]> git.proxmox.com Git - mirror_zfs-debian.git/blob - module/zfs/zfs_znode.c
Rebase master to b121
[mirror_zfs-debian.git] / module / zfs / zfs_znode.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /* Portions Copyright 2007 Jeremy Teo */
27
28 #ifdef _KERNEL
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/time.h>
32 #include <sys/systm.h>
33 #include <sys/sysmacros.h>
34 #include <sys/resource.h>
35 #include <sys/mntent.h>
36 #include <sys/mkdev.h>
37 #include <sys/u8_textprep.h>
38 #include <sys/dsl_dataset.h>
39 #include <sys/vfs.h>
40 #include <sys/vfs_opreg.h>
41 #include <sys/vnode.h>
42 #include <sys/file.h>
43 #include <sys/kmem.h>
44 #include <sys/errno.h>
45 #include <sys/unistd.h>
46 #include <sys/mode.h>
47 #include <sys/atomic.h>
48 #include <vm/pvn.h>
49 #include "fs/fs_subr.h"
50 #include <sys/zfs_dir.h>
51 #include <sys/zfs_acl.h>
52 #include <sys/zfs_ioctl.h>
53 #include <sys/zfs_rlock.h>
54 #include <sys/zfs_fuid.h>
55 #include <sys/fs/zfs.h>
56 #include <sys/kidmap.h>
57 #endif /* _KERNEL */
58
59 #include <sys/dmu.h>
60 #include <sys/refcount.h>
61 #include <sys/stat.h>
62 #include <sys/zap.h>
63 #include <sys/zfs_znode.h>
64
65 #include "zfs_prop.h"
66
67 /*
68 * Define ZNODE_STATS to turn on statistic gathering. By default, it is only
69 * turned on when DEBUG is also defined.
70 */
71 #ifdef DEBUG
72 #define ZNODE_STATS
73 #endif /* DEBUG */
74
75 #ifdef ZNODE_STATS
76 #define ZNODE_STAT_ADD(stat) ((stat)++)
77 #else
78 #define ZNODE_STAT_ADD(stat) /* nothing */
79 #endif /* ZNODE_STATS */
80
81 #define POINTER_IS_VALID(p) (!((uintptr_t)(p) & 0x3))
82 #define POINTER_INVALIDATE(pp) (*(pp) = (void *)((uintptr_t)(*(pp)) | 0x1))
83
84 /*
85 * Functions needed for userland (ie: libzpool) are not put under
86 * #ifdef_KERNEL; the rest of the functions have dependencies
87 * (such as VFS logic) that will not compile easily in userland.
88 */
89 #ifdef _KERNEL
90 /*
91 * Needed to close a small window in zfs_znode_move() that allows the zfsvfs to
92 * be freed before it can be safely accessed.
93 */
94 krwlock_t zfsvfs_lock;
95
96 static kmem_cache_t *znode_cache = NULL;
97
98 /*ARGSUSED*/
99 static void
100 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr)
101 {
102 /*
103 * We should never drop all dbuf refs without first clearing
104 * the eviction callback.
105 */
106 panic("evicting znode %p\n", user_ptr);
107 }
108
109 /*ARGSUSED*/
110 static int
111 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags)
112 {
113 znode_t *zp = buf;
114
115 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
116
117 zp->z_vnode = vn_alloc(kmflags);
118 if (zp->z_vnode == NULL) {
119 return (-1);
120 }
121 ZTOV(zp)->v_data = zp;
122
123 list_link_init(&zp->z_link_node);
124
125 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL);
126 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL);
127 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL);
128 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL);
129
130 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL);
131 avl_create(&zp->z_range_avl, zfs_range_compare,
132 sizeof (rl_t), offsetof(rl_t, r_node));
133
134 zp->z_dbuf = NULL;
135 zp->z_dirlocks = NULL;
136 zp->z_acl_cached = NULL;
137 return (0);
138 }
139
140 /*ARGSUSED*/
141 static void
142 zfs_znode_cache_destructor(void *buf, void *arg)
143 {
144 znode_t *zp = buf;
145
146 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
147 ASSERT(ZTOV(zp)->v_data == zp);
148 vn_free(ZTOV(zp));
149 ASSERT(!list_link_active(&zp->z_link_node));
150 mutex_destroy(&zp->z_lock);
151 rw_destroy(&zp->z_parent_lock);
152 rw_destroy(&zp->z_name_lock);
153 mutex_destroy(&zp->z_acl_lock);
154 avl_destroy(&zp->z_range_avl);
155 mutex_destroy(&zp->z_range_lock);
156
157 ASSERT(zp->z_dbuf == NULL);
158 ASSERT(zp->z_dirlocks == NULL);
159 ASSERT(zp->z_acl_cached == NULL);
160 }
161
162 #ifdef ZNODE_STATS
163 static struct {
164 uint64_t zms_zfsvfs_invalid;
165 uint64_t zms_zfsvfs_recheck1;
166 uint64_t zms_zfsvfs_unmounted;
167 uint64_t zms_zfsvfs_recheck2;
168 uint64_t zms_obj_held;
169 uint64_t zms_vnode_locked;
170 uint64_t zms_not_only_dnlc;
171 } znode_move_stats;
172 #endif /* ZNODE_STATS */
173
174 static void
175 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp)
176 {
177 vnode_t *vp;
178
179 /* Copy fields. */
180 nzp->z_zfsvfs = ozp->z_zfsvfs;
181
182 /* Swap vnodes. */
183 vp = nzp->z_vnode;
184 nzp->z_vnode = ozp->z_vnode;
185 ozp->z_vnode = vp; /* let destructor free the overwritten vnode */
186 ZTOV(ozp)->v_data = ozp;
187 ZTOV(nzp)->v_data = nzp;
188
189 nzp->z_id = ozp->z_id;
190 ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */
191 ASSERT(avl_numnodes(&ozp->z_range_avl) == 0);
192 nzp->z_unlinked = ozp->z_unlinked;
193 nzp->z_atime_dirty = ozp->z_atime_dirty;
194 nzp->z_zn_prefetch = ozp->z_zn_prefetch;
195 nzp->z_blksz = ozp->z_blksz;
196 nzp->z_seq = ozp->z_seq;
197 nzp->z_mapcnt = ozp->z_mapcnt;
198 nzp->z_last_itx = ozp->z_last_itx;
199 nzp->z_gen = ozp->z_gen;
200 nzp->z_sync_cnt = ozp->z_sync_cnt;
201 nzp->z_phys = ozp->z_phys;
202 nzp->z_dbuf = ozp->z_dbuf;
203
204 /*
205 * Release any cached ACL, since it *may* have
206 * zfs_acl_node_t's that directly references an
207 * embedded ACL in the zp_acl of the old znode_phys_t
208 *
209 * It will be recached the next time the ACL is needed.
210 */
211 if (ozp->z_acl_cached) {
212 zfs_acl_free(ozp->z_acl_cached);
213 ozp->z_acl_cached = NULL;
214 }
215
216 /* Update back pointers. */
217 (void) dmu_buf_update_user(nzp->z_dbuf, ozp, nzp, &nzp->z_phys,
218 znode_evict_error);
219
220 /*
221 * Invalidate the original znode by clearing fields that provide a
222 * pointer back to the znode. Set the low bit of the vfs pointer to
223 * ensure that zfs_znode_move() recognizes the znode as invalid in any
224 * subsequent callback.
225 */
226 ozp->z_dbuf = NULL;
227 POINTER_INVALIDATE(&ozp->z_zfsvfs);
228 }
229
230 /*ARGSUSED*/
231 static kmem_cbrc_t
232 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg)
233 {
234 znode_t *ozp = buf, *nzp = newbuf;
235 zfsvfs_t *zfsvfs;
236 vnode_t *vp;
237
238 /*
239 * The znode is on the file system's list of known znodes if the vfs
240 * pointer is valid. We set the low bit of the vfs pointer when freeing
241 * the znode to invalidate it, and the memory patterns written by kmem
242 * (baddcafe and deadbeef) set at least one of the two low bits. A newly
243 * created znode sets the vfs pointer last of all to indicate that the
244 * znode is known and in a valid state to be moved by this function.
245 */
246 zfsvfs = ozp->z_zfsvfs;
247 if (!POINTER_IS_VALID(zfsvfs)) {
248 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid);
249 return (KMEM_CBRC_DONT_KNOW);
250 }
251
252 /*
253 * Close a small window in which it's possible that the filesystem could
254 * be unmounted and freed, and zfsvfs, though valid in the previous
255 * statement, could point to unrelated memory by the time we try to
256 * prevent the filesystem from being unmounted.
257 */
258 rw_enter(&zfsvfs_lock, RW_WRITER);
259 if (zfsvfs != ozp->z_zfsvfs) {
260 rw_exit(&zfsvfs_lock);
261 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck1);
262 return (KMEM_CBRC_DONT_KNOW);
263 }
264
265 /*
266 * If the znode is still valid, then so is the file system. We know that
267 * no valid file system can be freed while we hold zfsvfs_lock, so we
268 * can safely ensure that the filesystem is not and will not be
269 * unmounted. The next statement is equivalent to ZFS_ENTER().
270 */
271 rrw_enter(&zfsvfs->z_teardown_lock, RW_READER, FTAG);
272 if (zfsvfs->z_unmounted) {
273 ZFS_EXIT(zfsvfs);
274 rw_exit(&zfsvfs_lock);
275 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted);
276 return (KMEM_CBRC_DONT_KNOW);
277 }
278 rw_exit(&zfsvfs_lock);
279
280 mutex_enter(&zfsvfs->z_znodes_lock);
281 /*
282 * Recheck the vfs pointer in case the znode was removed just before
283 * acquiring the lock.
284 */
285 if (zfsvfs != ozp->z_zfsvfs) {
286 mutex_exit(&zfsvfs->z_znodes_lock);
287 ZFS_EXIT(zfsvfs);
288 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck2);
289 return (KMEM_CBRC_DONT_KNOW);
290 }
291
292 /*
293 * At this point we know that as long as we hold z_znodes_lock, the
294 * znode cannot be freed and fields within the znode can be safely
295 * accessed. Now, prevent a race with zfs_zget().
296 */
297 if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) {
298 mutex_exit(&zfsvfs->z_znodes_lock);
299 ZFS_EXIT(zfsvfs);
300 ZNODE_STAT_ADD(znode_move_stats.zms_obj_held);
301 return (KMEM_CBRC_LATER);
302 }
303
304 vp = ZTOV(ozp);
305 if (mutex_tryenter(&vp->v_lock) == 0) {
306 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
307 mutex_exit(&zfsvfs->z_znodes_lock);
308 ZFS_EXIT(zfsvfs);
309 ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked);
310 return (KMEM_CBRC_LATER);
311 }
312
313 /* Only move znodes that are referenced _only_ by the DNLC. */
314 if (vp->v_count != 1 || !vn_in_dnlc(vp)) {
315 mutex_exit(&vp->v_lock);
316 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
317 mutex_exit(&zfsvfs->z_znodes_lock);
318 ZFS_EXIT(zfsvfs);
319 ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc);
320 return (KMEM_CBRC_LATER);
321 }
322
323 /*
324 * The znode is known and in a valid state to move. We're holding the
325 * locks needed to execute the critical section.
326 */
327 zfs_znode_move_impl(ozp, nzp);
328 mutex_exit(&vp->v_lock);
329 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
330
331 list_link_replace(&ozp->z_link_node, &nzp->z_link_node);
332 mutex_exit(&zfsvfs->z_znodes_lock);
333 ZFS_EXIT(zfsvfs);
334
335 return (KMEM_CBRC_YES);
336 }
337
338 void
339 zfs_znode_init(void)
340 {
341 /*
342 * Initialize zcache
343 */
344 rw_init(&zfsvfs_lock, NULL, RW_DEFAULT, NULL);
345 ASSERT(znode_cache == NULL);
346 znode_cache = kmem_cache_create("zfs_znode_cache",
347 sizeof (znode_t), 0, zfs_znode_cache_constructor,
348 zfs_znode_cache_destructor, NULL, NULL, NULL, 0);
349 kmem_cache_set_move(znode_cache, zfs_znode_move);
350 }
351
352 void
353 zfs_znode_fini(void)
354 {
355 /*
356 * Cleanup vfs & vnode ops
357 */
358 zfs_remove_op_tables();
359
360 /*
361 * Cleanup zcache
362 */
363 if (znode_cache)
364 kmem_cache_destroy(znode_cache);
365 znode_cache = NULL;
366 rw_destroy(&zfsvfs_lock);
367 }
368
369 struct vnodeops *zfs_dvnodeops;
370 struct vnodeops *zfs_fvnodeops;
371 struct vnodeops *zfs_symvnodeops;
372 struct vnodeops *zfs_xdvnodeops;
373 struct vnodeops *zfs_evnodeops;
374 struct vnodeops *zfs_sharevnodeops;
375
376 void
377 zfs_remove_op_tables()
378 {
379 /*
380 * Remove vfs ops
381 */
382 ASSERT(zfsfstype);
383 (void) vfs_freevfsops_by_type(zfsfstype);
384 zfsfstype = 0;
385
386 /*
387 * Remove vnode ops
388 */
389 if (zfs_dvnodeops)
390 vn_freevnodeops(zfs_dvnodeops);
391 if (zfs_fvnodeops)
392 vn_freevnodeops(zfs_fvnodeops);
393 if (zfs_symvnodeops)
394 vn_freevnodeops(zfs_symvnodeops);
395 if (zfs_xdvnodeops)
396 vn_freevnodeops(zfs_xdvnodeops);
397 if (zfs_evnodeops)
398 vn_freevnodeops(zfs_evnodeops);
399 if (zfs_sharevnodeops)
400 vn_freevnodeops(zfs_sharevnodeops);
401
402 zfs_dvnodeops = NULL;
403 zfs_fvnodeops = NULL;
404 zfs_symvnodeops = NULL;
405 zfs_xdvnodeops = NULL;
406 zfs_evnodeops = NULL;
407 zfs_sharevnodeops = NULL;
408 }
409
410 extern const fs_operation_def_t zfs_dvnodeops_template[];
411 extern const fs_operation_def_t zfs_fvnodeops_template[];
412 extern const fs_operation_def_t zfs_xdvnodeops_template[];
413 extern const fs_operation_def_t zfs_symvnodeops_template[];
414 extern const fs_operation_def_t zfs_evnodeops_template[];
415 extern const fs_operation_def_t zfs_sharevnodeops_template[];
416
417 int
418 zfs_create_op_tables()
419 {
420 int error;
421
422 /*
423 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs()
424 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv).
425 * In this case we just return as the ops vectors are already set up.
426 */
427 if (zfs_dvnodeops)
428 return (0);
429
430 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template,
431 &zfs_dvnodeops);
432 if (error)
433 return (error);
434
435 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template,
436 &zfs_fvnodeops);
437 if (error)
438 return (error);
439
440 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template,
441 &zfs_symvnodeops);
442 if (error)
443 return (error);
444
445 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template,
446 &zfs_xdvnodeops);
447 if (error)
448 return (error);
449
450 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template,
451 &zfs_evnodeops);
452 if (error)
453 return (error);
454
455 error = vn_make_ops(MNTTYPE_ZFS, zfs_sharevnodeops_template,
456 &zfs_sharevnodeops);
457
458 return (error);
459 }
460
461 int
462 zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
463 {
464 zfs_acl_ids_t acl_ids;
465 vattr_t vattr;
466 znode_t *sharezp;
467 vnode_t *vp;
468 znode_t *zp;
469 int error;
470
471 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
472 vattr.va_type = VDIR;
473 vattr.va_mode = S_IFDIR|0555;
474 vattr.va_uid = crgetuid(kcred);
475 vattr.va_gid = crgetgid(kcred);
476
477 sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP);
478 sharezp->z_unlinked = 0;
479 sharezp->z_atime_dirty = 0;
480 sharezp->z_zfsvfs = zfsvfs;
481
482 vp = ZTOV(sharezp);
483 vn_reinit(vp);
484 vp->v_type = VDIR;
485
486 VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr,
487 kcred, NULL, &acl_ids));
488 zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE,
489 &zp, 0, &acl_ids);
490 ASSERT3P(zp, ==, sharezp);
491 ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */
492 POINTER_INVALIDATE(&sharezp->z_zfsvfs);
493 error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
494 ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx);
495 zfsvfs->z_shares_dir = sharezp->z_id;
496
497 zfs_acl_ids_free(&acl_ids);
498 ZTOV(sharezp)->v_count = 0;
499 dmu_buf_rele(sharezp->z_dbuf, NULL);
500 sharezp->z_dbuf = NULL;
501 kmem_cache_free(znode_cache, sharezp);
502
503 return (error);
504 }
505
506 /*
507 * define a couple of values we need available
508 * for both 64 and 32 bit environments.
509 */
510 #ifndef NBITSMINOR64
511 #define NBITSMINOR64 32
512 #endif
513 #ifndef MAXMAJ64
514 #define MAXMAJ64 0xffffffffUL
515 #endif
516 #ifndef MAXMIN64
517 #define MAXMIN64 0xffffffffUL
518 #endif
519
520 /*
521 * Create special expldev for ZFS private use.
522 * Can't use standard expldev since it doesn't do
523 * what we want. The standard expldev() takes a
524 * dev32_t in LP64 and expands it to a long dev_t.
525 * We need an interface that takes a dev32_t in ILP32
526 * and expands it to a long dev_t.
527 */
528 static uint64_t
529 zfs_expldev(dev_t dev)
530 {
531 #ifndef _LP64
532 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32;
533 return (((uint64_t)major << NBITSMINOR64) |
534 ((minor_t)dev & MAXMIN32));
535 #else
536 return (dev);
537 #endif
538 }
539
540 /*
541 * Special cmpldev for ZFS private use.
542 * Can't use standard cmpldev since it takes
543 * a long dev_t and compresses it to dev32_t in
544 * LP64. We need to do a compaction of a long dev_t
545 * to a dev32_t in ILP32.
546 */
547 dev_t
548 zfs_cmpldev(uint64_t dev)
549 {
550 #ifndef _LP64
551 minor_t minor = (minor_t)dev & MAXMIN64;
552 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64;
553
554 if (major > MAXMAJ32 || minor > MAXMIN32)
555 return (NODEV32);
556
557 return (((dev32_t)major << NBITSMINOR32) | minor);
558 #else
559 return (dev);
560 #endif
561 }
562
563 static void
564 zfs_znode_dmu_init(zfsvfs_t *zfsvfs, znode_t *zp, dmu_buf_t *db)
565 {
566 znode_t *nzp;
567
568 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs));
569 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id)));
570
571 mutex_enter(&zp->z_lock);
572
573 ASSERT(zp->z_dbuf == NULL);
574 zp->z_dbuf = db;
575 nzp = dmu_buf_set_user_ie(db, zp, &zp->z_phys, znode_evict_error);
576
577 /*
578 * there should be no
579 * concurrent zgets on this object.
580 */
581 if (nzp != NULL)
582 panic("existing znode %p for dbuf %p", (void *)nzp, (void *)db);
583
584 /*
585 * Slap on VROOT if we are the root znode
586 */
587 if (zp->z_id == zfsvfs->z_root)
588 ZTOV(zp)->v_flag |= VROOT;
589
590 mutex_exit(&zp->z_lock);
591 vn_exists(ZTOV(zp));
592 }
593
594 void
595 zfs_znode_dmu_fini(znode_t *zp)
596 {
597 dmu_buf_t *db = zp->z_dbuf;
598 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) ||
599 zp->z_unlinked ||
600 RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock));
601 ASSERT(zp->z_dbuf != NULL);
602 zp->z_dbuf = NULL;
603 VERIFY(zp == dmu_buf_update_user(db, zp, NULL, NULL, NULL));
604 dmu_buf_rele(db, NULL);
605 }
606
607 /*
608 * Construct a new znode/vnode and intialize.
609 *
610 * This does not do a call to dmu_set_user() that is
611 * up to the caller to do, in case you don't want to
612 * return the znode
613 */
614 static znode_t *
615 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz)
616 {
617 znode_t *zp;
618 vnode_t *vp;
619
620 zp = kmem_cache_alloc(znode_cache, KM_SLEEP);
621
622 ASSERT(zp->z_dirlocks == NULL);
623 ASSERT(zp->z_dbuf == NULL);
624 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
625
626 /*
627 * Defer setting z_zfsvfs until the znode is ready to be a candidate for
628 * the zfs_znode_move() callback.
629 */
630 zp->z_phys = NULL;
631 zp->z_unlinked = 0;
632 zp->z_atime_dirty = 0;
633 zp->z_mapcnt = 0;
634 zp->z_last_itx = 0;
635 zp->z_id = db->db_object;
636 zp->z_blksz = blksz;
637 zp->z_seq = 0x7A4653;
638 zp->z_sync_cnt = 0;
639
640 vp = ZTOV(zp);
641 vn_reinit(vp);
642
643 zfs_znode_dmu_init(zfsvfs, zp, db);
644
645 zp->z_gen = zp->z_phys->zp_gen;
646
647 vp->v_vfsp = zfsvfs->z_parent->z_vfs;
648 vp->v_type = IFTOVT((mode_t)zp->z_phys->zp_mode);
649
650 switch (vp->v_type) {
651 case VDIR:
652 if (zp->z_phys->zp_flags & ZFS_XATTR) {
653 vn_setops(vp, zfs_xdvnodeops);
654 vp->v_flag |= V_XATTRDIR;
655 } else {
656 vn_setops(vp, zfs_dvnodeops);
657 }
658 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */
659 break;
660 case VBLK:
661 case VCHR:
662 vp->v_rdev = zfs_cmpldev(zp->z_phys->zp_rdev);
663 /*FALLTHROUGH*/
664 case VFIFO:
665 case VSOCK:
666 case VDOOR:
667 vn_setops(vp, zfs_fvnodeops);
668 break;
669 case VREG:
670 vp->v_flag |= VMODSORT;
671 if (zp->z_phys->zp_parent == zfsvfs->z_shares_dir)
672 vn_setops(vp, zfs_sharevnodeops);
673 else
674 vn_setops(vp, zfs_fvnodeops);
675 break;
676 case VLNK:
677 vn_setops(vp, zfs_symvnodeops);
678 break;
679 default:
680 vn_setops(vp, zfs_evnodeops);
681 break;
682 }
683
684 mutex_enter(&zfsvfs->z_znodes_lock);
685 list_insert_tail(&zfsvfs->z_all_znodes, zp);
686 membar_producer();
687 /*
688 * Everything else must be valid before assigning z_zfsvfs makes the
689 * znode eligible for zfs_znode_move().
690 */
691 zp->z_zfsvfs = zfsvfs;
692 mutex_exit(&zfsvfs->z_znodes_lock);
693
694 VFS_HOLD(zfsvfs->z_vfs);
695 return (zp);
696 }
697
698 /*
699 * Create a new DMU object to hold a zfs znode.
700 *
701 * IN: dzp - parent directory for new znode
702 * vap - file attributes for new znode
703 * tx - dmu transaction id for zap operations
704 * cr - credentials of caller
705 * flag - flags:
706 * IS_ROOT_NODE - new object will be root
707 * IS_XATTR - new object is an attribute
708 * IS_REPLAY - intent log replay
709 * bonuslen - length of bonus buffer
710 * setaclp - File/Dir initial ACL
711 * fuidp - Tracks fuid allocation.
712 *
713 * OUT: zpp - allocated znode
714 *
715 */
716 void
717 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr,
718 uint_t flag, znode_t **zpp, int bonuslen, zfs_acl_ids_t *acl_ids)
719 {
720 dmu_buf_t *db;
721 znode_phys_t *pzp;
722 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
723 timestruc_t now;
724 uint64_t gen, obj;
725 int err;
726
727 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
728
729 if (zfsvfs->z_replay) {
730 obj = vap->va_nodeid;
731 flag |= IS_REPLAY;
732 now = vap->va_ctime; /* see zfs_replay_create() */
733 gen = vap->va_nblocks; /* ditto */
734 } else {
735 obj = 0;
736 gethrestime(&now);
737 gen = dmu_tx_get_txg(tx);
738 }
739
740 /*
741 * Create a new DMU object.
742 */
743 /*
744 * There's currently no mechanism for pre-reading the blocks that will
745 * be to needed allocate a new object, so we accept the small chance
746 * that there will be an i/o error and we will fail one of the
747 * assertions below.
748 */
749 if (vap->va_type == VDIR) {
750 if (flag & IS_REPLAY) {
751 err = zap_create_claim_norm(zfsvfs->z_os, obj,
752 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
753 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
754 ASSERT3U(err, ==, 0);
755 } else {
756 obj = zap_create_norm(zfsvfs->z_os,
757 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
758 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
759 }
760 } else {
761 if (flag & IS_REPLAY) {
762 err = dmu_object_claim(zfsvfs->z_os, obj,
763 DMU_OT_PLAIN_FILE_CONTENTS, 0,
764 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
765 ASSERT3U(err, ==, 0);
766 } else {
767 obj = dmu_object_alloc(zfsvfs->z_os,
768 DMU_OT_PLAIN_FILE_CONTENTS, 0,
769 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
770 }
771 }
772 VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, obj, NULL, &db));
773 dmu_buf_will_dirty(db, tx);
774
775 /*
776 * Initialize the znode physical data to zero.
777 */
778 ASSERT(db->db_size >= sizeof (znode_phys_t));
779 bzero(db->db_data, db->db_size);
780 pzp = db->db_data;
781
782 /*
783 * If this is the root, fix up the half-initialized parent pointer
784 * to reference the just-allocated physical data area.
785 */
786 if (flag & IS_ROOT_NODE) {
787 dzp->z_dbuf = db;
788 dzp->z_phys = pzp;
789 dzp->z_id = obj;
790 }
791
792 /*
793 * If parent is an xattr, so am I.
794 */
795 if (dzp->z_phys->zp_flags & ZFS_XATTR)
796 flag |= IS_XATTR;
797
798 if (vap->va_type == VBLK || vap->va_type == VCHR) {
799 pzp->zp_rdev = zfs_expldev(vap->va_rdev);
800 }
801
802 if (zfsvfs->z_use_fuids)
803 pzp->zp_flags = ZFS_ARCHIVE | ZFS_AV_MODIFIED;
804
805 if (vap->va_type == VDIR) {
806 pzp->zp_size = 2; /* contents ("." and "..") */
807 pzp->zp_links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1;
808 }
809
810 pzp->zp_parent = dzp->z_id;
811 if (flag & IS_XATTR)
812 pzp->zp_flags |= ZFS_XATTR;
813
814 pzp->zp_gen = gen;
815
816 ZFS_TIME_ENCODE(&now, pzp->zp_crtime);
817 ZFS_TIME_ENCODE(&now, pzp->zp_ctime);
818
819 if (vap->va_mask & AT_ATIME) {
820 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime);
821 } else {
822 ZFS_TIME_ENCODE(&now, pzp->zp_atime);
823 }
824
825 if (vap->va_mask & AT_MTIME) {
826 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime);
827 } else {
828 ZFS_TIME_ENCODE(&now, pzp->zp_mtime);
829 }
830
831 pzp->zp_mode = MAKEIMODE(vap->va_type, vap->va_mode);
832 if (!(flag & IS_ROOT_NODE)) {
833 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
834 *zpp = zfs_znode_alloc(zfsvfs, db, 0);
835 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
836 } else {
837 /*
838 * If we are creating the root node, the "parent" we
839 * passed in is the znode for the root.
840 */
841 *zpp = dzp;
842 }
843 pzp->zp_uid = acl_ids->z_fuid;
844 pzp->zp_gid = acl_ids->z_fgid;
845 pzp->zp_mode = acl_ids->z_mode;
846 VERIFY(0 == zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx));
847 if (vap->va_mask & AT_XVATTR)
848 zfs_xvattr_set(*zpp, (xvattr_t *)vap);
849 }
850
851 void
852 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap)
853 {
854 xoptattr_t *xoap;
855
856 xoap = xva_getxoptattr(xvap);
857 ASSERT(xoap);
858
859 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
860 ZFS_TIME_ENCODE(&xoap->xoa_createtime, zp->z_phys->zp_crtime);
861 XVA_SET_RTN(xvap, XAT_CREATETIME);
862 }
863 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
864 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly);
865 XVA_SET_RTN(xvap, XAT_READONLY);
866 }
867 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
868 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden);
869 XVA_SET_RTN(xvap, XAT_HIDDEN);
870 }
871 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
872 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system);
873 XVA_SET_RTN(xvap, XAT_SYSTEM);
874 }
875 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
876 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive);
877 XVA_SET_RTN(xvap, XAT_ARCHIVE);
878 }
879 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
880 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable);
881 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
882 }
883 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
884 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink);
885 XVA_SET_RTN(xvap, XAT_NOUNLINK);
886 }
887 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
888 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly);
889 XVA_SET_RTN(xvap, XAT_APPENDONLY);
890 }
891 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
892 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump);
893 XVA_SET_RTN(xvap, XAT_NODUMP);
894 }
895 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
896 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque);
897 XVA_SET_RTN(xvap, XAT_OPAQUE);
898 }
899 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
900 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED,
901 xoap->xoa_av_quarantined);
902 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
903 }
904 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
905 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified);
906 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
907 }
908 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
909 (void) memcpy(zp->z_phys + 1, xoap->xoa_av_scanstamp,
910 sizeof (xoap->xoa_av_scanstamp));
911 zp->z_phys->zp_flags |= ZFS_BONUS_SCANSTAMP;
912 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
913 }
914 }
915
916 int
917 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp)
918 {
919 dmu_object_info_t doi;
920 dmu_buf_t *db;
921 znode_t *zp;
922 int err;
923
924 *zpp = NULL;
925
926 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
927
928 err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db);
929 if (err) {
930 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
931 return (err);
932 }
933
934 dmu_object_info_from_db(db, &doi);
935 if (doi.doi_bonus_type != DMU_OT_ZNODE ||
936 doi.doi_bonus_size < sizeof (znode_phys_t)) {
937 dmu_buf_rele(db, NULL);
938 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
939 return (EINVAL);
940 }
941
942 zp = dmu_buf_get_user(db);
943 if (zp != NULL) {
944 mutex_enter(&zp->z_lock);
945
946 /*
947 * Since we do immediate eviction of the z_dbuf, we
948 * should never find a dbuf with a znode that doesn't
949 * know about the dbuf.
950 */
951 ASSERT3P(zp->z_dbuf, ==, db);
952 ASSERT3U(zp->z_id, ==, obj_num);
953 if (zp->z_unlinked) {
954 err = ENOENT;
955 } else {
956 VN_HOLD(ZTOV(zp));
957 *zpp = zp;
958 err = 0;
959 }
960 dmu_buf_rele(db, NULL);
961 mutex_exit(&zp->z_lock);
962 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
963 return (err);
964 }
965
966 /*
967 * Not found create new znode/vnode
968 */
969 zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size);
970 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
971 *zpp = zp;
972 return (0);
973 }
974
975 int
976 zfs_rezget(znode_t *zp)
977 {
978 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
979 dmu_object_info_t doi;
980 dmu_buf_t *db;
981 uint64_t obj_num = zp->z_id;
982 int err;
983
984 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
985
986 err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db);
987 if (err) {
988 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
989 return (err);
990 }
991
992 dmu_object_info_from_db(db, &doi);
993 if (doi.doi_bonus_type != DMU_OT_ZNODE ||
994 doi.doi_bonus_size < sizeof (znode_phys_t)) {
995 dmu_buf_rele(db, NULL);
996 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
997 return (EINVAL);
998 }
999
1000 if (((znode_phys_t *)db->db_data)->zp_gen != zp->z_gen) {
1001 dmu_buf_rele(db, NULL);
1002 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1003 return (EIO);
1004 }
1005
1006 zfs_znode_dmu_init(zfsvfs, zp, db);
1007 zp->z_unlinked = (zp->z_phys->zp_links == 0);
1008 zp->z_blksz = doi.doi_data_block_size;
1009
1010 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1011
1012 return (0);
1013 }
1014
1015 void
1016 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx)
1017 {
1018 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1019 objset_t *os = zfsvfs->z_os;
1020 uint64_t obj = zp->z_id;
1021 uint64_t acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj;
1022
1023 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
1024 if (acl_obj)
1025 VERIFY(0 == dmu_object_free(os, acl_obj, tx));
1026 VERIFY(0 == dmu_object_free(os, obj, tx));
1027 zfs_znode_dmu_fini(zp);
1028 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
1029 zfs_znode_free(zp);
1030 }
1031
1032 void
1033 zfs_zinactive(znode_t *zp)
1034 {
1035 vnode_t *vp = ZTOV(zp);
1036 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1037 uint64_t z_id = zp->z_id;
1038
1039 ASSERT(zp->z_dbuf && zp->z_phys);
1040
1041 /*
1042 * Don't allow a zfs_zget() while were trying to release this znode
1043 */
1044 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id);
1045
1046 mutex_enter(&zp->z_lock);
1047 mutex_enter(&vp->v_lock);
1048 vp->v_count--;
1049 if (vp->v_count > 0 || vn_has_cached_data(vp)) {
1050 /*
1051 * If the hold count is greater than zero, somebody has
1052 * obtained a new reference on this znode while we were
1053 * processing it here, so we are done. If we still have
1054 * mapped pages then we are also done, since we don't
1055 * want to inactivate the znode until the pages get pushed.
1056 *
1057 * XXX - if vn_has_cached_data(vp) is true, but count == 0,
1058 * this seems like it would leave the znode hanging with
1059 * no chance to go inactive...
1060 */
1061 mutex_exit(&vp->v_lock);
1062 mutex_exit(&zp->z_lock);
1063 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1064 return;
1065 }
1066 mutex_exit(&vp->v_lock);
1067
1068 /*
1069 * If this was the last reference to a file with no links,
1070 * remove the file from the file system.
1071 */
1072 if (zp->z_unlinked) {
1073 mutex_exit(&zp->z_lock);
1074 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1075 zfs_rmnode(zp);
1076 return;
1077 }
1078 mutex_exit(&zp->z_lock);
1079 zfs_znode_dmu_fini(zp);
1080 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1081 zfs_znode_free(zp);
1082 }
1083
1084 void
1085 zfs_znode_free(znode_t *zp)
1086 {
1087 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1088
1089 vn_invalid(ZTOV(zp));
1090
1091 ASSERT(ZTOV(zp)->v_count == 0);
1092
1093 mutex_enter(&zfsvfs->z_znodes_lock);
1094 POINTER_INVALIDATE(&zp->z_zfsvfs);
1095 list_remove(&zfsvfs->z_all_znodes, zp);
1096 mutex_exit(&zfsvfs->z_znodes_lock);
1097
1098 if (zp->z_acl_cached) {
1099 zfs_acl_free(zp->z_acl_cached);
1100 zp->z_acl_cached = NULL;
1101 }
1102
1103 kmem_cache_free(znode_cache, zp);
1104
1105 VFS_RELE(zfsvfs->z_vfs);
1106 }
1107
1108 void
1109 zfs_time_stamper_locked(znode_t *zp, uint_t flag, dmu_tx_t *tx)
1110 {
1111 timestruc_t now;
1112
1113 ASSERT(MUTEX_HELD(&zp->z_lock));
1114
1115 gethrestime(&now);
1116
1117 if (tx) {
1118 dmu_buf_will_dirty(zp->z_dbuf, tx);
1119 zp->z_atime_dirty = 0;
1120 zp->z_seq++;
1121 } else {
1122 zp->z_atime_dirty = 1;
1123 }
1124
1125 if (flag & AT_ATIME)
1126 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_atime);
1127
1128 if (flag & AT_MTIME) {
1129 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_mtime);
1130 if (zp->z_zfsvfs->z_use_fuids)
1131 zp->z_phys->zp_flags |= (ZFS_ARCHIVE | ZFS_AV_MODIFIED);
1132 }
1133
1134 if (flag & AT_CTIME) {
1135 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_ctime);
1136 if (zp->z_zfsvfs->z_use_fuids)
1137 zp->z_phys->zp_flags |= ZFS_ARCHIVE;
1138 }
1139 }
1140
1141 /*
1142 * Update the requested znode timestamps with the current time.
1143 * If we are in a transaction, then go ahead and mark the znode
1144 * dirty in the transaction so the timestamps will go to disk.
1145 * Otherwise, we will get pushed next time the znode is updated
1146 * in a transaction, or when this znode eventually goes inactive.
1147 *
1148 * Why is this OK?
1149 * 1 - Only the ACCESS time is ever updated outside of a transaction.
1150 * 2 - Multiple consecutive updates will be collapsed into a single
1151 * znode update by the transaction grouping semantics of the DMU.
1152 */
1153 void
1154 zfs_time_stamper(znode_t *zp, uint_t flag, dmu_tx_t *tx)
1155 {
1156 mutex_enter(&zp->z_lock);
1157 zfs_time_stamper_locked(zp, flag, tx);
1158 mutex_exit(&zp->z_lock);
1159 }
1160
1161 /*
1162 * Grow the block size for a file.
1163 *
1164 * IN: zp - znode of file to free data in.
1165 * size - requested block size
1166 * tx - open transaction.
1167 *
1168 * NOTE: this function assumes that the znode is write locked.
1169 */
1170 void
1171 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
1172 {
1173 int error;
1174 u_longlong_t dummy;
1175
1176 if (size <= zp->z_blksz)
1177 return;
1178 /*
1179 * If the file size is already greater than the current blocksize,
1180 * we will not grow. If there is more than one block in a file,
1181 * the blocksize cannot change.
1182 */
1183 if (zp->z_blksz && zp->z_phys->zp_size > zp->z_blksz)
1184 return;
1185
1186 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id,
1187 size, 0, tx);
1188 if (error == ENOTSUP)
1189 return;
1190 ASSERT3U(error, ==, 0);
1191
1192 /* What blocksize did we actually get? */
1193 dmu_object_size_from_db(zp->z_dbuf, &zp->z_blksz, &dummy);
1194 }
1195
1196 /*
1197 * This is a dummy interface used when pvn_vplist_dirty() should *not*
1198 * be calling back into the fs for a putpage(). E.g.: when truncating
1199 * a file, the pages being "thrown away* don't need to be written out.
1200 */
1201 /* ARGSUSED */
1202 static int
1203 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
1204 int flags, cred_t *cr)
1205 {
1206 ASSERT(0);
1207 return (0);
1208 }
1209
1210 /*
1211 * Increase the file length
1212 *
1213 * IN: zp - znode of file to free data in.
1214 * end - new end-of-file
1215 *
1216 * RETURN: 0 if success
1217 * error code if failure
1218 */
1219 static int
1220 zfs_extend(znode_t *zp, uint64_t end)
1221 {
1222 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1223 dmu_tx_t *tx;
1224 rl_t *rl;
1225 uint64_t newblksz;
1226 int error;
1227
1228 /*
1229 * We will change zp_size, lock the whole file.
1230 */
1231 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
1232
1233 /*
1234 * Nothing to do if file already at desired length.
1235 */
1236 if (end <= zp->z_phys->zp_size) {
1237 zfs_range_unlock(rl);
1238 return (0);
1239 }
1240 top:
1241 tx = dmu_tx_create(zfsvfs->z_os);
1242 dmu_tx_hold_bonus(tx, zp->z_id);
1243 if (end > zp->z_blksz &&
1244 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) {
1245 /*
1246 * We are growing the file past the current block size.
1247 */
1248 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) {
1249 ASSERT(!ISP2(zp->z_blksz));
1250 newblksz = MIN(end, SPA_MAXBLOCKSIZE);
1251 } else {
1252 newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz);
1253 }
1254 dmu_tx_hold_write(tx, zp->z_id, 0, newblksz);
1255 } else {
1256 newblksz = 0;
1257 }
1258
1259 error = dmu_tx_assign(tx, TXG_NOWAIT);
1260 if (error) {
1261 if (error == ERESTART) {
1262 dmu_tx_wait(tx);
1263 dmu_tx_abort(tx);
1264 goto top;
1265 }
1266 dmu_tx_abort(tx);
1267 zfs_range_unlock(rl);
1268 return (error);
1269 }
1270 dmu_buf_will_dirty(zp->z_dbuf, tx);
1271
1272 if (newblksz)
1273 zfs_grow_blocksize(zp, newblksz, tx);
1274
1275 zp->z_phys->zp_size = end;
1276
1277 zfs_range_unlock(rl);
1278
1279 dmu_tx_commit(tx);
1280
1281 return (0);
1282 }
1283
1284 /*
1285 * Free space in a file.
1286 *
1287 * IN: zp - znode of file to free data in.
1288 * off - start of section to free.
1289 * len - length of section to free.
1290 *
1291 * RETURN: 0 if success
1292 * error code if failure
1293 */
1294 static int
1295 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len)
1296 {
1297 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1298 rl_t *rl;
1299 int error;
1300
1301 /*
1302 * Lock the range being freed.
1303 */
1304 rl = zfs_range_lock(zp, off, len, RL_WRITER);
1305
1306 /*
1307 * Nothing to do if file already at desired length.
1308 */
1309 if (off >= zp->z_phys->zp_size) {
1310 zfs_range_unlock(rl);
1311 return (0);
1312 }
1313
1314 if (off + len > zp->z_phys->zp_size)
1315 len = zp->z_phys->zp_size - off;
1316
1317 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len);
1318
1319 zfs_range_unlock(rl);
1320
1321 return (error);
1322 }
1323
1324 /*
1325 * Truncate a file
1326 *
1327 * IN: zp - znode of file to free data in.
1328 * end - new end-of-file.
1329 *
1330 * RETURN: 0 if success
1331 * error code if failure
1332 */
1333 static int
1334 zfs_trunc(znode_t *zp, uint64_t end)
1335 {
1336 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1337 vnode_t *vp = ZTOV(zp);
1338 dmu_tx_t *tx;
1339 rl_t *rl;
1340 int error;
1341
1342 /*
1343 * We will change zp_size, lock the whole file.
1344 */
1345 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
1346
1347 /*
1348 * Nothing to do if file already at desired length.
1349 */
1350 if (end >= zp->z_phys->zp_size) {
1351 zfs_range_unlock(rl);
1352 return (0);
1353 }
1354
1355 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, -1);
1356 if (error) {
1357 zfs_range_unlock(rl);
1358 return (error);
1359 }
1360 top:
1361 tx = dmu_tx_create(zfsvfs->z_os);
1362 dmu_tx_hold_bonus(tx, zp->z_id);
1363 error = dmu_tx_assign(tx, TXG_NOWAIT);
1364 if (error) {
1365 if (error == ERESTART) {
1366 dmu_tx_wait(tx);
1367 dmu_tx_abort(tx);
1368 goto top;
1369 }
1370 dmu_tx_abort(tx);
1371 zfs_range_unlock(rl);
1372 return (error);
1373 }
1374 dmu_buf_will_dirty(zp->z_dbuf, tx);
1375
1376 zp->z_phys->zp_size = end;
1377
1378 dmu_tx_commit(tx);
1379
1380 /*
1381 * Clear any mapped pages in the truncated region. This has to
1382 * happen outside of the transaction to avoid the possibility of
1383 * a deadlock with someone trying to push a page that we are
1384 * about to invalidate.
1385 */
1386 if (vn_has_cached_data(vp)) {
1387 page_t *pp;
1388 uint64_t start = end & PAGEMASK;
1389 int poff = end & PAGEOFFSET;
1390
1391 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) {
1392 /*
1393 * We need to zero a partial page.
1394 */
1395 pagezero(pp, poff, PAGESIZE - poff);
1396 start += PAGESIZE;
1397 page_unlock(pp);
1398 }
1399 error = pvn_vplist_dirty(vp, start, zfs_no_putpage,
1400 B_INVAL | B_TRUNC, NULL);
1401 ASSERT(error == 0);
1402 }
1403
1404 zfs_range_unlock(rl);
1405
1406 return (0);
1407 }
1408
1409 /*
1410 * Free space in a file
1411 *
1412 * IN: zp - znode of file to free data in.
1413 * off - start of range
1414 * len - end of range (0 => EOF)
1415 * flag - current file open mode flags.
1416 * log - TRUE if this action should be logged
1417 *
1418 * RETURN: 0 if success
1419 * error code if failure
1420 */
1421 int
1422 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log)
1423 {
1424 vnode_t *vp = ZTOV(zp);
1425 dmu_tx_t *tx;
1426 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1427 zilog_t *zilog = zfsvfs->z_log;
1428 int error;
1429
1430 if (off > zp->z_phys->zp_size) {
1431 error = zfs_extend(zp, off+len);
1432 if (error == 0 && log)
1433 goto log;
1434 else
1435 return (error);
1436 }
1437
1438 /*
1439 * Check for any locks in the region to be freed.
1440 */
1441 if (MANDLOCK(vp, (mode_t)zp->z_phys->zp_mode)) {
1442 uint64_t length = (len ? len : zp->z_phys->zp_size - off);
1443 if (error = chklock(vp, FWRITE, off, length, flag, NULL))
1444 return (error);
1445 }
1446
1447 if (len == 0) {
1448 error = zfs_trunc(zp, off);
1449 } else {
1450 if ((error = zfs_free_range(zp, off, len)) == 0 &&
1451 off + len > zp->z_phys->zp_size)
1452 error = zfs_extend(zp, off+len);
1453 }
1454 if (error || !log)
1455 return (error);
1456 log:
1457 tx = dmu_tx_create(zfsvfs->z_os);
1458 dmu_tx_hold_bonus(tx, zp->z_id);
1459 error = dmu_tx_assign(tx, TXG_NOWAIT);
1460 if (error) {
1461 if (error == ERESTART) {
1462 dmu_tx_wait(tx);
1463 dmu_tx_abort(tx);
1464 goto log;
1465 }
1466 dmu_tx_abort(tx);
1467 return (error);
1468 }
1469
1470 zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
1471 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
1472
1473 dmu_tx_commit(tx);
1474 return (0);
1475 }
1476
1477 void
1478 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx)
1479 {
1480 zfsvfs_t zfsvfs;
1481 uint64_t moid, obj, version;
1482 uint64_t sense = ZFS_CASE_SENSITIVE;
1483 uint64_t norm = 0;
1484 nvpair_t *elem;
1485 int error;
1486 znode_t *rootzp = NULL;
1487 vnode_t *vp;
1488 vattr_t vattr;
1489 znode_t *zp;
1490 zfs_acl_ids_t acl_ids;
1491
1492 /*
1493 * First attempt to create master node.
1494 */
1495 /*
1496 * In an empty objset, there are no blocks to read and thus
1497 * there can be no i/o errors (which we assert below).
1498 */
1499 moid = MASTER_NODE_OBJ;
1500 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE,
1501 DMU_OT_NONE, 0, tx);
1502 ASSERT(error == 0);
1503
1504 /*
1505 * Set starting attributes.
1506 */
1507 if (spa_version(dmu_objset_spa(os)) >= SPA_VERSION_USERSPACE)
1508 version = ZPL_VERSION;
1509 else if (spa_version(dmu_objset_spa(os)) >= SPA_VERSION_FUID)
1510 version = ZPL_VERSION_USERSPACE - 1;
1511 else
1512 version = ZPL_VERSION_FUID - 1;
1513 elem = NULL;
1514 while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) {
1515 /* For the moment we expect all zpl props to be uint64_ts */
1516 uint64_t val;
1517 char *name;
1518
1519 ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64);
1520 VERIFY(nvpair_value_uint64(elem, &val) == 0);
1521 name = nvpair_name(elem);
1522 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) {
1523 if (val < version)
1524 version = val;
1525 } else {
1526 error = zap_update(os, moid, name, 8, 1, &val, tx);
1527 }
1528 ASSERT(error == 0);
1529 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0)
1530 norm = val;
1531 else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0)
1532 sense = val;
1533 }
1534 ASSERT(version != 0);
1535 error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx);
1536
1537 /*
1538 * Create a delete queue.
1539 */
1540 obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx);
1541
1542 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx);
1543 ASSERT(error == 0);
1544
1545 /*
1546 * Create root znode. Create minimal znode/vnode/zfsvfs
1547 * to allow zfs_mknode to work.
1548 */
1549 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
1550 vattr.va_type = VDIR;
1551 vattr.va_mode = S_IFDIR|0755;
1552 vattr.va_uid = crgetuid(cr);
1553 vattr.va_gid = crgetgid(cr);
1554
1555 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP);
1556 rootzp->z_unlinked = 0;
1557 rootzp->z_atime_dirty = 0;
1558
1559 vp = ZTOV(rootzp);
1560 vn_reinit(vp);
1561 vp->v_type = VDIR;
1562
1563 bzero(&zfsvfs, sizeof (zfsvfs_t));
1564
1565 zfsvfs.z_os = os;
1566 zfsvfs.z_parent = &zfsvfs;
1567 zfsvfs.z_version = version;
1568 zfsvfs.z_use_fuids = USE_FUIDS(version, os);
1569 zfsvfs.z_norm = norm;
1570 /*
1571 * Fold case on file systems that are always or sometimes case
1572 * insensitive.
1573 */
1574 if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED)
1575 zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER;
1576
1577 mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1578 list_create(&zfsvfs.z_all_znodes, sizeof (znode_t),
1579 offsetof(znode_t, z_link_node));
1580
1581 ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs));
1582 rootzp->z_zfsvfs = &zfsvfs;
1583 VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr,
1584 cr, NULL, &acl_ids));
1585 zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, 0, &acl_ids);
1586 ASSERT3P(zp, ==, rootzp);
1587 ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */
1588 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx);
1589 ASSERT(error == 0);
1590 zfs_acl_ids_free(&acl_ids);
1591 POINTER_INVALIDATE(&rootzp->z_zfsvfs);
1592
1593 ZTOV(rootzp)->v_count = 0;
1594 dmu_buf_rele(rootzp->z_dbuf, NULL);
1595 rootzp->z_dbuf = NULL;
1596 kmem_cache_free(znode_cache, rootzp);
1597
1598 /*
1599 * Create shares directory
1600 */
1601
1602 error = zfs_create_share_dir(&zfsvfs, tx);
1603
1604 ASSERT(error == 0);
1605 }
1606
1607 #endif /* _KERNEL */
1608 /*
1609 * Given an object number, return its parent object number and whether
1610 * or not the object is an extended attribute directory.
1611 */
1612 static int
1613 zfs_obj_to_pobj(objset_t *osp, uint64_t obj, uint64_t *pobjp, int *is_xattrdir)
1614 {
1615 dmu_buf_t *db;
1616 dmu_object_info_t doi;
1617 znode_phys_t *zp;
1618 int error;
1619
1620 if ((error = dmu_bonus_hold(osp, obj, FTAG, &db)) != 0)
1621 return (error);
1622
1623 dmu_object_info_from_db(db, &doi);
1624 if (doi.doi_bonus_type != DMU_OT_ZNODE ||
1625 doi.doi_bonus_size < sizeof (znode_phys_t)) {
1626 dmu_buf_rele(db, FTAG);
1627 return (EINVAL);
1628 }
1629
1630 zp = db->db_data;
1631 *pobjp = zp->zp_parent;
1632 *is_xattrdir = ((zp->zp_flags & ZFS_XATTR) != 0) &&
1633 S_ISDIR(zp->zp_mode);
1634 dmu_buf_rele(db, FTAG);
1635
1636 return (0);
1637 }
1638
1639 int
1640 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len)
1641 {
1642 char *path = buf + len - 1;
1643 int error;
1644
1645 *path = '\0';
1646
1647 for (;;) {
1648 uint64_t pobj;
1649 char component[MAXNAMELEN + 2];
1650 size_t complen;
1651 int is_xattrdir;
1652
1653 if ((error = zfs_obj_to_pobj(osp, obj, &pobj,
1654 &is_xattrdir)) != 0)
1655 break;
1656
1657 if (pobj == obj) {
1658 if (path[0] != '/')
1659 *--path = '/';
1660 break;
1661 }
1662
1663 component[0] = '/';
1664 if (is_xattrdir) {
1665 (void) sprintf(component + 1, "<xattrdir>");
1666 } else {
1667 error = zap_value_search(osp, pobj, obj,
1668 ZFS_DIRENT_OBJ(-1ULL), component + 1);
1669 if (error != 0)
1670 break;
1671 }
1672
1673 complen = strlen(component);
1674 path -= complen;
1675 ASSERT(path >= buf);
1676 bcopy(component, path, complen);
1677 obj = pobj;
1678 }
1679
1680 if (error == 0)
1681 (void) memmove(buf, path, buf + len - path);
1682 return (error);
1683 }