999 return (error);
4000 }
4001 if (parent == zsb->z_shares_dir) {
4002 ZFS_EXIT(zsb);
4003 return (SET_ERROR(EPERM));
4004 }
4005
4006 if (zsb->z_utf8 && u8_validate(name,
4007 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4008 ZFS_EXIT(zsb);
4009 return (SET_ERROR(EILSEQ));
4010 }
4011 if (flags & FIGNORECASE)
4012 zf |= ZCILOOK;
4013
4014 /*
4015 * We do not support links between attributes and non-attributes
4016 * because of the potential security risk of creating links
4017 * into "normal" file space in order to circumvent restrictions
4018 * imposed in attribute space.
4019 */
4020 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4021 ZFS_EXIT(zsb);
4022 return (SET_ERROR(EINVAL));
4023 }
4024
4025 owner = zfs_fuid_map_id(zsb, KUID_TO_SUID(sip->i_uid), cr, ZFS_OWNER);
4026 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
4027 ZFS_EXIT(zsb);
4028 return (SET_ERROR(EPERM));
4029 }
4030
4031 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
4032 ZFS_EXIT(zsb);
4033 return (error);
4034 }
4035
4036 top:
4037 /*
4038 * Attempt to lock directory; fail if entry already exists.
4039 */
4040 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4041 if (error) {
4042 ZFS_EXIT(zsb);
4043 return (error);
4044 }
4045
4046 tx = dmu_tx_create(zsb->z_os);
4047 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4048 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4049 if (is_tmpfile)
4050 dmu_tx_hold_zap(tx, zsb->z_unlinkedobj, FALSE, NULL);
4051
4052 zfs_sa_upgrade_txholds(tx, szp);
4053 zfs_sa_upgrade_txholds(tx, dzp);
4054 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4055 if (error) {
4056 zfs_dirent_unlock(dl);
4057 if (error == ERESTART) {
4058 waited = B_TRUE;
4059 dmu_tx_wait(tx);
4060 dmu_tx_abort(tx);
4061 goto top;
4062 }
4063 dmu_tx_abort(tx);
4064 ZFS_EXIT(zsb);
4065 return (error);
4066 }
4067 /* unmark z_unlinked so zfs_link_create will not reject */
4068 if (is_tmpfile)
4069 szp->z_unlinked = 0;
4070 error = zfs_link_create(dl, szp, tx, 0);
4071
4072 if (error == 0) {
4073 uint64_t txtype = TX_LINK;
4074 /*
4075 * tmpfile is created to be in z_unlinkedobj, so remove it.
4076 * Also, we don't log in ZIL, be cause all previous file
4077 * operation on the tmpfile are ignored by ZIL. Instead we
4078 * always wait for txg to sync to make sure all previous
4079 * operation are sync safe.
4080 */
4081 if (is_tmpfile) {
4082 VERIFY(zap_remove_int(zsb->z_os, zsb->z_unlinkedobj,
4083 szp->z_id, tx) == 0);
4084 } else {
4085 if (flags & FIGNORECASE)
4086 txtype |= TX_CI;
4087 zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4088 }
4089 } else if (is_tmpfile) {
4090 /* restore z_unlinked since when linking failed */
4091 szp->z_unlinked = 1;
4092 }
4093 txg = dmu_tx_get_txg(tx);
4094 dmu_tx_commit(tx);
4095
4096 zfs_dirent_unlock(dl);
4097
4098 if (!is_tmpfile && zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
4099 zil_commit(zilog, 0);
4100
4101 if (is_tmpfile)
4102 txg_wait_synced(dmu_objset_pool(zsb->z_os), txg);
4103
4104 zfs_inode_update(dzp);
4105 zfs_inode_update(szp);
4106 ZFS_EXIT(zsb);
4107 return (error);
4108 }
4109 EXPORT_SYMBOL(zfs_link);
4110
4111 static void
4112 zfs_putpage_commit_cb(void *arg)
4113 {
4114 struct page *pp = arg;
4115
4116 ClearPageError(pp);
4117 end_page_writeback(pp);
4118 }
4119
4120 /*
4121 * Push a page out to disk, once the page is on stable storage the
4122 * registered commit callback will be run as notification of completion.
4123 *
4124 * IN: ip - page mapped for inode.
4125 * pp - page to push (page is locked)
4126 * wbc - writeback control data
4127 *
4128 * RETURN: 0 if success
4129 * error code if failure
4130 *
4131 * Timestamps:
4132 * ip - ctime|mtime updated
4133 */
4134 /* ARGSUSED */
4135 int
4136 zfs_putpage(struct inode *ip, struct page *pp, struct writeback_control *wbc)
4137 {
4138 znode_t *zp = ITOZ(ip);
4139 zfs_sb_t *zsb = ITOZSB(ip);
4140 loff_t offset;
4141 loff_t pgoff;
4142 unsigned int pglen;
4143 rl_t *rl;
4144 dmu_tx_t *tx;
4145 caddr_t va;
4146 int err = 0;
4147 uint64_t mtime[2], ctime[2];
4148 sa_bulk_attr_t bulk[3];
4149 int cnt = 0;
4150 struct address_space *mapping;
4151
4152 ZFS_ENTER(zsb);
4153 ZFS_VERIFY_ZP(zp);
4154
4155 ASSERT(PageLocked(pp));
4156
4157 pgoff = page_offset(pp); /* Page byte-offset in file */
4158 offset = i_size_read(ip); /* File length in bytes */
4159 pglen = MIN(PAGE_SIZE, /* Page length in bytes */
4160 P2ROUNDUP(offset, PAGE_SIZE)-pgoff);
4161
4162 /* Page is beyond end of file */
4163 if (pgoff >= offset) {
4164 unlock_page(pp);
4165 ZFS_EXIT(zsb);
4166 return (0);
4167 }
4168
4169 /* Truncate page length to end of file */
4170 if (pgoff + pglen > offset)
4171 pglen = offset - pgoff;
4172
4173 #if 0
4174 /*
4175 * FIXME: Allow mmap writes past its quota. The correct fix
4176 * is to register a page_mkwrite() handler to count the page
4177 * against its quota when it is about to be dirtied.
4178 */
4179 if (zfs_owner_overquota(zsb, zp, B_FALSE) ||
4180 zfs_owner_overquota(zsb, zp, B_TRUE)) {
4181 err = EDQUOT;
4182 }
4183 #endif
4184
4185 /*
4186 * The ordering here is critical and must adhere to the following
4187 * rules in order to avoid deadlocking in either zfs_read() or
4188 * zfs_free_range() due to a lock inversion.
4189 *
4190 * 1) The page must be unlocked prior to acquiring the range lock.
4191 * This is critical because zfs_read() calls find_lock_page()
4192 * which may block on the page lock while holding the range lock.
4193 *
4194 * 2) Before setting or clearing write back on a page the range lock
4195 * must be held in order to prevent a lock inversion with the
4196 * zfs_free_range() function.
4197 *
4198 * This presents a problem because upon entering this function the
4199 * page lock is already held. To safely acquire the range lock the
4200 * page lock must be dropped. This creates a window where another
4201 * process could truncate, invalidate, dirty, or write out the page.
4202 *
4203 * Therefore, after successfully reacquiring the range and page locks
4204 * the current page state is checked. In the common case everything
4205 * will be as is expected and it can be written out. However, if
4206 * the page state has changed it must be handled accordingly.
4207 */
4208 mapping = pp->mapping;
4209 redirty_page_for_writepage(wbc, pp);
4210 unlock_page(pp);
4211
4212 rl = zfs_range_lock(&zp->z_range_lock, pgoff, pglen, RL_WRITER);
4213 lock_page(pp);
4214
4215 /* Page mapping changed or it was no longer dirty, we're done */
4216 if (unlikely((mapping != pp->mapping) || !PageDirty(pp))) {
4217 unlock_page(pp);
4218 zfs_range_unlock(rl);
4219 ZFS_EXIT(zsb);
4220 return (0);
4221 }
4222
4223 /* Another process started write block if required */
4224 if (PageWriteback(pp)) {
4225 unlock_page(pp);
4226 zfs_range_unlock(rl);
4227
4228 if (wbc->sync_mode != WB_SYNC_NONE)
4229 wait_on_page_writeback(pp);
4230
4231 ZFS_EXIT(zsb);
4232 return (0);
4233 }
4234
4235 /* Clear the dirty flag the required locks are held */
4236 if (!clear_page_dirty_for_io(pp)) {
4237 unlock_page(pp);
4238 zfs_range_unlock(rl);
4239 ZFS_EXIT(zsb);
4240 return (0);
4241 }
4242
4243 /*
4244 * Counterpart for redirty_page_for_writepage() above. This page
4245 * was in fact not skipped and should not be counted as if it were.
4246 */
4247 wbc->pages_skipped--;
4248 set_page_writeback(pp);
4249 unlock_page(pp);
4250
4251 tx = dmu_tx_create(zsb->z_os);
4252 dmu_tx_hold_write(tx, zp->z_id, pgoff, pglen);
4253 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4254 zfs_sa_upgrade_txholds(tx, zp);
4255
4256 err = dmu_tx_assign(tx, TXG_NOWAIT);
4257 if (err != 0) {
4258 if (err == ERESTART)
4259 dmu_tx_wait(tx);
4260
4261 dmu_tx_abort(tx);
4262 __set_page_dirty_nobuffers(pp);
4263 ClearPageError(pp);
4264 end_page_writeback(pp);
4265 zfs_range_unlock(rl);
4266 ZFS_EXIT(zsb);
4267 return (err);
4268 }
4269
4270 va = kmap(pp);
4271 ASSERT3U(pglen, <=, PAGE_SIZE);
4272 dmu_write(zsb->z_os, zp->z_id, pgoff, pglen, va, tx);
4273 kunmap(pp);
4274
4275 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zsb), NULL, &mtime, 16);
4276 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zsb), NULL, &ctime, 16);
4277 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_FLAGS(zsb), NULL, &zp->z_pflags, 8);
4278
4279 /* Preserve the mtime and ctime provided by the inode */
4280 ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
4281 ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
4282 zp->z_atime_dirty = 0;
4283 zp->z_seq++;
4284
4285 err = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
4286
4287 zfs_log_write(zsb->z_log, tx, TX_WRITE, zp, pgoff, pglen, 0,
4288 zfs_putpage_commit_cb, pp);
4289 dmu_tx_commit(tx);
4290
4291 zfs_range_unlock(rl);
4292
4293 if (wbc->sync_mode != WB_SYNC_NONE) {
4294 /*
4295 * Note that this is rarely called under writepages(), because
4296 * writepages() normally handles the entire commit for
4297 * performance reasons.
4298 */
4299 zil_commit(zsb->z_log, zp->z_id);
4300 }
4301
4302 ZFS_EXIT(zsb);
4303 return (err);
4304 }
4305
4306 /*
4307 * Update the system attributes when the inode has been dirtied. For the
4308 * moment we only update the mode, atime, mtime, and ctime.
4309 */
4310 int
4311 zfs_dirty_inode(struct inode *ip, int flags)
4312 {
4313 znode_t *zp = ITOZ(ip);
4314 zfs_sb_t *zsb = ITOZSB(ip);
4315 dmu_tx_t *tx;
4316 uint64_t mode, atime[2], mtime[2], ctime[2];
4317 sa_bulk_attr_t bulk[4];
4318 int error = 0;
4319 int cnt = 0;
4320
4321 if (zfs_is_readonly(zsb) || dmu_objset_is_snapshot(zsb->z_os))
4322 return (0);
4323
4324 ZFS_ENTER(zsb);
4325 ZFS_VERIFY_ZP(zp);
4326
4327 #ifdef I_DIRTY_TIME
4328 /*
4329 * This is the lazytime semantic indroduced in Linux 4.0
4330 * This flag will only be called from update_time when lazytime is set.
4331 * (Note, I_DIRTY_SYNC will also set if not lazytime)
4332 * Fortunately mtime and ctime are managed within ZFS itself, so we
4333 * only need to dirty atime.
4334 */
4335 if (flags == I_DIRTY_TIME) {
4336 zp->z_atime_dirty = 1;
4337 goto out;
4338 }
4339 #endif
4340
4341 tx = dmu_tx_create(zsb->z_os);
4342
4343 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4344 zfs_sa_upgrade_txholds(tx, zp);
4345
4346 error = dmu_tx_assign(tx, TXG_WAIT);
4347 if (error) {
4348 dmu_tx_abort(tx);
4349 goto out;
4350 }
4351
4352 mutex_enter(&zp->z_lock);
4353 zp->z_atime_dirty = 0;
4354
4355 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MODE(zsb), NULL, &mode, 8);
4356 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_ATIME(zsb), NULL, &atime, 16);
4357 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zsb), NULL, &mtime, 16);
4358 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zsb), NULL, &ctime, 16);
4359
4360 /* Preserve the mode, mtime and ctime provided by the inode */
4361 ZFS_TIME_ENCODE(&ip->i_atime, atime);
4362 ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
4363 ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
4364 mode = ip->i_mode;
4365
4366 zp->z_mode = mode;
4367
4368 error = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
4369 mutex_exit(&zp->z_lock);
4370
4371 dmu_tx_commit(tx);
4372 out:
4373 ZFS_EXIT(zsb);
4374 return (error);
4375 }
4376 EXPORT_SYMBOL(zfs_dirty_inode);
4377
4378 /*ARGSUSED*/
4379 void
4380 zfs_inactive(struct inode *ip)
4381 {
4382 znode_t *zp = ITOZ(ip);
4383 zfs_sb_t *zsb = ITOZSB(ip);
4384 uint64_t atime[2];
4385 int error;
4386 int need_unlock = 0;
4387
4388 /* Only read lock if we haven't already write locked, e.g. rollback */
4389 if (!RW_WRITE_HELD(&zsb->z_teardown_inactive_lock)) {
4390 need_unlock = 1;
4391 rw_enter(&zsb->z_teardown_inactive_lock, RW_READER);
4392 }
4393 if (zp->z_sa_hdl == NULL) {
4394 if (need_unlock)
4395 rw_exit(&zsb->z_teardown_inactive_lock);
4396 return;
4397 }
4398
4399 if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4400 dmu_tx_t *tx = dmu_tx_create(zsb->z_os);
4401
4402 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4403 zfs_sa_upgrade_txholds(tx, zp);
4404 error = dmu_tx_assign(tx, TXG_WAIT);
4405 if (error) {
4406 dmu_tx_abort(tx);
4407 } else {
4408 ZFS_TIME_ENCODE(&ip->i_atime, atime);
4409 mutex_enter(&zp->z_lock);
4410 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zsb),
4411 (void *)&atime, sizeof (atime), tx);
4412 zp->z_atime_dirty = 0;
4413 mutex_exit(&zp->z_lock);
4414 dmu_tx_commit(tx);
4415 }
4416 }
4417
4418 zfs_zinactive(zp);
4419 if (need_unlock)
4420 rw_exit(&zsb->z_teardown_inactive_lock);
4421 }
4422 EXPORT_SYMBOL(zfs_inactive);
4423
4424 /*
4425 * Bounds-check the seek operation.
4426 *
4427 * IN: ip - inode seeking within
4428 * ooff - old file offset
4429 * noffp - pointer to new file offset
4430 * ct - caller context
4431 *
4432 * RETURN: 0 if success
4433 * EINVAL if new offset invalid
4434 */
4435 /* ARGSUSED */
4436 int
4437 zfs_seek(struct inode *ip, offset_t ooff, offset_t *noffp)
4438 {
4439 if (S_ISDIR(ip->i_mode))
4440 return (0);
4441 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4442 }
4443 EXPORT_SYMBOL(zfs_seek);
4444
4445 /*
4446 * Fill pages with data from the disk.
4447 */
4448 static int
4449 zfs_fillpage(struct inode *ip, struct page *pl[], int nr_pages)
4450 {
4451 znode_t *zp = ITOZ(ip);
4452 zfs_sb_t *zsb = ITOZSB(ip);
4453 objset_t *os;
4454 struct page *cur_pp;
4455 u_offset_t io_off, total;
4456 size_t io_len;
4457 loff_t i_size;
4458 unsigned page_idx;
4459 int err;
4460
4461 os = zsb->z_os;
4462 io_len = nr_pages << PAGE_SHIFT;
4463 i_size = i_size_read(ip);
4464 io_off = page_offset(pl[0]);
4465
4466 if (io_off + io_len > i_size)
4467 io_len = i_size - io_off;
4468
4469 /*
4470 * Iterate over list of pages and read each page individually.
4471 */
4472 page_idx = 0;
4473 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4474 caddr_t va;
4475
4476 cur_pp = pl[page_idx++];
4477 va = kmap(cur_pp);
4478 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4479 DMU_READ_PREFETCH);
4480 kunmap(cur_pp);
4481 if (err) {
4482 /* convert checksum errors into IO errors */
4483 if (err == ECKSUM)
4484 err = SET_ERROR(EIO);
4485 return (err);
4486 }
4487 }
4488
4489 return (0);
4490 }
4491
4492 /*
4493 * Uses zfs_fillpage to read data from the file and fill the pages.
4494 *
4495 * IN: ip - inode of file to get data from.
4496 * pl - list of pages to read
4497 * nr_pages - number of pages to read
4498 *
4499 * RETURN: 0 on success, error code on failure.
4500 *
4501 * Timestamps:
4502 * vp - atime updated
4503 */
4504 /* ARGSUSED */
4505 int
4506 zfs_getpage(struct inode *ip, struct page *pl[], int nr_pages)
4507 {
4508 znode_t *zp = ITOZ(ip);
4509 zfs_sb_t *zsb = ITOZSB(ip);
4510 int err;
4511
4512 if (pl == NULL)
4513 return (0);
4514
4515 ZFS_ENTER(zsb);
4516 ZFS_VERIFY_ZP(zp);
4517
4518 err = zfs_fillpage(ip, pl, nr_pages);
4519
4520 ZFS_EXIT(zsb);
4521 return (err);
4522 }
4523 EXPORT_SYMBOL(zfs_getpage);
4524
4525 /*
4526 * Check ZFS specific permissions to memory map a section of a file.
4527 *
4528 * IN: ip - inode of the file to mmap
4529 * off - file offset
4530 * addrp - start address in memory region
4531 * len - length of memory region
4532 * vm_flags- address flags
4533 *
4534 * RETURN: 0 if success
4535 * error code if failure
4536 */
4537 /*ARGSUSED*/
4538 int
4539 zfs_map(struct inode *ip, offset_t off, caddr_t *addrp, size_t len,
4540 unsigned long vm_flags)
4541 {
4542 znode_t *zp = ITOZ(ip);
4543 zfs_sb_t *zsb = ITOZSB(ip);
4544
4545 ZFS_ENTER(zsb);
4546 ZFS_VERIFY_ZP(zp);
4547
4548 if ((vm_flags & VM_WRITE) && (zp->z_pflags &
4549 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4550 ZFS_EXIT(zsb);
4551 return (SET_ERROR(EPERM));
4552 }
4553
4554 if ((vm_flags & (VM_READ | VM_EXEC)) &&
4555 (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4556 ZFS_EXIT(zsb);
4557 return (SET_ERROR(EACCES));
4558 }
4559
4560 if (off < 0 || len > MAXOFFSET_T - off) {
4561 ZFS_EXIT(zsb);
4562 return (SET_ERROR(ENXIO));
4563 }
4564
4565 ZFS_EXIT(zsb);
4566 return (0);
4567 }
4568 EXPORT_SYMBOL(zfs_map);
4569
4570 /*
4571 * convoff - converts the given data (start, whence) to the
4572 * given whence.
4573 */
4574 int
4575 convoff(struct inode *ip, flock64_t *lckdat, int whence, offset_t offset)
4576 {
4577 vattr_t vap;
4578 int error;
4579
4580 if ((lckdat->l_whence == 2) || (whence == 2)) {
4581 if ((error = zfs_getattr(ip, &vap, 0, CRED()) != 0))
4582 return (error);
4583 }
4584
4585 switch (lckdat->l_whence) {
4586 case 1:
4587 lckdat->l_start += offset;
4588 break;
4589 case 2:
4590 lckdat->l_start += vap.va_size;
4591 /* FALLTHRU */
4592 case 0:
4593 break;
4594 default:
4595 return (SET_ERROR(EINVAL));
4596 }
4597
4598 if (lckdat->l_start < 0)
4599 return (SET_ERROR(EINVAL));
4600
4601 switch (whence) {
4602 case 1:
4603 lckdat->l_start -= offset;
4604 break;
4605 case 2:
4606 lckdat->l_start -= vap.va_size;
4607 /* FALLTHRU */
4608 case 0:
4609 break;
4610 default:
4611 return (SET_ERROR(EINVAL));
4612 }
4613
4614 lckdat->l_whence = (short)whence;
4615 return (0);
4616 }
4617
4618 /*
4619 * Free or allocate space in a file. Currently, this function only
4620 * supports the `F_FREESP' command. However, this command is somewhat
4621 * misnamed, as its functionality includes the ability to allocate as
4622 * well as free space.
4623 *
4624 * IN: ip - inode of file to free data in.
4625 * cmd - action to take (only F_FREESP supported).
4626 * bfp - section of file to free/alloc.
4627 * flag - current file open mode flags.
4628 * offset - current file offset.
4629 * cr - credentials of caller [UNUSED].
4630 *
4631 * RETURN: 0 on success, error code on failure.
4632 *
4633 * Timestamps:
4634 * ip - ctime|mtime updated
4635 */
4636 /* ARGSUSED */
4637 int
4638 zfs_space(struct inode *ip, int cmd, flock64_t *bfp, int flag,
4639 offset_t offset, cred_t *cr)
4640 {
4641 znode_t *zp = ITOZ(ip);
4642 zfs_sb_t *zsb = ITOZSB(ip);
4643 uint64_t off, len;
4644 int error;
4645
4646 ZFS_ENTER(zsb);
4647 ZFS_VERIFY_ZP(zp);
4648
4649 if (cmd != F_FREESP) {
4650 ZFS_EXIT(zsb);
4651 return (SET_ERROR(EINVAL));
4652 }
4653
4654 /*
4655 * Callers might not be able to detect properly that we are read-only,
4656 * so check it explicitly here.
4657 */
4658 if (zfs_is_readonly(zsb)) {
4659 ZFS_EXIT(zsb);
4660 return (SET_ERROR(EROFS));
4661 }
4662
4663 if ((error = convoff(ip, bfp, 0, offset))) {
4664 ZFS_EXIT(zsb);
4665 return (error);
4666 }
4667
4668 if (bfp->l_len < 0) {
4669 ZFS_EXIT(zsb);
4670 return (SET_ERROR(EINVAL));
4671 }
4672
4673 /*
4674 * Permissions aren't checked on Solaris because on this OS
4675 * zfs_space() can only be called with an opened file handle.
4676 * On Linux we can get here through truncate_range() which
4677 * operates directly on inodes, so we need to check access rights.
4678 */
4679 if ((error = zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr))) {
4680 ZFS_EXIT(zsb);
4681 return (error);
4682 }
4683
4684 off = bfp->l_start;
4685 len = bfp->l_len; /* 0 means from off to end of file */
4686
4687 error = zfs_freesp(zp, off, len, flag, TRUE);
4688
4689 ZFS_EXIT(zsb);
4690 return (error);
4691 }
4692 EXPORT_SYMBOL(zfs_space);
4693
4694 /*ARGSUSED*/
4695 int
4696 zfs_fid(struct inode *ip, fid_t *fidp)
4697 {
4698 znode_t *zp = ITOZ(ip);
4699 zfs_sb_t *zsb = ITOZSB(ip);
4700 uint32_t gen;
4701 uint64_t gen64;
4702 uint64_t object = zp->z_id;
4703 zfid_short_t *zfid;
4704 int size, i, error;
4705
4706 ZFS_ENTER(zsb);
4707 ZFS_VERIFY_ZP(zp);
4708
4709 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zsb),
4710 &gen64, sizeof (uint64_t))) != 0) {
4711 ZFS_EXIT(zsb);
4712 return (error);
4713 }
4714
4715 gen = (uint32_t)gen64;
4716
4717 size = (zsb->z_parent != zsb) ? LONG_FID_LEN : SHORT_FID_LEN;
4718 if (fidp->fid_len < size) {
4719 fidp->fid_len = size;
4720 ZFS_EXIT(zsb);
4721 return (SET_ERROR(ENOSPC));
4722 }
4723
4724 zfid = (zfid_short_t *)fidp;
4725
4726 zfid->zf_len = size;
4727
4728 for (i = 0; i < sizeof (zfid->zf_object); i++)
4729 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4730
4731 /* Must have a non-zero generation number to distinguish from .zfs */
4732 if (gen == 0)
4733 gen = 1;
4734 for (i = 0; i < sizeof (zfid->zf_gen); i++)
4735 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4736
4737 if (size == LONG_FID_LEN) {
4738 uint64_t objsetid = dmu_objset_id(zsb->z_os);
4739 zfid_long_t *zlfid;
4740
4741 zlfid = (zfid_long_t *)fidp;
4742
4743 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4744 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4745
4746 /* XXX - this should be the generation number for the objset */
4747 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4748 zlfid->zf_setgen[i] = 0;
4749 }
4750
4751 ZFS_EXIT(zsb);
4752 return (0);
4753 }
4754 EXPORT_SYMBOL(zfs_fid);
4755
4756 /*ARGSUSED*/
4757 int
4758 zfs_getsecattr(struct inode *ip, vsecattr_t *vsecp, int flag, cred_t *cr)
4759 {
4760 znode_t *zp = ITOZ(ip);
4761 zfs_sb_t *zsb = ITOZSB(ip);
4762 int error;
4763 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4764
4765 ZFS_ENTER(zsb);
4766 ZFS_VERIFY_ZP(zp);
4767 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
4768 ZFS_EXIT(zsb);
4769
4770 return (error);
4771 }
4772 EXPORT_SYMBOL(zfs_getsecattr);
4773
4774 /*ARGSUSED*/
4775 int
4776 zfs_setsecattr(struct inode *ip, vsecattr_t *vsecp, int flag, cred_t *cr)
4777 {
4778 znode_t *zp = ITOZ(ip);
4779 zfs_sb_t *zsb = ITOZSB(ip);
4780 int error;
4781 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4782 zilog_t *zilog = zsb->z_log;
4783
4784 ZFS_ENTER(zsb);
4785 ZFS_VERIFY_ZP(zp);
4786
4787 error = zfs_setacl(zp, vsecp, skipaclchk, cr);
4788
4789 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
4790 zil_commit(zilog, 0);
4791
4792 ZFS_EXIT(zsb);
4793 return (error);
4794 }
4795 EXPORT_SYMBOL(zfs_setsecattr);
4796
4797 #ifdef HAVE_UIO_ZEROCOPY
4798 /*
4799 * Tunable, both must be a power of 2.
4800 *
4801 * zcr_blksz_min: the smallest read we may consider to loan out an arcbuf
4802 * zcr_blksz_max: if set to less than the file block size, allow loaning out of
4803 * an arcbuf for a partial block read
4804 */
4805 int zcr_blksz_min = (1 << 10); /* 1K */
4806 int zcr_blksz_max = (1 << 17); /* 128K */
4807
4808 /*ARGSUSED*/
4809 static int
4810 zfs_reqzcbuf(struct inode *ip, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr)
4811 {
4812 znode_t *zp = ITOZ(ip);
4813 zfs_sb_t *zsb = ITOZSB(ip);
4814 int max_blksz = zsb->z_max_blksz;
4815 uio_t *uio = &xuio->xu_uio;
4816 ssize_t size = uio->uio_resid;
4817 offset_t offset = uio->uio_loffset;
4818 int blksz;
4819 int fullblk, i;
4820 arc_buf_t *abuf;
4821 ssize_t maxsize;
4822 int preamble, postamble;
4823
4824 if (xuio->xu_type != UIOTYPE_ZEROCOPY)
4825 return (SET_ERROR(EINVAL));
4826
4827 ZFS_ENTER(zsb);
4828 ZFS_VERIFY_ZP(zp);
4829 switch (ioflag) {
4830 case UIO_WRITE:
4831 /*
4832 * Loan out an arc_buf for write if write size is bigger than
4833 * max_blksz, and the file's block size is also max_blksz.
4834 */
4835 blksz = max_blksz;
4836 if (size < blksz || zp->z_blksz != blksz) {
4837 ZFS_EXIT(zsb);
4838 return (SET_ERROR(EINVAL));
4839 }
4840 /*
4841 * Caller requests buffers for write before knowing where the
4842 * write offset might be (e.g. NFS TCP write).
4843 */
4844 if (offset == -1) {
4845 preamble = 0;
4846 } else {
4847 preamble = P2PHASE(offset, blksz);
4848 if (preamble) {
4849 preamble = blksz - preamble;
4850 size -= preamble;
4851 }
4852 }
4853
4854 postamble = P2PHASE(size, blksz);
4855 size -= postamble;
4856
4857 fullblk = size / blksz;
4858 (void) dmu_xuio_init(xuio,
4859 (preamble != 0) + fullblk + (postamble != 0));
4860
4861 /*
4862 * Have to fix iov base/len for partial buffers. They
4863 * currently represent full arc_buf's.
4864 */
4865 if (preamble) {
4866 /* data begins in the middle of the arc_buf */
4867 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4868 blksz);
4869 ASSERT(abuf);
4870 (void) dmu_xuio_add(xuio, abuf,
4871 blksz - preamble, preamble);
4872 }
4873
4874 for (i = 0; i < fullblk; i++) {
4875 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4876 blksz);
4877 ASSERT(abuf);
4878 (void) dmu_xuio_add(xuio, abuf, 0, blksz);
4879 }
4880
4881 if (postamble) {
4882 /* data ends in the middle of the arc_buf */
4883 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4884 blksz);
4885 ASSERT(abuf);
4886 (void) dmu_xuio_add(xuio, abuf, 0, postamble);
4887 }
4888 break;
4889 case UIO_READ:
4890 /*
4891 * Loan out an arc_buf for read if the read size is larger than
4892 * the current file block size. Block alignment is not
4893 * considered. Partial arc_buf will be loaned out for read.
4894 */
4895 blksz = zp->z_blksz;
4896 if (blksz < zcr_blksz_min)
4897 blksz = zcr_blksz_min;
4898 if (blksz > zcr_blksz_max)
4899 blksz = zcr_blksz_max;
4900 /* avoid potential complexity of dealing with it */
4901 if (blksz > max_blksz) {
4902 ZFS_EXIT(zsb);
4903 return (SET_ERROR(EINVAL));
4904 }
4905
4906 maxsize = zp->z_size - uio->uio_loffset;
4907 if (size > maxsize)
4908 size = maxsize;
4909
4910 if (size < blksz) {
4911 ZFS_EXIT(zsb);
4912 return (SET_ERROR(EINVAL));
4913 }
4914 break;
4915 default:
4916 ZFS_EXIT(zsb);
4917 return (SET_ERROR(EINVAL));
4918 }
4919
4920 uio->uio_extflg = UIO_XUIO;
4921 XUIO_XUZC_RW(xuio) = ioflag;
4922 ZFS_EXIT(zsb);
4923 return (0);
4924 }
4925
4926 /*ARGSUSED*/
4927 static int
4928 zfs_retzcbuf(struct inode *ip, xuio_t *xuio, cred_t *cr)
4929 {
4930 int i;
4931 arc_buf_t *abuf;
4932 int ioflag = XUIO_XUZC_RW(xuio);
4933
4934 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
4935
4936 i = dmu_xuio_cnt(xuio);
4937 while (i-- > 0) {
4938 abuf = dmu_xuio_arcbuf(xuio, i);
4939 /*
4940 * if abuf == NULL, it must be a write buffer
4941 * that has been returned in zfs_write().
4942 */
4943 if (abuf)
4944 dmu_return_arcbuf(abuf);
4945 ASSERT(abuf || ioflag == UIO_WRITE);
4946 }
4947
4948 dmu_xuio_fini(xuio);
4949 return (0);
4950 }
4951 #endif /* HAVE_UIO_ZEROCOPY */
4952
4953 #if defined(_KERNEL) && defined(HAVE_SPL)
4954 /* CSTYLED */
4955 module_param(zfs_delete_blocks, ulong, 0644);
4956 MODULE_PARM_DESC(zfs_delete_blocks, "Delete files larger than N blocks async");
4957 module_param(zfs_read_chunk_size, long, 0644);
4958 MODULE_PARM_DESC(zfs_read_chunk_size, "Bytes to read per chunk");
4959 #endif