]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zfs_znode.c
Rebase master to b108
[mirror_zfs.git] / module / zfs / zfs_znode.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /* Portions Copyright 2007 Jeremy Teo */
27
28 #ifdef _KERNEL
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/time.h>
32 #include <sys/systm.h>
33 #include <sys/sysmacros.h>
34 #include <sys/resource.h>
35 #include <sys/mntent.h>
36 #include <sys/mkdev.h>
37 #include <sys/u8_textprep.h>
38 #include <sys/dsl_dataset.h>
39 #include <sys/vfs.h>
40 #include <sys/vfs_opreg.h>
41 #include <sys/vnode.h>
42 #include <sys/file.h>
43 #include <sys/kmem.h>
44 #include <sys/errno.h>
45 #include <sys/unistd.h>
46 #include <sys/mode.h>
47 #include <sys/atomic.h>
48 #include <vm/pvn.h>
49 #include "fs/fs_subr.h"
50 #include <sys/zfs_dir.h>
51 #include <sys/zfs_acl.h>
52 #include <sys/zfs_ioctl.h>
53 #include <sys/zfs_rlock.h>
54 #include <sys/zfs_fuid.h>
55 #include <sys/fs/zfs.h>
56 #include <sys/kidmap.h>
57 #endif /* _KERNEL */
58
59 #include <sys/dmu.h>
60 #include <sys/refcount.h>
61 #include <sys/stat.h>
62 #include <sys/zap.h>
63 #include <sys/zfs_znode.h>
64
65 #include "zfs_prop.h"
66
67 /*
68 * Define ZNODE_STATS to turn on statistic gathering. By default, it is only
69 * turned on when DEBUG is also defined.
70 */
71 #ifdef DEBUG
72 #define ZNODE_STATS
73 #endif /* DEBUG */
74
75 #ifdef ZNODE_STATS
76 #define ZNODE_STAT_ADD(stat) ((stat)++)
77 #else
78 #define ZNODE_STAT_ADD(stat) /* nothing */
79 #endif /* ZNODE_STATS */
80
81 #define POINTER_IS_VALID(p) (!((uintptr_t)(p) & 0x3))
82 #define POINTER_INVALIDATE(pp) (*(pp) = (void *)((uintptr_t)(*(pp)) | 0x1))
83
84 /*
85 * Functions needed for userland (ie: libzpool) are not put under
86 * #ifdef_KERNEL; the rest of the functions have dependencies
87 * (such as VFS logic) that will not compile easily in userland.
88 */
89 #ifdef _KERNEL
90 static kmem_cache_t *znode_cache = NULL;
91
92 /*ARGSUSED*/
93 static void
94 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr)
95 {
96 /*
97 * We should never drop all dbuf refs without first clearing
98 * the eviction callback.
99 */
100 panic("evicting znode %p\n", user_ptr);
101 }
102
103 /*ARGSUSED*/
104 static int
105 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags)
106 {
107 znode_t *zp = buf;
108
109 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
110
111 zp->z_vnode = vn_alloc(kmflags);
112 if (zp->z_vnode == NULL) {
113 return (-1);
114 }
115 ZTOV(zp)->v_data = zp;
116
117 list_link_init(&zp->z_link_node);
118
119 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL);
120 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL);
121 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL);
122 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL);
123
124 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL);
125 avl_create(&zp->z_range_avl, zfs_range_compare,
126 sizeof (rl_t), offsetof(rl_t, r_node));
127
128 zp->z_dbuf = NULL;
129 zp->z_dirlocks = NULL;
130 return (0);
131 }
132
133 /*ARGSUSED*/
134 static void
135 zfs_znode_cache_destructor(void *buf, void *arg)
136 {
137 znode_t *zp = buf;
138
139 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
140 ASSERT(ZTOV(zp)->v_data == zp);
141 vn_free(ZTOV(zp));
142 ASSERT(!list_link_active(&zp->z_link_node));
143 mutex_destroy(&zp->z_lock);
144 rw_destroy(&zp->z_parent_lock);
145 rw_destroy(&zp->z_name_lock);
146 mutex_destroy(&zp->z_acl_lock);
147 avl_destroy(&zp->z_range_avl);
148 mutex_destroy(&zp->z_range_lock);
149
150 ASSERT(zp->z_dbuf == NULL);
151 ASSERT(zp->z_dirlocks == NULL);
152 }
153
154 #ifdef ZNODE_STATS
155 static struct {
156 uint64_t zms_zfsvfs_invalid;
157 uint64_t zms_zfsvfs_unmounted;
158 uint64_t zms_zfsvfs_recheck_invalid;
159 uint64_t zms_obj_held;
160 uint64_t zms_vnode_locked;
161 uint64_t zms_not_only_dnlc;
162 } znode_move_stats;
163 #endif /* ZNODE_STATS */
164
165 static void
166 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp)
167 {
168 vnode_t *vp;
169
170 /* Copy fields. */
171 nzp->z_zfsvfs = ozp->z_zfsvfs;
172
173 /* Swap vnodes. */
174 vp = nzp->z_vnode;
175 nzp->z_vnode = ozp->z_vnode;
176 ozp->z_vnode = vp; /* let destructor free the overwritten vnode */
177 ZTOV(ozp)->v_data = ozp;
178 ZTOV(nzp)->v_data = nzp;
179
180 nzp->z_id = ozp->z_id;
181 ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */
182 ASSERT(avl_numnodes(&ozp->z_range_avl) == 0);
183 nzp->z_unlinked = ozp->z_unlinked;
184 nzp->z_atime_dirty = ozp->z_atime_dirty;
185 nzp->z_zn_prefetch = ozp->z_zn_prefetch;
186 nzp->z_blksz = ozp->z_blksz;
187 nzp->z_seq = ozp->z_seq;
188 nzp->z_mapcnt = ozp->z_mapcnt;
189 nzp->z_last_itx = ozp->z_last_itx;
190 nzp->z_gen = ozp->z_gen;
191 nzp->z_sync_cnt = ozp->z_sync_cnt;
192 nzp->z_phys = ozp->z_phys;
193 nzp->z_dbuf = ozp->z_dbuf;
194
195 /* Update back pointers. */
196 (void) dmu_buf_update_user(nzp->z_dbuf, ozp, nzp, &nzp->z_phys,
197 znode_evict_error);
198
199 /*
200 * Invalidate the original znode by clearing fields that provide a
201 * pointer back to the znode. Set the low bit of the vfs pointer to
202 * ensure that zfs_znode_move() recognizes the znode as invalid in any
203 * subsequent callback.
204 */
205 ozp->z_dbuf = NULL;
206 POINTER_INVALIDATE(&ozp->z_zfsvfs);
207 }
208
209 /*
210 * Wrapper function for ZFS_ENTER that returns 0 if successful and otherwise
211 * returns a non-zero error code.
212 */
213 static int
214 zfs_enter(zfsvfs_t *zfsvfs)
215 {
216 ZFS_ENTER(zfsvfs);
217 return (0);
218 }
219
220 /*ARGSUSED*/
221 static kmem_cbrc_t
222 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg)
223 {
224 znode_t *ozp = buf, *nzp = newbuf;
225 zfsvfs_t *zfsvfs;
226 vnode_t *vp;
227
228 /*
229 * The znode is on the file system's list of known znodes if the vfs
230 * pointer is valid. We set the low bit of the vfs pointer when freeing
231 * the znode to invalidate it, and the memory patterns written by kmem
232 * (baddcafe and deadbeef) set at least one of the two low bits. A newly
233 * created znode sets the vfs pointer last of all to indicate that the
234 * znode is known and in a valid state to be moved by this function.
235 */
236 zfsvfs = ozp->z_zfsvfs;
237 if (!POINTER_IS_VALID(zfsvfs)) {
238 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid);
239 return (KMEM_CBRC_DONT_KNOW);
240 }
241
242 /*
243 * Ensure that the filesystem is not unmounted during the move.
244 */
245 if (zfs_enter(zfsvfs) != 0) { /* ZFS_ENTER */
246 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted);
247 return (KMEM_CBRC_DONT_KNOW);
248 }
249
250 mutex_enter(&zfsvfs->z_znodes_lock);
251 /*
252 * Recheck the vfs pointer in case the znode was removed just before
253 * acquiring the lock.
254 */
255 if (zfsvfs != ozp->z_zfsvfs) {
256 mutex_exit(&zfsvfs->z_znodes_lock);
257 ZFS_EXIT(zfsvfs);
258 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck_invalid);
259 return (KMEM_CBRC_DONT_KNOW);
260 }
261
262 /*
263 * At this point we know that as long as we hold z_znodes_lock, the
264 * znode cannot be freed and fields within the znode can be safely
265 * accessed. Now, prevent a race with zfs_zget().
266 */
267 if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) {
268 mutex_exit(&zfsvfs->z_znodes_lock);
269 ZFS_EXIT(zfsvfs);
270 ZNODE_STAT_ADD(znode_move_stats.zms_obj_held);
271 return (KMEM_CBRC_LATER);
272 }
273
274 vp = ZTOV(ozp);
275 if (mutex_tryenter(&vp->v_lock) == 0) {
276 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
277 mutex_exit(&zfsvfs->z_znodes_lock);
278 ZFS_EXIT(zfsvfs);
279 ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked);
280 return (KMEM_CBRC_LATER);
281 }
282
283 /* Only move znodes that are referenced _only_ by the DNLC. */
284 if (vp->v_count != 1 || !vn_in_dnlc(vp)) {
285 mutex_exit(&vp->v_lock);
286 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
287 mutex_exit(&zfsvfs->z_znodes_lock);
288 ZFS_EXIT(zfsvfs);
289 ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc);
290 return (KMEM_CBRC_LATER);
291 }
292
293 /*
294 * The znode is known and in a valid state to move. We're holding the
295 * locks needed to execute the critical section.
296 */
297 zfs_znode_move_impl(ozp, nzp);
298 mutex_exit(&vp->v_lock);
299 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
300
301 list_link_replace(&ozp->z_link_node, &nzp->z_link_node);
302 mutex_exit(&zfsvfs->z_znodes_lock);
303 ZFS_EXIT(zfsvfs);
304
305 return (KMEM_CBRC_YES);
306 }
307
308 void
309 zfs_znode_init(void)
310 {
311 /*
312 * Initialize zcache
313 */
314 ASSERT(znode_cache == NULL);
315 znode_cache = kmem_cache_create("zfs_znode_cache",
316 sizeof (znode_t), 0, zfs_znode_cache_constructor,
317 zfs_znode_cache_destructor, NULL, NULL, NULL, 0);
318 kmem_cache_set_move(znode_cache, zfs_znode_move);
319 }
320
321 void
322 zfs_znode_fini(void)
323 {
324 /*
325 * Cleanup vfs & vnode ops
326 */
327 zfs_remove_op_tables();
328
329 /*
330 * Cleanup zcache
331 */
332 if (znode_cache)
333 kmem_cache_destroy(znode_cache);
334 znode_cache = NULL;
335 }
336
337 struct vnodeops *zfs_dvnodeops;
338 struct vnodeops *zfs_fvnodeops;
339 struct vnodeops *zfs_symvnodeops;
340 struct vnodeops *zfs_xdvnodeops;
341 struct vnodeops *zfs_evnodeops;
342
343 void
344 zfs_remove_op_tables()
345 {
346 /*
347 * Remove vfs ops
348 */
349 ASSERT(zfsfstype);
350 (void) vfs_freevfsops_by_type(zfsfstype);
351 zfsfstype = 0;
352
353 /*
354 * Remove vnode ops
355 */
356 if (zfs_dvnodeops)
357 vn_freevnodeops(zfs_dvnodeops);
358 if (zfs_fvnodeops)
359 vn_freevnodeops(zfs_fvnodeops);
360 if (zfs_symvnodeops)
361 vn_freevnodeops(zfs_symvnodeops);
362 if (zfs_xdvnodeops)
363 vn_freevnodeops(zfs_xdvnodeops);
364 if (zfs_evnodeops)
365 vn_freevnodeops(zfs_evnodeops);
366
367 zfs_dvnodeops = NULL;
368 zfs_fvnodeops = NULL;
369 zfs_symvnodeops = NULL;
370 zfs_xdvnodeops = NULL;
371 zfs_evnodeops = NULL;
372 }
373
374 extern const fs_operation_def_t zfs_dvnodeops_template[];
375 extern const fs_operation_def_t zfs_fvnodeops_template[];
376 extern const fs_operation_def_t zfs_xdvnodeops_template[];
377 extern const fs_operation_def_t zfs_symvnodeops_template[];
378 extern const fs_operation_def_t zfs_evnodeops_template[];
379
380 int
381 zfs_create_op_tables()
382 {
383 int error;
384
385 /*
386 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs()
387 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv).
388 * In this case we just return as the ops vectors are already set up.
389 */
390 if (zfs_dvnodeops)
391 return (0);
392
393 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template,
394 &zfs_dvnodeops);
395 if (error)
396 return (error);
397
398 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template,
399 &zfs_fvnodeops);
400 if (error)
401 return (error);
402
403 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template,
404 &zfs_symvnodeops);
405 if (error)
406 return (error);
407
408 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template,
409 &zfs_xdvnodeops);
410 if (error)
411 return (error);
412
413 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template,
414 &zfs_evnodeops);
415
416 return (error);
417 }
418
419 /*
420 * zfs_init_fs - Initialize the zfsvfs struct and the file system
421 * incore "master" object. Verify version compatibility.
422 */
423 int
424 zfs_init_fs(zfsvfs_t *zfsvfs, znode_t **zpp)
425 {
426 extern int zfsfstype;
427
428 objset_t *os = zfsvfs->z_os;
429 int i, error;
430 uint64_t fsid_guid;
431 uint64_t zval;
432
433 *zpp = NULL;
434
435 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
436 if (error) {
437 return (error);
438 } else if (zfsvfs->z_version > ZPL_VERSION) {
439 (void) printf("Mismatched versions: File system "
440 "is version %llu on-disk format, which is "
441 "incompatible with this software version %lld!",
442 (u_longlong_t)zfsvfs->z_version, ZPL_VERSION);
443 return (ENOTSUP);
444 }
445
446 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
447 return (error);
448 zfsvfs->z_norm = (int)zval;
449 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
450 return (error);
451 zfsvfs->z_utf8 = (zval != 0);
452 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
453 return (error);
454 zfsvfs->z_case = (uint_t)zval;
455 /*
456 * Fold case on file systems that are always or sometimes case
457 * insensitive.
458 */
459 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
460 zfsvfs->z_case == ZFS_CASE_MIXED)
461 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
462
463 /*
464 * The fsid is 64 bits, composed of an 8-bit fs type, which
465 * separates our fsid from any other filesystem types, and a
466 * 56-bit objset unique ID. The objset unique ID is unique to
467 * all objsets open on this system, provided by unique_create().
468 * The 8-bit fs type must be put in the low bits of fsid[1]
469 * because that's where other Solaris filesystems put it.
470 */
471 fsid_guid = dmu_objset_fsid_guid(os);
472 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
473 zfsvfs->z_vfs->vfs_fsid.val[0] = fsid_guid;
474 zfsvfs->z_vfs->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
475 zfsfstype & 0xFF;
476
477 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
478 &zfsvfs->z_root);
479 if (error)
480 return (error);
481 ASSERT(zfsvfs->z_root != 0);
482
483 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
484 &zfsvfs->z_unlinkedobj);
485 if (error)
486 return (error);
487
488 /*
489 * Initialize zget mutex's
490 */
491 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
492 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
493
494 error = zfs_zget(zfsvfs, zfsvfs->z_root, zpp);
495 if (error) {
496 /*
497 * On error, we destroy the mutexes here since it's not
498 * possible for the caller to determine if the mutexes were
499 * initialized properly.
500 */
501 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
502 mutex_destroy(&zfsvfs->z_hold_mtx[i]);
503 return (error);
504 }
505 ASSERT3U((*zpp)->z_id, ==, zfsvfs->z_root);
506 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
507 &zfsvfs->z_fuid_obj);
508 if (error == ENOENT)
509 error = 0;
510
511 return (0);
512 }
513
514 /*
515 * define a couple of values we need available
516 * for both 64 and 32 bit environments.
517 */
518 #ifndef NBITSMINOR64
519 #define NBITSMINOR64 32
520 #endif
521 #ifndef MAXMAJ64
522 #define MAXMAJ64 0xffffffffUL
523 #endif
524 #ifndef MAXMIN64
525 #define MAXMIN64 0xffffffffUL
526 #endif
527
528 /*
529 * Create special expldev for ZFS private use.
530 * Can't use standard expldev since it doesn't do
531 * what we want. The standard expldev() takes a
532 * dev32_t in LP64 and expands it to a long dev_t.
533 * We need an interface that takes a dev32_t in ILP32
534 * and expands it to a long dev_t.
535 */
536 static uint64_t
537 zfs_expldev(dev_t dev)
538 {
539 #ifndef _LP64
540 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32;
541 return (((uint64_t)major << NBITSMINOR64) |
542 ((minor_t)dev & MAXMIN32));
543 #else
544 return (dev);
545 #endif
546 }
547
548 /*
549 * Special cmpldev for ZFS private use.
550 * Can't use standard cmpldev since it takes
551 * a long dev_t and compresses it to dev32_t in
552 * LP64. We need to do a compaction of a long dev_t
553 * to a dev32_t in ILP32.
554 */
555 dev_t
556 zfs_cmpldev(uint64_t dev)
557 {
558 #ifndef _LP64
559 minor_t minor = (minor_t)dev & MAXMIN64;
560 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64;
561
562 if (major > MAXMAJ32 || minor > MAXMIN32)
563 return (NODEV32);
564
565 return (((dev32_t)major << NBITSMINOR32) | minor);
566 #else
567 return (dev);
568 #endif
569 }
570
571 static void
572 zfs_znode_dmu_init(zfsvfs_t *zfsvfs, znode_t *zp, dmu_buf_t *db)
573 {
574 znode_t *nzp;
575
576 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs));
577 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id)));
578
579 mutex_enter(&zp->z_lock);
580
581 ASSERT(zp->z_dbuf == NULL);
582 zp->z_dbuf = db;
583 nzp = dmu_buf_set_user_ie(db, zp, &zp->z_phys, znode_evict_error);
584
585 /*
586 * there should be no
587 * concurrent zgets on this object.
588 */
589 if (nzp != NULL)
590 panic("existing znode %p for dbuf %p", (void *)nzp, (void *)db);
591
592 /*
593 * Slap on VROOT if we are the root znode
594 */
595 if (zp->z_id == zfsvfs->z_root)
596 ZTOV(zp)->v_flag |= VROOT;
597
598 mutex_exit(&zp->z_lock);
599 vn_exists(ZTOV(zp));
600 }
601
602 void
603 zfs_znode_dmu_fini(znode_t *zp)
604 {
605 dmu_buf_t *db = zp->z_dbuf;
606 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) ||
607 zp->z_unlinked ||
608 RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock));
609 ASSERT(zp->z_dbuf != NULL);
610 zp->z_dbuf = NULL;
611 VERIFY(zp == dmu_buf_update_user(db, zp, NULL, NULL, NULL));
612 dmu_buf_rele(db, NULL);
613 }
614
615 /*
616 * Construct a new znode/vnode and intialize.
617 *
618 * This does not do a call to dmu_set_user() that is
619 * up to the caller to do, in case you don't want to
620 * return the znode
621 */
622 static znode_t *
623 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz)
624 {
625 znode_t *zp;
626 vnode_t *vp;
627
628 zp = kmem_cache_alloc(znode_cache, KM_SLEEP);
629
630 ASSERT(zp->z_dirlocks == NULL);
631 ASSERT(zp->z_dbuf == NULL);
632 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
633
634 /*
635 * Defer setting z_zfsvfs until the znode is ready to be a candidate for
636 * the zfs_znode_move() callback.
637 */
638 zp->z_phys = NULL;
639 zp->z_unlinked = 0;
640 zp->z_atime_dirty = 0;
641 zp->z_mapcnt = 0;
642 zp->z_last_itx = 0;
643 zp->z_id = db->db_object;
644 zp->z_blksz = blksz;
645 zp->z_seq = 0x7A4653;
646 zp->z_sync_cnt = 0;
647
648 vp = ZTOV(zp);
649 vn_reinit(vp);
650
651 zfs_znode_dmu_init(zfsvfs, zp, db);
652
653 zp->z_gen = zp->z_phys->zp_gen;
654
655 vp->v_vfsp = zfsvfs->z_parent->z_vfs;
656 vp->v_type = IFTOVT((mode_t)zp->z_phys->zp_mode);
657
658 switch (vp->v_type) {
659 case VDIR:
660 if (zp->z_phys->zp_flags & ZFS_XATTR) {
661 vn_setops(vp, zfs_xdvnodeops);
662 vp->v_flag |= V_XATTRDIR;
663 } else {
664 vn_setops(vp, zfs_dvnodeops);
665 }
666 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */
667 break;
668 case VBLK:
669 case VCHR:
670 vp->v_rdev = zfs_cmpldev(zp->z_phys->zp_rdev);
671 /*FALLTHROUGH*/
672 case VFIFO:
673 case VSOCK:
674 case VDOOR:
675 vn_setops(vp, zfs_fvnodeops);
676 break;
677 case VREG:
678 vp->v_flag |= VMODSORT;
679 vn_setops(vp, zfs_fvnodeops);
680 break;
681 case VLNK:
682 vn_setops(vp, zfs_symvnodeops);
683 break;
684 default:
685 vn_setops(vp, zfs_evnodeops);
686 break;
687 }
688
689 mutex_enter(&zfsvfs->z_znodes_lock);
690 list_insert_tail(&zfsvfs->z_all_znodes, zp);
691 membar_producer();
692 /*
693 * Everything else must be valid before assigning z_zfsvfs makes the
694 * znode eligible for zfs_znode_move().
695 */
696 zp->z_zfsvfs = zfsvfs;
697 mutex_exit(&zfsvfs->z_znodes_lock);
698
699 VFS_HOLD(zfsvfs->z_vfs);
700 return (zp);
701 }
702
703 /*
704 * Create a new DMU object to hold a zfs znode.
705 *
706 * IN: dzp - parent directory for new znode
707 * vap - file attributes for new znode
708 * tx - dmu transaction id for zap operations
709 * cr - credentials of caller
710 * flag - flags:
711 * IS_ROOT_NODE - new object will be root
712 * IS_XATTR - new object is an attribute
713 * IS_REPLAY - intent log replay
714 * bonuslen - length of bonus buffer
715 * setaclp - File/Dir initial ACL
716 * fuidp - Tracks fuid allocation.
717 *
718 * OUT: zpp - allocated znode
719 *
720 */
721 void
722 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr,
723 uint_t flag, znode_t **zpp, int bonuslen, zfs_acl_t *setaclp,
724 zfs_fuid_info_t **fuidp)
725 {
726 dmu_buf_t *db;
727 znode_phys_t *pzp;
728 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
729 timestruc_t now;
730 uint64_t gen, obj;
731 int err;
732
733 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
734
735 if (zfsvfs->z_replay) {
736 obj = vap->va_nodeid;
737 flag |= IS_REPLAY;
738 now = vap->va_ctime; /* see zfs_replay_create() */
739 gen = vap->va_nblocks; /* ditto */
740 } else {
741 obj = 0;
742 gethrestime(&now);
743 gen = dmu_tx_get_txg(tx);
744 }
745
746 /*
747 * Create a new DMU object.
748 */
749 /*
750 * There's currently no mechanism for pre-reading the blocks that will
751 * be to needed allocate a new object, so we accept the small chance
752 * that there will be an i/o error and we will fail one of the
753 * assertions below.
754 */
755 if (vap->va_type == VDIR) {
756 if (flag & IS_REPLAY) {
757 err = zap_create_claim_norm(zfsvfs->z_os, obj,
758 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
759 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
760 ASSERT3U(err, ==, 0);
761 } else {
762 obj = zap_create_norm(zfsvfs->z_os,
763 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
764 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
765 }
766 } else {
767 if (flag & IS_REPLAY) {
768 err = dmu_object_claim(zfsvfs->z_os, obj,
769 DMU_OT_PLAIN_FILE_CONTENTS, 0,
770 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
771 ASSERT3U(err, ==, 0);
772 } else {
773 obj = dmu_object_alloc(zfsvfs->z_os,
774 DMU_OT_PLAIN_FILE_CONTENTS, 0,
775 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
776 }
777 }
778 VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, obj, NULL, &db));
779 dmu_buf_will_dirty(db, tx);
780
781 /*
782 * Initialize the znode physical data to zero.
783 */
784 ASSERT(db->db_size >= sizeof (znode_phys_t));
785 bzero(db->db_data, db->db_size);
786 pzp = db->db_data;
787
788 /*
789 * If this is the root, fix up the half-initialized parent pointer
790 * to reference the just-allocated physical data area.
791 */
792 if (flag & IS_ROOT_NODE) {
793 dzp->z_dbuf = db;
794 dzp->z_phys = pzp;
795 dzp->z_id = obj;
796 }
797
798 /*
799 * If parent is an xattr, so am I.
800 */
801 if (dzp->z_phys->zp_flags & ZFS_XATTR)
802 flag |= IS_XATTR;
803
804 if (vap->va_type == VBLK || vap->va_type == VCHR) {
805 pzp->zp_rdev = zfs_expldev(vap->va_rdev);
806 }
807
808 if (zfsvfs->z_use_fuids)
809 pzp->zp_flags = ZFS_ARCHIVE | ZFS_AV_MODIFIED;
810
811 if (vap->va_type == VDIR) {
812 pzp->zp_size = 2; /* contents ("." and "..") */
813 pzp->zp_links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1;
814 }
815
816 pzp->zp_parent = dzp->z_id;
817 if (flag & IS_XATTR)
818 pzp->zp_flags |= ZFS_XATTR;
819
820 pzp->zp_gen = gen;
821
822 ZFS_TIME_ENCODE(&now, pzp->zp_crtime);
823 ZFS_TIME_ENCODE(&now, pzp->zp_ctime);
824
825 if (vap->va_mask & AT_ATIME) {
826 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime);
827 } else {
828 ZFS_TIME_ENCODE(&now, pzp->zp_atime);
829 }
830
831 if (vap->va_mask & AT_MTIME) {
832 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime);
833 } else {
834 ZFS_TIME_ENCODE(&now, pzp->zp_mtime);
835 }
836
837 pzp->zp_mode = MAKEIMODE(vap->va_type, vap->va_mode);
838 if (!(flag & IS_ROOT_NODE)) {
839 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
840 *zpp = zfs_znode_alloc(zfsvfs, db, 0);
841 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
842 } else {
843 /*
844 * If we are creating the root node, the "parent" we
845 * passed in is the znode for the root.
846 */
847 *zpp = dzp;
848 }
849 zfs_perm_init(*zpp, dzp, flag, vap, tx, cr, setaclp, fuidp);
850 }
851
852 void
853 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap)
854 {
855 xoptattr_t *xoap;
856
857 xoap = xva_getxoptattr(xvap);
858 ASSERT(xoap);
859
860 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
861 ZFS_TIME_ENCODE(&xoap->xoa_createtime, zp->z_phys->zp_crtime);
862 XVA_SET_RTN(xvap, XAT_CREATETIME);
863 }
864 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
865 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly);
866 XVA_SET_RTN(xvap, XAT_READONLY);
867 }
868 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
869 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden);
870 XVA_SET_RTN(xvap, XAT_HIDDEN);
871 }
872 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
873 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system);
874 XVA_SET_RTN(xvap, XAT_SYSTEM);
875 }
876 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
877 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive);
878 XVA_SET_RTN(xvap, XAT_ARCHIVE);
879 }
880 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
881 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable);
882 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
883 }
884 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
885 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink);
886 XVA_SET_RTN(xvap, XAT_NOUNLINK);
887 }
888 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
889 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly);
890 XVA_SET_RTN(xvap, XAT_APPENDONLY);
891 }
892 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
893 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump);
894 XVA_SET_RTN(xvap, XAT_NODUMP);
895 }
896 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
897 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque);
898 XVA_SET_RTN(xvap, XAT_OPAQUE);
899 }
900 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
901 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED,
902 xoap->xoa_av_quarantined);
903 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
904 }
905 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
906 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified);
907 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
908 }
909 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
910 (void) memcpy(zp->z_phys + 1, xoap->xoa_av_scanstamp,
911 sizeof (xoap->xoa_av_scanstamp));
912 zp->z_phys->zp_flags |= ZFS_BONUS_SCANSTAMP;
913 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
914 }
915 }
916
917 int
918 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp)
919 {
920 dmu_object_info_t doi;
921 dmu_buf_t *db;
922 znode_t *zp;
923 int err;
924
925 *zpp = NULL;
926
927 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
928
929 err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db);
930 if (err) {
931 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
932 return (err);
933 }
934
935 dmu_object_info_from_db(db, &doi);
936 if (doi.doi_bonus_type != DMU_OT_ZNODE ||
937 doi.doi_bonus_size < sizeof (znode_phys_t)) {
938 dmu_buf_rele(db, NULL);
939 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
940 return (EINVAL);
941 }
942
943 zp = dmu_buf_get_user(db);
944 if (zp != NULL) {
945 mutex_enter(&zp->z_lock);
946
947 /*
948 * Since we do immediate eviction of the z_dbuf, we
949 * should never find a dbuf with a znode that doesn't
950 * know about the dbuf.
951 */
952 ASSERT3P(zp->z_dbuf, ==, db);
953 ASSERT3U(zp->z_id, ==, obj_num);
954 if (zp->z_unlinked) {
955 err = ENOENT;
956 } else {
957 VN_HOLD(ZTOV(zp));
958 *zpp = zp;
959 err = 0;
960 }
961 dmu_buf_rele(db, NULL);
962 mutex_exit(&zp->z_lock);
963 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
964 return (err);
965 }
966
967 /*
968 * Not found create new znode/vnode
969 */
970 zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size);
971 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
972 *zpp = zp;
973 return (0);
974 }
975
976 int
977 zfs_rezget(znode_t *zp)
978 {
979 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
980 dmu_object_info_t doi;
981 dmu_buf_t *db;
982 uint64_t obj_num = zp->z_id;
983 int err;
984
985 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
986
987 err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db);
988 if (err) {
989 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
990 return (err);
991 }
992
993 dmu_object_info_from_db(db, &doi);
994 if (doi.doi_bonus_type != DMU_OT_ZNODE ||
995 doi.doi_bonus_size < sizeof (znode_phys_t)) {
996 dmu_buf_rele(db, NULL);
997 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
998 return (EINVAL);
999 }
1000
1001 if (((znode_phys_t *)db->db_data)->zp_gen != zp->z_gen) {
1002 dmu_buf_rele(db, NULL);
1003 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1004 return (EIO);
1005 }
1006
1007 zfs_znode_dmu_init(zfsvfs, zp, db);
1008 zp->z_unlinked = (zp->z_phys->zp_links == 0);
1009 zp->z_blksz = doi.doi_data_block_size;
1010
1011 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1012
1013 return (0);
1014 }
1015
1016 void
1017 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx)
1018 {
1019 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1020 objset_t *os = zfsvfs->z_os;
1021 uint64_t obj = zp->z_id;
1022 uint64_t acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj;
1023
1024 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
1025 if (acl_obj)
1026 VERIFY(0 == dmu_object_free(os, acl_obj, tx));
1027 VERIFY(0 == dmu_object_free(os, obj, tx));
1028 zfs_znode_dmu_fini(zp);
1029 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
1030 zfs_znode_free(zp);
1031 }
1032
1033 void
1034 zfs_zinactive(znode_t *zp)
1035 {
1036 vnode_t *vp = ZTOV(zp);
1037 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1038 uint64_t z_id = zp->z_id;
1039
1040 ASSERT(zp->z_dbuf && zp->z_phys);
1041
1042 /*
1043 * Don't allow a zfs_zget() while were trying to release this znode
1044 */
1045 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id);
1046
1047 mutex_enter(&zp->z_lock);
1048 mutex_enter(&vp->v_lock);
1049 vp->v_count--;
1050 if (vp->v_count > 0 || vn_has_cached_data(vp)) {
1051 /*
1052 * If the hold count is greater than zero, somebody has
1053 * obtained a new reference on this znode while we were
1054 * processing it here, so we are done. If we still have
1055 * mapped pages then we are also done, since we don't
1056 * want to inactivate the znode until the pages get pushed.
1057 *
1058 * XXX - if vn_has_cached_data(vp) is true, but count == 0,
1059 * this seems like it would leave the znode hanging with
1060 * no chance to go inactive...
1061 */
1062 mutex_exit(&vp->v_lock);
1063 mutex_exit(&zp->z_lock);
1064 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1065 return;
1066 }
1067 mutex_exit(&vp->v_lock);
1068
1069 /*
1070 * If this was the last reference to a file with no links,
1071 * remove the file from the file system.
1072 */
1073 if (zp->z_unlinked) {
1074 mutex_exit(&zp->z_lock);
1075 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1076 zfs_rmnode(zp);
1077 return;
1078 }
1079 mutex_exit(&zp->z_lock);
1080 zfs_znode_dmu_fini(zp);
1081 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1082 zfs_znode_free(zp);
1083 }
1084
1085 void
1086 zfs_znode_free(znode_t *zp)
1087 {
1088 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1089
1090 vn_invalid(ZTOV(zp));
1091
1092 ASSERT(ZTOV(zp)->v_count == 0);
1093
1094 mutex_enter(&zfsvfs->z_znodes_lock);
1095 POINTER_INVALIDATE(&zp->z_zfsvfs);
1096 list_remove(&zfsvfs->z_all_znodes, zp);
1097 mutex_exit(&zfsvfs->z_znodes_lock);
1098
1099 kmem_cache_free(znode_cache, zp);
1100
1101 VFS_RELE(zfsvfs->z_vfs);
1102 }
1103
1104 void
1105 zfs_time_stamper_locked(znode_t *zp, uint_t flag, dmu_tx_t *tx)
1106 {
1107 timestruc_t now;
1108
1109 ASSERT(MUTEX_HELD(&zp->z_lock));
1110
1111 gethrestime(&now);
1112
1113 if (tx) {
1114 dmu_buf_will_dirty(zp->z_dbuf, tx);
1115 zp->z_atime_dirty = 0;
1116 zp->z_seq++;
1117 } else {
1118 zp->z_atime_dirty = 1;
1119 }
1120
1121 if (flag & AT_ATIME)
1122 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_atime);
1123
1124 if (flag & AT_MTIME) {
1125 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_mtime);
1126 if (zp->z_zfsvfs->z_use_fuids)
1127 zp->z_phys->zp_flags |= (ZFS_ARCHIVE | ZFS_AV_MODIFIED);
1128 }
1129
1130 if (flag & AT_CTIME) {
1131 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_ctime);
1132 if (zp->z_zfsvfs->z_use_fuids)
1133 zp->z_phys->zp_flags |= ZFS_ARCHIVE;
1134 }
1135 }
1136
1137 /*
1138 * Update the requested znode timestamps with the current time.
1139 * If we are in a transaction, then go ahead and mark the znode
1140 * dirty in the transaction so the timestamps will go to disk.
1141 * Otherwise, we will get pushed next time the znode is updated
1142 * in a transaction, or when this znode eventually goes inactive.
1143 *
1144 * Why is this OK?
1145 * 1 - Only the ACCESS time is ever updated outside of a transaction.
1146 * 2 - Multiple consecutive updates will be collapsed into a single
1147 * znode update by the transaction grouping semantics of the DMU.
1148 */
1149 void
1150 zfs_time_stamper(znode_t *zp, uint_t flag, dmu_tx_t *tx)
1151 {
1152 mutex_enter(&zp->z_lock);
1153 zfs_time_stamper_locked(zp, flag, tx);
1154 mutex_exit(&zp->z_lock);
1155 }
1156
1157 /*
1158 * Grow the block size for a file.
1159 *
1160 * IN: zp - znode of file to free data in.
1161 * size - requested block size
1162 * tx - open transaction.
1163 *
1164 * NOTE: this function assumes that the znode is write locked.
1165 */
1166 void
1167 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
1168 {
1169 int error;
1170 u_longlong_t dummy;
1171
1172 if (size <= zp->z_blksz)
1173 return;
1174 /*
1175 * If the file size is already greater than the current blocksize,
1176 * we will not grow. If there is more than one block in a file,
1177 * the blocksize cannot change.
1178 */
1179 if (zp->z_blksz && zp->z_phys->zp_size > zp->z_blksz)
1180 return;
1181
1182 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id,
1183 size, 0, tx);
1184 if (error == ENOTSUP)
1185 return;
1186 ASSERT3U(error, ==, 0);
1187
1188 /* What blocksize did we actually get? */
1189 dmu_object_size_from_db(zp->z_dbuf, &zp->z_blksz, &dummy);
1190 }
1191
1192 /*
1193 * This is a dummy interface used when pvn_vplist_dirty() should *not*
1194 * be calling back into the fs for a putpage(). E.g.: when truncating
1195 * a file, the pages being "thrown away* don't need to be written out.
1196 */
1197 /* ARGSUSED */
1198 static int
1199 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
1200 int flags, cred_t *cr)
1201 {
1202 ASSERT(0);
1203 return (0);
1204 }
1205
1206 /*
1207 * Increase the file length
1208 *
1209 * IN: zp - znode of file to free data in.
1210 * end - new end-of-file
1211 *
1212 * RETURN: 0 if success
1213 * error code if failure
1214 */
1215 static int
1216 zfs_extend(znode_t *zp, uint64_t end)
1217 {
1218 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1219 dmu_tx_t *tx;
1220 rl_t *rl;
1221 uint64_t newblksz;
1222 int error;
1223
1224 /*
1225 * We will change zp_size, lock the whole file.
1226 */
1227 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
1228
1229 /*
1230 * Nothing to do if file already at desired length.
1231 */
1232 if (end <= zp->z_phys->zp_size) {
1233 zfs_range_unlock(rl);
1234 return (0);
1235 }
1236 top:
1237 tx = dmu_tx_create(zfsvfs->z_os);
1238 dmu_tx_hold_bonus(tx, zp->z_id);
1239 if (end > zp->z_blksz &&
1240 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) {
1241 /*
1242 * We are growing the file past the current block size.
1243 */
1244 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) {
1245 ASSERT(!ISP2(zp->z_blksz));
1246 newblksz = MIN(end, SPA_MAXBLOCKSIZE);
1247 } else {
1248 newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz);
1249 }
1250 dmu_tx_hold_write(tx, zp->z_id, 0, newblksz);
1251 } else {
1252 newblksz = 0;
1253 }
1254
1255 error = dmu_tx_assign(tx, TXG_NOWAIT);
1256 if (error) {
1257 if (error == ERESTART) {
1258 dmu_tx_wait(tx);
1259 dmu_tx_abort(tx);
1260 goto top;
1261 }
1262 dmu_tx_abort(tx);
1263 zfs_range_unlock(rl);
1264 return (error);
1265 }
1266 dmu_buf_will_dirty(zp->z_dbuf, tx);
1267
1268 if (newblksz)
1269 zfs_grow_blocksize(zp, newblksz, tx);
1270
1271 zp->z_phys->zp_size = end;
1272
1273 zfs_range_unlock(rl);
1274
1275 dmu_tx_commit(tx);
1276
1277 return (0);
1278 }
1279
1280 /*
1281 * Free space in a file.
1282 *
1283 * IN: zp - znode of file to free data in.
1284 * off - start of section to free.
1285 * len - length of section to free.
1286 *
1287 * RETURN: 0 if success
1288 * error code if failure
1289 */
1290 static int
1291 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len)
1292 {
1293 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1294 rl_t *rl;
1295 int error;
1296
1297 /*
1298 * Lock the range being freed.
1299 */
1300 rl = zfs_range_lock(zp, off, len, RL_WRITER);
1301
1302 /*
1303 * Nothing to do if file already at desired length.
1304 */
1305 if (off >= zp->z_phys->zp_size) {
1306 zfs_range_unlock(rl);
1307 return (0);
1308 }
1309
1310 if (off + len > zp->z_phys->zp_size)
1311 len = zp->z_phys->zp_size - off;
1312
1313 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len);
1314
1315 zfs_range_unlock(rl);
1316
1317 return (error);
1318 }
1319
1320 /*
1321 * Truncate a file
1322 *
1323 * IN: zp - znode of file to free data in.
1324 * end - new end-of-file.
1325 *
1326 * RETURN: 0 if success
1327 * error code if failure
1328 */
1329 static int
1330 zfs_trunc(znode_t *zp, uint64_t end)
1331 {
1332 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1333 vnode_t *vp = ZTOV(zp);
1334 dmu_tx_t *tx;
1335 rl_t *rl;
1336 int error;
1337
1338 /*
1339 * We will change zp_size, lock the whole file.
1340 */
1341 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
1342
1343 /*
1344 * Nothing to do if file already at desired length.
1345 */
1346 if (end >= zp->z_phys->zp_size) {
1347 zfs_range_unlock(rl);
1348 return (0);
1349 }
1350
1351 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, -1);
1352 if (error) {
1353 zfs_range_unlock(rl);
1354 return (error);
1355 }
1356 top:
1357 tx = dmu_tx_create(zfsvfs->z_os);
1358 dmu_tx_hold_bonus(tx, zp->z_id);
1359 error = dmu_tx_assign(tx, TXG_NOWAIT);
1360 if (error) {
1361 if (error == ERESTART) {
1362 dmu_tx_wait(tx);
1363 dmu_tx_abort(tx);
1364 goto top;
1365 }
1366 dmu_tx_abort(tx);
1367 zfs_range_unlock(rl);
1368 return (error);
1369 }
1370 dmu_buf_will_dirty(zp->z_dbuf, tx);
1371
1372 zp->z_phys->zp_size = end;
1373
1374 dmu_tx_commit(tx);
1375
1376 /*
1377 * Clear any mapped pages in the truncated region. This has to
1378 * happen outside of the transaction to avoid the possibility of
1379 * a deadlock with someone trying to push a page that we are
1380 * about to invalidate.
1381 */
1382 if (vn_has_cached_data(vp)) {
1383 page_t *pp;
1384 uint64_t start = end & PAGEMASK;
1385 int poff = end & PAGEOFFSET;
1386
1387 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) {
1388 /*
1389 * We need to zero a partial page.
1390 */
1391 pagezero(pp, poff, PAGESIZE - poff);
1392 start += PAGESIZE;
1393 page_unlock(pp);
1394 }
1395 error = pvn_vplist_dirty(vp, start, zfs_no_putpage,
1396 B_INVAL | B_TRUNC, NULL);
1397 ASSERT(error == 0);
1398 }
1399
1400 zfs_range_unlock(rl);
1401
1402 return (0);
1403 }
1404
1405 /*
1406 * Free space in a file
1407 *
1408 * IN: zp - znode of file to free data in.
1409 * off - start of range
1410 * len - end of range (0 => EOF)
1411 * flag - current file open mode flags.
1412 * log - TRUE if this action should be logged
1413 *
1414 * RETURN: 0 if success
1415 * error code if failure
1416 */
1417 int
1418 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log)
1419 {
1420 vnode_t *vp = ZTOV(zp);
1421 dmu_tx_t *tx;
1422 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1423 zilog_t *zilog = zfsvfs->z_log;
1424 int error;
1425
1426 if (off > zp->z_phys->zp_size) {
1427 error = zfs_extend(zp, off+len);
1428 if (error == 0 && log)
1429 goto log;
1430 else
1431 return (error);
1432 }
1433
1434 /*
1435 * Check for any locks in the region to be freed.
1436 */
1437 if (MANDLOCK(vp, (mode_t)zp->z_phys->zp_mode)) {
1438 uint64_t length = (len ? len : zp->z_phys->zp_size - off);
1439 if (error = chklock(vp, FWRITE, off, length, flag, NULL))
1440 return (error);
1441 }
1442
1443 if (len == 0) {
1444 error = zfs_trunc(zp, off);
1445 } else {
1446 if ((error = zfs_free_range(zp, off, len)) == 0 &&
1447 off + len > zp->z_phys->zp_size)
1448 error = zfs_extend(zp, off+len);
1449 }
1450 if (error || !log)
1451 return (error);
1452 log:
1453 tx = dmu_tx_create(zfsvfs->z_os);
1454 dmu_tx_hold_bonus(tx, zp->z_id);
1455 error = dmu_tx_assign(tx, TXG_NOWAIT);
1456 if (error) {
1457 if (error == ERESTART) {
1458 dmu_tx_wait(tx);
1459 dmu_tx_abort(tx);
1460 goto log;
1461 }
1462 dmu_tx_abort(tx);
1463 return (error);
1464 }
1465
1466 zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
1467 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
1468
1469 dmu_tx_commit(tx);
1470 return (0);
1471 }
1472
1473 void
1474 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx)
1475 {
1476 zfsvfs_t zfsvfs;
1477 uint64_t moid, doid, version;
1478 uint64_t sense = ZFS_CASE_SENSITIVE;
1479 uint64_t norm = 0;
1480 nvpair_t *elem;
1481 int error;
1482 znode_t *rootzp = NULL;
1483 vnode_t *vp;
1484 vattr_t vattr;
1485 znode_t *zp;
1486
1487 /*
1488 * First attempt to create master node.
1489 */
1490 /*
1491 * In an empty objset, there are no blocks to read and thus
1492 * there can be no i/o errors (which we assert below).
1493 */
1494 moid = MASTER_NODE_OBJ;
1495 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE,
1496 DMU_OT_NONE, 0, tx);
1497 ASSERT(error == 0);
1498
1499 /*
1500 * Set starting attributes.
1501 */
1502 if (spa_version(dmu_objset_spa(os)) >= SPA_VERSION_FUID)
1503 version = ZPL_VERSION;
1504 else
1505 version = ZPL_VERSION_FUID - 1;
1506 error = zap_update(os, moid, ZPL_VERSION_STR,
1507 8, 1, &version, tx);
1508 elem = NULL;
1509 while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) {
1510 /* For the moment we expect all zpl props to be uint64_ts */
1511 uint64_t val;
1512 char *name;
1513
1514 ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64);
1515 VERIFY(nvpair_value_uint64(elem, &val) == 0);
1516 name = nvpair_name(elem);
1517 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) {
1518 version = val;
1519 error = zap_update(os, moid, ZPL_VERSION_STR,
1520 8, 1, &version, tx);
1521 } else {
1522 error = zap_update(os, moid, name, 8, 1, &val, tx);
1523 }
1524 ASSERT(error == 0);
1525 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0)
1526 norm = val;
1527 else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0)
1528 sense = val;
1529 }
1530 ASSERT(version != 0);
1531
1532 /*
1533 * Create a delete queue.
1534 */
1535 doid = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx);
1536
1537 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &doid, tx);
1538 ASSERT(error == 0);
1539
1540 /*
1541 * Create root znode. Create minimal znode/vnode/zfsvfs
1542 * to allow zfs_mknode to work.
1543 */
1544 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
1545 vattr.va_type = VDIR;
1546 vattr.va_mode = S_IFDIR|0755;
1547 vattr.va_uid = crgetuid(cr);
1548 vattr.va_gid = crgetgid(cr);
1549
1550 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP);
1551 rootzp->z_unlinked = 0;
1552 rootzp->z_atime_dirty = 0;
1553
1554 vp = ZTOV(rootzp);
1555 vn_reinit(vp);
1556 vp->v_type = VDIR;
1557
1558 bzero(&zfsvfs, sizeof (zfsvfs_t));
1559
1560 zfsvfs.z_os = os;
1561 zfsvfs.z_parent = &zfsvfs;
1562 zfsvfs.z_version = version;
1563 zfsvfs.z_use_fuids = USE_FUIDS(version, os);
1564 zfsvfs.z_norm = norm;
1565 /*
1566 * Fold case on file systems that are always or sometimes case
1567 * insensitive.
1568 */
1569 if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED)
1570 zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER;
1571
1572 mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1573 list_create(&zfsvfs.z_all_znodes, sizeof (znode_t),
1574 offsetof(znode_t, z_link_node));
1575
1576 ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs));
1577 rootzp->z_zfsvfs = &zfsvfs;
1578 zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, 0, NULL, NULL);
1579 ASSERT3P(zp, ==, rootzp);
1580 ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */
1581 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx);
1582 ASSERT(error == 0);
1583 POINTER_INVALIDATE(&rootzp->z_zfsvfs);
1584
1585 ZTOV(rootzp)->v_count = 0;
1586 dmu_buf_rele(rootzp->z_dbuf, NULL);
1587 rootzp->z_dbuf = NULL;
1588 kmem_cache_free(znode_cache, rootzp);
1589 }
1590
1591 #endif /* _KERNEL */
1592 /*
1593 * Given an object number, return its parent object number and whether
1594 * or not the object is an extended attribute directory.
1595 */
1596 static int
1597 zfs_obj_to_pobj(objset_t *osp, uint64_t obj, uint64_t *pobjp, int *is_xattrdir)
1598 {
1599 dmu_buf_t *db;
1600 dmu_object_info_t doi;
1601 znode_phys_t *zp;
1602 int error;
1603
1604 if ((error = dmu_bonus_hold(osp, obj, FTAG, &db)) != 0)
1605 return (error);
1606
1607 dmu_object_info_from_db(db, &doi);
1608 if (doi.doi_bonus_type != DMU_OT_ZNODE ||
1609 doi.doi_bonus_size < sizeof (znode_phys_t)) {
1610 dmu_buf_rele(db, FTAG);
1611 return (EINVAL);
1612 }
1613
1614 zp = db->db_data;
1615 *pobjp = zp->zp_parent;
1616 *is_xattrdir = ((zp->zp_flags & ZFS_XATTR) != 0) &&
1617 S_ISDIR(zp->zp_mode);
1618 dmu_buf_rele(db, FTAG);
1619
1620 return (0);
1621 }
1622
1623 int
1624 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len)
1625 {
1626 char *path = buf + len - 1;
1627 int error;
1628
1629 *path = '\0';
1630
1631 for (;;) {
1632 uint64_t pobj;
1633 char component[MAXNAMELEN + 2];
1634 size_t complen;
1635 int is_xattrdir;
1636
1637 if ((error = zfs_obj_to_pobj(osp, obj, &pobj,
1638 &is_xattrdir)) != 0)
1639 break;
1640
1641 if (pobj == obj) {
1642 if (path[0] != '/')
1643 *--path = '/';
1644 break;
1645 }
1646
1647 component[0] = '/';
1648 if (is_xattrdir) {
1649 (void) sprintf(component + 1, "<xattrdir>");
1650 } else {
1651 error = zap_value_search(osp, pobj, obj,
1652 ZFS_DIRENT_OBJ(-1ULL), component + 1);
1653 if (error != 0)
1654 break;
1655 }
1656
1657 complen = strlen(component);
1658 path -= complen;
1659 ASSERT(path >= buf);
1660 bcopy(component, path, complen);
1661 obj = pobj;
1662 }
1663
1664 if (error == 0)
1665 (void) memmove(buf, path, buf + len - path);
1666 return (error);
1667 }