]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zfs_znode.c
Fix deadlock in zfs_zget()
[mirror_zfs.git] / module / zfs / zfs_znode.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 */
25
26 /* Portions Copyright 2007 Jeremy Teo */
27
28 #ifdef _KERNEL
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/time.h>
32 #include <sys/systm.h>
33 #include <sys/sysmacros.h>
34 #include <sys/resource.h>
35 #include <sys/mntent.h>
36 #include <sys/mkdev.h>
37 #include <sys/u8_textprep.h>
38 #include <sys/dsl_dataset.h>
39 #include <sys/vfs.h>
40 #include <sys/vfs_opreg.h>
41 #include <sys/vnode.h>
42 #include <sys/file.h>
43 #include <sys/kmem.h>
44 #include <sys/errno.h>
45 #include <sys/unistd.h>
46 #include <sys/mode.h>
47 #include <sys/atomic.h>
48 #include <vm/pvn.h>
49 #include "fs/fs_subr.h"
50 #include <sys/zfs_dir.h>
51 #include <sys/zfs_acl.h>
52 #include <sys/zfs_ioctl.h>
53 #include <sys/zfs_rlock.h>
54 #include <sys/zfs_fuid.h>
55 #include <sys/zfs_vnops.h>
56 #include <sys/zfs_ctldir.h>
57 #include <sys/dnode.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/kidmap.h>
60 #include <sys/zpl.h>
61 #endif /* _KERNEL */
62
63 #include <sys/dmu.h>
64 #include <sys/refcount.h>
65 #include <sys/stat.h>
66 #include <sys/zap.h>
67 #include <sys/zfs_znode.h>
68 #include <sys/sa.h>
69 #include <sys/zfs_sa.h>
70 #include <sys/zfs_stat.h>
71
72 #include "zfs_prop.h"
73 #include "zfs_comutil.h"
74
75 /*
76 * Define ZNODE_STATS to turn on statistic gathering. By default, it is only
77 * turned on when DEBUG is also defined.
78 */
79 #ifdef DEBUG
80 #define ZNODE_STATS
81 #endif /* DEBUG */
82
83 #ifdef ZNODE_STATS
84 #define ZNODE_STAT_ADD(stat) ((stat)++)
85 #else
86 #define ZNODE_STAT_ADD(stat) /* nothing */
87 #endif /* ZNODE_STATS */
88
89 /*
90 * Functions needed for userland (ie: libzpool) are not put under
91 * #ifdef_KERNEL; the rest of the functions have dependencies
92 * (such as VFS logic) that will not compile easily in userland.
93 */
94 #ifdef _KERNEL
95
96 static kmem_cache_t *znode_cache = NULL;
97
98 /*ARGSUSED*/
99 static int
100 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags)
101 {
102 znode_t *zp = buf;
103
104 inode_init_once(ZTOI(zp));
105 list_link_init(&zp->z_link_node);
106
107 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL);
108 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL);
109 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL);
110 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL);
111 rw_init(&zp->z_xattr_lock, NULL, RW_DEFAULT, NULL);
112
113 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL);
114 avl_create(&zp->z_range_avl, zfs_range_compare,
115 sizeof (rl_t), offsetof(rl_t, r_node));
116
117 zp->z_dirlocks = NULL;
118 zp->z_acl_cached = NULL;
119 zp->z_xattr_cached = NULL;
120 zp->z_xattr_parent = NULL;
121 zp->z_moved = 0;
122 return (0);
123 }
124
125 /*ARGSUSED*/
126 static void
127 zfs_znode_cache_destructor(void *buf, void *arg)
128 {
129 znode_t *zp = buf;
130
131 ASSERT(!list_link_active(&zp->z_link_node));
132 mutex_destroy(&zp->z_lock);
133 rw_destroy(&zp->z_parent_lock);
134 rw_destroy(&zp->z_name_lock);
135 mutex_destroy(&zp->z_acl_lock);
136 rw_destroy(&zp->z_xattr_lock);
137 avl_destroy(&zp->z_range_avl);
138 mutex_destroy(&zp->z_range_lock);
139
140 ASSERT(zp->z_dirlocks == NULL);
141 ASSERT(zp->z_acl_cached == NULL);
142 ASSERT(zp->z_xattr_cached == NULL);
143 ASSERT(zp->z_xattr_parent == NULL);
144 }
145
146 void
147 zfs_znode_init(void)
148 {
149 /*
150 * Initialize zcache
151 */
152 ASSERT(znode_cache == NULL);
153 znode_cache = kmem_cache_create("zfs_znode_cache",
154 sizeof (znode_t), 0, zfs_znode_cache_constructor,
155 zfs_znode_cache_destructor, NULL, NULL, NULL, KMC_KMEM);
156 }
157
158 void
159 zfs_znode_fini(void)
160 {
161 /*
162 * Cleanup zcache
163 */
164 if (znode_cache)
165 kmem_cache_destroy(znode_cache);
166 znode_cache = NULL;
167 }
168
169 int
170 zfs_create_share_dir(zfs_sb_t *zsb, dmu_tx_t *tx)
171 {
172 #ifdef HAVE_SMB_SHARE
173 zfs_acl_ids_t acl_ids;
174 vattr_t vattr;
175 znode_t *sharezp;
176 vnode_t *vp;
177 znode_t *zp;
178 int error;
179
180 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
181 vattr.va_mode = S_IFDIR | 0555;
182 vattr.va_uid = crgetuid(kcred);
183 vattr.va_gid = crgetgid(kcred);
184
185 sharezp = kmem_cache_alloc(znode_cache, KM_PUSHPAGE);
186 sharezp->z_moved = 0;
187 sharezp->z_unlinked = 0;
188 sharezp->z_atime_dirty = 0;
189 sharezp->z_zfsvfs = zfsvfs;
190 sharezp->z_is_sa = zfsvfs->z_use_sa;
191
192 vp = ZTOV(sharezp);
193 vn_reinit(vp);
194 vp->v_type = VDIR;
195
196 VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr,
197 kcred, NULL, &acl_ids));
198 zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE, &zp, &acl_ids);
199 ASSERT3P(zp, ==, sharezp);
200 ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */
201 POINTER_INVALIDATE(&sharezp->z_zfsvfs);
202 error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
203 ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx);
204 zfsvfs->z_shares_dir = sharezp->z_id;
205
206 zfs_acl_ids_free(&acl_ids);
207 // ZTOV(sharezp)->v_count = 0;
208 sa_handle_destroy(sharezp->z_sa_hdl);
209 kmem_cache_free(znode_cache, sharezp);
210
211 return (error);
212 #else
213 return (0);
214 #endif /* HAVE_SMB_SHARE */
215 }
216
217 static void
218 zfs_znode_sa_init(zfs_sb_t *zsb, znode_t *zp,
219 dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl)
220 {
221 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zsb, zp->z_id)));
222
223 mutex_enter(&zp->z_lock);
224
225 ASSERT(zp->z_sa_hdl == NULL);
226 ASSERT(zp->z_acl_cached == NULL);
227 if (sa_hdl == NULL) {
228 VERIFY(0 == sa_handle_get_from_db(zsb->z_os, db, zp,
229 SA_HDL_SHARED, &zp->z_sa_hdl));
230 } else {
231 zp->z_sa_hdl = sa_hdl;
232 sa_set_userp(sa_hdl, zp);
233 }
234
235 zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE;
236
237 mutex_exit(&zp->z_lock);
238 }
239
240 void
241 zfs_znode_dmu_fini(znode_t *zp)
242 {
243 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(ZTOZSB(zp), zp->z_id)) ||
244 zp->z_unlinked ||
245 RW_WRITE_HELD(&ZTOZSB(zp)->z_teardown_inactive_lock));
246
247 sa_handle_destroy(zp->z_sa_hdl);
248 zp->z_sa_hdl = NULL;
249 }
250
251 /*
252 * Called by new_inode() to allocate a new inode.
253 */
254 int
255 zfs_inode_alloc(struct super_block *sb, struct inode **ip)
256 {
257 znode_t *zp;
258
259 zp = kmem_cache_alloc(znode_cache, KM_PUSHPAGE);
260 *ip = ZTOI(zp);
261
262 return (0);
263 }
264
265 /*
266 * Called in multiple places when an inode should be destroyed.
267 */
268 void
269 zfs_inode_destroy(struct inode *ip)
270 {
271 znode_t *zp = ITOZ(ip);
272 zfs_sb_t *zsb = ZTOZSB(zp);
273
274 if (zfsctl_is_node(ip))
275 zfsctl_inode_destroy(ip);
276
277 mutex_enter(&zsb->z_znodes_lock);
278 if (list_link_active(&zp->z_link_node)) {
279 list_remove(&zsb->z_all_znodes, zp);
280 zsb->z_nr_znodes--;
281 }
282 mutex_exit(&zsb->z_znodes_lock);
283
284 if (zp->z_acl_cached) {
285 zfs_acl_free(zp->z_acl_cached);
286 zp->z_acl_cached = NULL;
287 }
288
289 if (zp->z_xattr_cached) {
290 nvlist_free(zp->z_xattr_cached);
291 zp->z_xattr_cached = NULL;
292 }
293
294 if (zp->z_xattr_parent) {
295 iput(ZTOI(zp->z_xattr_parent));
296 zp->z_xattr_parent = NULL;
297 }
298
299 kmem_cache_free(znode_cache, zp);
300 }
301
302 static void
303 zfs_inode_set_ops(zfs_sb_t *zsb, struct inode *ip)
304 {
305 uint64_t rdev = 0;
306
307 switch (ip->i_mode & S_IFMT) {
308 case S_IFREG:
309 ip->i_op = &zpl_inode_operations;
310 ip->i_fop = &zpl_file_operations;
311 ip->i_mapping->a_ops = &zpl_address_space_operations;
312 break;
313
314 case S_IFDIR:
315 ip->i_op = &zpl_dir_inode_operations;
316 ip->i_fop = &zpl_dir_file_operations;
317 ITOZ(ip)->z_zn_prefetch = B_TRUE;
318 break;
319
320 case S_IFLNK:
321 ip->i_op = &zpl_symlink_inode_operations;
322 break;
323
324 /*
325 * rdev is only stored in a SA only for device files.
326 */
327 case S_IFCHR:
328 case S_IFBLK:
329 VERIFY(sa_lookup(ITOZ(ip)->z_sa_hdl, SA_ZPL_RDEV(zsb),
330 &rdev, sizeof (rdev)) == 0);
331 /*FALLTHROUGH*/
332 case S_IFIFO:
333 case S_IFSOCK:
334 init_special_inode(ip, ip->i_mode, rdev);
335 ip->i_op = &zpl_special_inode_operations;
336 break;
337
338 default:
339 printk("ZFS: Invalid mode: 0x%x\n", ip->i_mode);
340 VERIFY(0);
341 }
342 }
343
344 /*
345 * Construct a znode+inode and initialize.
346 *
347 * This does not do a call to dmu_set_user() that is
348 * up to the caller to do, in case you don't want to
349 * return the znode
350 */
351 static znode_t *
352 zfs_znode_alloc(zfs_sb_t *zsb, dmu_buf_t *db, int blksz,
353 dmu_object_type_t obj_type, uint64_t obj, sa_handle_t *hdl,
354 struct inode *dip)
355 {
356 znode_t *zp;
357 struct inode *ip;
358 uint64_t mode;
359 uint64_t parent;
360 sa_bulk_attr_t bulk[9];
361 int count = 0;
362
363 ASSERT(zsb != NULL);
364
365 ip = new_inode(zsb->z_sb);
366 if (ip == NULL)
367 return (NULL);
368
369 zp = ITOZ(ip);
370 ASSERT(zp->z_dirlocks == NULL);
371 ASSERT3P(zp->z_acl_cached, ==, NULL);
372 ASSERT3P(zp->z_xattr_cached, ==, NULL);
373 ASSERT3P(zp->z_xattr_parent, ==, NULL);
374 zp->z_moved = 0;
375 zp->z_sa_hdl = NULL;
376 zp->z_unlinked = 0;
377 zp->z_atime_dirty = 0;
378 zp->z_mapcnt = 0;
379 zp->z_id = db->db_object;
380 zp->z_blksz = blksz;
381 zp->z_seq = 0x7A4653;
382 zp->z_sync_cnt = 0;
383 zp->z_is_zvol = B_FALSE;
384 zp->z_is_mapped = B_FALSE;
385 zp->z_is_ctldir = B_FALSE;
386 zp->z_is_stale = B_FALSE;
387
388 zfs_znode_sa_init(zsb, zp, db, obj_type, hdl);
389
390 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zsb), NULL, &mode, 8);
391 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zsb), NULL, &zp->z_gen, 8);
392 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zsb), NULL, &zp->z_size, 8);
393 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zsb), NULL, &zp->z_links, 8);
394 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zsb), NULL,
395 &zp->z_pflags, 8);
396 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zsb), NULL,
397 &parent, 8);
398 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zsb), NULL,
399 &zp->z_atime, 16);
400 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zsb), NULL, &zp->z_uid, 8);
401 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zsb), NULL, &zp->z_gid, 8);
402
403 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || zp->z_gen == 0) {
404 if (hdl == NULL)
405 sa_handle_destroy(zp->z_sa_hdl);
406
407 goto error;
408 }
409
410 zp->z_mode = mode;
411
412 /*
413 * xattr znodes hold a reference on their unique parent
414 */
415 if (dip && zp->z_pflags & ZFS_XATTR) {
416 igrab(dip);
417 zp->z_xattr_parent = ITOZ(dip);
418 }
419
420 ip->i_ino = obj;
421 zfs_inode_update(zp);
422 zfs_inode_set_ops(zsb, ip);
423
424 /*
425 * The only way insert_inode_locked() can fail is if the ip->i_ino
426 * number is already hashed for this super block. This can never
427 * happen because the inode numbers map 1:1 with the object numbers.
428 *
429 * The one exception is rolling back a mounted file system, but in
430 * this case all the active inode are unhashed during the rollback.
431 */
432 VERIFY3S(insert_inode_locked(ip), ==, 0);
433
434 mutex_enter(&zsb->z_znodes_lock);
435 list_insert_tail(&zsb->z_all_znodes, zp);
436 zsb->z_nr_znodes++;
437 membar_producer();
438 mutex_exit(&zsb->z_znodes_lock);
439
440 unlock_new_inode(ip);
441 return (zp);
442
443 error:
444 unlock_new_inode(ip);
445 iput(ip);
446 return (NULL);
447 }
448
449 /*
450 * Update the embedded inode given the znode. We should work toward
451 * eliminating this function as soon as possible by removing values
452 * which are duplicated between the znode and inode. If the generic
453 * inode has the correct field it should be used, and the ZFS code
454 * updated to access the inode. This can be done incrementally.
455 */
456 void
457 zfs_inode_update(znode_t *zp)
458 {
459 zfs_sb_t *zsb;
460 struct inode *ip;
461 uint32_t blksize;
462 uint64_t atime[2], mtime[2], ctime[2];
463
464 ASSERT(zp != NULL);
465 zsb = ZTOZSB(zp);
466 ip = ZTOI(zp);
467
468 /* Skip .zfs control nodes which do not exist on disk. */
469 if (zfsctl_is_node(ip))
470 return;
471
472 sa_lookup(zp->z_sa_hdl, SA_ZPL_ATIME(zsb), &atime, 16);
473 sa_lookup(zp->z_sa_hdl, SA_ZPL_MTIME(zsb), &mtime, 16);
474 sa_lookup(zp->z_sa_hdl, SA_ZPL_CTIME(zsb), &ctime, 16);
475
476 spin_lock(&ip->i_lock);
477 ip->i_generation = zp->z_gen;
478 ip->i_uid = SUID_TO_KUID(zp->z_uid);
479 ip->i_gid = SGID_TO_KGID(zp->z_gid);
480 set_nlink(ip, zp->z_links);
481 ip->i_mode = zp->z_mode;
482 ip->i_blkbits = SPA_MINBLOCKSHIFT;
483 dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &blksize,
484 (u_longlong_t *)&ip->i_blocks);
485
486 ZFS_TIME_DECODE(&ip->i_atime, atime);
487 ZFS_TIME_DECODE(&ip->i_mtime, mtime);
488 ZFS_TIME_DECODE(&ip->i_ctime, ctime);
489
490 i_size_write(ip, zp->z_size);
491 spin_unlock(&ip->i_lock);
492 }
493
494 static uint64_t empty_xattr;
495 static uint64_t pad[4];
496 static zfs_acl_phys_t acl_phys;
497 /*
498 * Create a new DMU object to hold a zfs znode.
499 *
500 * IN: dzp - parent directory for new znode
501 * vap - file attributes for new znode
502 * tx - dmu transaction id for zap operations
503 * cr - credentials of caller
504 * flag - flags:
505 * IS_ROOT_NODE - new object will be root
506 * IS_XATTR - new object is an attribute
507 * bonuslen - length of bonus buffer
508 * setaclp - File/Dir initial ACL
509 * fuidp - Tracks fuid allocation.
510 *
511 * OUT: zpp - allocated znode
512 *
513 */
514 void
515 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr,
516 uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids)
517 {
518 uint64_t crtime[2], atime[2], mtime[2], ctime[2];
519 uint64_t mode, size, links, parent, pflags;
520 uint64_t dzp_pflags = 0;
521 uint64_t rdev = 0;
522 zfs_sb_t *zsb = ZTOZSB(dzp);
523 dmu_buf_t *db;
524 timestruc_t now;
525 uint64_t gen, obj;
526 int err;
527 int bonuslen;
528 sa_handle_t *sa_hdl;
529 dmu_object_type_t obj_type;
530 sa_bulk_attr_t *sa_attrs;
531 int cnt = 0;
532 zfs_acl_locator_cb_t locate = { 0 };
533
534 if (zsb->z_replay) {
535 obj = vap->va_nodeid;
536 now = vap->va_ctime; /* see zfs_replay_create() */
537 gen = vap->va_nblocks; /* ditto */
538 } else {
539 obj = 0;
540 gethrestime(&now);
541 gen = dmu_tx_get_txg(tx);
542 }
543
544 obj_type = zsb->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE;
545 bonuslen = (obj_type == DMU_OT_SA) ?
546 DN_MAX_BONUSLEN : ZFS_OLD_ZNODE_PHYS_SIZE;
547
548 /*
549 * Create a new DMU object.
550 */
551 /*
552 * There's currently no mechanism for pre-reading the blocks that will
553 * be needed to allocate a new object, so we accept the small chance
554 * that there will be an i/o error and we will fail one of the
555 * assertions below.
556 */
557 if (S_ISDIR(vap->va_mode)) {
558 if (zsb->z_replay) {
559 err = zap_create_claim_norm(zsb->z_os, obj,
560 zsb->z_norm, DMU_OT_DIRECTORY_CONTENTS,
561 obj_type, bonuslen, tx);
562 ASSERT0(err);
563 } else {
564 obj = zap_create_norm(zsb->z_os,
565 zsb->z_norm, DMU_OT_DIRECTORY_CONTENTS,
566 obj_type, bonuslen, tx);
567 }
568 } else {
569 if (zsb->z_replay) {
570 err = dmu_object_claim(zsb->z_os, obj,
571 DMU_OT_PLAIN_FILE_CONTENTS, 0,
572 obj_type, bonuslen, tx);
573 ASSERT0(err);
574 } else {
575 obj = dmu_object_alloc(zsb->z_os,
576 DMU_OT_PLAIN_FILE_CONTENTS, 0,
577 obj_type, bonuslen, tx);
578 }
579 }
580
581 ZFS_OBJ_HOLD_ENTER(zsb, obj);
582 VERIFY(0 == sa_buf_hold(zsb->z_os, obj, NULL, &db));
583
584 /*
585 * If this is the root, fix up the half-initialized parent pointer
586 * to reference the just-allocated physical data area.
587 */
588 if (flag & IS_ROOT_NODE) {
589 dzp->z_id = obj;
590 } else {
591 dzp_pflags = dzp->z_pflags;
592 }
593
594 /*
595 * If parent is an xattr, so am I.
596 */
597 if (dzp_pflags & ZFS_XATTR) {
598 flag |= IS_XATTR;
599 }
600
601 if (zsb->z_use_fuids)
602 pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED;
603 else
604 pflags = 0;
605
606 if (S_ISDIR(vap->va_mode)) {
607 size = 2; /* contents ("." and "..") */
608 links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1;
609 } else {
610 size = links = 0;
611 }
612
613 if (S_ISBLK(vap->va_mode) || S_ISCHR(vap->va_mode))
614 rdev = vap->va_rdev;
615
616 parent = dzp->z_id;
617 mode = acl_ids->z_mode;
618 if (flag & IS_XATTR)
619 pflags |= ZFS_XATTR;
620
621 /*
622 * No execs denied will be deterimed when zfs_mode_compute() is called.
623 */
624 pflags |= acl_ids->z_aclp->z_hints &
625 (ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT|
626 ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED);
627
628 ZFS_TIME_ENCODE(&now, crtime);
629 ZFS_TIME_ENCODE(&now, ctime);
630
631 if (vap->va_mask & ATTR_ATIME) {
632 ZFS_TIME_ENCODE(&vap->va_atime, atime);
633 } else {
634 ZFS_TIME_ENCODE(&now, atime);
635 }
636
637 if (vap->va_mask & ATTR_MTIME) {
638 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
639 } else {
640 ZFS_TIME_ENCODE(&now, mtime);
641 }
642
643 /* Now add in all of the "SA" attributes */
644 VERIFY(0 == sa_handle_get_from_db(zsb->z_os, db, NULL, SA_HDL_SHARED,
645 &sa_hdl));
646
647 /*
648 * Setup the array of attributes to be replaced/set on the new file
649 *
650 * order for DMU_OT_ZNODE is critical since it needs to be constructed
651 * in the old znode_phys_t format. Don't change this ordering
652 */
653 sa_attrs = kmem_alloc(sizeof (sa_bulk_attr_t) * ZPL_END, KM_PUSHPAGE);
654
655 if (obj_type == DMU_OT_ZNODE) {
656 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zsb),
657 NULL, &atime, 16);
658 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zsb),
659 NULL, &mtime, 16);
660 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zsb),
661 NULL, &ctime, 16);
662 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zsb),
663 NULL, &crtime, 16);
664 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zsb),
665 NULL, &gen, 8);
666 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zsb),
667 NULL, &mode, 8);
668 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zsb),
669 NULL, &size, 8);
670 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zsb),
671 NULL, &parent, 8);
672 } else {
673 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zsb),
674 NULL, &mode, 8);
675 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zsb),
676 NULL, &size, 8);
677 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zsb),
678 NULL, &gen, 8);
679 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zsb),
680 NULL, &acl_ids->z_fuid, 8);
681 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zsb),
682 NULL, &acl_ids->z_fgid, 8);
683 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zsb),
684 NULL, &parent, 8);
685 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zsb),
686 NULL, &pflags, 8);
687 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zsb),
688 NULL, &atime, 16);
689 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zsb),
690 NULL, &mtime, 16);
691 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zsb),
692 NULL, &ctime, 16);
693 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zsb),
694 NULL, &crtime, 16);
695 }
696
697 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zsb), NULL, &links, 8);
698
699 if (obj_type == DMU_OT_ZNODE) {
700 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zsb), NULL,
701 &empty_xattr, 8);
702 }
703 if (obj_type == DMU_OT_ZNODE ||
704 (S_ISBLK(vap->va_mode) || S_ISCHR(vap->va_mode))) {
705 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zsb),
706 NULL, &rdev, 8);
707 }
708 if (obj_type == DMU_OT_ZNODE) {
709 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zsb),
710 NULL, &pflags, 8);
711 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zsb), NULL,
712 &acl_ids->z_fuid, 8);
713 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zsb), NULL,
714 &acl_ids->z_fgid, 8);
715 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zsb), NULL, pad,
716 sizeof (uint64_t) * 4);
717 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zsb), NULL,
718 &acl_phys, sizeof (zfs_acl_phys_t));
719 } else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) {
720 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zsb), NULL,
721 &acl_ids->z_aclp->z_acl_count, 8);
722 locate.cb_aclp = acl_ids->z_aclp;
723 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zsb),
724 zfs_acl_data_locator, &locate,
725 acl_ids->z_aclp->z_acl_bytes);
726 mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags,
727 acl_ids->z_fuid, acl_ids->z_fgid);
728 }
729
730 VERIFY(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx) == 0);
731
732 if (!(flag & IS_ROOT_NODE)) {
733 *zpp = zfs_znode_alloc(zsb, db, 0, obj_type, obj, sa_hdl,
734 ZTOI(dzp));
735 VERIFY(*zpp != NULL);
736 VERIFY(dzp != NULL);
737 } else {
738 /*
739 * If we are creating the root node, the "parent" we
740 * passed in is the znode for the root.
741 */
742 *zpp = dzp;
743
744 (*zpp)->z_sa_hdl = sa_hdl;
745 }
746
747 (*zpp)->z_pflags = pflags;
748 (*zpp)->z_mode = mode;
749
750 if (obj_type == DMU_OT_ZNODE ||
751 acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) {
752 err = zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx);
753 ASSERT0(err);
754 }
755 kmem_free(sa_attrs, sizeof (sa_bulk_attr_t) * ZPL_END);
756 ZFS_OBJ_HOLD_EXIT(zsb, obj);
757 }
758
759 /*
760 * Update in-core attributes. It is assumed the caller will be doing an
761 * sa_bulk_update to push the changes out.
762 */
763 void
764 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx)
765 {
766 xoptattr_t *xoap;
767
768 xoap = xva_getxoptattr(xvap);
769 ASSERT(xoap);
770
771 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
772 uint64_t times[2];
773 ZFS_TIME_ENCODE(&xoap->xoa_createtime, times);
774 (void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(ZTOZSB(zp)),
775 &times, sizeof (times), tx);
776 XVA_SET_RTN(xvap, XAT_CREATETIME);
777 }
778 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
779 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly,
780 zp->z_pflags, tx);
781 XVA_SET_RTN(xvap, XAT_READONLY);
782 }
783 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
784 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden,
785 zp->z_pflags, tx);
786 XVA_SET_RTN(xvap, XAT_HIDDEN);
787 }
788 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
789 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system,
790 zp->z_pflags, tx);
791 XVA_SET_RTN(xvap, XAT_SYSTEM);
792 }
793 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
794 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive,
795 zp->z_pflags, tx);
796 XVA_SET_RTN(xvap, XAT_ARCHIVE);
797 }
798 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
799 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable,
800 zp->z_pflags, tx);
801 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
802 }
803 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
804 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink,
805 zp->z_pflags, tx);
806 XVA_SET_RTN(xvap, XAT_NOUNLINK);
807 }
808 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
809 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly,
810 zp->z_pflags, tx);
811 XVA_SET_RTN(xvap, XAT_APPENDONLY);
812 }
813 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
814 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump,
815 zp->z_pflags, tx);
816 XVA_SET_RTN(xvap, XAT_NODUMP);
817 }
818 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
819 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque,
820 zp->z_pflags, tx);
821 XVA_SET_RTN(xvap, XAT_OPAQUE);
822 }
823 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
824 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED,
825 xoap->xoa_av_quarantined, zp->z_pflags, tx);
826 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
827 }
828 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
829 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified,
830 zp->z_pflags, tx);
831 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
832 }
833 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
834 zfs_sa_set_scanstamp(zp, xvap, tx);
835 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
836 }
837 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
838 ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse,
839 zp->z_pflags, tx);
840 XVA_SET_RTN(xvap, XAT_REPARSE);
841 }
842 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
843 ZFS_ATTR_SET(zp, ZFS_OFFLINE, xoap->xoa_offline,
844 zp->z_pflags, tx);
845 XVA_SET_RTN(xvap, XAT_OFFLINE);
846 }
847 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
848 ZFS_ATTR_SET(zp, ZFS_SPARSE, xoap->xoa_sparse,
849 zp->z_pflags, tx);
850 XVA_SET_RTN(xvap, XAT_SPARSE);
851 }
852 }
853
854 int
855 zfs_zget(zfs_sb_t *zsb, uint64_t obj_num, znode_t **zpp)
856 {
857 dmu_object_info_t doi;
858 dmu_buf_t *db;
859 znode_t *zp;
860 int err;
861 sa_handle_t *hdl;
862
863 *zpp = NULL;
864
865 again:
866 ZFS_OBJ_HOLD_ENTER(zsb, obj_num);
867
868 err = sa_buf_hold(zsb->z_os, obj_num, NULL, &db);
869 if (err) {
870 ZFS_OBJ_HOLD_EXIT(zsb, obj_num);
871 return (err);
872 }
873
874 dmu_object_info_from_db(db, &doi);
875 if (doi.doi_bonus_type != DMU_OT_SA &&
876 (doi.doi_bonus_type != DMU_OT_ZNODE ||
877 (doi.doi_bonus_type == DMU_OT_ZNODE &&
878 doi.doi_bonus_size < sizeof (znode_phys_t)))) {
879 sa_buf_rele(db, NULL);
880 ZFS_OBJ_HOLD_EXIT(zsb, obj_num);
881 return (SET_ERROR(EINVAL));
882 }
883
884 hdl = dmu_buf_get_user(db);
885 if (hdl != NULL) {
886 zp = sa_get_userdata(hdl);
887
888
889 /*
890 * Since "SA" does immediate eviction we
891 * should never find a sa handle that doesn't
892 * know about the znode.
893 */
894
895 ASSERT3P(zp, !=, NULL);
896
897 mutex_enter(&zp->z_lock);
898 ASSERT3U(zp->z_id, ==, obj_num);
899 if (zp->z_unlinked) {
900 err = SET_ERROR(ENOENT);
901 } else {
902 /*
903 * If igrab() returns NULL the VFS has independently
904 * determined the inode should be evicted and has
905 * called iput_final() to start the eviction process.
906 * The SA handle is still valid but because the VFS
907 * requires that the eviction succeed we must drop
908 * our locks and references to allow the eviction to
909 * complete. The zfs_zget() may then be retried.
910 *
911 * This unlikely case could be optimized by registering
912 * a sops->drop_inode() callback. The callback would
913 * need to detect the active SA hold thereby informing
914 * the VFS that this inode should not be evicted.
915 */
916 if (igrab(ZTOI(zp)) == NULL) {
917 mutex_exit(&zp->z_lock);
918 sa_buf_rele(db, NULL);
919 ZFS_OBJ_HOLD_EXIT(zsb, obj_num);
920 goto again;
921 }
922 *zpp = zp;
923 err = 0;
924 }
925 sa_buf_rele(db, NULL);
926 mutex_exit(&zp->z_lock);
927 ZFS_OBJ_HOLD_EXIT(zsb, obj_num);
928 return (err);
929 }
930
931 /*
932 * Not found create new znode/vnode but only if file exists.
933 *
934 * There is a small window where zfs_vget() could
935 * find this object while a file create is still in
936 * progress. This is checked for in zfs_znode_alloc()
937 *
938 * if zfs_znode_alloc() fails it will drop the hold on the
939 * bonus buffer.
940 */
941 zp = zfs_znode_alloc(zsb, db, doi.doi_data_block_size,
942 doi.doi_bonus_type, obj_num, NULL, NULL);
943 if (zp == NULL) {
944 err = SET_ERROR(ENOENT);
945 } else {
946 *zpp = zp;
947 }
948 ZFS_OBJ_HOLD_EXIT(zsb, obj_num);
949 return (err);
950 }
951
952 int
953 zfs_rezget(znode_t *zp)
954 {
955 zfs_sb_t *zsb = ZTOZSB(zp);
956 dmu_object_info_t doi;
957 dmu_buf_t *db;
958 uint64_t obj_num = zp->z_id;
959 uint64_t mode;
960 sa_bulk_attr_t bulk[8];
961 int err;
962 int count = 0;
963 uint64_t gen;
964
965 ZFS_OBJ_HOLD_ENTER(zsb, obj_num);
966
967 mutex_enter(&zp->z_acl_lock);
968 if (zp->z_acl_cached) {
969 zfs_acl_free(zp->z_acl_cached);
970 zp->z_acl_cached = NULL;
971 }
972 mutex_exit(&zp->z_acl_lock);
973
974 rw_enter(&zp->z_xattr_lock, RW_WRITER);
975 if (zp->z_xattr_cached) {
976 nvlist_free(zp->z_xattr_cached);
977 zp->z_xattr_cached = NULL;
978 }
979
980 if (zp->z_xattr_parent) {
981 iput(ZTOI(zp->z_xattr_parent));
982 zp->z_xattr_parent = NULL;
983 }
984 rw_exit(&zp->z_xattr_lock);
985
986 ASSERT(zp->z_sa_hdl == NULL);
987 err = sa_buf_hold(zsb->z_os, obj_num, NULL, &db);
988 if (err) {
989 ZFS_OBJ_HOLD_EXIT(zsb, obj_num);
990 return (err);
991 }
992
993 dmu_object_info_from_db(db, &doi);
994 if (doi.doi_bonus_type != DMU_OT_SA &&
995 (doi.doi_bonus_type != DMU_OT_ZNODE ||
996 (doi.doi_bonus_type == DMU_OT_ZNODE &&
997 doi.doi_bonus_size < sizeof (znode_phys_t)))) {
998 sa_buf_rele(db, NULL);
999 ZFS_OBJ_HOLD_EXIT(zsb, obj_num);
1000 return (SET_ERROR(EINVAL));
1001 }
1002
1003 zfs_znode_sa_init(zsb, zp, db, doi.doi_bonus_type, NULL);
1004
1005 /* reload cached values */
1006 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zsb), NULL,
1007 &gen, sizeof (gen));
1008 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zsb), NULL,
1009 &zp->z_size, sizeof (zp->z_size));
1010 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zsb), NULL,
1011 &zp->z_links, sizeof (zp->z_links));
1012 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zsb), NULL,
1013 &zp->z_pflags, sizeof (zp->z_pflags));
1014 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zsb), NULL,
1015 &zp->z_atime, sizeof (zp->z_atime));
1016 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zsb), NULL,
1017 &zp->z_uid, sizeof (zp->z_uid));
1018 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zsb), NULL,
1019 &zp->z_gid, sizeof (zp->z_gid));
1020 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zsb), NULL,
1021 &mode, sizeof (mode));
1022
1023 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) {
1024 zfs_znode_dmu_fini(zp);
1025 ZFS_OBJ_HOLD_EXIT(zsb, obj_num);
1026 return (SET_ERROR(EIO));
1027 }
1028
1029 zp->z_mode = mode;
1030
1031 if (gen != zp->z_gen) {
1032 zfs_znode_dmu_fini(zp);
1033 ZFS_OBJ_HOLD_EXIT(zsb, obj_num);
1034 return (SET_ERROR(EIO));
1035 }
1036
1037 zp->z_unlinked = (zp->z_links == 0);
1038 zp->z_blksz = doi.doi_data_block_size;
1039 zfs_inode_update(zp);
1040
1041 ZFS_OBJ_HOLD_EXIT(zsb, obj_num);
1042
1043 return (0);
1044 }
1045
1046 void
1047 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx)
1048 {
1049 zfs_sb_t *zsb = ZTOZSB(zp);
1050 objset_t *os = zsb->z_os;
1051 uint64_t obj = zp->z_id;
1052 uint64_t acl_obj = zfs_external_acl(zp);
1053
1054 ZFS_OBJ_HOLD_ENTER(zsb, obj);
1055 if (acl_obj) {
1056 VERIFY(!zp->z_is_sa);
1057 VERIFY(0 == dmu_object_free(os, acl_obj, tx));
1058 }
1059 VERIFY(0 == dmu_object_free(os, obj, tx));
1060 zfs_znode_dmu_fini(zp);
1061 ZFS_OBJ_HOLD_EXIT(zsb, obj);
1062 }
1063
1064 void
1065 zfs_zinactive(znode_t *zp)
1066 {
1067 zfs_sb_t *zsb = ZTOZSB(zp);
1068 uint64_t z_id = zp->z_id;
1069 boolean_t drop_mutex = 0;
1070
1071 ASSERT(zp->z_sa_hdl);
1072
1073 /*
1074 * Don't allow a zfs_zget() while were trying to release this znode.
1075 *
1076 * Linux allows direct memory reclaim which means that any KM_SLEEP
1077 * allocation may trigger inode eviction. This can lead to a deadlock
1078 * through the ->shrink_icache_memory()->evict()->zfs_inactive()->
1079 * zfs_zinactive() call path. To avoid this deadlock the process
1080 * must not reacquire the mutex when it is already holding it.
1081 */
1082 if (!ZFS_OBJ_HOLD_OWNED(zsb, z_id)) {
1083 ZFS_OBJ_HOLD_ENTER(zsb, z_id);
1084 drop_mutex = 1;
1085 }
1086
1087 mutex_enter(&zp->z_lock);
1088
1089 /*
1090 * If this was the last reference to a file with no links,
1091 * remove the file from the file system.
1092 */
1093 if (zp->z_unlinked) {
1094 mutex_exit(&zp->z_lock);
1095
1096 if (drop_mutex)
1097 ZFS_OBJ_HOLD_EXIT(zsb, z_id);
1098
1099 zfs_rmnode(zp);
1100 return;
1101 }
1102
1103 mutex_exit(&zp->z_lock);
1104 zfs_znode_dmu_fini(zp);
1105
1106 if (drop_mutex)
1107 ZFS_OBJ_HOLD_EXIT(zsb, z_id);
1108 }
1109
1110 static inline int
1111 zfs_compare_timespec(struct timespec *t1, struct timespec *t2)
1112 {
1113 if (t1->tv_sec < t2->tv_sec)
1114 return (-1);
1115
1116 if (t1->tv_sec > t2->tv_sec)
1117 return (1);
1118
1119 return (t1->tv_nsec - t2->tv_nsec);
1120 }
1121
1122 /*
1123 * Determine whether the znode's atime must be updated. The logic mostly
1124 * duplicates the Linux kernel's relatime_need_update() functionality.
1125 * This function is only called if the underlying filesystem actually has
1126 * atime updates enabled.
1127 */
1128 static inline boolean_t
1129 zfs_atime_need_update(znode_t *zp, timestruc_t *now)
1130 {
1131 if (!ZTOZSB(zp)->z_relatime)
1132 return (B_TRUE);
1133
1134 /*
1135 * In relatime mode, only update the atime if the previous atime
1136 * is earlier than either the ctime or mtime or if at least a day
1137 * has passed since the last update of atime.
1138 */
1139 if (zfs_compare_timespec(&ZTOI(zp)->i_mtime, &ZTOI(zp)->i_atime) >= 0)
1140 return (B_TRUE);
1141
1142 if (zfs_compare_timespec(&ZTOI(zp)->i_ctime, &ZTOI(zp)->i_atime) >= 0)
1143 return (B_TRUE);
1144
1145 if ((long)now->tv_sec - ZTOI(zp)->i_atime.tv_sec >= 24*60*60)
1146 return (B_TRUE);
1147
1148 return (B_FALSE);
1149 }
1150
1151 /*
1152 * Prepare to update znode time stamps.
1153 *
1154 * IN: zp - znode requiring timestamp update
1155 * flag - ATTR_MTIME, ATTR_CTIME, ATTR_ATIME flags
1156 * have_tx - true of caller is creating a new txg
1157 *
1158 * OUT: zp - new atime (via underlying inode's i_atime)
1159 * mtime - new mtime
1160 * ctime - new ctime
1161 *
1162 * NOTE: The arguments are somewhat redundant. The following condition
1163 * is always true:
1164 *
1165 * have_tx == !(flag & ATTR_ATIME)
1166 */
1167 void
1168 zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2],
1169 uint64_t ctime[2], boolean_t have_tx)
1170 {
1171 timestruc_t now;
1172
1173 ASSERT(have_tx == !(flag & ATTR_ATIME));
1174 gethrestime(&now);
1175
1176 /*
1177 * NOTE: The following test intentionally does not update z_atime_dirty
1178 * in the case where an ATIME update has been requested but for which
1179 * the update is omitted due to relatime logic. The rationale being
1180 * that if the flag was set somewhere else, we should leave it alone
1181 * here.
1182 */
1183 if (flag & ATTR_ATIME) {
1184 if (zfs_atime_need_update(zp, &now)) {
1185 ZFS_TIME_ENCODE(&now, zp->z_atime);
1186 ZTOI(zp)->i_atime.tv_sec = zp->z_atime[0];
1187 ZTOI(zp)->i_atime.tv_nsec = zp->z_atime[1];
1188 zp->z_atime_dirty = 1;
1189 }
1190 } else {
1191 zp->z_atime_dirty = 0;
1192 zp->z_seq++;
1193 }
1194
1195 if (flag & ATTR_MTIME) {
1196 ZFS_TIME_ENCODE(&now, mtime);
1197 if (ZTOZSB(zp)->z_use_fuids) {
1198 zp->z_pflags |= (ZFS_ARCHIVE |
1199 ZFS_AV_MODIFIED);
1200 }
1201 }
1202
1203 if (flag & ATTR_CTIME) {
1204 ZFS_TIME_ENCODE(&now, ctime);
1205 if (ZTOZSB(zp)->z_use_fuids)
1206 zp->z_pflags |= ZFS_ARCHIVE;
1207 }
1208 }
1209
1210 /*
1211 * Grow the block size for a file.
1212 *
1213 * IN: zp - znode of file to free data in.
1214 * size - requested block size
1215 * tx - open transaction.
1216 *
1217 * NOTE: this function assumes that the znode is write locked.
1218 */
1219 void
1220 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
1221 {
1222 int error;
1223 u_longlong_t dummy;
1224
1225 if (size <= zp->z_blksz)
1226 return;
1227 /*
1228 * If the file size is already greater than the current blocksize,
1229 * we will not grow. If there is more than one block in a file,
1230 * the blocksize cannot change.
1231 */
1232 if (zp->z_blksz && zp->z_size > zp->z_blksz)
1233 return;
1234
1235 error = dmu_object_set_blocksize(ZTOZSB(zp)->z_os, zp->z_id,
1236 size, 0, tx);
1237
1238 if (error == ENOTSUP)
1239 return;
1240 ASSERT0(error);
1241
1242 /* What blocksize did we actually get? */
1243 dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy);
1244 }
1245
1246 /*
1247 * Increase the file length
1248 *
1249 * IN: zp - znode of file to free data in.
1250 * end - new end-of-file
1251 *
1252 * RETURN: 0 on success, error code on failure
1253 */
1254 static int
1255 zfs_extend(znode_t *zp, uint64_t end)
1256 {
1257 zfs_sb_t *zsb = ZTOZSB(zp);
1258 dmu_tx_t *tx;
1259 rl_t *rl;
1260 uint64_t newblksz;
1261 int error;
1262
1263 /*
1264 * We will change zp_size, lock the whole file.
1265 */
1266 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
1267
1268 /*
1269 * Nothing to do if file already at desired length.
1270 */
1271 if (end <= zp->z_size) {
1272 zfs_range_unlock(rl);
1273 return (0);
1274 }
1275 tx = dmu_tx_create(zsb->z_os);
1276 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1277 zfs_sa_upgrade_txholds(tx, zp);
1278 if (end > zp->z_blksz &&
1279 (!ISP2(zp->z_blksz) || zp->z_blksz < zsb->z_max_blksz)) {
1280 /*
1281 * We are growing the file past the current block size.
1282 */
1283 if (zp->z_blksz > ZTOZSB(zp)->z_max_blksz) {
1284 ASSERT(!ISP2(zp->z_blksz));
1285 newblksz = MIN(end, SPA_MAXBLOCKSIZE);
1286 } else {
1287 newblksz = MIN(end, ZTOZSB(zp)->z_max_blksz);
1288 }
1289 dmu_tx_hold_write(tx, zp->z_id, 0, newblksz);
1290 } else {
1291 newblksz = 0;
1292 }
1293
1294 error = dmu_tx_assign(tx, TXG_WAIT);
1295 if (error) {
1296 dmu_tx_abort(tx);
1297 zfs_range_unlock(rl);
1298 return (error);
1299 }
1300
1301 if (newblksz)
1302 zfs_grow_blocksize(zp, newblksz, tx);
1303
1304 zp->z_size = end;
1305
1306 VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(ZTOZSB(zp)),
1307 &zp->z_size, sizeof (zp->z_size), tx));
1308
1309 zfs_range_unlock(rl);
1310
1311 dmu_tx_commit(tx);
1312
1313 return (0);
1314 }
1315
1316 /*
1317 * Free space in a file.
1318 *
1319 * IN: zp - znode of file to free data in.
1320 * off - start of section to free.
1321 * len - length of section to free.
1322 *
1323 * RETURN: 0 on success, error code on failure
1324 */
1325 static int
1326 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len)
1327 {
1328 zfs_sb_t *zsb = ZTOZSB(zp);
1329 rl_t *rl;
1330 int error;
1331
1332 /*
1333 * Lock the range being freed.
1334 */
1335 rl = zfs_range_lock(zp, off, len, RL_WRITER);
1336
1337 /*
1338 * Nothing to do if file already at desired length.
1339 */
1340 if (off >= zp->z_size) {
1341 zfs_range_unlock(rl);
1342 return (0);
1343 }
1344
1345 if (off + len > zp->z_size)
1346 len = zp->z_size - off;
1347
1348 error = dmu_free_long_range(zsb->z_os, zp->z_id, off, len);
1349
1350 zfs_range_unlock(rl);
1351
1352 return (error);
1353 }
1354
1355 /*
1356 * Truncate a file
1357 *
1358 * IN: zp - znode of file to free data in.
1359 * end - new end-of-file.
1360 *
1361 * RETURN: 0 on success, error code on failure
1362 */
1363 static int
1364 zfs_trunc(znode_t *zp, uint64_t end)
1365 {
1366 zfs_sb_t *zsb = ZTOZSB(zp);
1367 dmu_tx_t *tx;
1368 rl_t *rl;
1369 int error;
1370 sa_bulk_attr_t bulk[2];
1371 int count = 0;
1372
1373 /*
1374 * We will change zp_size, lock the whole file.
1375 */
1376 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
1377
1378 /*
1379 * Nothing to do if file already at desired length.
1380 */
1381 if (end >= zp->z_size) {
1382 zfs_range_unlock(rl);
1383 return (0);
1384 }
1385
1386 error = dmu_free_long_range(zsb->z_os, zp->z_id, end, -1);
1387 if (error) {
1388 zfs_range_unlock(rl);
1389 return (error);
1390 }
1391 top:
1392 tx = dmu_tx_create(zsb->z_os);
1393 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1394 zfs_sa_upgrade_txholds(tx, zp);
1395 error = dmu_tx_assign(tx, TXG_NOWAIT);
1396 if (error) {
1397 if (error == ERESTART) {
1398 dmu_tx_wait(tx);
1399 dmu_tx_abort(tx);
1400 goto top;
1401 }
1402 dmu_tx_abort(tx);
1403 zfs_range_unlock(rl);
1404 return (error);
1405 }
1406
1407 zp->z_size = end;
1408 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zsb),
1409 NULL, &zp->z_size, sizeof (zp->z_size));
1410
1411 if (end == 0) {
1412 zp->z_pflags &= ~ZFS_SPARSE;
1413 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zsb),
1414 NULL, &zp->z_pflags, 8);
1415 }
1416 VERIFY(sa_bulk_update(zp->z_sa_hdl, bulk, count, tx) == 0);
1417
1418 dmu_tx_commit(tx);
1419
1420 zfs_range_unlock(rl);
1421
1422 return (0);
1423 }
1424
1425 /*
1426 * Free space in a file
1427 *
1428 * IN: zp - znode of file to free data in.
1429 * off - start of range
1430 * len - end of range (0 => EOF)
1431 * flag - current file open mode flags.
1432 * log - TRUE if this action should be logged
1433 *
1434 * RETURN: 0 on success, error code on failure
1435 */
1436 int
1437 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log)
1438 {
1439 struct inode *ip = ZTOI(zp);
1440 dmu_tx_t *tx;
1441 zfs_sb_t *zsb = ZTOZSB(zp);
1442 zilog_t *zilog = zsb->z_log;
1443 uint64_t mode;
1444 uint64_t mtime[2], ctime[2];
1445 sa_bulk_attr_t bulk[3];
1446 int count = 0;
1447 int error;
1448
1449 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zsb), &mode,
1450 sizeof (mode))) != 0)
1451 return (error);
1452
1453 if (off > zp->z_size) {
1454 error = zfs_extend(zp, off+len);
1455 if (error == 0 && log)
1456 goto log;
1457 else
1458 return (error);
1459 }
1460
1461 /*
1462 * Check for any locks in the region to be freed.
1463 */
1464 if (ip->i_flock && mandatory_lock(ip)) {
1465 uint64_t length = (len ? len : zp->z_size - off);
1466 if (!lock_may_write(ip, off, length))
1467 return (SET_ERROR(EAGAIN));
1468 }
1469
1470 if (len == 0) {
1471 error = zfs_trunc(zp, off);
1472 } else {
1473 if ((error = zfs_free_range(zp, off, len)) == 0 &&
1474 off + len > zp->z_size)
1475 error = zfs_extend(zp, off+len);
1476 }
1477 if (error || !log)
1478 return (error);
1479 log:
1480 tx = dmu_tx_create(zsb->z_os);
1481 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1482 zfs_sa_upgrade_txholds(tx, zp);
1483 error = dmu_tx_assign(tx, TXG_WAIT);
1484 if (error) {
1485 dmu_tx_abort(tx);
1486 return (error);
1487 }
1488
1489 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zsb), NULL, mtime, 16);
1490 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zsb), NULL, ctime, 16);
1491 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zsb),
1492 NULL, &zp->z_pflags, 8);
1493 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, B_TRUE);
1494 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1495 ASSERT(error == 0);
1496
1497 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
1498
1499 dmu_tx_commit(tx);
1500 zfs_inode_update(zp);
1501 return (0);
1502 }
1503
1504 void
1505 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx)
1506 {
1507 struct super_block *sb;
1508 zfs_sb_t *zsb;
1509 uint64_t moid, obj, sa_obj, version;
1510 uint64_t sense = ZFS_CASE_SENSITIVE;
1511 uint64_t norm = 0;
1512 nvpair_t *elem;
1513 int error;
1514 int i;
1515 znode_t *rootzp = NULL;
1516 vattr_t vattr;
1517 znode_t *zp;
1518 zfs_acl_ids_t acl_ids;
1519
1520 /*
1521 * First attempt to create master node.
1522 */
1523 /*
1524 * In an empty objset, there are no blocks to read and thus
1525 * there can be no i/o errors (which we assert below).
1526 */
1527 moid = MASTER_NODE_OBJ;
1528 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE,
1529 DMU_OT_NONE, 0, tx);
1530 ASSERT(error == 0);
1531
1532 /*
1533 * Set starting attributes.
1534 */
1535 version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os)));
1536 elem = NULL;
1537 while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) {
1538 /* For the moment we expect all zpl props to be uint64_ts */
1539 uint64_t val;
1540 char *name;
1541
1542 ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64);
1543 VERIFY(nvpair_value_uint64(elem, &val) == 0);
1544 name = nvpair_name(elem);
1545 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) {
1546 if (val < version)
1547 version = val;
1548 } else {
1549 error = zap_update(os, moid, name, 8, 1, &val, tx);
1550 }
1551 ASSERT(error == 0);
1552 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0)
1553 norm = val;
1554 else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0)
1555 sense = val;
1556 }
1557 ASSERT(version != 0);
1558 error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx);
1559
1560 /*
1561 * Create zap object used for SA attribute registration
1562 */
1563
1564 if (version >= ZPL_VERSION_SA) {
1565 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
1566 DMU_OT_NONE, 0, tx);
1567 error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
1568 ASSERT(error == 0);
1569 } else {
1570 sa_obj = 0;
1571 }
1572 /*
1573 * Create a delete queue.
1574 */
1575 obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx);
1576
1577 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx);
1578 ASSERT(error == 0);
1579
1580 /*
1581 * Create root znode. Create minimal znode/inode/zsb/sb
1582 * to allow zfs_mknode to work.
1583 */
1584 vattr.va_mask = ATTR_MODE|ATTR_UID|ATTR_GID;
1585 vattr.va_mode = S_IFDIR|0755;
1586 vattr.va_uid = crgetuid(cr);
1587 vattr.va_gid = crgetgid(cr);
1588
1589 rootzp = kmem_cache_alloc(znode_cache, KM_PUSHPAGE);
1590 rootzp->z_moved = 0;
1591 rootzp->z_unlinked = 0;
1592 rootzp->z_atime_dirty = 0;
1593 rootzp->z_is_sa = USE_SA(version, os);
1594
1595 zsb = kmem_zalloc(sizeof (zfs_sb_t), KM_PUSHPAGE | KM_NODEBUG);
1596 zsb->z_os = os;
1597 zsb->z_parent = zsb;
1598 zsb->z_version = version;
1599 zsb->z_use_fuids = USE_FUIDS(version, os);
1600 zsb->z_use_sa = USE_SA(version, os);
1601 zsb->z_norm = norm;
1602
1603 sb = kmem_zalloc(sizeof (struct super_block), KM_PUSHPAGE);
1604 sb->s_fs_info = zsb;
1605
1606 ZTOI(rootzp)->i_sb = sb;
1607
1608 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
1609 &zsb->z_attr_table);
1610
1611 ASSERT(error == 0);
1612
1613 /*
1614 * Fold case on file systems that are always or sometimes case
1615 * insensitive.
1616 */
1617 if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED)
1618 zsb->z_norm |= U8_TEXTPREP_TOUPPER;
1619
1620 mutex_init(&zsb->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1621 list_create(&zsb->z_all_znodes, sizeof (znode_t),
1622 offsetof(znode_t, z_link_node));
1623
1624 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1625 mutex_init(&zsb->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
1626
1627 VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr,
1628 cr, NULL, &acl_ids));
1629 zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids);
1630 ASSERT3P(zp, ==, rootzp);
1631 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx);
1632 ASSERT(error == 0);
1633 zfs_acl_ids_free(&acl_ids);
1634
1635 atomic_set(&ZTOI(rootzp)->i_count, 0);
1636 sa_handle_destroy(rootzp->z_sa_hdl);
1637 kmem_cache_free(znode_cache, rootzp);
1638
1639 /*
1640 * Create shares directory
1641 */
1642 error = zfs_create_share_dir(zsb, tx);
1643 ASSERT(error == 0);
1644
1645 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1646 mutex_destroy(&zsb->z_hold_mtx[i]);
1647
1648 kmem_free(sb, sizeof (struct super_block));
1649 kmem_free(zsb, sizeof (zfs_sb_t));
1650 }
1651 #endif /* _KERNEL */
1652
1653 static int
1654 zfs_sa_setup(objset_t *osp, sa_attr_type_t **sa_table)
1655 {
1656 uint64_t sa_obj = 0;
1657 int error;
1658
1659 error = zap_lookup(osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj);
1660 if (error != 0 && error != ENOENT)
1661 return (error);
1662
1663 error = sa_setup(osp, sa_obj, zfs_attr_table, ZPL_END, sa_table);
1664 return (error);
1665 }
1666
1667 static int
1668 zfs_grab_sa_handle(objset_t *osp, uint64_t obj, sa_handle_t **hdlp,
1669 dmu_buf_t **db, void *tag)
1670 {
1671 dmu_object_info_t doi;
1672 int error;
1673
1674 if ((error = sa_buf_hold(osp, obj, tag, db)) != 0)
1675 return (error);
1676
1677 dmu_object_info_from_db(*db, &doi);
1678 if ((doi.doi_bonus_type != DMU_OT_SA &&
1679 doi.doi_bonus_type != DMU_OT_ZNODE) ||
1680 (doi.doi_bonus_type == DMU_OT_ZNODE &&
1681 doi.doi_bonus_size < sizeof (znode_phys_t))) {
1682 sa_buf_rele(*db, tag);
1683 return (SET_ERROR(ENOTSUP));
1684 }
1685
1686 error = sa_handle_get(osp, obj, NULL, SA_HDL_PRIVATE, hdlp);
1687 if (error != 0) {
1688 sa_buf_rele(*db, tag);
1689 return (error);
1690 }
1691
1692 return (0);
1693 }
1694
1695 void
1696 zfs_release_sa_handle(sa_handle_t *hdl, dmu_buf_t *db, void *tag)
1697 {
1698 sa_handle_destroy(hdl);
1699 sa_buf_rele(db, tag);
1700 }
1701
1702 /*
1703 * Given an object number, return its parent object number and whether
1704 * or not the object is an extended attribute directory.
1705 */
1706 static int
1707 zfs_obj_to_pobj(sa_handle_t *hdl, sa_attr_type_t *sa_table, uint64_t *pobjp,
1708 int *is_xattrdir)
1709 {
1710 uint64_t parent;
1711 uint64_t pflags;
1712 uint64_t mode;
1713 sa_bulk_attr_t bulk[3];
1714 int count = 0;
1715 int error;
1716
1717 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_PARENT], NULL,
1718 &parent, sizeof (parent));
1719 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_FLAGS], NULL,
1720 &pflags, sizeof (pflags));
1721 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL,
1722 &mode, sizeof (mode));
1723
1724 if ((error = sa_bulk_lookup(hdl, bulk, count)) != 0)
1725 return (error);
1726
1727 *pobjp = parent;
1728 *is_xattrdir = ((pflags & ZFS_XATTR) != 0) && S_ISDIR(mode);
1729
1730 return (0);
1731 }
1732
1733 /*
1734 * Given an object number, return some zpl level statistics
1735 */
1736 static int
1737 zfs_obj_to_stats_impl(sa_handle_t *hdl, sa_attr_type_t *sa_table,
1738 zfs_stat_t *sb)
1739 {
1740 sa_bulk_attr_t bulk[4];
1741 int count = 0;
1742
1743 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL,
1744 &sb->zs_mode, sizeof (sb->zs_mode));
1745 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_GEN], NULL,
1746 &sb->zs_gen, sizeof (sb->zs_gen));
1747 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_LINKS], NULL,
1748 &sb->zs_links, sizeof (sb->zs_links));
1749 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_CTIME], NULL,
1750 &sb->zs_ctime, sizeof (sb->zs_ctime));
1751
1752 return (sa_bulk_lookup(hdl, bulk, count));
1753 }
1754
1755 static int
1756 zfs_obj_to_path_impl(objset_t *osp, uint64_t obj, sa_handle_t *hdl,
1757 sa_attr_type_t *sa_table, char *buf, int len)
1758 {
1759 sa_handle_t *sa_hdl;
1760 sa_handle_t *prevhdl = NULL;
1761 dmu_buf_t *prevdb = NULL;
1762 dmu_buf_t *sa_db = NULL;
1763 char *path = buf + len - 1;
1764 int error;
1765
1766 *path = '\0';
1767 sa_hdl = hdl;
1768
1769 for (;;) {
1770 uint64_t pobj = 0;
1771 char component[MAXNAMELEN + 2];
1772 size_t complen;
1773 int is_xattrdir = 0;
1774
1775 if (prevdb)
1776 zfs_release_sa_handle(prevhdl, prevdb, FTAG);
1777
1778 if ((error = zfs_obj_to_pobj(sa_hdl, sa_table, &pobj,
1779 &is_xattrdir)) != 0)
1780 break;
1781
1782 if (pobj == obj) {
1783 if (path[0] != '/')
1784 *--path = '/';
1785 break;
1786 }
1787
1788 component[0] = '/';
1789 if (is_xattrdir) {
1790 (void) sprintf(component + 1, "<xattrdir>");
1791 } else {
1792 error = zap_value_search(osp, pobj, obj,
1793 ZFS_DIRENT_OBJ(-1ULL), component + 1);
1794 if (error != 0)
1795 break;
1796 }
1797
1798 complen = strlen(component);
1799 path -= complen;
1800 ASSERT(path >= buf);
1801 bcopy(component, path, complen);
1802 obj = pobj;
1803
1804 if (sa_hdl != hdl) {
1805 prevhdl = sa_hdl;
1806 prevdb = sa_db;
1807 }
1808 error = zfs_grab_sa_handle(osp, obj, &sa_hdl, &sa_db, FTAG);
1809 if (error != 0) {
1810 sa_hdl = prevhdl;
1811 sa_db = prevdb;
1812 break;
1813 }
1814 }
1815
1816 if (sa_hdl != NULL && sa_hdl != hdl) {
1817 ASSERT(sa_db != NULL);
1818 zfs_release_sa_handle(sa_hdl, sa_db, FTAG);
1819 }
1820
1821 if (error == 0)
1822 (void) memmove(buf, path, buf + len - path);
1823
1824 return (error);
1825 }
1826
1827 int
1828 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len)
1829 {
1830 sa_attr_type_t *sa_table;
1831 sa_handle_t *hdl;
1832 dmu_buf_t *db;
1833 int error;
1834
1835 error = zfs_sa_setup(osp, &sa_table);
1836 if (error != 0)
1837 return (error);
1838
1839 error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG);
1840 if (error != 0)
1841 return (error);
1842
1843 error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len);
1844
1845 zfs_release_sa_handle(hdl, db, FTAG);
1846 return (error);
1847 }
1848
1849 int
1850 zfs_obj_to_stats(objset_t *osp, uint64_t obj, zfs_stat_t *sb,
1851 char *buf, int len)
1852 {
1853 char *path = buf + len - 1;
1854 sa_attr_type_t *sa_table;
1855 sa_handle_t *hdl;
1856 dmu_buf_t *db;
1857 int error;
1858
1859 *path = '\0';
1860
1861 error = zfs_sa_setup(osp, &sa_table);
1862 if (error != 0)
1863 return (error);
1864
1865 error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG);
1866 if (error != 0)
1867 return (error);
1868
1869 error = zfs_obj_to_stats_impl(hdl, sa_table, sb);
1870 if (error != 0) {
1871 zfs_release_sa_handle(hdl, db, FTAG);
1872 return (error);
1873 }
1874
1875 error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len);
1876
1877 zfs_release_sa_handle(hdl, db, FTAG);
1878 return (error);
1879 }
1880
1881 #if defined(_KERNEL) && defined(HAVE_SPL)
1882 EXPORT_SYMBOL(zfs_create_fs);
1883 EXPORT_SYMBOL(zfs_obj_to_path);
1884 #endif