]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zfs_znode.c
Update core ZFS code from build 121 to build 141.
[mirror_zfs.git] / module / zfs / zfs_znode.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 /* Portions Copyright 2007 Jeremy Teo */
26
27 #ifdef _KERNEL
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/time.h>
31 #include <sys/systm.h>
32 #include <sys/sysmacros.h>
33 #include <sys/resource.h>
34 #include <sys/mntent.h>
35 #include <sys/mkdev.h>
36 #include <sys/u8_textprep.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/vfs.h>
39 #include <sys/vfs_opreg.h>
40 #include <sys/vnode.h>
41 #include <sys/file.h>
42 #include <sys/kmem.h>
43 #include <sys/errno.h>
44 #include <sys/unistd.h>
45 #include <sys/mode.h>
46 #include <sys/atomic.h>
47 #include <vm/pvn.h>
48 #include "fs/fs_subr.h"
49 #include <sys/zfs_dir.h>
50 #include <sys/zfs_acl.h>
51 #include <sys/zfs_ioctl.h>
52 #include <sys/zfs_rlock.h>
53 #include <sys/zfs_fuid.h>
54 #include <sys/dnode.h>
55 #include <sys/fs/zfs.h>
56 #include <sys/kidmap.h>
57 #endif /* _KERNEL */
58
59 #include <sys/dmu.h>
60 #include <sys/refcount.h>
61 #include <sys/stat.h>
62 #include <sys/zap.h>
63 #include <sys/zfs_znode.h>
64 #include <sys/sa.h>
65 #include <sys/zfs_sa.h>
66
67 #include "zfs_prop.h"
68 #include "zfs_comutil.h"
69
70 /*
71 * Define ZNODE_STATS to turn on statistic gathering. By default, it is only
72 * turned on when DEBUG is also defined.
73 */
74 #ifdef DEBUG
75 #define ZNODE_STATS
76 #endif /* DEBUG */
77
78 #ifdef ZNODE_STATS
79 #define ZNODE_STAT_ADD(stat) ((stat)++)
80 #else
81 #define ZNODE_STAT_ADD(stat) /* nothing */
82 #endif /* ZNODE_STATS */
83
84 #define POINTER_IS_VALID(p) (!((uintptr_t)(p) & 0x3))
85 #define POINTER_INVALIDATE(pp) (*(pp) = (void *)((uintptr_t)(*(pp)) | 0x1))
86
87 /*
88 * Functions needed for userland (ie: libzpool) are not put under
89 * #ifdef_KERNEL; the rest of the functions have dependencies
90 * (such as VFS logic) that will not compile easily in userland.
91 */
92 #ifdef _KERNEL
93 /*
94 * Needed to close a small window in zfs_znode_move() that allows the zfsvfs to
95 * be freed before it can be safely accessed.
96 */
97 krwlock_t zfsvfs_lock;
98
99 static kmem_cache_t *znode_cache = NULL;
100
101 /*ARGSUSED*/
102 static void
103 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr)
104 {
105 /*
106 * We should never drop all dbuf refs without first clearing
107 * the eviction callback.
108 */
109 panic("evicting znode %p\n", user_ptr);
110 }
111
112 /*ARGSUSED*/
113 static int
114 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags)
115 {
116 znode_t *zp = buf;
117
118 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
119
120 zp->z_vnode = vn_alloc(kmflags);
121 if (zp->z_vnode == NULL) {
122 return (-1);
123 }
124 ZTOV(zp)->v_data = zp;
125
126 list_link_init(&zp->z_link_node);
127
128 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL);
129 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL);
130 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL);
131 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL);
132
133 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL);
134 avl_create(&zp->z_range_avl, zfs_range_compare,
135 sizeof (rl_t), offsetof(rl_t, r_node));
136
137 zp->z_dirlocks = NULL;
138 zp->z_acl_cached = NULL;
139 return (0);
140 }
141
142 /*ARGSUSED*/
143 static void
144 zfs_znode_cache_destructor(void *buf, void *arg)
145 {
146 znode_t *zp = buf;
147
148 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
149 ASSERT(ZTOV(zp)->v_data == zp);
150 vn_free(ZTOV(zp));
151 ASSERT(!list_link_active(&zp->z_link_node));
152 mutex_destroy(&zp->z_lock);
153 rw_destroy(&zp->z_parent_lock);
154 rw_destroy(&zp->z_name_lock);
155 mutex_destroy(&zp->z_acl_lock);
156 avl_destroy(&zp->z_range_avl);
157 mutex_destroy(&zp->z_range_lock);
158
159 ASSERT(zp->z_dirlocks == NULL);
160 ASSERT(zp->z_acl_cached == NULL);
161 }
162
163 #ifdef ZNODE_STATS
164 static struct {
165 uint64_t zms_zfsvfs_invalid;
166 uint64_t zms_zfsvfs_recheck1;
167 uint64_t zms_zfsvfs_unmounted;
168 uint64_t zms_zfsvfs_recheck2;
169 uint64_t zms_obj_held;
170 uint64_t zms_vnode_locked;
171 uint64_t zms_not_only_dnlc;
172 } znode_move_stats;
173 #endif /* ZNODE_STATS */
174
175 static void
176 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp)
177 {
178 vnode_t *vp;
179
180 /* Copy fields. */
181 nzp->z_zfsvfs = ozp->z_zfsvfs;
182
183 /* Swap vnodes. */
184 vp = nzp->z_vnode;
185 nzp->z_vnode = ozp->z_vnode;
186 ozp->z_vnode = vp; /* let destructor free the overwritten vnode */
187 ZTOV(ozp)->v_data = ozp;
188 ZTOV(nzp)->v_data = nzp;
189
190 nzp->z_id = ozp->z_id;
191 ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */
192 ASSERT(avl_numnodes(&ozp->z_range_avl) == 0);
193 nzp->z_unlinked = ozp->z_unlinked;
194 nzp->z_atime_dirty = ozp->z_atime_dirty;
195 nzp->z_zn_prefetch = ozp->z_zn_prefetch;
196 nzp->z_blksz = ozp->z_blksz;
197 nzp->z_seq = ozp->z_seq;
198 nzp->z_mapcnt = ozp->z_mapcnt;
199 nzp->z_last_itx = ozp->z_last_itx;
200 nzp->z_gen = ozp->z_gen;
201 nzp->z_sync_cnt = ozp->z_sync_cnt;
202 nzp->z_is_sa = ozp->z_is_sa;
203 nzp->z_sa_hdl = ozp->z_sa_hdl;
204 bcopy(ozp->z_atime, nzp->z_atime, sizeof (uint64_t) * 2);
205 nzp->z_links = ozp->z_links;
206 nzp->z_size = ozp->z_size;
207 nzp->z_pflags = ozp->z_pflags;
208 nzp->z_uid = ozp->z_uid;
209 nzp->z_gid = ozp->z_gid;
210 nzp->z_mode = ozp->z_mode;
211
212 /*
213 * Since this is just an idle znode and kmem is already dealing with
214 * memory pressure, release any cached ACL.
215 */
216 if (ozp->z_acl_cached) {
217 zfs_acl_free(ozp->z_acl_cached);
218 ozp->z_acl_cached = NULL;
219 }
220
221 sa_set_userp(nzp->z_sa_hdl, nzp);
222
223 /*
224 * Invalidate the original znode by clearing fields that provide a
225 * pointer back to the znode. Set the low bit of the vfs pointer to
226 * ensure that zfs_znode_move() recognizes the znode as invalid in any
227 * subsequent callback.
228 */
229 ozp->z_sa_hdl = NULL;
230 POINTER_INVALIDATE(&ozp->z_zfsvfs);
231 }
232
233 /*ARGSUSED*/
234 static kmem_cbrc_t
235 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg)
236 {
237 znode_t *ozp = buf, *nzp = newbuf;
238 zfsvfs_t *zfsvfs;
239 vnode_t *vp;
240
241 /*
242 * The znode is on the file system's list of known znodes if the vfs
243 * pointer is valid. We set the low bit of the vfs pointer when freeing
244 * the znode to invalidate it, and the memory patterns written by kmem
245 * (baddcafe and deadbeef) set at least one of the two low bits. A newly
246 * created znode sets the vfs pointer last of all to indicate that the
247 * znode is known and in a valid state to be moved by this function.
248 */
249 zfsvfs = ozp->z_zfsvfs;
250 if (!POINTER_IS_VALID(zfsvfs)) {
251 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid);
252 return (KMEM_CBRC_DONT_KNOW);
253 }
254
255 /*
256 * Close a small window in which it's possible that the filesystem could
257 * be unmounted and freed, and zfsvfs, though valid in the previous
258 * statement, could point to unrelated memory by the time we try to
259 * prevent the filesystem from being unmounted.
260 */
261 rw_enter(&zfsvfs_lock, RW_WRITER);
262 if (zfsvfs != ozp->z_zfsvfs) {
263 rw_exit(&zfsvfs_lock);
264 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck1);
265 return (KMEM_CBRC_DONT_KNOW);
266 }
267
268 /*
269 * If the znode is still valid, then so is the file system. We know that
270 * no valid file system can be freed while we hold zfsvfs_lock, so we
271 * can safely ensure that the filesystem is not and will not be
272 * unmounted. The next statement is equivalent to ZFS_ENTER().
273 */
274 rrw_enter(&zfsvfs->z_teardown_lock, RW_READER, FTAG);
275 if (zfsvfs->z_unmounted) {
276 ZFS_EXIT(zfsvfs);
277 rw_exit(&zfsvfs_lock);
278 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted);
279 return (KMEM_CBRC_DONT_KNOW);
280 }
281 rw_exit(&zfsvfs_lock);
282
283 mutex_enter(&zfsvfs->z_znodes_lock);
284 /*
285 * Recheck the vfs pointer in case the znode was removed just before
286 * acquiring the lock.
287 */
288 if (zfsvfs != ozp->z_zfsvfs) {
289 mutex_exit(&zfsvfs->z_znodes_lock);
290 ZFS_EXIT(zfsvfs);
291 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck2);
292 return (KMEM_CBRC_DONT_KNOW);
293 }
294
295 /*
296 * At this point we know that as long as we hold z_znodes_lock, the
297 * znode cannot be freed and fields within the znode can be safely
298 * accessed. Now, prevent a race with zfs_zget().
299 */
300 if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) {
301 mutex_exit(&zfsvfs->z_znodes_lock);
302 ZFS_EXIT(zfsvfs);
303 ZNODE_STAT_ADD(znode_move_stats.zms_obj_held);
304 return (KMEM_CBRC_LATER);
305 }
306
307 vp = ZTOV(ozp);
308 if (mutex_tryenter(&vp->v_lock) == 0) {
309 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
310 mutex_exit(&zfsvfs->z_znodes_lock);
311 ZFS_EXIT(zfsvfs);
312 ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked);
313 return (KMEM_CBRC_LATER);
314 }
315
316 /* Only move znodes that are referenced _only_ by the DNLC. */
317 if (vp->v_count != 1 || !vn_in_dnlc(vp)) {
318 mutex_exit(&vp->v_lock);
319 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
320 mutex_exit(&zfsvfs->z_znodes_lock);
321 ZFS_EXIT(zfsvfs);
322 ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc);
323 return (KMEM_CBRC_LATER);
324 }
325
326 /*
327 * The znode is known and in a valid state to move. We're holding the
328 * locks needed to execute the critical section.
329 */
330 zfs_znode_move_impl(ozp, nzp);
331 mutex_exit(&vp->v_lock);
332 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
333
334 list_link_replace(&ozp->z_link_node, &nzp->z_link_node);
335 mutex_exit(&zfsvfs->z_znodes_lock);
336 ZFS_EXIT(zfsvfs);
337
338 return (KMEM_CBRC_YES);
339 }
340
341 void
342 zfs_znode_init(void)
343 {
344 /*
345 * Initialize zcache
346 */
347 rw_init(&zfsvfs_lock, NULL, RW_DEFAULT, NULL);
348 ASSERT(znode_cache == NULL);
349 znode_cache = kmem_cache_create("zfs_znode_cache",
350 sizeof (znode_t), 0, zfs_znode_cache_constructor,
351 zfs_znode_cache_destructor, NULL, NULL, NULL, 0);
352 kmem_cache_set_move(znode_cache, zfs_znode_move);
353 }
354
355 void
356 zfs_znode_fini(void)
357 {
358 /*
359 * Cleanup vfs & vnode ops
360 */
361 zfs_remove_op_tables();
362
363 /*
364 * Cleanup zcache
365 */
366 if (znode_cache)
367 kmem_cache_destroy(znode_cache);
368 znode_cache = NULL;
369 rw_destroy(&zfsvfs_lock);
370 }
371
372 struct vnodeops *zfs_dvnodeops;
373 struct vnodeops *zfs_fvnodeops;
374 struct vnodeops *zfs_symvnodeops;
375 struct vnodeops *zfs_xdvnodeops;
376 struct vnodeops *zfs_evnodeops;
377 struct vnodeops *zfs_sharevnodeops;
378
379 void
380 zfs_remove_op_tables()
381 {
382 /*
383 * Remove vfs ops
384 */
385 ASSERT(zfsfstype);
386 (void) vfs_freevfsops_by_type(zfsfstype);
387 zfsfstype = 0;
388
389 /*
390 * Remove vnode ops
391 */
392 if (zfs_dvnodeops)
393 vn_freevnodeops(zfs_dvnodeops);
394 if (zfs_fvnodeops)
395 vn_freevnodeops(zfs_fvnodeops);
396 if (zfs_symvnodeops)
397 vn_freevnodeops(zfs_symvnodeops);
398 if (zfs_xdvnodeops)
399 vn_freevnodeops(zfs_xdvnodeops);
400 if (zfs_evnodeops)
401 vn_freevnodeops(zfs_evnodeops);
402 if (zfs_sharevnodeops)
403 vn_freevnodeops(zfs_sharevnodeops);
404
405 zfs_dvnodeops = NULL;
406 zfs_fvnodeops = NULL;
407 zfs_symvnodeops = NULL;
408 zfs_xdvnodeops = NULL;
409 zfs_evnodeops = NULL;
410 zfs_sharevnodeops = NULL;
411 }
412
413 extern const fs_operation_def_t zfs_dvnodeops_template[];
414 extern const fs_operation_def_t zfs_fvnodeops_template[];
415 extern const fs_operation_def_t zfs_xdvnodeops_template[];
416 extern const fs_operation_def_t zfs_symvnodeops_template[];
417 extern const fs_operation_def_t zfs_evnodeops_template[];
418 extern const fs_operation_def_t zfs_sharevnodeops_template[];
419
420 int
421 zfs_create_op_tables()
422 {
423 int error;
424
425 /*
426 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs()
427 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv).
428 * In this case we just return as the ops vectors are already set up.
429 */
430 if (zfs_dvnodeops)
431 return (0);
432
433 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template,
434 &zfs_dvnodeops);
435 if (error)
436 return (error);
437
438 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template,
439 &zfs_fvnodeops);
440 if (error)
441 return (error);
442
443 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template,
444 &zfs_symvnodeops);
445 if (error)
446 return (error);
447
448 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template,
449 &zfs_xdvnodeops);
450 if (error)
451 return (error);
452
453 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template,
454 &zfs_evnodeops);
455 if (error)
456 return (error);
457
458 error = vn_make_ops(MNTTYPE_ZFS, zfs_sharevnodeops_template,
459 &zfs_sharevnodeops);
460
461 return (error);
462 }
463
464 int
465 zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
466 {
467 zfs_acl_ids_t acl_ids;
468 vattr_t vattr;
469 znode_t *sharezp;
470 vnode_t *vp;
471 znode_t *zp;
472 int error;
473
474 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
475 vattr.va_type = VDIR;
476 vattr.va_mode = S_IFDIR|0555;
477 vattr.va_uid = crgetuid(kcred);
478 vattr.va_gid = crgetgid(kcred);
479
480 sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP);
481 sharezp->z_unlinked = 0;
482 sharezp->z_atime_dirty = 0;
483 sharezp->z_zfsvfs = zfsvfs;
484 sharezp->z_is_sa = zfsvfs->z_use_sa;
485
486 vp = ZTOV(sharezp);
487 vn_reinit(vp);
488 vp->v_type = VDIR;
489
490 VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr,
491 kcred, NULL, &acl_ids));
492 zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE, &zp, &acl_ids);
493 ASSERT3P(zp, ==, sharezp);
494 ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */
495 POINTER_INVALIDATE(&sharezp->z_zfsvfs);
496 error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
497 ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx);
498 zfsvfs->z_shares_dir = sharezp->z_id;
499
500 zfs_acl_ids_free(&acl_ids);
501 ZTOV(sharezp)->v_count = 0;
502 sa_handle_destroy(sharezp->z_sa_hdl);
503 kmem_cache_free(znode_cache, sharezp);
504
505 return (error);
506 }
507
508 /*
509 * define a couple of values we need available
510 * for both 64 and 32 bit environments.
511 */
512 #ifndef NBITSMINOR64
513 #define NBITSMINOR64 32
514 #endif
515 #ifndef MAXMAJ64
516 #define MAXMAJ64 0xffffffffUL
517 #endif
518 #ifndef MAXMIN64
519 #define MAXMIN64 0xffffffffUL
520 #endif
521
522 /*
523 * Create special expldev for ZFS private use.
524 * Can't use standard expldev since it doesn't do
525 * what we want. The standard expldev() takes a
526 * dev32_t in LP64 and expands it to a long dev_t.
527 * We need an interface that takes a dev32_t in ILP32
528 * and expands it to a long dev_t.
529 */
530 static uint64_t
531 zfs_expldev(dev_t dev)
532 {
533 #ifndef _LP64
534 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32;
535 return (((uint64_t)major << NBITSMINOR64) |
536 ((minor_t)dev & MAXMIN32));
537 #else
538 return (dev);
539 #endif
540 }
541
542 /*
543 * Special cmpldev for ZFS private use.
544 * Can't use standard cmpldev since it takes
545 * a long dev_t and compresses it to dev32_t in
546 * LP64. We need to do a compaction of a long dev_t
547 * to a dev32_t in ILP32.
548 */
549 dev_t
550 zfs_cmpldev(uint64_t dev)
551 {
552 #ifndef _LP64
553 minor_t minor = (minor_t)dev & MAXMIN64;
554 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64;
555
556 if (major > MAXMAJ32 || minor > MAXMIN32)
557 return (NODEV32);
558
559 return (((dev32_t)major << NBITSMINOR32) | minor);
560 #else
561 return (dev);
562 #endif
563 }
564
565 static void
566 zfs_znode_sa_init(zfsvfs_t *zfsvfs, znode_t *zp,
567 dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl)
568 {
569 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs));
570 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id)));
571
572 mutex_enter(&zp->z_lock);
573
574 ASSERT(zp->z_sa_hdl == NULL);
575 ASSERT(zp->z_acl_cached == NULL);
576 if (sa_hdl == NULL) {
577 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, zp,
578 SA_HDL_SHARED, &zp->z_sa_hdl));
579 } else {
580 zp->z_sa_hdl = sa_hdl;
581 sa_set_userp(sa_hdl, zp);
582 }
583
584 zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE;
585
586 /*
587 * Slap on VROOT if we are the root znode
588 */
589 if (zp->z_id == zfsvfs->z_root)
590 ZTOV(zp)->v_flag |= VROOT;
591
592 mutex_exit(&zp->z_lock);
593 vn_exists(ZTOV(zp));
594 }
595
596 void
597 zfs_znode_dmu_fini(znode_t *zp)
598 {
599 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) ||
600 zp->z_unlinked ||
601 RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock));
602
603 sa_handle_destroy(zp->z_sa_hdl);
604 zp->z_sa_hdl = NULL;
605 }
606
607 /*
608 * Construct a new znode/vnode and intialize.
609 *
610 * This does not do a call to dmu_set_user() that is
611 * up to the caller to do, in case you don't want to
612 * return the znode
613 */
614 static znode_t *
615 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz,
616 dmu_object_type_t obj_type, sa_handle_t *hdl)
617 {
618 znode_t *zp;
619 vnode_t *vp;
620 uint64_t mode;
621 uint64_t parent;
622 uint64_t uid, gid;
623 sa_bulk_attr_t bulk[9];
624 int count = 0;
625
626 zp = kmem_cache_alloc(znode_cache, KM_SLEEP);
627
628 ASSERT(zp->z_dirlocks == NULL);
629 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
630
631 /*
632 * Defer setting z_zfsvfs until the znode is ready to be a candidate for
633 * the zfs_znode_move() callback.
634 */
635 zp->z_sa_hdl = NULL;
636 zp->z_unlinked = 0;
637 zp->z_atime_dirty = 0;
638 zp->z_mapcnt = 0;
639 zp->z_last_itx = 0;
640 zp->z_id = db->db_object;
641 zp->z_blksz = blksz;
642 zp->z_seq = 0x7A4653;
643 zp->z_sync_cnt = 0;
644
645 vp = ZTOV(zp);
646 vn_reinit(vp);
647
648 zfs_znode_sa_init(zfsvfs, zp, db, obj_type, hdl);
649
650 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
651 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &zp->z_gen, 8);
652 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
653 &zp->z_size, 8);
654 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL,
655 &zp->z_links, 8);
656 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
657 &zp->z_pflags, 8);
658 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL, &parent, 8);
659 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
660 &zp->z_atime, 16);
661 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
662 &uid, 8);
663 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
664 &gid, 8);
665
666 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || zp->z_gen == 0) {
667 if (hdl == NULL)
668 sa_handle_destroy(zp->z_sa_hdl);
669 kmem_cache_free(znode_cache, zp);
670 return (NULL);
671 }
672
673 zp->z_uid = zfs_fuid_map_id(zfsvfs, uid, CRED(), ZFS_OWNER);
674 zp->z_gid = zfs_fuid_map_id(zfsvfs, gid, CRED(), ZFS_GROUP);
675 zp->z_mode = mode;
676 vp->v_vfsp = zfsvfs->z_parent->z_vfs;
677
678 vp->v_type = IFTOVT((mode_t)mode);
679
680 switch (vp->v_type) {
681 case VDIR:
682 if (zp->z_pflags & ZFS_XATTR) {
683 vn_setops(vp, zfs_xdvnodeops);
684 vp->v_flag |= V_XATTRDIR;
685 } else {
686 vn_setops(vp, zfs_dvnodeops);
687 }
688 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */
689 break;
690 case VBLK:
691 case VCHR:
692 {
693 uint64_t rdev;
694 VERIFY(sa_lookup(zp->z_sa_hdl, SA_ZPL_RDEV(zfsvfs),
695 &rdev, sizeof (rdev)) == 0);
696
697 vp->v_rdev = zfs_cmpldev(rdev);
698 }
699 /*FALLTHROUGH*/
700 case VFIFO:
701 case VSOCK:
702 case VDOOR:
703 vn_setops(vp, zfs_fvnodeops);
704 break;
705 case VREG:
706 vp->v_flag |= VMODSORT;
707 if (parent == zfsvfs->z_shares_dir) {
708 ASSERT(uid == 0 && gid == 0);
709 vn_setops(vp, zfs_sharevnodeops);
710 } else {
711 vn_setops(vp, zfs_fvnodeops);
712 }
713 break;
714 case VLNK:
715 vn_setops(vp, zfs_symvnodeops);
716 break;
717 default:
718 vn_setops(vp, zfs_evnodeops);
719 break;
720 }
721
722 mutex_enter(&zfsvfs->z_znodes_lock);
723 list_insert_tail(&zfsvfs->z_all_znodes, zp);
724 membar_producer();
725 /*
726 * Everything else must be valid before assigning z_zfsvfs makes the
727 * znode eligible for zfs_znode_move().
728 */
729 zp->z_zfsvfs = zfsvfs;
730 mutex_exit(&zfsvfs->z_znodes_lock);
731
732 VFS_HOLD(zfsvfs->z_vfs);
733 return (zp);
734 }
735
736 static uint64_t empty_xattr;
737 static uint64_t pad[4];
738 static zfs_acl_phys_t acl_phys;
739 /*
740 * Create a new DMU object to hold a zfs znode.
741 *
742 * IN: dzp - parent directory for new znode
743 * vap - file attributes for new znode
744 * tx - dmu transaction id for zap operations
745 * cr - credentials of caller
746 * flag - flags:
747 * IS_ROOT_NODE - new object will be root
748 * IS_XATTR - new object is an attribute
749 * bonuslen - length of bonus buffer
750 * setaclp - File/Dir initial ACL
751 * fuidp - Tracks fuid allocation.
752 *
753 * OUT: zpp - allocated znode
754 *
755 */
756 void
757 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr,
758 uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids)
759 {
760 uint64_t crtime[2], atime[2], mtime[2], ctime[2];
761 uint64_t mode, size, links, parent, pflags;
762 uint64_t dzp_pflags = 0;
763 uint64_t rdev = 0;
764 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
765 dmu_buf_t *db;
766 timestruc_t now;
767 uint64_t gen, obj;
768 int err;
769 int bonuslen;
770 sa_handle_t *sa_hdl;
771 dmu_object_type_t obj_type;
772 sa_bulk_attr_t sa_attrs[ZPL_END];
773 int cnt = 0;
774 zfs_acl_locator_cb_t locate = { 0 };
775
776 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
777
778 if (zfsvfs->z_replay) {
779 obj = vap->va_nodeid;
780 now = vap->va_ctime; /* see zfs_replay_create() */
781 gen = vap->va_nblocks; /* ditto */
782 } else {
783 obj = 0;
784 gethrestime(&now);
785 gen = dmu_tx_get_txg(tx);
786 }
787
788 obj_type = zfsvfs->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE;
789 bonuslen = (obj_type == DMU_OT_SA) ?
790 DN_MAX_BONUSLEN : ZFS_OLD_ZNODE_PHYS_SIZE;
791
792 /*
793 * Create a new DMU object.
794 */
795 /*
796 * There's currently no mechanism for pre-reading the blocks that will
797 * be to needed allocate a new object, so we accept the small chance
798 * that there will be an i/o error and we will fail one of the
799 * assertions below.
800 */
801 if (vap->va_type == VDIR) {
802 if (zfsvfs->z_replay) {
803 err = zap_create_claim_norm(zfsvfs->z_os, obj,
804 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
805 obj_type, bonuslen, tx);
806 ASSERT3U(err, ==, 0);
807 } else {
808 obj = zap_create_norm(zfsvfs->z_os,
809 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
810 obj_type, bonuslen, tx);
811 }
812 } else {
813 if (zfsvfs->z_replay) {
814 err = dmu_object_claim(zfsvfs->z_os, obj,
815 DMU_OT_PLAIN_FILE_CONTENTS, 0,
816 obj_type, bonuslen, tx);
817 ASSERT3U(err, ==, 0);
818 } else {
819 obj = dmu_object_alloc(zfsvfs->z_os,
820 DMU_OT_PLAIN_FILE_CONTENTS, 0,
821 obj_type, bonuslen, tx);
822 }
823 }
824
825 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
826 VERIFY(0 == sa_buf_hold(zfsvfs->z_os, obj, NULL, &db));
827
828 /*
829 * If this is the root, fix up the half-initialized parent pointer
830 * to reference the just-allocated physical data area.
831 */
832 if (flag & IS_ROOT_NODE) {
833 dzp->z_id = obj;
834 } else {
835 dzp_pflags = dzp->z_pflags;
836 }
837
838 /*
839 * If parent is an xattr, so am I.
840 */
841 if (dzp_pflags & ZFS_XATTR) {
842 flag |= IS_XATTR;
843 }
844
845 if (zfsvfs->z_use_fuids)
846 pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED;
847 else
848 pflags = 0;
849
850 if (vap->va_type == VDIR) {
851 size = 2; /* contents ("." and "..") */
852 links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1;
853 } else {
854 size = links = 0;
855 }
856
857 if (vap->va_type == VBLK || vap->va_type == VCHR) {
858 rdev = zfs_expldev(vap->va_rdev);
859 }
860
861 parent = dzp->z_id;
862 mode = acl_ids->z_mode;
863 if (flag & IS_XATTR)
864 pflags |= ZFS_XATTR;
865
866 /*
867 * No execs denied will be deterimed when zfs_mode_compute() is called.
868 */
869 pflags |= acl_ids->z_aclp->z_hints &
870 (ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT|
871 ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED);
872
873 ZFS_TIME_ENCODE(&now, crtime);
874 ZFS_TIME_ENCODE(&now, ctime);
875
876 if (vap->va_mask & AT_ATIME) {
877 ZFS_TIME_ENCODE(&vap->va_atime, atime);
878 } else {
879 ZFS_TIME_ENCODE(&now, atime);
880 }
881
882 if (vap->va_mask & AT_MTIME) {
883 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
884 } else {
885 ZFS_TIME_ENCODE(&now, mtime);
886 }
887
888 /* Now add in all of the "SA" attributes */
889 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, NULL, SA_HDL_SHARED,
890 &sa_hdl));
891
892 /*
893 * Setup the array of attributes to be replaced/set on the new file
894 *
895 * order for DMU_OT_ZNODE is critical since it needs to be constructed
896 * in the old znode_phys_t format. Don't change this ordering
897 */
898
899 if (obj_type == DMU_OT_ZNODE) {
900 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
901 NULL, &atime, 16);
902 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
903 NULL, &mtime, 16);
904 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
905 NULL, &ctime, 16);
906 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
907 NULL, &crtime, 16);
908 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
909 NULL, &gen, 8);
910 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
911 NULL, &mode, 8);
912 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
913 NULL, &size, 8);
914 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
915 NULL, &parent, 8);
916 } else {
917 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
918 NULL, &mode, 8);
919 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
920 NULL, &size, 8);
921 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
922 NULL, &gen, 8);
923 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL,
924 &acl_ids->z_fuid, 8);
925 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL,
926 &acl_ids->z_fgid, 8);
927 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
928 NULL, &parent, 8);
929 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
930 NULL, &pflags, 8);
931 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
932 NULL, &atime, 16);
933 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
934 NULL, &mtime, 16);
935 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
936 NULL, &ctime, 16);
937 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
938 NULL, &crtime, 16);
939 }
940
941 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8);
942
943 if (obj_type == DMU_OT_ZNODE) {
944 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zfsvfs), NULL,
945 &empty_xattr, 8);
946 }
947 if (obj_type == DMU_OT_ZNODE ||
948 (vap->va_type == VBLK || vap->va_type == VCHR)) {
949 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zfsvfs),
950 NULL, &rdev, 8);
951
952 }
953 if (obj_type == DMU_OT_ZNODE) {
954 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
955 NULL, &pflags, 8);
956 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL,
957 &acl_ids->z_fuid, 8);
958 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL,
959 &acl_ids->z_fgid, 8);
960 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zfsvfs), NULL, pad,
961 sizeof (uint64_t) * 4);
962 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zfsvfs), NULL,
963 &acl_phys, sizeof (zfs_acl_phys_t));
964 } else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) {
965 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zfsvfs), NULL,
966 &acl_ids->z_aclp->z_acl_count, 8);
967 locate.cb_aclp = acl_ids->z_aclp;
968 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zfsvfs),
969 zfs_acl_data_locator, &locate,
970 acl_ids->z_aclp->z_acl_bytes);
971 mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags,
972 acl_ids->z_fuid, acl_ids->z_fgid);
973 }
974
975 VERIFY(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx) == 0);
976
977 if (!(flag & IS_ROOT_NODE)) {
978 *zpp = zfs_znode_alloc(zfsvfs, db, 0, obj_type, sa_hdl);
979 ASSERT(*zpp != NULL);
980 } else {
981 /*
982 * If we are creating the root node, the "parent" we
983 * passed in is the znode for the root.
984 */
985 *zpp = dzp;
986
987 (*zpp)->z_sa_hdl = sa_hdl;
988 }
989
990 (*zpp)->z_pflags = pflags;
991 (*zpp)->z_mode = mode;
992
993 if (vap->va_mask & AT_XVATTR)
994 zfs_xvattr_set(*zpp, (xvattr_t *)vap, tx);
995
996 if (obj_type == DMU_OT_ZNODE ||
997 acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) {
998 err = zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx);
999 ASSERT3P(err, ==, 0);
1000 }
1001 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
1002 }
1003
1004 /*
1005 * zfs_xvattr_set only updates the in-core attributes
1006 * it is assumed the caller will be doing an sa_bulk_update
1007 * to push the changes out
1008 */
1009 void
1010 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx)
1011 {
1012 xoptattr_t *xoap;
1013
1014 xoap = xva_getxoptattr(xvap);
1015 ASSERT(xoap);
1016
1017 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
1018 uint64_t times[2];
1019 ZFS_TIME_ENCODE(&xoap->xoa_createtime, times);
1020 (void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(zp->z_zfsvfs),
1021 &times, sizeof (times), tx);
1022 XVA_SET_RTN(xvap, XAT_CREATETIME);
1023 }
1024 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
1025 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly,
1026 zp->z_pflags, tx);
1027 XVA_SET_RTN(xvap, XAT_READONLY);
1028 }
1029 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
1030 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden,
1031 zp->z_pflags, tx);
1032 XVA_SET_RTN(xvap, XAT_HIDDEN);
1033 }
1034 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
1035 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system,
1036 zp->z_pflags, tx);
1037 XVA_SET_RTN(xvap, XAT_SYSTEM);
1038 }
1039 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
1040 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive,
1041 zp->z_pflags, tx);
1042 XVA_SET_RTN(xvap, XAT_ARCHIVE);
1043 }
1044 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
1045 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable,
1046 zp->z_pflags, tx);
1047 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
1048 }
1049 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
1050 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink,
1051 zp->z_pflags, tx);
1052 XVA_SET_RTN(xvap, XAT_NOUNLINK);
1053 }
1054 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
1055 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly,
1056 zp->z_pflags, tx);
1057 XVA_SET_RTN(xvap, XAT_APPENDONLY);
1058 }
1059 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
1060 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump,
1061 zp->z_pflags, tx);
1062 XVA_SET_RTN(xvap, XAT_NODUMP);
1063 }
1064 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
1065 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque,
1066 zp->z_pflags, tx);
1067 XVA_SET_RTN(xvap, XAT_OPAQUE);
1068 }
1069 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
1070 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED,
1071 xoap->xoa_av_quarantined, zp->z_pflags, tx);
1072 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
1073 }
1074 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
1075 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified,
1076 zp->z_pflags, tx);
1077 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
1078 }
1079 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
1080 zfs_sa_set_scanstamp(zp, xvap, tx);
1081 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
1082 }
1083 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
1084 ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse,
1085 zp->z_pflags, tx);
1086 XVA_SET_RTN(xvap, XAT_REPARSE);
1087 }
1088 }
1089
1090 int
1091 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp)
1092 {
1093 dmu_object_info_t doi;
1094 dmu_buf_t *db;
1095 znode_t *zp;
1096 int err;
1097 sa_handle_t *hdl;
1098
1099 *zpp = NULL;
1100
1101 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
1102
1103 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
1104 if (err) {
1105 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1106 return (err);
1107 }
1108
1109 dmu_object_info_from_db(db, &doi);
1110 if (doi.doi_bonus_type != DMU_OT_SA &&
1111 (doi.doi_bonus_type != DMU_OT_ZNODE ||
1112 (doi.doi_bonus_type == DMU_OT_ZNODE &&
1113 doi.doi_bonus_size < sizeof (znode_phys_t)))) {
1114 sa_buf_rele(db, NULL);
1115 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1116 return (EINVAL);
1117 }
1118
1119 hdl = dmu_buf_get_user(db);
1120 if (hdl != NULL) {
1121 zp = sa_get_userdata(hdl);
1122
1123
1124 /*
1125 * Since "SA" does immediate eviction we
1126 * should never find a sa handle that doesn't
1127 * know about the znode.
1128 */
1129
1130 ASSERT3P(zp, !=, NULL);
1131
1132 mutex_enter(&zp->z_lock);
1133 ASSERT3U(zp->z_id, ==, obj_num);
1134 if (zp->z_unlinked) {
1135 err = ENOENT;
1136 } else {
1137 VN_HOLD(ZTOV(zp));
1138 *zpp = zp;
1139 err = 0;
1140 }
1141 sa_buf_rele(db, NULL);
1142 mutex_exit(&zp->z_lock);
1143 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1144 return (err);
1145 }
1146
1147 /*
1148 * Not found create new znode/vnode
1149 * but only if file exists.
1150 *
1151 * There is a small window where zfs_vget() could
1152 * find this object while a file create is still in
1153 * progress. This is checked for in zfs_znode_alloc()
1154 *
1155 * if zfs_znode_alloc() fails it will drop the hold on the
1156 * bonus buffer.
1157 */
1158 zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size,
1159 doi.doi_bonus_type, NULL);
1160 if (zp == NULL) {
1161 err = ENOENT;
1162 } else {
1163 *zpp = zp;
1164 }
1165 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1166 return (err);
1167 }
1168
1169 int
1170 zfs_rezget(znode_t *zp)
1171 {
1172 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1173 dmu_object_info_t doi;
1174 dmu_buf_t *db;
1175 uint64_t obj_num = zp->z_id;
1176 uint64_t mode;
1177 uint64_t uid, gid;
1178 sa_bulk_attr_t bulk[8];
1179 int err;
1180 int count = 0;
1181 uint64_t gen;
1182
1183 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
1184
1185 mutex_enter(&zp->z_acl_lock);
1186 if (zp->z_acl_cached) {
1187 zfs_acl_free(zp->z_acl_cached);
1188 zp->z_acl_cached = NULL;
1189 }
1190
1191 mutex_exit(&zp->z_acl_lock);
1192 ASSERT(zp->z_sa_hdl == NULL);
1193 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
1194 if (err) {
1195 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1196 return (err);
1197 }
1198
1199 dmu_object_info_from_db(db, &doi);
1200 if (doi.doi_bonus_type != DMU_OT_SA &&
1201 (doi.doi_bonus_type != DMU_OT_ZNODE ||
1202 (doi.doi_bonus_type == DMU_OT_ZNODE &&
1203 doi.doi_bonus_size < sizeof (znode_phys_t)))) {
1204 sa_buf_rele(db, NULL);
1205 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1206 return (EINVAL);
1207 }
1208
1209 zfs_znode_sa_init(zfsvfs, zp, db, doi.doi_bonus_type, NULL);
1210
1211 /* reload cached values */
1212 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL,
1213 &gen, sizeof (gen));
1214 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
1215 &zp->z_size, sizeof (zp->z_size));
1216 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL,
1217 &zp->z_links, sizeof (zp->z_links));
1218 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
1219 &zp->z_pflags, sizeof (zp->z_pflags));
1220 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
1221 &zp->z_atime, sizeof (zp->z_atime));
1222 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
1223 &uid, sizeof (uid));
1224 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
1225 &gid, sizeof (gid));
1226 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
1227 &mode, sizeof (mode));
1228
1229 zp->z_mode = mode;
1230
1231 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) {
1232 zfs_znode_dmu_fini(zp);
1233 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1234 return (EIO);
1235 }
1236
1237 if (gen != zp->z_gen) {
1238 zfs_znode_dmu_fini(zp);
1239 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1240 return (EIO);
1241 }
1242
1243 zp->z_uid = zfs_fuid_map_id(zfsvfs, uid, CRED(), ZFS_OWNER);
1244 zp->z_gid = zfs_fuid_map_id(zfsvfs, gid, CRED(), ZFS_GROUP);
1245 zp->z_unlinked = (zp->z_links == 0);
1246 zp->z_blksz = doi.doi_data_block_size;
1247
1248 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1249
1250 return (0);
1251 }
1252
1253 void
1254 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx)
1255 {
1256 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1257 objset_t *os = zfsvfs->z_os;
1258 uint64_t obj = zp->z_id;
1259 uint64_t acl_obj = ZFS_EXTERNAL_ACL(zp);
1260
1261 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
1262 if (acl_obj)
1263 VERIFY(0 == dmu_object_free(os, acl_obj, tx));
1264 VERIFY(0 == dmu_object_free(os, obj, tx));
1265 zfs_znode_dmu_fini(zp);
1266 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
1267 zfs_znode_free(zp);
1268 }
1269
1270 void
1271 zfs_zinactive(znode_t *zp)
1272 {
1273 vnode_t *vp = ZTOV(zp);
1274 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1275 uint64_t z_id = zp->z_id;
1276
1277 ASSERT(zp->z_sa_hdl);
1278
1279 /*
1280 * Don't allow a zfs_zget() while were trying to release this znode
1281 */
1282 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id);
1283
1284 mutex_enter(&zp->z_lock);
1285 mutex_enter(&vp->v_lock);
1286 vp->v_count--;
1287 if (vp->v_count > 0 || vn_has_cached_data(vp)) {
1288 /*
1289 * If the hold count is greater than zero, somebody has
1290 * obtained a new reference on this znode while we were
1291 * processing it here, so we are done. If we still have
1292 * mapped pages then we are also done, since we don't
1293 * want to inactivate the znode until the pages get pushed.
1294 *
1295 * XXX - if vn_has_cached_data(vp) is true, but count == 0,
1296 * this seems like it would leave the znode hanging with
1297 * no chance to go inactive...
1298 */
1299 mutex_exit(&vp->v_lock);
1300 mutex_exit(&zp->z_lock);
1301 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1302 return;
1303 }
1304 mutex_exit(&vp->v_lock);
1305
1306 /*
1307 * If this was the last reference to a file with no links,
1308 * remove the file from the file system.
1309 */
1310 if (zp->z_unlinked) {
1311 mutex_exit(&zp->z_lock);
1312 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1313 zfs_rmnode(zp);
1314 return;
1315 }
1316
1317 mutex_exit(&zp->z_lock);
1318 zfs_znode_dmu_fini(zp);
1319 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1320 zfs_znode_free(zp);
1321 }
1322
1323 void
1324 zfs_znode_free(znode_t *zp)
1325 {
1326 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1327
1328 vn_invalid(ZTOV(zp));
1329
1330 ASSERT(ZTOV(zp)->v_count == 0);
1331
1332 mutex_enter(&zfsvfs->z_znodes_lock);
1333 POINTER_INVALIDATE(&zp->z_zfsvfs);
1334 list_remove(&zfsvfs->z_all_znodes, zp);
1335 mutex_exit(&zfsvfs->z_znodes_lock);
1336
1337 if (zp->z_acl_cached) {
1338 zfs_acl_free(zp->z_acl_cached);
1339 zp->z_acl_cached = NULL;
1340 }
1341
1342 kmem_cache_free(znode_cache, zp);
1343
1344 VFS_RELE(zfsvfs->z_vfs);
1345 }
1346
1347 void
1348 zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2],
1349 uint64_t ctime[2], boolean_t have_tx)
1350 {
1351 timestruc_t now;
1352
1353 gethrestime(&now);
1354
1355 if (have_tx) { /* will sa_bulk_update happen really soon? */
1356 zp->z_atime_dirty = 0;
1357 zp->z_seq++;
1358 } else {
1359 zp->z_atime_dirty = 1;
1360 }
1361
1362 if (flag & AT_ATIME) {
1363 ZFS_TIME_ENCODE(&now, zp->z_atime);
1364 }
1365
1366 if (flag & AT_MTIME) {
1367 ZFS_TIME_ENCODE(&now, mtime);
1368 if (zp->z_zfsvfs->z_use_fuids) {
1369 zp->z_pflags |= (ZFS_ARCHIVE |
1370 ZFS_AV_MODIFIED);
1371 }
1372 }
1373
1374 if (flag & AT_CTIME) {
1375 ZFS_TIME_ENCODE(&now, ctime);
1376 if (zp->z_zfsvfs->z_use_fuids)
1377 zp->z_pflags |= ZFS_ARCHIVE;
1378 }
1379 }
1380
1381 /*
1382 * Grow the block size for a file.
1383 *
1384 * IN: zp - znode of file to free data in.
1385 * size - requested block size
1386 * tx - open transaction.
1387 *
1388 * NOTE: this function assumes that the znode is write locked.
1389 */
1390 void
1391 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
1392 {
1393 int error;
1394 u_longlong_t dummy;
1395
1396 if (size <= zp->z_blksz)
1397 return;
1398 /*
1399 * If the file size is already greater than the current blocksize,
1400 * we will not grow. If there is more than one block in a file,
1401 * the blocksize cannot change.
1402 */
1403 if (zp->z_blksz && zp->z_size > zp->z_blksz)
1404 return;
1405
1406 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id,
1407 size, 0, tx);
1408
1409 if (error == ENOTSUP)
1410 return;
1411 ASSERT3U(error, ==, 0);
1412
1413 /* What blocksize did we actually get? */
1414 dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy);
1415 }
1416
1417 /*
1418 * This is a dummy interface used when pvn_vplist_dirty() should *not*
1419 * be calling back into the fs for a putpage(). E.g.: when truncating
1420 * a file, the pages being "thrown away* don't need to be written out.
1421 */
1422 /* ARGSUSED */
1423 static int
1424 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
1425 int flags, cred_t *cr)
1426 {
1427 ASSERT(0);
1428 return (0);
1429 }
1430
1431 /*
1432 * Increase the file length
1433 *
1434 * IN: zp - znode of file to free data in.
1435 * end - new end-of-file
1436 *
1437 * RETURN: 0 if success
1438 * error code if failure
1439 */
1440 static int
1441 zfs_extend(znode_t *zp, uint64_t end)
1442 {
1443 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1444 dmu_tx_t *tx;
1445 rl_t *rl;
1446 uint64_t newblksz;
1447 int error;
1448
1449 /*
1450 * We will change zp_size, lock the whole file.
1451 */
1452 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
1453
1454 /*
1455 * Nothing to do if file already at desired length.
1456 */
1457 if (end <= zp->z_size) {
1458 zfs_range_unlock(rl);
1459 return (0);
1460 }
1461 top:
1462 tx = dmu_tx_create(zfsvfs->z_os);
1463 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1464 zfs_sa_upgrade_txholds(tx, zp);
1465 if (end > zp->z_blksz &&
1466 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) {
1467 /*
1468 * We are growing the file past the current block size.
1469 */
1470 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) {
1471 ASSERT(!ISP2(zp->z_blksz));
1472 newblksz = MIN(end, SPA_MAXBLOCKSIZE);
1473 } else {
1474 newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz);
1475 }
1476 dmu_tx_hold_write(tx, zp->z_id, 0, newblksz);
1477 } else {
1478 newblksz = 0;
1479 }
1480
1481 error = dmu_tx_assign(tx, TXG_NOWAIT);
1482 if (error) {
1483 if (error == ERESTART) {
1484 dmu_tx_wait(tx);
1485 dmu_tx_abort(tx);
1486 goto top;
1487 }
1488 dmu_tx_abort(tx);
1489 zfs_range_unlock(rl);
1490 return (error);
1491 }
1492
1493 if (newblksz)
1494 zfs_grow_blocksize(zp, newblksz, tx);
1495
1496 zp->z_size = end;
1497
1498 VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zp->z_zfsvfs),
1499 &zp->z_size, sizeof (zp->z_size), tx));
1500
1501 zfs_range_unlock(rl);
1502
1503 dmu_tx_commit(tx);
1504
1505 return (0);
1506 }
1507
1508 /*
1509 * Free space in a file.
1510 *
1511 * IN: zp - znode of file to free data in.
1512 * off - start of section to free.
1513 * len - length of section to free.
1514 *
1515 * RETURN: 0 if success
1516 * error code if failure
1517 */
1518 static int
1519 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len)
1520 {
1521 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1522 rl_t *rl;
1523 int error;
1524
1525 /*
1526 * Lock the range being freed.
1527 */
1528 rl = zfs_range_lock(zp, off, len, RL_WRITER);
1529
1530 /*
1531 * Nothing to do if file already at desired length.
1532 */
1533 if (off >= zp->z_size) {
1534 zfs_range_unlock(rl);
1535 return (0);
1536 }
1537
1538 if (off + len > zp->z_size)
1539 len = zp->z_size - off;
1540
1541 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len);
1542
1543 zfs_range_unlock(rl);
1544
1545 return (error);
1546 }
1547
1548 /*
1549 * Truncate a file
1550 *
1551 * IN: zp - znode of file to free data in.
1552 * end - new end-of-file.
1553 *
1554 * RETURN: 0 if success
1555 * error code if failure
1556 */
1557 static int
1558 zfs_trunc(znode_t *zp, uint64_t end)
1559 {
1560 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1561 vnode_t *vp = ZTOV(zp);
1562 dmu_tx_t *tx;
1563 rl_t *rl;
1564 int error;
1565
1566 /*
1567 * We will change zp_size, lock the whole file.
1568 */
1569 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
1570
1571 /*
1572 * Nothing to do if file already at desired length.
1573 */
1574 if (end >= zp->z_size) {
1575 zfs_range_unlock(rl);
1576 return (0);
1577 }
1578
1579 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, -1);
1580 if (error) {
1581 zfs_range_unlock(rl);
1582 return (error);
1583 }
1584 top:
1585 tx = dmu_tx_create(zfsvfs->z_os);
1586 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1587 zfs_sa_upgrade_txholds(tx, zp);
1588 error = dmu_tx_assign(tx, TXG_NOWAIT);
1589 if (error) {
1590 if (error == ERESTART) {
1591 dmu_tx_wait(tx);
1592 dmu_tx_abort(tx);
1593 goto top;
1594 }
1595 dmu_tx_abort(tx);
1596 zfs_range_unlock(rl);
1597 return (error);
1598 }
1599
1600 zp->z_size = end;
1601
1602 VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zp->z_zfsvfs),
1603 &zp->z_size, sizeof (zp->z_size), tx));
1604
1605 dmu_tx_commit(tx);
1606
1607 /*
1608 * Clear any mapped pages in the truncated region. This has to
1609 * happen outside of the transaction to avoid the possibility of
1610 * a deadlock with someone trying to push a page that we are
1611 * about to invalidate.
1612 */
1613 if (vn_has_cached_data(vp)) {
1614 page_t *pp;
1615 uint64_t start = end & PAGEMASK;
1616 int poff = end & PAGEOFFSET;
1617
1618 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) {
1619 /*
1620 * We need to zero a partial page.
1621 */
1622 pagezero(pp, poff, PAGESIZE - poff);
1623 start += PAGESIZE;
1624 page_unlock(pp);
1625 }
1626 error = pvn_vplist_dirty(vp, start, zfs_no_putpage,
1627 B_INVAL | B_TRUNC, NULL);
1628 ASSERT(error == 0);
1629 }
1630
1631 zfs_range_unlock(rl);
1632
1633 return (0);
1634 }
1635
1636 /*
1637 * Free space in a file
1638 *
1639 * IN: zp - znode of file to free data in.
1640 * off - start of range
1641 * len - end of range (0 => EOF)
1642 * flag - current file open mode flags.
1643 * log - TRUE if this action should be logged
1644 *
1645 * RETURN: 0 if success
1646 * error code if failure
1647 */
1648 int
1649 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log)
1650 {
1651 vnode_t *vp = ZTOV(zp);
1652 dmu_tx_t *tx;
1653 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1654 zilog_t *zilog = zfsvfs->z_log;
1655 uint64_t mode;
1656 uint64_t mtime[2], ctime[2];
1657 sa_bulk_attr_t bulk[3];
1658 int count = 0;
1659 int error;
1660
1661 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), &mode,
1662 sizeof (mode))) != 0)
1663 return (error);
1664
1665 if (off > zp->z_size) {
1666 error = zfs_extend(zp, off+len);
1667 if (error == 0 && log)
1668 goto log;
1669 else
1670 return (error);
1671 }
1672
1673 /*
1674 * Check for any locks in the region to be freed.
1675 */
1676
1677 if (MANDLOCK(vp, (mode_t)mode)) {
1678 uint64_t length = (len ? len : zp->z_size - off);
1679 if (error = chklock(vp, FWRITE, off, length, flag, NULL))
1680 return (error);
1681 }
1682
1683 if (len == 0) {
1684 error = zfs_trunc(zp, off);
1685 } else {
1686 if ((error = zfs_free_range(zp, off, len)) == 0 &&
1687 off + len > zp->z_size)
1688 error = zfs_extend(zp, off+len);
1689 }
1690 if (error || !log)
1691 return (error);
1692 log:
1693 tx = dmu_tx_create(zfsvfs->z_os);
1694 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1695 zfs_sa_upgrade_txholds(tx, zp);
1696 error = dmu_tx_assign(tx, TXG_NOWAIT);
1697 if (error) {
1698 if (error == ERESTART) {
1699 dmu_tx_wait(tx);
1700 dmu_tx_abort(tx);
1701 goto log;
1702 }
1703 dmu_tx_abort(tx);
1704 return (error);
1705 }
1706
1707 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, 16);
1708 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, 16);
1709 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
1710 NULL, &zp->z_pflags, 8);
1711 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, B_TRUE);
1712 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1713 ASSERT(error == 0);
1714
1715 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
1716
1717 dmu_tx_commit(tx);
1718 return (0);
1719 }
1720
1721 void
1722 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx)
1723 {
1724 zfsvfs_t zfsvfs;
1725 uint64_t moid, obj, sa_obj, version;
1726 uint64_t sense = ZFS_CASE_SENSITIVE;
1727 uint64_t norm = 0;
1728 nvpair_t *elem;
1729 int error;
1730 int i;
1731 znode_t *rootzp = NULL;
1732 vnode_t *vp;
1733 vattr_t vattr;
1734 znode_t *zp;
1735 zfs_acl_ids_t acl_ids;
1736
1737 /*
1738 * First attempt to create master node.
1739 */
1740 /*
1741 * In an empty objset, there are no blocks to read and thus
1742 * there can be no i/o errors (which we assert below).
1743 */
1744 moid = MASTER_NODE_OBJ;
1745 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE,
1746 DMU_OT_NONE, 0, tx);
1747 ASSERT(error == 0);
1748
1749 /*
1750 * Set starting attributes.
1751 */
1752 version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os)));
1753 elem = NULL;
1754 while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) {
1755 /* For the moment we expect all zpl props to be uint64_ts */
1756 uint64_t val;
1757 char *name;
1758
1759 ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64);
1760 VERIFY(nvpair_value_uint64(elem, &val) == 0);
1761 name = nvpair_name(elem);
1762 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) {
1763 if (val < version)
1764 version = val;
1765 } else {
1766 error = zap_update(os, moid, name, 8, 1, &val, tx);
1767 }
1768 ASSERT(error == 0);
1769 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0)
1770 norm = val;
1771 else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0)
1772 sense = val;
1773 }
1774 ASSERT(version != 0);
1775 error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx);
1776
1777 /*
1778 * Create zap object used for SA attribute registration
1779 */
1780
1781 if (version >= ZPL_VERSION_SA) {
1782 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
1783 DMU_OT_NONE, 0, tx);
1784 error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
1785 ASSERT(error == 0);
1786 } else {
1787 sa_obj = 0;
1788 }
1789 /*
1790 * Create a delete queue.
1791 */
1792 obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx);
1793
1794 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx);
1795 ASSERT(error == 0);
1796
1797 /*
1798 * Create root znode. Create minimal znode/vnode/zfsvfs
1799 * to allow zfs_mknode to work.
1800 */
1801 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
1802 vattr.va_type = VDIR;
1803 vattr.va_mode = S_IFDIR|0755;
1804 vattr.va_uid = crgetuid(cr);
1805 vattr.va_gid = crgetgid(cr);
1806
1807 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP);
1808 rootzp->z_unlinked = 0;
1809 rootzp->z_atime_dirty = 0;
1810 rootzp->z_is_sa = USE_SA(version, os);
1811
1812 vp = ZTOV(rootzp);
1813 vn_reinit(vp);
1814 vp->v_type = VDIR;
1815
1816 bzero(&zfsvfs, sizeof (zfsvfs_t));
1817
1818 zfsvfs.z_os = os;
1819 zfsvfs.z_parent = &zfsvfs;
1820 zfsvfs.z_version = version;
1821 zfsvfs.z_use_fuids = USE_FUIDS(version, os);
1822 zfsvfs.z_use_sa = USE_SA(version, os);
1823 zfsvfs.z_norm = norm;
1824
1825 zfsvfs.z_attr_table = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END);
1826
1827 /*
1828 * Fold case on file systems that are always or sometimes case
1829 * insensitive.
1830 */
1831 if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED)
1832 zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER;
1833
1834 mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1835 list_create(&zfsvfs.z_all_znodes, sizeof (znode_t),
1836 offsetof(znode_t, z_link_node));
1837
1838 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1839 mutex_init(&zfsvfs.z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
1840
1841 ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs));
1842 rootzp->z_zfsvfs = &zfsvfs;
1843 VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr,
1844 cr, NULL, &acl_ids));
1845 zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids);
1846 ASSERT3P(zp, ==, rootzp);
1847 ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */
1848 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx);
1849 ASSERT(error == 0);
1850 zfs_acl_ids_free(&acl_ids);
1851 POINTER_INVALIDATE(&rootzp->z_zfsvfs);
1852
1853 ZTOV(rootzp)->v_count = 0;
1854 sa_handle_destroy(rootzp->z_sa_hdl);
1855 kmem_cache_free(znode_cache, rootzp);
1856
1857 /*
1858 * Create shares directory
1859 */
1860
1861 error = zfs_create_share_dir(&zfsvfs, tx);
1862
1863 ASSERT(error == 0);
1864
1865 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1866 mutex_destroy(&zfsvfs.z_hold_mtx[i]);
1867 }
1868
1869 #endif /* _KERNEL */
1870
1871 /*
1872 * Given an object number, return its parent object number and whether
1873 * or not the object is an extended attribute directory.
1874 */
1875 static int
1876 zfs_obj_to_pobj(objset_t *osp, uint64_t obj, uint64_t *pobjp, int *is_xattrdir,
1877 sa_attr_type_t *sa_table)
1878 {
1879 dmu_buf_t *db;
1880 dmu_object_info_t doi;
1881 int error;
1882 uint64_t parent;
1883 uint64_t pflags;
1884 uint64_t mode;
1885 sa_bulk_attr_t bulk[3];
1886 sa_handle_t *hdl;
1887 int count = 0;
1888
1889 if ((error = sa_buf_hold(osp, obj, FTAG, &db)) != 0)
1890 return (error);
1891
1892 dmu_object_info_from_db(db, &doi);
1893 if ((doi.doi_bonus_type != DMU_OT_SA &&
1894 doi.doi_bonus_type != DMU_OT_ZNODE) ||
1895 doi.doi_bonus_type == DMU_OT_ZNODE &&
1896 doi.doi_bonus_size < sizeof (znode_phys_t)) {
1897 sa_buf_rele(db, FTAG);
1898 return (EINVAL);
1899 }
1900
1901 if ((error = sa_handle_get(osp, obj, NULL, SA_HDL_PRIVATE,
1902 &hdl)) != 0) {
1903 sa_buf_rele(db, FTAG);
1904 return (error);
1905 }
1906
1907 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_PARENT],
1908 NULL, &parent, 8);
1909 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_FLAGS], NULL,
1910 &pflags, 8);
1911 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL,
1912 &mode, 8);
1913
1914 if ((error = sa_bulk_lookup(hdl, bulk, count)) != 0) {
1915 sa_buf_rele(db, FTAG);
1916 sa_handle_destroy(hdl);
1917 return (error);
1918 }
1919 *pobjp = parent;
1920 *is_xattrdir = ((pflags & ZFS_XATTR) != 0) && S_ISDIR(mode);
1921 sa_handle_destroy(hdl);
1922 sa_buf_rele(db, FTAG);
1923
1924 return (0);
1925 }
1926
1927 int
1928 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len)
1929 {
1930 char *path = buf + len - 1;
1931 sa_attr_type_t *sa_table;
1932 int error;
1933 uint64_t sa_obj = 0;
1934
1935 *path = '\0';
1936
1937 error = zap_lookup(osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj);
1938
1939 if (error != 0 && error != ENOENT)
1940 return (error);
1941
1942 sa_table = sa_setup(osp, sa_obj, zfs_attr_table, ZPL_END);
1943
1944 for (;;) {
1945 uint64_t pobj;
1946 char component[MAXNAMELEN + 2];
1947 size_t complen;
1948 int is_xattrdir;
1949
1950 if ((error = zfs_obj_to_pobj(osp, obj, &pobj,
1951 &is_xattrdir, sa_table)) != 0)
1952 break;
1953
1954 if (pobj == obj) {
1955 if (path[0] != '/')
1956 *--path = '/';
1957 break;
1958 }
1959
1960 component[0] = '/';
1961 if (is_xattrdir) {
1962 (void) sprintf(component + 1, "<xattrdir>");
1963 } else {
1964 error = zap_value_search(osp, pobj, obj,
1965 ZFS_DIRENT_OBJ(-1ULL), component + 1);
1966 if (error != 0)
1967 break;
1968 }
1969
1970 complen = strlen(component);
1971 path -= complen;
1972 ASSERT(path >= buf);
1973 bcopy(component, path, complen);
1974 obj = pobj;
1975 }
1976
1977 if (error == 0)
1978 (void) memmove(buf, path, buf + len - path);
1979
1980 return (error);
1981 }