]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zil.c
Remove bcopy(), bzero(), bcmp()
[mirror_zfs.git] / module / zfs / zil.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Integros [integros.com]
25 * Copyright (c) 2018 Datto Inc.
26 */
27
28 /* Portions Copyright 2010 Robert Milkowski */
29
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/zap.h>
35 #include <sys/arc.h>
36 #include <sys/stat.h>
37 #include <sys/zil.h>
38 #include <sys/zil_impl.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/metaslab.h>
44 #include <sys/trace_zfs.h>
45 #include <sys/abd.h>
46
47 /*
48 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
49 * calls that change the file system. Each itx has enough information to
50 * be able to replay them after a system crash, power loss, or
51 * equivalent failure mode. These are stored in memory until either:
52 *
53 * 1. they are committed to the pool by the DMU transaction group
54 * (txg), at which point they can be discarded; or
55 * 2. they are committed to the on-disk ZIL for the dataset being
56 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous
57 * requirement).
58 *
59 * In the event of a crash or power loss, the itxs contained by each
60 * dataset's on-disk ZIL will be replayed when that dataset is first
61 * instantiated (e.g. if the dataset is a normal filesystem, when it is
62 * first mounted).
63 *
64 * As hinted at above, there is one ZIL per dataset (both the in-memory
65 * representation, and the on-disk representation). The on-disk format
66 * consists of 3 parts:
67 *
68 * - a single, per-dataset, ZIL header; which points to a chain of
69 * - zero or more ZIL blocks; each of which contains
70 * - zero or more ZIL records
71 *
72 * A ZIL record holds the information necessary to replay a single
73 * system call transaction. A ZIL block can hold many ZIL records, and
74 * the blocks are chained together, similarly to a singly linked list.
75 *
76 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
77 * block in the chain, and the ZIL header points to the first block in
78 * the chain.
79 *
80 * Note, there is not a fixed place in the pool to hold these ZIL
81 * blocks; they are dynamically allocated and freed as needed from the
82 * blocks available on the pool, though they can be preferentially
83 * allocated from a dedicated "log" vdev.
84 */
85
86 /*
87 * This controls the amount of time that a ZIL block (lwb) will remain
88 * "open" when it isn't "full", and it has a thread waiting for it to be
89 * committed to stable storage. Please refer to the zil_commit_waiter()
90 * function (and the comments within it) for more details.
91 */
92 static int zfs_commit_timeout_pct = 5;
93
94 /*
95 * See zil.h for more information about these fields.
96 */
97 static zil_stats_t zil_stats = {
98 { "zil_commit_count", KSTAT_DATA_UINT64 },
99 { "zil_commit_writer_count", KSTAT_DATA_UINT64 },
100 { "zil_itx_count", KSTAT_DATA_UINT64 },
101 { "zil_itx_indirect_count", KSTAT_DATA_UINT64 },
102 { "zil_itx_indirect_bytes", KSTAT_DATA_UINT64 },
103 { "zil_itx_copied_count", KSTAT_DATA_UINT64 },
104 { "zil_itx_copied_bytes", KSTAT_DATA_UINT64 },
105 { "zil_itx_needcopy_count", KSTAT_DATA_UINT64 },
106 { "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64 },
107 { "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64 },
108 { "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64 },
109 { "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64 },
110 { "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 },
111 };
112
113 static kstat_t *zil_ksp;
114
115 /*
116 * Disable intent logging replay. This global ZIL switch affects all pools.
117 */
118 int zil_replay_disable = 0;
119
120 /*
121 * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to
122 * the disk(s) by the ZIL after an LWB write has completed. Setting this
123 * will cause ZIL corruption on power loss if a volatile out-of-order
124 * write cache is enabled.
125 */
126 static int zil_nocacheflush = 0;
127
128 /*
129 * Limit SLOG write size per commit executed with synchronous priority.
130 * Any writes above that will be executed with lower (asynchronous) priority
131 * to limit potential SLOG device abuse by single active ZIL writer.
132 */
133 static unsigned long zil_slog_bulk = 768 * 1024;
134
135 static kmem_cache_t *zil_lwb_cache;
136 static kmem_cache_t *zil_zcw_cache;
137
138 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
139 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
140
141 static int
142 zil_bp_compare(const void *x1, const void *x2)
143 {
144 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
145 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
146
147 int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
148 if (likely(cmp))
149 return (cmp);
150
151 return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
152 }
153
154 static void
155 zil_bp_tree_init(zilog_t *zilog)
156 {
157 avl_create(&zilog->zl_bp_tree, zil_bp_compare,
158 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
159 }
160
161 static void
162 zil_bp_tree_fini(zilog_t *zilog)
163 {
164 avl_tree_t *t = &zilog->zl_bp_tree;
165 zil_bp_node_t *zn;
166 void *cookie = NULL;
167
168 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
169 kmem_free(zn, sizeof (zil_bp_node_t));
170
171 avl_destroy(t);
172 }
173
174 int
175 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
176 {
177 avl_tree_t *t = &zilog->zl_bp_tree;
178 const dva_t *dva;
179 zil_bp_node_t *zn;
180 avl_index_t where;
181
182 if (BP_IS_EMBEDDED(bp))
183 return (0);
184
185 dva = BP_IDENTITY(bp);
186
187 if (avl_find(t, dva, &where) != NULL)
188 return (SET_ERROR(EEXIST));
189
190 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
191 zn->zn_dva = *dva;
192 avl_insert(t, zn, where);
193
194 return (0);
195 }
196
197 static zil_header_t *
198 zil_header_in_syncing_context(zilog_t *zilog)
199 {
200 return ((zil_header_t *)zilog->zl_header);
201 }
202
203 static void
204 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
205 {
206 zio_cksum_t *zc = &bp->blk_cksum;
207
208 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0],
209 sizeof (zc->zc_word[ZIL_ZC_GUID_0]));
210 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1],
211 sizeof (zc->zc_word[ZIL_ZC_GUID_1]));
212 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
213 zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
214 }
215
216 /*
217 * Read a log block and make sure it's valid.
218 */
219 static int
220 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp,
221 blkptr_t *nbp, void *dst, char **end)
222 {
223 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
224 arc_flags_t aflags = ARC_FLAG_WAIT;
225 arc_buf_t *abuf = NULL;
226 zbookmark_phys_t zb;
227 int error;
228
229 if (zilog->zl_header->zh_claim_txg == 0)
230 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
231
232 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
233 zio_flags |= ZIO_FLAG_SPECULATIVE;
234
235 if (!decrypt)
236 zio_flags |= ZIO_FLAG_RAW;
237
238 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
239 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
240
241 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func,
242 &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
243
244 if (error == 0) {
245 zio_cksum_t cksum = bp->blk_cksum;
246
247 /*
248 * Validate the checksummed log block.
249 *
250 * Sequence numbers should be... sequential. The checksum
251 * verifier for the next block should be bp's checksum plus 1.
252 *
253 * Also check the log chain linkage and size used.
254 */
255 cksum.zc_word[ZIL_ZC_SEQ]++;
256
257 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
258 zil_chain_t *zilc = abuf->b_data;
259 char *lr = (char *)(zilc + 1);
260 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
261
262 if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
263 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
264 error = SET_ERROR(ECKSUM);
265 } else {
266 ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
267 memcpy(dst, lr, len);
268 *end = (char *)dst + len;
269 *nbp = zilc->zc_next_blk;
270 }
271 } else {
272 char *lr = abuf->b_data;
273 uint64_t size = BP_GET_LSIZE(bp);
274 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
275
276 if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
277 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
278 (zilc->zc_nused > (size - sizeof (*zilc)))) {
279 error = SET_ERROR(ECKSUM);
280 } else {
281 ASSERT3U(zilc->zc_nused, <=,
282 SPA_OLD_MAXBLOCKSIZE);
283 memcpy(dst, lr, zilc->zc_nused);
284 *end = (char *)dst + zilc->zc_nused;
285 *nbp = zilc->zc_next_blk;
286 }
287 }
288
289 arc_buf_destroy(abuf, &abuf);
290 }
291
292 return (error);
293 }
294
295 /*
296 * Read a TX_WRITE log data block.
297 */
298 static int
299 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
300 {
301 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
302 const blkptr_t *bp = &lr->lr_blkptr;
303 arc_flags_t aflags = ARC_FLAG_WAIT;
304 arc_buf_t *abuf = NULL;
305 zbookmark_phys_t zb;
306 int error;
307
308 if (BP_IS_HOLE(bp)) {
309 if (wbuf != NULL)
310 memset(wbuf, 0, MAX(BP_GET_LSIZE(bp), lr->lr_length));
311 return (0);
312 }
313
314 if (zilog->zl_header->zh_claim_txg == 0)
315 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
316
317 /*
318 * If we are not using the resulting data, we are just checking that
319 * it hasn't been corrupted so we don't need to waste CPU time
320 * decompressing and decrypting it.
321 */
322 if (wbuf == NULL)
323 zio_flags |= ZIO_FLAG_RAW;
324
325 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
326 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
327
328 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
329 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
330
331 if (error == 0) {
332 if (wbuf != NULL)
333 memcpy(wbuf, abuf->b_data, arc_buf_size(abuf));
334 arc_buf_destroy(abuf, &abuf);
335 }
336
337 return (error);
338 }
339
340 /*
341 * Parse the intent log, and call parse_func for each valid record within.
342 */
343 int
344 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
345 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg,
346 boolean_t decrypt)
347 {
348 const zil_header_t *zh = zilog->zl_header;
349 boolean_t claimed = !!zh->zh_claim_txg;
350 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
351 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
352 uint64_t max_blk_seq = 0;
353 uint64_t max_lr_seq = 0;
354 uint64_t blk_count = 0;
355 uint64_t lr_count = 0;
356 blkptr_t blk, next_blk = {{{{0}}}};
357 char *lrbuf, *lrp;
358 int error = 0;
359
360 /*
361 * Old logs didn't record the maximum zh_claim_lr_seq.
362 */
363 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
364 claim_lr_seq = UINT64_MAX;
365
366 /*
367 * Starting at the block pointed to by zh_log we read the log chain.
368 * For each block in the chain we strongly check that block to
369 * ensure its validity. We stop when an invalid block is found.
370 * For each block pointer in the chain we call parse_blk_func().
371 * For each record in each valid block we call parse_lr_func().
372 * If the log has been claimed, stop if we encounter a sequence
373 * number greater than the highest claimed sequence number.
374 */
375 lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
376 zil_bp_tree_init(zilog);
377
378 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
379 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
380 int reclen;
381 char *end = NULL;
382
383 if (blk_seq > claim_blk_seq)
384 break;
385
386 error = parse_blk_func(zilog, &blk, arg, txg);
387 if (error != 0)
388 break;
389 ASSERT3U(max_blk_seq, <, blk_seq);
390 max_blk_seq = blk_seq;
391 blk_count++;
392
393 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
394 break;
395
396 error = zil_read_log_block(zilog, decrypt, &blk, &next_blk,
397 lrbuf, &end);
398 if (error != 0)
399 break;
400
401 for (lrp = lrbuf; lrp < end; lrp += reclen) {
402 lr_t *lr = (lr_t *)lrp;
403 reclen = lr->lrc_reclen;
404 ASSERT3U(reclen, >=, sizeof (lr_t));
405 if (lr->lrc_seq > claim_lr_seq)
406 goto done;
407
408 error = parse_lr_func(zilog, lr, arg, txg);
409 if (error != 0)
410 goto done;
411 ASSERT3U(max_lr_seq, <, lr->lrc_seq);
412 max_lr_seq = lr->lrc_seq;
413 lr_count++;
414 }
415 }
416 done:
417 zilog->zl_parse_error = error;
418 zilog->zl_parse_blk_seq = max_blk_seq;
419 zilog->zl_parse_lr_seq = max_lr_seq;
420 zilog->zl_parse_blk_count = blk_count;
421 zilog->zl_parse_lr_count = lr_count;
422
423 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
424 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq) ||
425 (decrypt && error == EIO));
426
427 zil_bp_tree_fini(zilog);
428 zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
429
430 return (error);
431 }
432
433 static int
434 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
435 uint64_t first_txg)
436 {
437 (void) tx;
438 ASSERT(!BP_IS_HOLE(bp));
439
440 /*
441 * As we call this function from the context of a rewind to a
442 * checkpoint, each ZIL block whose txg is later than the txg
443 * that we rewind to is invalid. Thus, we return -1 so
444 * zil_parse() doesn't attempt to read it.
445 */
446 if (bp->blk_birth >= first_txg)
447 return (-1);
448
449 if (zil_bp_tree_add(zilog, bp) != 0)
450 return (0);
451
452 zio_free(zilog->zl_spa, first_txg, bp);
453 return (0);
454 }
455
456 static int
457 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
458 uint64_t first_txg)
459 {
460 (void) zilog, (void) lrc, (void) tx, (void) first_txg;
461 return (0);
462 }
463
464 static int
465 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
466 uint64_t first_txg)
467 {
468 /*
469 * Claim log block if not already committed and not already claimed.
470 * If tx == NULL, just verify that the block is claimable.
471 */
472 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
473 zil_bp_tree_add(zilog, bp) != 0)
474 return (0);
475
476 return (zio_wait(zio_claim(NULL, zilog->zl_spa,
477 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
478 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
479 }
480
481 static int
482 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
483 uint64_t first_txg)
484 {
485 lr_write_t *lr = (lr_write_t *)lrc;
486 int error;
487
488 if (lrc->lrc_txtype != TX_WRITE)
489 return (0);
490
491 /*
492 * If the block is not readable, don't claim it. This can happen
493 * in normal operation when a log block is written to disk before
494 * some of the dmu_sync() blocks it points to. In this case, the
495 * transaction cannot have been committed to anyone (we would have
496 * waited for all writes to be stable first), so it is semantically
497 * correct to declare this the end of the log.
498 */
499 if (lr->lr_blkptr.blk_birth >= first_txg) {
500 error = zil_read_log_data(zilog, lr, NULL);
501 if (error != 0)
502 return (error);
503 }
504
505 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
506 }
507
508 static int
509 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
510 uint64_t claim_txg)
511 {
512 (void) claim_txg;
513
514 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
515
516 return (0);
517 }
518
519 static int
520 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
521 uint64_t claim_txg)
522 {
523 lr_write_t *lr = (lr_write_t *)lrc;
524 blkptr_t *bp = &lr->lr_blkptr;
525
526 /*
527 * If we previously claimed it, we need to free it.
528 */
529 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
530 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
531 !BP_IS_HOLE(bp))
532 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
533
534 return (0);
535 }
536
537 static int
538 zil_lwb_vdev_compare(const void *x1, const void *x2)
539 {
540 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
541 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
542
543 return (TREE_CMP(v1, v2));
544 }
545
546 static lwb_t *
547 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg,
548 boolean_t fastwrite)
549 {
550 lwb_t *lwb;
551
552 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
553 lwb->lwb_zilog = zilog;
554 lwb->lwb_blk = *bp;
555 lwb->lwb_fastwrite = fastwrite;
556 lwb->lwb_slog = slog;
557 lwb->lwb_state = LWB_STATE_CLOSED;
558 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
559 lwb->lwb_max_txg = txg;
560 lwb->lwb_write_zio = NULL;
561 lwb->lwb_root_zio = NULL;
562 lwb->lwb_tx = NULL;
563 lwb->lwb_issued_timestamp = 0;
564 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
565 lwb->lwb_nused = sizeof (zil_chain_t);
566 lwb->lwb_sz = BP_GET_LSIZE(bp);
567 } else {
568 lwb->lwb_nused = 0;
569 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
570 }
571
572 mutex_enter(&zilog->zl_lock);
573 list_insert_tail(&zilog->zl_lwb_list, lwb);
574 mutex_exit(&zilog->zl_lock);
575
576 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
577 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
578 VERIFY(list_is_empty(&lwb->lwb_waiters));
579 VERIFY(list_is_empty(&lwb->lwb_itxs));
580
581 return (lwb);
582 }
583
584 static void
585 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
586 {
587 ASSERT(MUTEX_HELD(&zilog->zl_lock));
588 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
589 VERIFY(list_is_empty(&lwb->lwb_waiters));
590 VERIFY(list_is_empty(&lwb->lwb_itxs));
591 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
592 ASSERT3P(lwb->lwb_write_zio, ==, NULL);
593 ASSERT3P(lwb->lwb_root_zio, ==, NULL);
594 ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
595 ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
596 lwb->lwb_state == LWB_STATE_FLUSH_DONE);
597
598 /*
599 * Clear the zilog's field to indicate this lwb is no longer
600 * valid, and prevent use-after-free errors.
601 */
602 if (zilog->zl_last_lwb_opened == lwb)
603 zilog->zl_last_lwb_opened = NULL;
604
605 kmem_cache_free(zil_lwb_cache, lwb);
606 }
607
608 /*
609 * Called when we create in-memory log transactions so that we know
610 * to cleanup the itxs at the end of spa_sync().
611 */
612 static void
613 zilog_dirty(zilog_t *zilog, uint64_t txg)
614 {
615 dsl_pool_t *dp = zilog->zl_dmu_pool;
616 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
617
618 ASSERT(spa_writeable(zilog->zl_spa));
619
620 if (ds->ds_is_snapshot)
621 panic("dirtying snapshot!");
622
623 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
624 /* up the hold count until we can be written out */
625 dmu_buf_add_ref(ds->ds_dbuf, zilog);
626
627 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
628 }
629 }
630
631 /*
632 * Determine if the zil is dirty in the specified txg. Callers wanting to
633 * ensure that the dirty state does not change must hold the itxg_lock for
634 * the specified txg. Holding the lock will ensure that the zil cannot be
635 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
636 * state.
637 */
638 static boolean_t __maybe_unused
639 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
640 {
641 dsl_pool_t *dp = zilog->zl_dmu_pool;
642
643 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
644 return (B_TRUE);
645 return (B_FALSE);
646 }
647
648 /*
649 * Determine if the zil is dirty. The zil is considered dirty if it has
650 * any pending itx records that have not been cleaned by zil_clean().
651 */
652 static boolean_t
653 zilog_is_dirty(zilog_t *zilog)
654 {
655 dsl_pool_t *dp = zilog->zl_dmu_pool;
656
657 for (int t = 0; t < TXG_SIZE; t++) {
658 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
659 return (B_TRUE);
660 }
661 return (B_FALSE);
662 }
663
664 /*
665 * Its called in zil_commit context (zil_process_commit_list()/zil_create()).
666 * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled.
667 * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every
668 * zil_commit.
669 */
670 static void
671 zil_commit_activate_saxattr_feature(zilog_t *zilog)
672 {
673 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
674 uint64_t txg = 0;
675 dmu_tx_t *tx = NULL;
676
677 if (spa_feature_is_enabled(zilog->zl_spa,
678 SPA_FEATURE_ZILSAXATTR) &&
679 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL &&
680 !dsl_dataset_feature_is_active(ds,
681 SPA_FEATURE_ZILSAXATTR)) {
682 tx = dmu_tx_create(zilog->zl_os);
683 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
684 dsl_dataset_dirty(ds, tx);
685 txg = dmu_tx_get_txg(tx);
686
687 mutex_enter(&ds->ds_lock);
688 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
689 (void *)B_TRUE;
690 mutex_exit(&ds->ds_lock);
691 dmu_tx_commit(tx);
692 txg_wait_synced(zilog->zl_dmu_pool, txg);
693 }
694 }
695
696 /*
697 * Create an on-disk intent log.
698 */
699 static lwb_t *
700 zil_create(zilog_t *zilog)
701 {
702 const zil_header_t *zh = zilog->zl_header;
703 lwb_t *lwb = NULL;
704 uint64_t txg = 0;
705 dmu_tx_t *tx = NULL;
706 blkptr_t blk;
707 int error = 0;
708 boolean_t fastwrite = FALSE;
709 boolean_t slog = FALSE;
710 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
711
712
713 /*
714 * Wait for any previous destroy to complete.
715 */
716 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
717
718 ASSERT(zh->zh_claim_txg == 0);
719 ASSERT(zh->zh_replay_seq == 0);
720
721 blk = zh->zh_log;
722
723 /*
724 * Allocate an initial log block if:
725 * - there isn't one already
726 * - the existing block is the wrong endianness
727 */
728 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
729 tx = dmu_tx_create(zilog->zl_os);
730 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
731 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
732 txg = dmu_tx_get_txg(tx);
733
734 if (!BP_IS_HOLE(&blk)) {
735 zio_free(zilog->zl_spa, txg, &blk);
736 BP_ZERO(&blk);
737 }
738
739 error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk,
740 ZIL_MIN_BLKSZ, &slog);
741 fastwrite = TRUE;
742
743 if (error == 0)
744 zil_init_log_chain(zilog, &blk);
745 }
746
747 /*
748 * Allocate a log write block (lwb) for the first log block.
749 */
750 if (error == 0)
751 lwb = zil_alloc_lwb(zilog, &blk, slog, txg, fastwrite);
752
753 /*
754 * If we just allocated the first log block, commit our transaction
755 * and wait for zil_sync() to stuff the block pointer into zh_log.
756 * (zh is part of the MOS, so we cannot modify it in open context.)
757 */
758 if (tx != NULL) {
759 /*
760 * If "zilsaxattr" feature is enabled on zpool, then activate
761 * it now when we're creating the ZIL chain. We can't wait with
762 * this until we write the first xattr log record because we
763 * need to wait for the feature activation to sync out.
764 */
765 if (spa_feature_is_enabled(zilog->zl_spa,
766 SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) !=
767 DMU_OST_ZVOL) {
768 mutex_enter(&ds->ds_lock);
769 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
770 (void *)B_TRUE;
771 mutex_exit(&ds->ds_lock);
772 }
773
774 dmu_tx_commit(tx);
775 txg_wait_synced(zilog->zl_dmu_pool, txg);
776 } else {
777 /*
778 * This branch covers the case where we enable the feature on a
779 * zpool that has existing ZIL headers.
780 */
781 zil_commit_activate_saxattr_feature(zilog);
782 }
783 IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
784 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL,
785 dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR));
786
787 ASSERT(error != 0 || memcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
788 IMPLY(error == 0, lwb != NULL);
789
790 return (lwb);
791 }
792
793 /*
794 * In one tx, free all log blocks and clear the log header. If keep_first
795 * is set, then we're replaying a log with no content. We want to keep the
796 * first block, however, so that the first synchronous transaction doesn't
797 * require a txg_wait_synced() in zil_create(). We don't need to
798 * txg_wait_synced() here either when keep_first is set, because both
799 * zil_create() and zil_destroy() will wait for any in-progress destroys
800 * to complete.
801 */
802 void
803 zil_destroy(zilog_t *zilog, boolean_t keep_first)
804 {
805 const zil_header_t *zh = zilog->zl_header;
806 lwb_t *lwb;
807 dmu_tx_t *tx;
808 uint64_t txg;
809
810 /*
811 * Wait for any previous destroy to complete.
812 */
813 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
814
815 zilog->zl_old_header = *zh; /* debugging aid */
816
817 if (BP_IS_HOLE(&zh->zh_log))
818 return;
819
820 tx = dmu_tx_create(zilog->zl_os);
821 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
822 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
823 txg = dmu_tx_get_txg(tx);
824
825 mutex_enter(&zilog->zl_lock);
826
827 ASSERT3U(zilog->zl_destroy_txg, <, txg);
828 zilog->zl_destroy_txg = txg;
829 zilog->zl_keep_first = keep_first;
830
831 if (!list_is_empty(&zilog->zl_lwb_list)) {
832 ASSERT(zh->zh_claim_txg == 0);
833 VERIFY(!keep_first);
834 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
835 if (lwb->lwb_fastwrite)
836 metaslab_fastwrite_unmark(zilog->zl_spa,
837 &lwb->lwb_blk);
838
839 list_remove(&zilog->zl_lwb_list, lwb);
840 if (lwb->lwb_buf != NULL)
841 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
842 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
843 zil_free_lwb(zilog, lwb);
844 }
845 } else if (!keep_first) {
846 zil_destroy_sync(zilog, tx);
847 }
848 mutex_exit(&zilog->zl_lock);
849
850 dmu_tx_commit(tx);
851 }
852
853 void
854 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
855 {
856 ASSERT(list_is_empty(&zilog->zl_lwb_list));
857 (void) zil_parse(zilog, zil_free_log_block,
858 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE);
859 }
860
861 int
862 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
863 {
864 dmu_tx_t *tx = txarg;
865 zilog_t *zilog;
866 uint64_t first_txg;
867 zil_header_t *zh;
868 objset_t *os;
869 int error;
870
871 error = dmu_objset_own_obj(dp, ds->ds_object,
872 DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os);
873 if (error != 0) {
874 /*
875 * EBUSY indicates that the objset is inconsistent, in which
876 * case it can not have a ZIL.
877 */
878 if (error != EBUSY) {
879 cmn_err(CE_WARN, "can't open objset for %llu, error %u",
880 (unsigned long long)ds->ds_object, error);
881 }
882
883 return (0);
884 }
885
886 zilog = dmu_objset_zil(os);
887 zh = zil_header_in_syncing_context(zilog);
888 ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
889 first_txg = spa_min_claim_txg(zilog->zl_spa);
890
891 /*
892 * If the spa_log_state is not set to be cleared, check whether
893 * the current uberblock is a checkpoint one and if the current
894 * header has been claimed before moving on.
895 *
896 * If the current uberblock is a checkpointed uberblock then
897 * one of the following scenarios took place:
898 *
899 * 1] We are currently rewinding to the checkpoint of the pool.
900 * 2] We crashed in the middle of a checkpoint rewind but we
901 * did manage to write the checkpointed uberblock to the
902 * vdev labels, so when we tried to import the pool again
903 * the checkpointed uberblock was selected from the import
904 * procedure.
905 *
906 * In both cases we want to zero out all the ZIL blocks, except
907 * the ones that have been claimed at the time of the checkpoint
908 * (their zh_claim_txg != 0). The reason is that these blocks
909 * may be corrupted since we may have reused their locations on
910 * disk after we took the checkpoint.
911 *
912 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
913 * when we first figure out whether the current uberblock is
914 * checkpointed or not. Unfortunately, that would discard all
915 * the logs, including the ones that are claimed, and we would
916 * leak space.
917 */
918 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
919 (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
920 zh->zh_claim_txg == 0)) {
921 if (!BP_IS_HOLE(&zh->zh_log)) {
922 (void) zil_parse(zilog, zil_clear_log_block,
923 zil_noop_log_record, tx, first_txg, B_FALSE);
924 }
925 BP_ZERO(&zh->zh_log);
926 if (os->os_encrypted)
927 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
928 dsl_dataset_dirty(dmu_objset_ds(os), tx);
929 dmu_objset_disown(os, B_FALSE, FTAG);
930 return (0);
931 }
932
933 /*
934 * If we are not rewinding and opening the pool normally, then
935 * the min_claim_txg should be equal to the first txg of the pool.
936 */
937 ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
938
939 /*
940 * Claim all log blocks if we haven't already done so, and remember
941 * the highest claimed sequence number. This ensures that if we can
942 * read only part of the log now (e.g. due to a missing device),
943 * but we can read the entire log later, we will not try to replay
944 * or destroy beyond the last block we successfully claimed.
945 */
946 ASSERT3U(zh->zh_claim_txg, <=, first_txg);
947 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
948 (void) zil_parse(zilog, zil_claim_log_block,
949 zil_claim_log_record, tx, first_txg, B_FALSE);
950 zh->zh_claim_txg = first_txg;
951 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
952 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
953 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
954 zh->zh_flags |= ZIL_REPLAY_NEEDED;
955 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
956 if (os->os_encrypted)
957 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
958 dsl_dataset_dirty(dmu_objset_ds(os), tx);
959 }
960
961 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
962 dmu_objset_disown(os, B_FALSE, FTAG);
963 return (0);
964 }
965
966 /*
967 * Check the log by walking the log chain.
968 * Checksum errors are ok as they indicate the end of the chain.
969 * Any other error (no device or read failure) returns an error.
970 */
971 int
972 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
973 {
974 (void) dp;
975 zilog_t *zilog;
976 objset_t *os;
977 blkptr_t *bp;
978 int error;
979
980 ASSERT(tx == NULL);
981
982 error = dmu_objset_from_ds(ds, &os);
983 if (error != 0) {
984 cmn_err(CE_WARN, "can't open objset %llu, error %d",
985 (unsigned long long)ds->ds_object, error);
986 return (0);
987 }
988
989 zilog = dmu_objset_zil(os);
990 bp = (blkptr_t *)&zilog->zl_header->zh_log;
991
992 if (!BP_IS_HOLE(bp)) {
993 vdev_t *vd;
994 boolean_t valid = B_TRUE;
995
996 /*
997 * Check the first block and determine if it's on a log device
998 * which may have been removed or faulted prior to loading this
999 * pool. If so, there's no point in checking the rest of the
1000 * log as its content should have already been synced to the
1001 * pool.
1002 */
1003 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
1004 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
1005 if (vd->vdev_islog && vdev_is_dead(vd))
1006 valid = vdev_log_state_valid(vd);
1007 spa_config_exit(os->os_spa, SCL_STATE, FTAG);
1008
1009 if (!valid)
1010 return (0);
1011
1012 /*
1013 * Check whether the current uberblock is checkpointed (e.g.
1014 * we are rewinding) and whether the current header has been
1015 * claimed or not. If it hasn't then skip verifying it. We
1016 * do this because its ZIL blocks may be part of the pool's
1017 * state before the rewind, which is no longer valid.
1018 */
1019 zil_header_t *zh = zil_header_in_syncing_context(zilog);
1020 if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1021 zh->zh_claim_txg == 0)
1022 return (0);
1023 }
1024
1025 /*
1026 * Because tx == NULL, zil_claim_log_block() will not actually claim
1027 * any blocks, but just determine whether it is possible to do so.
1028 * In addition to checking the log chain, zil_claim_log_block()
1029 * will invoke zio_claim() with a done func of spa_claim_notify(),
1030 * which will update spa_max_claim_txg. See spa_load() for details.
1031 */
1032 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
1033 zilog->zl_header->zh_claim_txg ? -1ULL :
1034 spa_min_claim_txg(os->os_spa), B_FALSE);
1035
1036 return ((error == ECKSUM || error == ENOENT) ? 0 : error);
1037 }
1038
1039 /*
1040 * When an itx is "skipped", this function is used to properly mark the
1041 * waiter as "done, and signal any thread(s) waiting on it. An itx can
1042 * be skipped (and not committed to an lwb) for a variety of reasons,
1043 * one of them being that the itx was committed via spa_sync(), prior to
1044 * it being committed to an lwb; this can happen if a thread calling
1045 * zil_commit() is racing with spa_sync().
1046 */
1047 static void
1048 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
1049 {
1050 mutex_enter(&zcw->zcw_lock);
1051 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1052 zcw->zcw_done = B_TRUE;
1053 cv_broadcast(&zcw->zcw_cv);
1054 mutex_exit(&zcw->zcw_lock);
1055 }
1056
1057 /*
1058 * This function is used when the given waiter is to be linked into an
1059 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
1060 * At this point, the waiter will no longer be referenced by the itx,
1061 * and instead, will be referenced by the lwb.
1062 */
1063 static void
1064 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
1065 {
1066 /*
1067 * The lwb_waiters field of the lwb is protected by the zilog's
1068 * zl_lock, thus it must be held when calling this function.
1069 */
1070 ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
1071
1072 mutex_enter(&zcw->zcw_lock);
1073 ASSERT(!list_link_active(&zcw->zcw_node));
1074 ASSERT3P(zcw->zcw_lwb, ==, NULL);
1075 ASSERT3P(lwb, !=, NULL);
1076 ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
1077 lwb->lwb_state == LWB_STATE_ISSUED ||
1078 lwb->lwb_state == LWB_STATE_WRITE_DONE);
1079
1080 list_insert_tail(&lwb->lwb_waiters, zcw);
1081 zcw->zcw_lwb = lwb;
1082 mutex_exit(&zcw->zcw_lock);
1083 }
1084
1085 /*
1086 * This function is used when zio_alloc_zil() fails to allocate a ZIL
1087 * block, and the given waiter must be linked to the "nolwb waiters"
1088 * list inside of zil_process_commit_list().
1089 */
1090 static void
1091 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
1092 {
1093 mutex_enter(&zcw->zcw_lock);
1094 ASSERT(!list_link_active(&zcw->zcw_node));
1095 ASSERT3P(zcw->zcw_lwb, ==, NULL);
1096 list_insert_tail(nolwb, zcw);
1097 mutex_exit(&zcw->zcw_lock);
1098 }
1099
1100 void
1101 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
1102 {
1103 avl_tree_t *t = &lwb->lwb_vdev_tree;
1104 avl_index_t where;
1105 zil_vdev_node_t *zv, zvsearch;
1106 int ndvas = BP_GET_NDVAS(bp);
1107 int i;
1108
1109 if (zil_nocacheflush)
1110 return;
1111
1112 mutex_enter(&lwb->lwb_vdev_lock);
1113 for (i = 0; i < ndvas; i++) {
1114 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1115 if (avl_find(t, &zvsearch, &where) == NULL) {
1116 zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1117 zv->zv_vdev = zvsearch.zv_vdev;
1118 avl_insert(t, zv, where);
1119 }
1120 }
1121 mutex_exit(&lwb->lwb_vdev_lock);
1122 }
1123
1124 static void
1125 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
1126 {
1127 avl_tree_t *src = &lwb->lwb_vdev_tree;
1128 avl_tree_t *dst = &nlwb->lwb_vdev_tree;
1129 void *cookie = NULL;
1130 zil_vdev_node_t *zv;
1131
1132 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1133 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1134 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1135
1136 /*
1137 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
1138 * not need the protection of lwb_vdev_lock (it will only be modified
1139 * while holding zilog->zl_lock) as its writes and those of its
1140 * children have all completed. The younger 'nlwb' may be waiting on
1141 * future writes to additional vdevs.
1142 */
1143 mutex_enter(&nlwb->lwb_vdev_lock);
1144 /*
1145 * Tear down the 'lwb' vdev tree, ensuring that entries which do not
1146 * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
1147 */
1148 while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
1149 avl_index_t where;
1150
1151 if (avl_find(dst, zv, &where) == NULL) {
1152 avl_insert(dst, zv, where);
1153 } else {
1154 kmem_free(zv, sizeof (*zv));
1155 }
1156 }
1157 mutex_exit(&nlwb->lwb_vdev_lock);
1158 }
1159
1160 void
1161 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1162 {
1163 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1164 }
1165
1166 /*
1167 * This function is a called after all vdevs associated with a given lwb
1168 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
1169 * as the lwb write completes, if "zil_nocacheflush" is set. Further,
1170 * all "previous" lwb's will have completed before this function is
1171 * called; i.e. this function is called for all previous lwbs before
1172 * it's called for "this" lwb (enforced via zio the dependencies
1173 * configured in zil_lwb_set_zio_dependency()).
1174 *
1175 * The intention is for this function to be called as soon as the
1176 * contents of an lwb are considered "stable" on disk, and will survive
1177 * any sudden loss of power. At this point, any threads waiting for the
1178 * lwb to reach this state are signalled, and the "waiter" structures
1179 * are marked "done".
1180 */
1181 static void
1182 zil_lwb_flush_vdevs_done(zio_t *zio)
1183 {
1184 lwb_t *lwb = zio->io_private;
1185 zilog_t *zilog = lwb->lwb_zilog;
1186 dmu_tx_t *tx = lwb->lwb_tx;
1187 zil_commit_waiter_t *zcw;
1188 itx_t *itx;
1189
1190 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1191
1192 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1193
1194 mutex_enter(&zilog->zl_lock);
1195
1196 /*
1197 * Ensure the lwb buffer pointer is cleared before releasing the
1198 * txg. If we have had an allocation failure and the txg is
1199 * waiting to sync then we want zil_sync() to remove the lwb so
1200 * that it's not picked up as the next new one in
1201 * zil_process_commit_list(). zil_sync() will only remove the
1202 * lwb if lwb_buf is null.
1203 */
1204 lwb->lwb_buf = NULL;
1205 lwb->lwb_tx = NULL;
1206
1207 ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
1208 zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;
1209
1210 lwb->lwb_root_zio = NULL;
1211
1212 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1213 lwb->lwb_state = LWB_STATE_FLUSH_DONE;
1214
1215 if (zilog->zl_last_lwb_opened == lwb) {
1216 /*
1217 * Remember the highest committed log sequence number
1218 * for ztest. We only update this value when all the log
1219 * writes succeeded, because ztest wants to ASSERT that
1220 * it got the whole log chain.
1221 */
1222 zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1223 }
1224
1225 while ((itx = list_head(&lwb->lwb_itxs)) != NULL) {
1226 list_remove(&lwb->lwb_itxs, itx);
1227 zil_itx_destroy(itx);
1228 }
1229
1230 while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
1231 mutex_enter(&zcw->zcw_lock);
1232
1233 ASSERT(list_link_active(&zcw->zcw_node));
1234 list_remove(&lwb->lwb_waiters, zcw);
1235
1236 ASSERT3P(zcw->zcw_lwb, ==, lwb);
1237 zcw->zcw_lwb = NULL;
1238 /*
1239 * We expect any ZIO errors from child ZIOs to have been
1240 * propagated "up" to this specific LWB's root ZIO, in
1241 * order for this error handling to work correctly. This
1242 * includes ZIO errors from either this LWB's write or
1243 * flush, as well as any errors from other dependent LWBs
1244 * (e.g. a root LWB ZIO that might be a child of this LWB).
1245 *
1246 * With that said, it's important to note that LWB flush
1247 * errors are not propagated up to the LWB root ZIO.
1248 * This is incorrect behavior, and results in VDEV flush
1249 * errors not being handled correctly here. See the
1250 * comment above the call to "zio_flush" for details.
1251 */
1252
1253 zcw->zcw_zio_error = zio->io_error;
1254
1255 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1256 zcw->zcw_done = B_TRUE;
1257 cv_broadcast(&zcw->zcw_cv);
1258
1259 mutex_exit(&zcw->zcw_lock);
1260 }
1261
1262 mutex_exit(&zilog->zl_lock);
1263
1264 /*
1265 * Now that we've written this log block, we have a stable pointer
1266 * to the next block in the chain, so it's OK to let the txg in
1267 * which we allocated the next block sync.
1268 */
1269 dmu_tx_commit(tx);
1270 }
1271
1272 /*
1273 * This is called when an lwb's write zio completes. The callback's
1274 * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs
1275 * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved
1276 * in writing out this specific lwb's data, and in the case that cache
1277 * flushes have been deferred, vdevs involved in writing the data for
1278 * previous lwbs. The writes corresponding to all the vdevs in the
1279 * lwb_vdev_tree will have completed by the time this is called, due to
1280 * the zio dependencies configured in zil_lwb_set_zio_dependency(),
1281 * which takes deferred flushes into account. The lwb will be "done"
1282 * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio
1283 * completion callback for the lwb's root zio.
1284 */
1285 static void
1286 zil_lwb_write_done(zio_t *zio)
1287 {
1288 lwb_t *lwb = zio->io_private;
1289 spa_t *spa = zio->io_spa;
1290 zilog_t *zilog = lwb->lwb_zilog;
1291 avl_tree_t *t = &lwb->lwb_vdev_tree;
1292 void *cookie = NULL;
1293 zil_vdev_node_t *zv;
1294 lwb_t *nlwb;
1295
1296 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1297
1298 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1299 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1300 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1301 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1302 ASSERT(!BP_IS_GANG(zio->io_bp));
1303 ASSERT(!BP_IS_HOLE(zio->io_bp));
1304 ASSERT(BP_GET_FILL(zio->io_bp) == 0);
1305
1306 abd_free(zio->io_abd);
1307
1308 mutex_enter(&zilog->zl_lock);
1309 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1310 lwb->lwb_state = LWB_STATE_WRITE_DONE;
1311 lwb->lwb_write_zio = NULL;
1312 lwb->lwb_fastwrite = FALSE;
1313 nlwb = list_next(&zilog->zl_lwb_list, lwb);
1314 mutex_exit(&zilog->zl_lock);
1315
1316 if (avl_numnodes(t) == 0)
1317 return;
1318
1319 /*
1320 * If there was an IO error, we're not going to call zio_flush()
1321 * on these vdevs, so we simply empty the tree and free the
1322 * nodes. We avoid calling zio_flush() since there isn't any
1323 * good reason for doing so, after the lwb block failed to be
1324 * written out.
1325 *
1326 * Additionally, we don't perform any further error handling at
1327 * this point (e.g. setting "zcw_zio_error" appropriately), as
1328 * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus,
1329 * we expect any error seen here, to have been propagated to
1330 * that function).
1331 */
1332 if (zio->io_error != 0) {
1333 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1334 kmem_free(zv, sizeof (*zv));
1335 return;
1336 }
1337
1338 /*
1339 * If this lwb does not have any threads waiting for it to
1340 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE
1341 * command to the vdevs written to by "this" lwb, and instead
1342 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE
1343 * command for those vdevs. Thus, we merge the vdev tree of
1344 * "this" lwb with the vdev tree of the "next" lwb in the list,
1345 * and assume the "next" lwb will handle flushing the vdevs (or
1346 * deferring the flush(s) again).
1347 *
1348 * This is a useful performance optimization, especially for
1349 * workloads with lots of async write activity and few sync
1350 * write and/or fsync activity, as it has the potential to
1351 * coalesce multiple flush commands to a vdev into one.
1352 */
1353 if (list_head(&lwb->lwb_waiters) == NULL && nlwb != NULL) {
1354 zil_lwb_flush_defer(lwb, nlwb);
1355 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1356 return;
1357 }
1358
1359 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1360 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1361 if (vd != NULL) {
1362 /*
1363 * The "ZIO_FLAG_DONT_PROPAGATE" is currently
1364 * always used within "zio_flush". This means,
1365 * any errors when flushing the vdev(s), will
1366 * (unfortunately) not be handled correctly,
1367 * since these "zio_flush" errors will not be
1368 * propagated up to "zil_lwb_flush_vdevs_done".
1369 */
1370 zio_flush(lwb->lwb_root_zio, vd);
1371 }
1372 kmem_free(zv, sizeof (*zv));
1373 }
1374 }
1375
1376 static void
1377 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
1378 {
1379 lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1380
1381 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1382 ASSERT(MUTEX_HELD(&zilog->zl_lock));
1383
1384 /*
1385 * The zilog's "zl_last_lwb_opened" field is used to build the
1386 * lwb/zio dependency chain, which is used to preserve the
1387 * ordering of lwb completions that is required by the semantics
1388 * of the ZIL. Each new lwb zio becomes a parent of the
1389 * "previous" lwb zio, such that the new lwb's zio cannot
1390 * complete until the "previous" lwb's zio completes.
1391 *
1392 * This is required by the semantics of zil_commit(); the commit
1393 * waiters attached to the lwbs will be woken in the lwb zio's
1394 * completion callback, so this zio dependency graph ensures the
1395 * waiters are woken in the correct order (the same order the
1396 * lwbs were created).
1397 */
1398 if (last_lwb_opened != NULL &&
1399 last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) {
1400 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1401 last_lwb_opened->lwb_state == LWB_STATE_ISSUED ||
1402 last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE);
1403
1404 ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1405 zio_add_child(lwb->lwb_root_zio,
1406 last_lwb_opened->lwb_root_zio);
1407
1408 /*
1409 * If the previous lwb's write hasn't already completed,
1410 * we also want to order the completion of the lwb write
1411 * zios (above, we only order the completion of the lwb
1412 * root zios). This is required because of how we can
1413 * defer the DKIOCFLUSHWRITECACHE commands for each lwb.
1414 *
1415 * When the DKIOCFLUSHWRITECACHE commands are deferred,
1416 * the previous lwb will rely on this lwb to flush the
1417 * vdevs written to by that previous lwb. Thus, we need
1418 * to ensure this lwb doesn't issue the flush until
1419 * after the previous lwb's write completes. We ensure
1420 * this ordering by setting the zio parent/child
1421 * relationship here.
1422 *
1423 * Without this relationship on the lwb's write zio,
1424 * it's possible for this lwb's write to complete prior
1425 * to the previous lwb's write completing; and thus, the
1426 * vdevs for the previous lwb would be flushed prior to
1427 * that lwb's data being written to those vdevs (the
1428 * vdevs are flushed in the lwb write zio's completion
1429 * handler, zil_lwb_write_done()).
1430 */
1431 if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) {
1432 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1433 last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1434
1435 ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL);
1436 zio_add_child(lwb->lwb_write_zio,
1437 last_lwb_opened->lwb_write_zio);
1438 }
1439 }
1440 }
1441
1442
1443 /*
1444 * This function's purpose is to "open" an lwb such that it is ready to
1445 * accept new itxs being committed to it. To do this, the lwb's zio
1446 * structures are created, and linked to the lwb. This function is
1447 * idempotent; if the passed in lwb has already been opened, this
1448 * function is essentially a no-op.
1449 */
1450 static void
1451 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1452 {
1453 zbookmark_phys_t zb;
1454 zio_priority_t prio;
1455
1456 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1457 ASSERT3P(lwb, !=, NULL);
1458 EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1459 EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1460
1461 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1462 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1463 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1464
1465 /* Lock so zil_sync() doesn't fastwrite_unmark after zio is created */
1466 mutex_enter(&zilog->zl_lock);
1467 if (lwb->lwb_root_zio == NULL) {
1468 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1469 BP_GET_LSIZE(&lwb->lwb_blk));
1470
1471 if (!lwb->lwb_fastwrite) {
1472 metaslab_fastwrite_mark(zilog->zl_spa, &lwb->lwb_blk);
1473 lwb->lwb_fastwrite = 1;
1474 }
1475
1476 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1477 prio = ZIO_PRIORITY_SYNC_WRITE;
1478 else
1479 prio = ZIO_PRIORITY_ASYNC_WRITE;
1480
1481 lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1482 zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1483 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1484
1485 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1486 zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1487 BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1488 prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_FASTWRITE, &zb);
1489 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1490
1491 lwb->lwb_state = LWB_STATE_OPENED;
1492
1493 zil_lwb_set_zio_dependency(zilog, lwb);
1494 zilog->zl_last_lwb_opened = lwb;
1495 }
1496 mutex_exit(&zilog->zl_lock);
1497
1498 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1499 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1500 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1501 }
1502
1503 /*
1504 * Define a limited set of intent log block sizes.
1505 *
1506 * These must be a multiple of 4KB. Note only the amount used (again
1507 * aligned to 4KB) actually gets written. However, we can't always just
1508 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1509 */
1510 static const struct {
1511 uint64_t limit;
1512 uint64_t blksz;
1513 } zil_block_buckets[] = {
1514 { 4096, 4096 }, /* non TX_WRITE */
1515 { 8192 + 4096, 8192 + 4096 }, /* database */
1516 { 32768 + 4096, 32768 + 4096 }, /* NFS writes */
1517 { 65536 + 4096, 65536 + 4096 }, /* 64KB writes */
1518 { 131072, 131072 }, /* < 128KB writes */
1519 { 131072 +4096, 65536 + 4096 }, /* 128KB writes */
1520 { UINT64_MAX, SPA_OLD_MAXBLOCKSIZE}, /* > 128KB writes */
1521 };
1522
1523 /*
1524 * Maximum block size used by the ZIL. This is picked up when the ZIL is
1525 * initialized. Otherwise this should not be used directly; see
1526 * zl_max_block_size instead.
1527 */
1528 static int zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE;
1529
1530 /*
1531 * Start a log block write and advance to the next log block.
1532 * Calls are serialized.
1533 */
1534 static lwb_t *
1535 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1536 {
1537 lwb_t *nlwb = NULL;
1538 zil_chain_t *zilc;
1539 spa_t *spa = zilog->zl_spa;
1540 blkptr_t *bp;
1541 dmu_tx_t *tx;
1542 uint64_t txg;
1543 uint64_t zil_blksz, wsz;
1544 int i, error;
1545 boolean_t slog;
1546
1547 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1548 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1549 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1550 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1551
1552 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1553 zilc = (zil_chain_t *)lwb->lwb_buf;
1554 bp = &zilc->zc_next_blk;
1555 } else {
1556 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1557 bp = &zilc->zc_next_blk;
1558 }
1559
1560 ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1561
1562 /*
1563 * Allocate the next block and save its address in this block
1564 * before writing it in order to establish the log chain.
1565 * Note that if the allocation of nlwb synced before we wrote
1566 * the block that points at it (lwb), we'd leak it if we crashed.
1567 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
1568 * We dirty the dataset to ensure that zil_sync() will be called
1569 * to clean up in the event of allocation failure or I/O failure.
1570 */
1571
1572 tx = dmu_tx_create(zilog->zl_os);
1573
1574 /*
1575 * Since we are not going to create any new dirty data, and we
1576 * can even help with clearing the existing dirty data, we
1577 * should not be subject to the dirty data based delays. We
1578 * use TXG_NOTHROTTLE to bypass the delay mechanism.
1579 */
1580 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1581
1582 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1583 txg = dmu_tx_get_txg(tx);
1584
1585 lwb->lwb_tx = tx;
1586
1587 /*
1588 * Log blocks are pre-allocated. Here we select the size of the next
1589 * block, based on size used in the last block.
1590 * - first find the smallest bucket that will fit the block from a
1591 * limited set of block sizes. This is because it's faster to write
1592 * blocks allocated from the same metaslab as they are adjacent or
1593 * close.
1594 * - next find the maximum from the new suggested size and an array of
1595 * previous sizes. This lessens a picket fence effect of wrongly
1596 * guessing the size if we have a stream of say 2k, 64k, 2k, 64k
1597 * requests.
1598 *
1599 * Note we only write what is used, but we can't just allocate
1600 * the maximum block size because we can exhaust the available
1601 * pool log space.
1602 */
1603 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1604 for (i = 0; zil_blksz > zil_block_buckets[i].limit; i++)
1605 continue;
1606 zil_blksz = MIN(zil_block_buckets[i].blksz, zilog->zl_max_block_size);
1607 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1608 for (i = 0; i < ZIL_PREV_BLKS; i++)
1609 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1610 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1611
1612 BP_ZERO(bp);
1613 error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, zil_blksz, &slog);
1614 if (slog) {
1615 ZIL_STAT_BUMP(zil_itx_metaslab_slog_count);
1616 ZIL_STAT_INCR(zil_itx_metaslab_slog_bytes, lwb->lwb_nused);
1617 } else {
1618 ZIL_STAT_BUMP(zil_itx_metaslab_normal_count);
1619 ZIL_STAT_INCR(zil_itx_metaslab_normal_bytes, lwb->lwb_nused);
1620 }
1621 if (error == 0) {
1622 ASSERT3U(bp->blk_birth, ==, txg);
1623 bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1624 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1625
1626 /*
1627 * Allocate a new log write block (lwb).
1628 */
1629 nlwb = zil_alloc_lwb(zilog, bp, slog, txg, TRUE);
1630 }
1631
1632 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1633 /* For Slim ZIL only write what is used. */
1634 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1635 ASSERT3U(wsz, <=, lwb->lwb_sz);
1636 zio_shrink(lwb->lwb_write_zio, wsz);
1637
1638 } else {
1639 wsz = lwb->lwb_sz;
1640 }
1641
1642 zilc->zc_pad = 0;
1643 zilc->zc_nused = lwb->lwb_nused;
1644 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1645
1646 /*
1647 * clear unused data for security
1648 */
1649 memset(lwb->lwb_buf + lwb->lwb_nused, 0, wsz - lwb->lwb_nused);
1650
1651 spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1652
1653 zil_lwb_add_block(lwb, &lwb->lwb_blk);
1654 lwb->lwb_issued_timestamp = gethrtime();
1655 lwb->lwb_state = LWB_STATE_ISSUED;
1656
1657 zio_nowait(lwb->lwb_root_zio);
1658 zio_nowait(lwb->lwb_write_zio);
1659
1660 /*
1661 * If there was an allocation failure then nlwb will be null which
1662 * forces a txg_wait_synced().
1663 */
1664 return (nlwb);
1665 }
1666
1667 /*
1668 * Maximum amount of write data that can be put into single log block.
1669 */
1670 uint64_t
1671 zil_max_log_data(zilog_t *zilog)
1672 {
1673 return (zilog->zl_max_block_size -
1674 sizeof (zil_chain_t) - sizeof (lr_write_t));
1675 }
1676
1677 /*
1678 * Maximum amount of log space we agree to waste to reduce number of
1679 * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~12%).
1680 */
1681 static inline uint64_t
1682 zil_max_waste_space(zilog_t *zilog)
1683 {
1684 return (zil_max_log_data(zilog) / 8);
1685 }
1686
1687 /*
1688 * Maximum amount of write data for WR_COPIED. For correctness, consumers
1689 * must fall back to WR_NEED_COPY if we can't fit the entire record into one
1690 * maximum sized log block, because each WR_COPIED record must fit in a
1691 * single log block. For space efficiency, we want to fit two records into a
1692 * max-sized log block.
1693 */
1694 uint64_t
1695 zil_max_copied_data(zilog_t *zilog)
1696 {
1697 return ((zilog->zl_max_block_size - sizeof (zil_chain_t)) / 2 -
1698 sizeof (lr_write_t));
1699 }
1700
1701 static lwb_t *
1702 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1703 {
1704 lr_t *lrcb, *lrc;
1705 lr_write_t *lrwb, *lrw;
1706 char *lr_buf;
1707 uint64_t dlen, dnow, dpad, lwb_sp, reclen, txg, max_log_data;
1708
1709 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1710 ASSERT3P(lwb, !=, NULL);
1711 ASSERT3P(lwb->lwb_buf, !=, NULL);
1712
1713 zil_lwb_write_open(zilog, lwb);
1714
1715 lrc = &itx->itx_lr;
1716 lrw = (lr_write_t *)lrc;
1717
1718 /*
1719 * A commit itx doesn't represent any on-disk state; instead
1720 * it's simply used as a place holder on the commit list, and
1721 * provides a mechanism for attaching a "commit waiter" onto the
1722 * correct lwb (such that the waiter can be signalled upon
1723 * completion of that lwb). Thus, we don't process this itx's
1724 * log record if it's a commit itx (these itx's don't have log
1725 * records), and instead link the itx's waiter onto the lwb's
1726 * list of waiters.
1727 *
1728 * For more details, see the comment above zil_commit().
1729 */
1730 if (lrc->lrc_txtype == TX_COMMIT) {
1731 mutex_enter(&zilog->zl_lock);
1732 zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1733 itx->itx_private = NULL;
1734 mutex_exit(&zilog->zl_lock);
1735 return (lwb);
1736 }
1737
1738 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1739 dlen = P2ROUNDUP_TYPED(
1740 lrw->lr_length, sizeof (uint64_t), uint64_t);
1741 dpad = dlen - lrw->lr_length;
1742 } else {
1743 dlen = dpad = 0;
1744 }
1745 reclen = lrc->lrc_reclen;
1746 zilog->zl_cur_used += (reclen + dlen);
1747 txg = lrc->lrc_txg;
1748
1749 ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
1750
1751 cont:
1752 /*
1753 * If this record won't fit in the current log block, start a new one.
1754 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1755 */
1756 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1757 max_log_data = zil_max_log_data(zilog);
1758 if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1759 lwb_sp < zil_max_waste_space(zilog) &&
1760 (dlen % max_log_data == 0 ||
1761 lwb_sp < reclen + dlen % max_log_data))) {
1762 lwb = zil_lwb_write_issue(zilog, lwb);
1763 if (lwb == NULL)
1764 return (NULL);
1765 zil_lwb_write_open(zilog, lwb);
1766 ASSERT(LWB_EMPTY(lwb));
1767 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1768
1769 /*
1770 * There must be enough space in the new, empty log block to
1771 * hold reclen. For WR_COPIED, we need to fit the whole
1772 * record in one block, and reclen is the header size + the
1773 * data size. For WR_NEED_COPY, we can create multiple
1774 * records, splitting the data into multiple blocks, so we
1775 * only need to fit one word of data per block; in this case
1776 * reclen is just the header size (no data).
1777 */
1778 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1779 }
1780
1781 dnow = MIN(dlen, lwb_sp - reclen);
1782 lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1783 memcpy(lr_buf, lrc, reclen);
1784 lrcb = (lr_t *)lr_buf; /* Like lrc, but inside lwb. */
1785 lrwb = (lr_write_t *)lrcb; /* Like lrw, but inside lwb. */
1786
1787 ZIL_STAT_BUMP(zil_itx_count);
1788
1789 /*
1790 * If it's a write, fetch the data or get its blkptr as appropriate.
1791 */
1792 if (lrc->lrc_txtype == TX_WRITE) {
1793 if (txg > spa_freeze_txg(zilog->zl_spa))
1794 txg_wait_synced(zilog->zl_dmu_pool, txg);
1795 if (itx->itx_wr_state == WR_COPIED) {
1796 ZIL_STAT_BUMP(zil_itx_copied_count);
1797 ZIL_STAT_INCR(zil_itx_copied_bytes, lrw->lr_length);
1798 } else {
1799 char *dbuf;
1800 int error;
1801
1802 if (itx->itx_wr_state == WR_NEED_COPY) {
1803 dbuf = lr_buf + reclen;
1804 lrcb->lrc_reclen += dnow;
1805 if (lrwb->lr_length > dnow)
1806 lrwb->lr_length = dnow;
1807 lrw->lr_offset += dnow;
1808 lrw->lr_length -= dnow;
1809 ZIL_STAT_BUMP(zil_itx_needcopy_count);
1810 ZIL_STAT_INCR(zil_itx_needcopy_bytes, dnow);
1811 } else {
1812 ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT);
1813 dbuf = NULL;
1814 ZIL_STAT_BUMP(zil_itx_indirect_count);
1815 ZIL_STAT_INCR(zil_itx_indirect_bytes,
1816 lrw->lr_length);
1817 }
1818
1819 /*
1820 * We pass in the "lwb_write_zio" rather than
1821 * "lwb_root_zio" so that the "lwb_write_zio"
1822 * becomes the parent of any zio's created by
1823 * the "zl_get_data" callback. The vdevs are
1824 * flushed after the "lwb_write_zio" completes,
1825 * so we want to make sure that completion
1826 * callback waits for these additional zio's,
1827 * such that the vdevs used by those zio's will
1828 * be included in the lwb's vdev tree, and those
1829 * vdevs will be properly flushed. If we passed
1830 * in "lwb_root_zio" here, then these additional
1831 * vdevs may not be flushed; e.g. if these zio's
1832 * completed after "lwb_write_zio" completed.
1833 */
1834 error = zilog->zl_get_data(itx->itx_private,
1835 itx->itx_gen, lrwb, dbuf, lwb,
1836 lwb->lwb_write_zio);
1837 if (dbuf != NULL && error == 0 && dnow == dlen)
1838 /* Zero any padding bytes in the last block. */
1839 memset((char *)dbuf + lrwb->lr_length, 0, dpad);
1840
1841 if (error == EIO) {
1842 txg_wait_synced(zilog->zl_dmu_pool, txg);
1843 return (lwb);
1844 }
1845 if (error != 0) {
1846 ASSERT(error == ENOENT || error == EEXIST ||
1847 error == EALREADY);
1848 return (lwb);
1849 }
1850 }
1851 }
1852
1853 /*
1854 * We're actually making an entry, so update lrc_seq to be the
1855 * log record sequence number. Note that this is generally not
1856 * equal to the itx sequence number because not all transactions
1857 * are synchronous, and sometimes spa_sync() gets there first.
1858 */
1859 lrcb->lrc_seq = ++zilog->zl_lr_seq;
1860 lwb->lwb_nused += reclen + dnow;
1861
1862 zil_lwb_add_txg(lwb, txg);
1863
1864 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1865 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1866
1867 dlen -= dnow;
1868 if (dlen > 0) {
1869 zilog->zl_cur_used += reclen;
1870 goto cont;
1871 }
1872
1873 return (lwb);
1874 }
1875
1876 itx_t *
1877 zil_itx_create(uint64_t txtype, size_t olrsize)
1878 {
1879 size_t itxsize, lrsize;
1880 itx_t *itx;
1881
1882 lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t);
1883 itxsize = offsetof(itx_t, itx_lr) + lrsize;
1884
1885 itx = zio_data_buf_alloc(itxsize);
1886 itx->itx_lr.lrc_txtype = txtype;
1887 itx->itx_lr.lrc_reclen = lrsize;
1888 itx->itx_lr.lrc_seq = 0; /* defensive */
1889 memset((char *)&itx->itx_lr + olrsize, 0, lrsize - olrsize);
1890 itx->itx_sync = B_TRUE; /* default is synchronous */
1891 itx->itx_callback = NULL;
1892 itx->itx_callback_data = NULL;
1893 itx->itx_size = itxsize;
1894
1895 return (itx);
1896 }
1897
1898 void
1899 zil_itx_destroy(itx_t *itx)
1900 {
1901 IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL);
1902 IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
1903
1904 if (itx->itx_callback != NULL)
1905 itx->itx_callback(itx->itx_callback_data);
1906
1907 zio_data_buf_free(itx, itx->itx_size);
1908 }
1909
1910 /*
1911 * Free up the sync and async itxs. The itxs_t has already been detached
1912 * so no locks are needed.
1913 */
1914 static void
1915 zil_itxg_clean(void *arg)
1916 {
1917 itx_t *itx;
1918 list_t *list;
1919 avl_tree_t *t;
1920 void *cookie;
1921 itxs_t *itxs = arg;
1922 itx_async_node_t *ian;
1923
1924 list = &itxs->i_sync_list;
1925 while ((itx = list_head(list)) != NULL) {
1926 /*
1927 * In the general case, commit itxs will not be found
1928 * here, as they'll be committed to an lwb via
1929 * zil_lwb_commit(), and free'd in that function. Having
1930 * said that, it is still possible for commit itxs to be
1931 * found here, due to the following race:
1932 *
1933 * - a thread calls zil_commit() which assigns the
1934 * commit itx to a per-txg i_sync_list
1935 * - zil_itxg_clean() is called (e.g. via spa_sync())
1936 * while the waiter is still on the i_sync_list
1937 *
1938 * There's nothing to prevent syncing the txg while the
1939 * waiter is on the i_sync_list. This normally doesn't
1940 * happen because spa_sync() is slower than zil_commit(),
1941 * but if zil_commit() calls txg_wait_synced() (e.g.
1942 * because zil_create() or zil_commit_writer_stall() is
1943 * called) we will hit this case.
1944 */
1945 if (itx->itx_lr.lrc_txtype == TX_COMMIT)
1946 zil_commit_waiter_skip(itx->itx_private);
1947
1948 list_remove(list, itx);
1949 zil_itx_destroy(itx);
1950 }
1951
1952 cookie = NULL;
1953 t = &itxs->i_async_tree;
1954 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1955 list = &ian->ia_list;
1956 while ((itx = list_head(list)) != NULL) {
1957 list_remove(list, itx);
1958 /* commit itxs should never be on the async lists. */
1959 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1960 zil_itx_destroy(itx);
1961 }
1962 list_destroy(list);
1963 kmem_free(ian, sizeof (itx_async_node_t));
1964 }
1965 avl_destroy(t);
1966
1967 kmem_free(itxs, sizeof (itxs_t));
1968 }
1969
1970 static int
1971 zil_aitx_compare(const void *x1, const void *x2)
1972 {
1973 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1974 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1975
1976 return (TREE_CMP(o1, o2));
1977 }
1978
1979 /*
1980 * Remove all async itx with the given oid.
1981 */
1982 void
1983 zil_remove_async(zilog_t *zilog, uint64_t oid)
1984 {
1985 uint64_t otxg, txg;
1986 itx_async_node_t *ian;
1987 avl_tree_t *t;
1988 avl_index_t where;
1989 list_t clean_list;
1990 itx_t *itx;
1991
1992 ASSERT(oid != 0);
1993 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1994
1995 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1996 otxg = ZILTEST_TXG;
1997 else
1998 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1999
2000 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2001 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2002
2003 mutex_enter(&itxg->itxg_lock);
2004 if (itxg->itxg_txg != txg) {
2005 mutex_exit(&itxg->itxg_lock);
2006 continue;
2007 }
2008
2009 /*
2010 * Locate the object node and append its list.
2011 */
2012 t = &itxg->itxg_itxs->i_async_tree;
2013 ian = avl_find(t, &oid, &where);
2014 if (ian != NULL)
2015 list_move_tail(&clean_list, &ian->ia_list);
2016 mutex_exit(&itxg->itxg_lock);
2017 }
2018 while ((itx = list_head(&clean_list)) != NULL) {
2019 list_remove(&clean_list, itx);
2020 /* commit itxs should never be on the async lists. */
2021 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2022 zil_itx_destroy(itx);
2023 }
2024 list_destroy(&clean_list);
2025 }
2026
2027 void
2028 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
2029 {
2030 uint64_t txg;
2031 itxg_t *itxg;
2032 itxs_t *itxs, *clean = NULL;
2033
2034 /*
2035 * Ensure the data of a renamed file is committed before the rename.
2036 */
2037 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
2038 zil_async_to_sync(zilog, itx->itx_oid);
2039
2040 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
2041 txg = ZILTEST_TXG;
2042 else
2043 txg = dmu_tx_get_txg(tx);
2044
2045 itxg = &zilog->zl_itxg[txg & TXG_MASK];
2046 mutex_enter(&itxg->itxg_lock);
2047 itxs = itxg->itxg_itxs;
2048 if (itxg->itxg_txg != txg) {
2049 if (itxs != NULL) {
2050 /*
2051 * The zil_clean callback hasn't got around to cleaning
2052 * this itxg. Save the itxs for release below.
2053 * This should be rare.
2054 */
2055 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
2056 "txg %llu", (u_longlong_t)itxg->itxg_txg);
2057 clean = itxg->itxg_itxs;
2058 }
2059 itxg->itxg_txg = txg;
2060 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
2061 KM_SLEEP);
2062
2063 list_create(&itxs->i_sync_list, sizeof (itx_t),
2064 offsetof(itx_t, itx_node));
2065 avl_create(&itxs->i_async_tree, zil_aitx_compare,
2066 sizeof (itx_async_node_t),
2067 offsetof(itx_async_node_t, ia_node));
2068 }
2069 if (itx->itx_sync) {
2070 list_insert_tail(&itxs->i_sync_list, itx);
2071 } else {
2072 avl_tree_t *t = &itxs->i_async_tree;
2073 uint64_t foid =
2074 LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
2075 itx_async_node_t *ian;
2076 avl_index_t where;
2077
2078 ian = avl_find(t, &foid, &where);
2079 if (ian == NULL) {
2080 ian = kmem_alloc(sizeof (itx_async_node_t),
2081 KM_SLEEP);
2082 list_create(&ian->ia_list, sizeof (itx_t),
2083 offsetof(itx_t, itx_node));
2084 ian->ia_foid = foid;
2085 avl_insert(t, ian, where);
2086 }
2087 list_insert_tail(&ian->ia_list, itx);
2088 }
2089
2090 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
2091
2092 /*
2093 * We don't want to dirty the ZIL using ZILTEST_TXG, because
2094 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
2095 * need to be careful to always dirty the ZIL using the "real"
2096 * TXG (not itxg_txg) even when the SPA is frozen.
2097 */
2098 zilog_dirty(zilog, dmu_tx_get_txg(tx));
2099 mutex_exit(&itxg->itxg_lock);
2100
2101 /* Release the old itxs now we've dropped the lock */
2102 if (clean != NULL)
2103 zil_itxg_clean(clean);
2104 }
2105
2106 /*
2107 * If there are any in-memory intent log transactions which have now been
2108 * synced then start up a taskq to free them. We should only do this after we
2109 * have written out the uberblocks (i.e. txg has been committed) so that
2110 * don't inadvertently clean out in-memory log records that would be required
2111 * by zil_commit().
2112 */
2113 void
2114 zil_clean(zilog_t *zilog, uint64_t synced_txg)
2115 {
2116 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
2117 itxs_t *clean_me;
2118
2119 ASSERT3U(synced_txg, <, ZILTEST_TXG);
2120
2121 mutex_enter(&itxg->itxg_lock);
2122 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
2123 mutex_exit(&itxg->itxg_lock);
2124 return;
2125 }
2126 ASSERT3U(itxg->itxg_txg, <=, synced_txg);
2127 ASSERT3U(itxg->itxg_txg, !=, 0);
2128 clean_me = itxg->itxg_itxs;
2129 itxg->itxg_itxs = NULL;
2130 itxg->itxg_txg = 0;
2131 mutex_exit(&itxg->itxg_lock);
2132 /*
2133 * Preferably start a task queue to free up the old itxs but
2134 * if taskq_dispatch can't allocate resources to do that then
2135 * free it in-line. This should be rare. Note, using TQ_SLEEP
2136 * created a bad performance problem.
2137 */
2138 ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
2139 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
2140 taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
2141 zil_itxg_clean, clean_me, TQ_NOSLEEP);
2142 if (id == TASKQID_INVALID)
2143 zil_itxg_clean(clean_me);
2144 }
2145
2146 /*
2147 * This function will traverse the queue of itxs that need to be
2148 * committed, and move them onto the ZIL's zl_itx_commit_list.
2149 */
2150 static void
2151 zil_get_commit_list(zilog_t *zilog)
2152 {
2153 uint64_t otxg, txg;
2154 list_t *commit_list = &zilog->zl_itx_commit_list;
2155
2156 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2157
2158 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2159 otxg = ZILTEST_TXG;
2160 else
2161 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2162
2163 /*
2164 * This is inherently racy, since there is nothing to prevent
2165 * the last synced txg from changing. That's okay since we'll
2166 * only commit things in the future.
2167 */
2168 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2169 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2170
2171 mutex_enter(&itxg->itxg_lock);
2172 if (itxg->itxg_txg != txg) {
2173 mutex_exit(&itxg->itxg_lock);
2174 continue;
2175 }
2176
2177 /*
2178 * If we're adding itx records to the zl_itx_commit_list,
2179 * then the zil better be dirty in this "txg". We can assert
2180 * that here since we're holding the itxg_lock which will
2181 * prevent spa_sync from cleaning it. Once we add the itxs
2182 * to the zl_itx_commit_list we must commit it to disk even
2183 * if it's unnecessary (i.e. the txg was synced).
2184 */
2185 ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
2186 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
2187 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
2188
2189 mutex_exit(&itxg->itxg_lock);
2190 }
2191 }
2192
2193 /*
2194 * Move the async itxs for a specified object to commit into sync lists.
2195 */
2196 void
2197 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
2198 {
2199 uint64_t otxg, txg;
2200 itx_async_node_t *ian;
2201 avl_tree_t *t;
2202 avl_index_t where;
2203
2204 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2205 otxg = ZILTEST_TXG;
2206 else
2207 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2208
2209 /*
2210 * This is inherently racy, since there is nothing to prevent
2211 * the last synced txg from changing.
2212 */
2213 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2214 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2215
2216 mutex_enter(&itxg->itxg_lock);
2217 if (itxg->itxg_txg != txg) {
2218 mutex_exit(&itxg->itxg_lock);
2219 continue;
2220 }
2221
2222 /*
2223 * If a foid is specified then find that node and append its
2224 * list. Otherwise walk the tree appending all the lists
2225 * to the sync list. We add to the end rather than the
2226 * beginning to ensure the create has happened.
2227 */
2228 t = &itxg->itxg_itxs->i_async_tree;
2229 if (foid != 0) {
2230 ian = avl_find(t, &foid, &where);
2231 if (ian != NULL) {
2232 list_move_tail(&itxg->itxg_itxs->i_sync_list,
2233 &ian->ia_list);
2234 }
2235 } else {
2236 void *cookie = NULL;
2237
2238 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2239 list_move_tail(&itxg->itxg_itxs->i_sync_list,
2240 &ian->ia_list);
2241 list_destroy(&ian->ia_list);
2242 kmem_free(ian, sizeof (itx_async_node_t));
2243 }
2244 }
2245 mutex_exit(&itxg->itxg_lock);
2246 }
2247 }
2248
2249 /*
2250 * This function will prune commit itxs that are at the head of the
2251 * commit list (it won't prune past the first non-commit itx), and
2252 * either: a) attach them to the last lwb that's still pending
2253 * completion, or b) skip them altogether.
2254 *
2255 * This is used as a performance optimization to prevent commit itxs
2256 * from generating new lwbs when it's unnecessary to do so.
2257 */
2258 static void
2259 zil_prune_commit_list(zilog_t *zilog)
2260 {
2261 itx_t *itx;
2262
2263 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2264
2265 while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2266 lr_t *lrc = &itx->itx_lr;
2267 if (lrc->lrc_txtype != TX_COMMIT)
2268 break;
2269
2270 mutex_enter(&zilog->zl_lock);
2271
2272 lwb_t *last_lwb = zilog->zl_last_lwb_opened;
2273 if (last_lwb == NULL ||
2274 last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
2275 /*
2276 * All of the itxs this waiter was waiting on
2277 * must have already completed (or there were
2278 * never any itx's for it to wait on), so it's
2279 * safe to skip this waiter and mark it done.
2280 */
2281 zil_commit_waiter_skip(itx->itx_private);
2282 } else {
2283 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
2284 itx->itx_private = NULL;
2285 }
2286
2287 mutex_exit(&zilog->zl_lock);
2288
2289 list_remove(&zilog->zl_itx_commit_list, itx);
2290 zil_itx_destroy(itx);
2291 }
2292
2293 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2294 }
2295
2296 static void
2297 zil_commit_writer_stall(zilog_t *zilog)
2298 {
2299 /*
2300 * When zio_alloc_zil() fails to allocate the next lwb block on
2301 * disk, we must call txg_wait_synced() to ensure all of the
2302 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
2303 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
2304 * to zil_process_commit_list()) will have to call zil_create(),
2305 * and start a new ZIL chain.
2306 *
2307 * Since zil_alloc_zil() failed, the lwb that was previously
2308 * issued does not have a pointer to the "next" lwb on disk.
2309 * Thus, if another ZIL writer thread was to allocate the "next"
2310 * on-disk lwb, that block could be leaked in the event of a
2311 * crash (because the previous lwb on-disk would not point to
2312 * it).
2313 *
2314 * We must hold the zilog's zl_issuer_lock while we do this, to
2315 * ensure no new threads enter zil_process_commit_list() until
2316 * all lwb's in the zl_lwb_list have been synced and freed
2317 * (which is achieved via the txg_wait_synced() call).
2318 */
2319 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2320 txg_wait_synced(zilog->zl_dmu_pool, 0);
2321 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
2322 }
2323
2324 /*
2325 * This function will traverse the commit list, creating new lwbs as
2326 * needed, and committing the itxs from the commit list to these newly
2327 * created lwbs. Additionally, as a new lwb is created, the previous
2328 * lwb will be issued to the zio layer to be written to disk.
2329 */
2330 static void
2331 zil_process_commit_list(zilog_t *zilog)
2332 {
2333 spa_t *spa = zilog->zl_spa;
2334 list_t nolwb_itxs;
2335 list_t nolwb_waiters;
2336 lwb_t *lwb;
2337 itx_t *itx;
2338
2339 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2340
2341 /*
2342 * Return if there's nothing to commit before we dirty the fs by
2343 * calling zil_create().
2344 */
2345 if (list_head(&zilog->zl_itx_commit_list) == NULL)
2346 return;
2347
2348 list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
2349 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2350 offsetof(zil_commit_waiter_t, zcw_node));
2351
2352 lwb = list_tail(&zilog->zl_lwb_list);
2353 if (lwb == NULL) {
2354 lwb = zil_create(zilog);
2355 } else {
2356 /*
2357 * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will
2358 * have already been created (zl_lwb_list not empty).
2359 */
2360 zil_commit_activate_saxattr_feature(zilog);
2361 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2362 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2363 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2364 }
2365
2366 while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2367 lr_t *lrc = &itx->itx_lr;
2368 uint64_t txg = lrc->lrc_txg;
2369
2370 ASSERT3U(txg, !=, 0);
2371
2372 if (lrc->lrc_txtype == TX_COMMIT) {
2373 DTRACE_PROBE2(zil__process__commit__itx,
2374 zilog_t *, zilog, itx_t *, itx);
2375 } else {
2376 DTRACE_PROBE2(zil__process__normal__itx,
2377 zilog_t *, zilog, itx_t *, itx);
2378 }
2379
2380 list_remove(&zilog->zl_itx_commit_list, itx);
2381
2382 boolean_t synced = txg <= spa_last_synced_txg(spa);
2383 boolean_t frozen = txg > spa_freeze_txg(spa);
2384
2385 /*
2386 * If the txg of this itx has already been synced out, then
2387 * we don't need to commit this itx to an lwb. This is
2388 * because the data of this itx will have already been
2389 * written to the main pool. This is inherently racy, and
2390 * it's still ok to commit an itx whose txg has already
2391 * been synced; this will result in a write that's
2392 * unnecessary, but will do no harm.
2393 *
2394 * With that said, we always want to commit TX_COMMIT itxs
2395 * to an lwb, regardless of whether or not that itx's txg
2396 * has been synced out. We do this to ensure any OPENED lwb
2397 * will always have at least one zil_commit_waiter_t linked
2398 * to the lwb.
2399 *
2400 * As a counter-example, if we skipped TX_COMMIT itx's
2401 * whose txg had already been synced, the following
2402 * situation could occur if we happened to be racing with
2403 * spa_sync:
2404 *
2405 * 1. We commit a non-TX_COMMIT itx to an lwb, where the
2406 * itx's txg is 10 and the last synced txg is 9.
2407 * 2. spa_sync finishes syncing out txg 10.
2408 * 3. We move to the next itx in the list, it's a TX_COMMIT
2409 * whose txg is 10, so we skip it rather than committing
2410 * it to the lwb used in (1).
2411 *
2412 * If the itx that is skipped in (3) is the last TX_COMMIT
2413 * itx in the commit list, than it's possible for the lwb
2414 * used in (1) to remain in the OPENED state indefinitely.
2415 *
2416 * To prevent the above scenario from occurring, ensuring
2417 * that once an lwb is OPENED it will transition to ISSUED
2418 * and eventually DONE, we always commit TX_COMMIT itx's to
2419 * an lwb here, even if that itx's txg has already been
2420 * synced.
2421 *
2422 * Finally, if the pool is frozen, we _always_ commit the
2423 * itx. The point of freezing the pool is to prevent data
2424 * from being written to the main pool via spa_sync, and
2425 * instead rely solely on the ZIL to persistently store the
2426 * data; i.e. when the pool is frozen, the last synced txg
2427 * value can't be trusted.
2428 */
2429 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2430 if (lwb != NULL) {
2431 lwb = zil_lwb_commit(zilog, itx, lwb);
2432
2433 if (lwb == NULL)
2434 list_insert_tail(&nolwb_itxs, itx);
2435 else
2436 list_insert_tail(&lwb->lwb_itxs, itx);
2437 } else {
2438 if (lrc->lrc_txtype == TX_COMMIT) {
2439 zil_commit_waiter_link_nolwb(
2440 itx->itx_private, &nolwb_waiters);
2441 }
2442
2443 list_insert_tail(&nolwb_itxs, itx);
2444 }
2445 } else {
2446 ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT);
2447 zil_itx_destroy(itx);
2448 }
2449 }
2450
2451 if (lwb == NULL) {
2452 /*
2453 * This indicates zio_alloc_zil() failed to allocate the
2454 * "next" lwb on-disk. When this happens, we must stall
2455 * the ZIL write pipeline; see the comment within
2456 * zil_commit_writer_stall() for more details.
2457 */
2458 zil_commit_writer_stall(zilog);
2459
2460 /*
2461 * Additionally, we have to signal and mark the "nolwb"
2462 * waiters as "done" here, since without an lwb, we
2463 * can't do this via zil_lwb_flush_vdevs_done() like
2464 * normal.
2465 */
2466 zil_commit_waiter_t *zcw;
2467 while ((zcw = list_head(&nolwb_waiters)) != NULL) {
2468 zil_commit_waiter_skip(zcw);
2469 list_remove(&nolwb_waiters, zcw);
2470 }
2471
2472 /*
2473 * And finally, we have to destroy the itx's that
2474 * couldn't be committed to an lwb; this will also call
2475 * the itx's callback if one exists for the itx.
2476 */
2477 while ((itx = list_head(&nolwb_itxs)) != NULL) {
2478 list_remove(&nolwb_itxs, itx);
2479 zil_itx_destroy(itx);
2480 }
2481 } else {
2482 ASSERT(list_is_empty(&nolwb_waiters));
2483 ASSERT3P(lwb, !=, NULL);
2484 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2485 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2486 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2487
2488 /*
2489 * At this point, the ZIL block pointed at by the "lwb"
2490 * variable is in one of the following states: "closed"
2491 * or "open".
2492 *
2493 * If it's "closed", then no itxs have been committed to
2494 * it, so there's no point in issuing its zio (i.e. it's
2495 * "empty").
2496 *
2497 * If it's "open", then it contains one or more itxs that
2498 * eventually need to be committed to stable storage. In
2499 * this case we intentionally do not issue the lwb's zio
2500 * to disk yet, and instead rely on one of the following
2501 * two mechanisms for issuing the zio:
2502 *
2503 * 1. Ideally, there will be more ZIL activity occurring
2504 * on the system, such that this function will be
2505 * immediately called again (not necessarily by the same
2506 * thread) and this lwb's zio will be issued via
2507 * zil_lwb_commit(). This way, the lwb is guaranteed to
2508 * be "full" when it is issued to disk, and we'll make
2509 * use of the lwb's size the best we can.
2510 *
2511 * 2. If there isn't sufficient ZIL activity occurring on
2512 * the system, such that this lwb's zio isn't issued via
2513 * zil_lwb_commit(), zil_commit_waiter() will issue the
2514 * lwb's zio. If this occurs, the lwb is not guaranteed
2515 * to be "full" by the time its zio is issued, and means
2516 * the size of the lwb was "too large" given the amount
2517 * of ZIL activity occurring on the system at that time.
2518 *
2519 * We do this for a couple of reasons:
2520 *
2521 * 1. To try and reduce the number of IOPs needed to
2522 * write the same number of itxs. If an lwb has space
2523 * available in its buffer for more itxs, and more itxs
2524 * will be committed relatively soon (relative to the
2525 * latency of performing a write), then it's beneficial
2526 * to wait for these "next" itxs. This way, more itxs
2527 * can be committed to stable storage with fewer writes.
2528 *
2529 * 2. To try and use the largest lwb block size that the
2530 * incoming rate of itxs can support. Again, this is to
2531 * try and pack as many itxs into as few lwbs as
2532 * possible, without significantly impacting the latency
2533 * of each individual itx.
2534 */
2535 }
2536 }
2537
2538 /*
2539 * This function is responsible for ensuring the passed in commit waiter
2540 * (and associated commit itx) is committed to an lwb. If the waiter is
2541 * not already committed to an lwb, all itxs in the zilog's queue of
2542 * itxs will be processed. The assumption is the passed in waiter's
2543 * commit itx will found in the queue just like the other non-commit
2544 * itxs, such that when the entire queue is processed, the waiter will
2545 * have been committed to an lwb.
2546 *
2547 * The lwb associated with the passed in waiter is not guaranteed to
2548 * have been issued by the time this function completes. If the lwb is
2549 * not issued, we rely on future calls to zil_commit_writer() to issue
2550 * the lwb, or the timeout mechanism found in zil_commit_waiter().
2551 */
2552 static void
2553 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2554 {
2555 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2556 ASSERT(spa_writeable(zilog->zl_spa));
2557
2558 mutex_enter(&zilog->zl_issuer_lock);
2559
2560 if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2561 /*
2562 * It's possible that, while we were waiting to acquire
2563 * the "zl_issuer_lock", another thread committed this
2564 * waiter to an lwb. If that occurs, we bail out early,
2565 * without processing any of the zilog's queue of itxs.
2566 *
2567 * On certain workloads and system configurations, the
2568 * "zl_issuer_lock" can become highly contended. In an
2569 * attempt to reduce this contention, we immediately drop
2570 * the lock if the waiter has already been processed.
2571 *
2572 * We've measured this optimization to reduce CPU spent
2573 * contending on this lock by up to 5%, using a system
2574 * with 32 CPUs, low latency storage (~50 usec writes),
2575 * and 1024 threads performing sync writes.
2576 */
2577 goto out;
2578 }
2579
2580 ZIL_STAT_BUMP(zil_commit_writer_count);
2581
2582 zil_get_commit_list(zilog);
2583 zil_prune_commit_list(zilog);
2584 zil_process_commit_list(zilog);
2585
2586 out:
2587 mutex_exit(&zilog->zl_issuer_lock);
2588 }
2589
2590 static void
2591 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2592 {
2593 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2594 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2595 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2596
2597 lwb_t *lwb = zcw->zcw_lwb;
2598 ASSERT3P(lwb, !=, NULL);
2599 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
2600
2601 /*
2602 * If the lwb has already been issued by another thread, we can
2603 * immediately return since there's no work to be done (the
2604 * point of this function is to issue the lwb). Additionally, we
2605 * do this prior to acquiring the zl_issuer_lock, to avoid
2606 * acquiring it when it's not necessary to do so.
2607 */
2608 if (lwb->lwb_state == LWB_STATE_ISSUED ||
2609 lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2610 lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2611 return;
2612
2613 /*
2614 * In order to call zil_lwb_write_issue() we must hold the
2615 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
2616 * since we're already holding the commit waiter's "zcw_lock",
2617 * and those two locks are acquired in the opposite order
2618 * elsewhere.
2619 */
2620 mutex_exit(&zcw->zcw_lock);
2621 mutex_enter(&zilog->zl_issuer_lock);
2622 mutex_enter(&zcw->zcw_lock);
2623
2624 /*
2625 * Since we just dropped and re-acquired the commit waiter's
2626 * lock, we have to re-check to see if the waiter was marked
2627 * "done" during that process. If the waiter was marked "done",
2628 * the "lwb" pointer is no longer valid (it can be free'd after
2629 * the waiter is marked "done"), so without this check we could
2630 * wind up with a use-after-free error below.
2631 */
2632 if (zcw->zcw_done)
2633 goto out;
2634
2635 ASSERT3P(lwb, ==, zcw->zcw_lwb);
2636
2637 /*
2638 * We've already checked this above, but since we hadn't acquired
2639 * the zilog's zl_issuer_lock, we have to perform this check a
2640 * second time while holding the lock.
2641 *
2642 * We don't need to hold the zl_lock since the lwb cannot transition
2643 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
2644 * _can_ transition from ISSUED to DONE, but it's OK to race with
2645 * that transition since we treat the lwb the same, whether it's in
2646 * the ISSUED or DONE states.
2647 *
2648 * The important thing, is we treat the lwb differently depending on
2649 * if it's ISSUED or OPENED, and block any other threads that might
2650 * attempt to issue this lwb. For that reason we hold the
2651 * zl_issuer_lock when checking the lwb_state; we must not call
2652 * zil_lwb_write_issue() if the lwb had already been issued.
2653 *
2654 * See the comment above the lwb_state_t structure definition for
2655 * more details on the lwb states, and locking requirements.
2656 */
2657 if (lwb->lwb_state == LWB_STATE_ISSUED ||
2658 lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2659 lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2660 goto out;
2661
2662 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2663
2664 /*
2665 * As described in the comments above zil_commit_waiter() and
2666 * zil_process_commit_list(), we need to issue this lwb's zio
2667 * since we've reached the commit waiter's timeout and it still
2668 * hasn't been issued.
2669 */
2670 lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2671
2672 IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED);
2673
2674 /*
2675 * Since the lwb's zio hadn't been issued by the time this thread
2676 * reached its timeout, we reset the zilog's "zl_cur_used" field
2677 * to influence the zil block size selection algorithm.
2678 *
2679 * By having to issue the lwb's zio here, it means the size of the
2680 * lwb was too large, given the incoming throughput of itxs. By
2681 * setting "zl_cur_used" to zero, we communicate this fact to the
2682 * block size selection algorithm, so it can take this information
2683 * into account, and potentially select a smaller size for the
2684 * next lwb block that is allocated.
2685 */
2686 zilog->zl_cur_used = 0;
2687
2688 if (nlwb == NULL) {
2689 /*
2690 * When zil_lwb_write_issue() returns NULL, this
2691 * indicates zio_alloc_zil() failed to allocate the
2692 * "next" lwb on-disk. When this occurs, the ZIL write
2693 * pipeline must be stalled; see the comment within the
2694 * zil_commit_writer_stall() function for more details.
2695 *
2696 * We must drop the commit waiter's lock prior to
2697 * calling zil_commit_writer_stall() or else we can wind
2698 * up with the following deadlock:
2699 *
2700 * - This thread is waiting for the txg to sync while
2701 * holding the waiter's lock; txg_wait_synced() is
2702 * used within txg_commit_writer_stall().
2703 *
2704 * - The txg can't sync because it is waiting for this
2705 * lwb's zio callback to call dmu_tx_commit().
2706 *
2707 * - The lwb's zio callback can't call dmu_tx_commit()
2708 * because it's blocked trying to acquire the waiter's
2709 * lock, which occurs prior to calling dmu_tx_commit()
2710 */
2711 mutex_exit(&zcw->zcw_lock);
2712 zil_commit_writer_stall(zilog);
2713 mutex_enter(&zcw->zcw_lock);
2714 }
2715
2716 out:
2717 mutex_exit(&zilog->zl_issuer_lock);
2718 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2719 }
2720
2721 /*
2722 * This function is responsible for performing the following two tasks:
2723 *
2724 * 1. its primary responsibility is to block until the given "commit
2725 * waiter" is considered "done".
2726 *
2727 * 2. its secondary responsibility is to issue the zio for the lwb that
2728 * the given "commit waiter" is waiting on, if this function has
2729 * waited "long enough" and the lwb is still in the "open" state.
2730 *
2731 * Given a sufficient amount of itxs being generated and written using
2732 * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2733 * function. If this does not occur, this secondary responsibility will
2734 * ensure the lwb is issued even if there is not other synchronous
2735 * activity on the system.
2736 *
2737 * For more details, see zil_process_commit_list(); more specifically,
2738 * the comment at the bottom of that function.
2739 */
2740 static void
2741 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2742 {
2743 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2744 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2745 ASSERT(spa_writeable(zilog->zl_spa));
2746
2747 mutex_enter(&zcw->zcw_lock);
2748
2749 /*
2750 * The timeout is scaled based on the lwb latency to avoid
2751 * significantly impacting the latency of each individual itx.
2752 * For more details, see the comment at the bottom of the
2753 * zil_process_commit_list() function.
2754 */
2755 int pct = MAX(zfs_commit_timeout_pct, 1);
2756 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2757 hrtime_t wakeup = gethrtime() + sleep;
2758 boolean_t timedout = B_FALSE;
2759
2760 while (!zcw->zcw_done) {
2761 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2762
2763 lwb_t *lwb = zcw->zcw_lwb;
2764
2765 /*
2766 * Usually, the waiter will have a non-NULL lwb field here,
2767 * but it's possible for it to be NULL as a result of
2768 * zil_commit() racing with spa_sync().
2769 *
2770 * When zil_clean() is called, it's possible for the itxg
2771 * list (which may be cleaned via a taskq) to contain
2772 * commit itxs. When this occurs, the commit waiters linked
2773 * off of these commit itxs will not be committed to an
2774 * lwb. Additionally, these commit waiters will not be
2775 * marked done until zil_commit_waiter_skip() is called via
2776 * zil_itxg_clean().
2777 *
2778 * Thus, it's possible for this commit waiter (i.e. the
2779 * "zcw" variable) to be found in this "in between" state;
2780 * where it's "zcw_lwb" field is NULL, and it hasn't yet
2781 * been skipped, so it's "zcw_done" field is still B_FALSE.
2782 */
2783 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2784
2785 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2786 ASSERT3B(timedout, ==, B_FALSE);
2787
2788 /*
2789 * If the lwb hasn't been issued yet, then we
2790 * need to wait with a timeout, in case this
2791 * function needs to issue the lwb after the
2792 * timeout is reached; responsibility (2) from
2793 * the comment above this function.
2794 */
2795 int rc = cv_timedwait_hires(&zcw->zcw_cv,
2796 &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2797 CALLOUT_FLAG_ABSOLUTE);
2798
2799 if (rc != -1 || zcw->zcw_done)
2800 continue;
2801
2802 timedout = B_TRUE;
2803 zil_commit_waiter_timeout(zilog, zcw);
2804
2805 if (!zcw->zcw_done) {
2806 /*
2807 * If the commit waiter has already been
2808 * marked "done", it's possible for the
2809 * waiter's lwb structure to have already
2810 * been freed. Thus, we can only reliably
2811 * make these assertions if the waiter
2812 * isn't done.
2813 */
2814 ASSERT3P(lwb, ==, zcw->zcw_lwb);
2815 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2816 }
2817 } else {
2818 /*
2819 * If the lwb isn't open, then it must have already
2820 * been issued. In that case, there's no need to
2821 * use a timeout when waiting for the lwb to
2822 * complete.
2823 *
2824 * Additionally, if the lwb is NULL, the waiter
2825 * will soon be signaled and marked done via
2826 * zil_clean() and zil_itxg_clean(), so no timeout
2827 * is required.
2828 */
2829
2830 IMPLY(lwb != NULL,
2831 lwb->lwb_state == LWB_STATE_ISSUED ||
2832 lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2833 lwb->lwb_state == LWB_STATE_FLUSH_DONE);
2834 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2835 }
2836 }
2837
2838 mutex_exit(&zcw->zcw_lock);
2839 }
2840
2841 static zil_commit_waiter_t *
2842 zil_alloc_commit_waiter(void)
2843 {
2844 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
2845
2846 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
2847 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
2848 list_link_init(&zcw->zcw_node);
2849 zcw->zcw_lwb = NULL;
2850 zcw->zcw_done = B_FALSE;
2851 zcw->zcw_zio_error = 0;
2852
2853 return (zcw);
2854 }
2855
2856 static void
2857 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
2858 {
2859 ASSERT(!list_link_active(&zcw->zcw_node));
2860 ASSERT3P(zcw->zcw_lwb, ==, NULL);
2861 ASSERT3B(zcw->zcw_done, ==, B_TRUE);
2862 mutex_destroy(&zcw->zcw_lock);
2863 cv_destroy(&zcw->zcw_cv);
2864 kmem_cache_free(zil_zcw_cache, zcw);
2865 }
2866
2867 /*
2868 * This function is used to create a TX_COMMIT itx and assign it. This
2869 * way, it will be linked into the ZIL's list of synchronous itxs, and
2870 * then later committed to an lwb (or skipped) when
2871 * zil_process_commit_list() is called.
2872 */
2873 static void
2874 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
2875 {
2876 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
2877 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
2878
2879 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
2880 itx->itx_sync = B_TRUE;
2881 itx->itx_private = zcw;
2882
2883 zil_itx_assign(zilog, itx, tx);
2884
2885 dmu_tx_commit(tx);
2886 }
2887
2888 /*
2889 * Commit ZFS Intent Log transactions (itxs) to stable storage.
2890 *
2891 * When writing ZIL transactions to the on-disk representation of the
2892 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
2893 * itxs can be committed to a single lwb. Once a lwb is written and
2894 * committed to stable storage (i.e. the lwb is written, and vdevs have
2895 * been flushed), each itx that was committed to that lwb is also
2896 * considered to be committed to stable storage.
2897 *
2898 * When an itx is committed to an lwb, the log record (lr_t) contained
2899 * by the itx is copied into the lwb's zio buffer, and once this buffer
2900 * is written to disk, it becomes an on-disk ZIL block.
2901 *
2902 * As itxs are generated, they're inserted into the ZIL's queue of
2903 * uncommitted itxs. The semantics of zil_commit() are such that it will
2904 * block until all itxs that were in the queue when it was called, are
2905 * committed to stable storage.
2906 *
2907 * If "foid" is zero, this means all "synchronous" and "asynchronous"
2908 * itxs, for all objects in the dataset, will be committed to stable
2909 * storage prior to zil_commit() returning. If "foid" is non-zero, all
2910 * "synchronous" itxs for all objects, but only "asynchronous" itxs
2911 * that correspond to the foid passed in, will be committed to stable
2912 * storage prior to zil_commit() returning.
2913 *
2914 * Generally speaking, when zil_commit() is called, the consumer doesn't
2915 * actually care about _all_ of the uncommitted itxs. Instead, they're
2916 * simply trying to waiting for a specific itx to be committed to disk,
2917 * but the interface(s) for interacting with the ZIL don't allow such
2918 * fine-grained communication. A better interface would allow a consumer
2919 * to create and assign an itx, and then pass a reference to this itx to
2920 * zil_commit(); such that zil_commit() would return as soon as that
2921 * specific itx was committed to disk (instead of waiting for _all_
2922 * itxs to be committed).
2923 *
2924 * When a thread calls zil_commit() a special "commit itx" will be
2925 * generated, along with a corresponding "waiter" for this commit itx.
2926 * zil_commit() will wait on this waiter's CV, such that when the waiter
2927 * is marked done, and signaled, zil_commit() will return.
2928 *
2929 * This commit itx is inserted into the queue of uncommitted itxs. This
2930 * provides an easy mechanism for determining which itxs were in the
2931 * queue prior to zil_commit() having been called, and which itxs were
2932 * added after zil_commit() was called.
2933 *
2934 * The commit it is special; it doesn't have any on-disk representation.
2935 * When a commit itx is "committed" to an lwb, the waiter associated
2936 * with it is linked onto the lwb's list of waiters. Then, when that lwb
2937 * completes, each waiter on the lwb's list is marked done and signaled
2938 * -- allowing the thread waiting on the waiter to return from zil_commit().
2939 *
2940 * It's important to point out a few critical factors that allow us
2941 * to make use of the commit itxs, commit waiters, per-lwb lists of
2942 * commit waiters, and zio completion callbacks like we're doing:
2943 *
2944 * 1. The list of waiters for each lwb is traversed, and each commit
2945 * waiter is marked "done" and signaled, in the zio completion
2946 * callback of the lwb's zio[*].
2947 *
2948 * * Actually, the waiters are signaled in the zio completion
2949 * callback of the root zio for the DKIOCFLUSHWRITECACHE commands
2950 * that are sent to the vdevs upon completion of the lwb zio.
2951 *
2952 * 2. When the itxs are inserted into the ZIL's queue of uncommitted
2953 * itxs, the order in which they are inserted is preserved[*]; as
2954 * itxs are added to the queue, they are added to the tail of
2955 * in-memory linked lists.
2956 *
2957 * When committing the itxs to lwbs (to be written to disk), they
2958 * are committed in the same order in which the itxs were added to
2959 * the uncommitted queue's linked list(s); i.e. the linked list of
2960 * itxs to commit is traversed from head to tail, and each itx is
2961 * committed to an lwb in that order.
2962 *
2963 * * To clarify:
2964 *
2965 * - the order of "sync" itxs is preserved w.r.t. other
2966 * "sync" itxs, regardless of the corresponding objects.
2967 * - the order of "async" itxs is preserved w.r.t. other
2968 * "async" itxs corresponding to the same object.
2969 * - the order of "async" itxs is *not* preserved w.r.t. other
2970 * "async" itxs corresponding to different objects.
2971 * - the order of "sync" itxs w.r.t. "async" itxs (or vice
2972 * versa) is *not* preserved, even for itxs that correspond
2973 * to the same object.
2974 *
2975 * For more details, see: zil_itx_assign(), zil_async_to_sync(),
2976 * zil_get_commit_list(), and zil_process_commit_list().
2977 *
2978 * 3. The lwbs represent a linked list of blocks on disk. Thus, any
2979 * lwb cannot be considered committed to stable storage, until its
2980 * "previous" lwb is also committed to stable storage. This fact,
2981 * coupled with the fact described above, means that itxs are
2982 * committed in (roughly) the order in which they were generated.
2983 * This is essential because itxs are dependent on prior itxs.
2984 * Thus, we *must not* deem an itx as being committed to stable
2985 * storage, until *all* prior itxs have also been committed to
2986 * stable storage.
2987 *
2988 * To enforce this ordering of lwb zio's, while still leveraging as
2989 * much of the underlying storage performance as possible, we rely
2990 * on two fundamental concepts:
2991 *
2992 * 1. The creation and issuance of lwb zio's is protected by
2993 * the zilog's "zl_issuer_lock", which ensures only a single
2994 * thread is creating and/or issuing lwb's at a time
2995 * 2. The "previous" lwb is a child of the "current" lwb
2996 * (leveraging the zio parent-child dependency graph)
2997 *
2998 * By relying on this parent-child zio relationship, we can have
2999 * many lwb zio's concurrently issued to the underlying storage,
3000 * but the order in which they complete will be the same order in
3001 * which they were created.
3002 */
3003 void
3004 zil_commit(zilog_t *zilog, uint64_t foid)
3005 {
3006 /*
3007 * We should never attempt to call zil_commit on a snapshot for
3008 * a couple of reasons:
3009 *
3010 * 1. A snapshot may never be modified, thus it cannot have any
3011 * in-flight itxs that would have modified the dataset.
3012 *
3013 * 2. By design, when zil_commit() is called, a commit itx will
3014 * be assigned to this zilog; as a result, the zilog will be
3015 * dirtied. We must not dirty the zilog of a snapshot; there's
3016 * checks in the code that enforce this invariant, and will
3017 * cause a panic if it's not upheld.
3018 */
3019 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
3020
3021 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3022 return;
3023
3024 if (!spa_writeable(zilog->zl_spa)) {
3025 /*
3026 * If the SPA is not writable, there should never be any
3027 * pending itxs waiting to be committed to disk. If that
3028 * weren't true, we'd skip writing those itxs out, and
3029 * would break the semantics of zil_commit(); thus, we're
3030 * verifying that truth before we return to the caller.
3031 */
3032 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3033 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3034 for (int i = 0; i < TXG_SIZE; i++)
3035 ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
3036 return;
3037 }
3038
3039 /*
3040 * If the ZIL is suspended, we don't want to dirty it by calling
3041 * zil_commit_itx_assign() below, nor can we write out
3042 * lwbs like would be done in zil_commit_write(). Thus, we
3043 * simply rely on txg_wait_synced() to maintain the necessary
3044 * semantics, and avoid calling those functions altogether.
3045 */
3046 if (zilog->zl_suspend > 0) {
3047 txg_wait_synced(zilog->zl_dmu_pool, 0);
3048 return;
3049 }
3050
3051 zil_commit_impl(zilog, foid);
3052 }
3053
3054 void
3055 zil_commit_impl(zilog_t *zilog, uint64_t foid)
3056 {
3057 ZIL_STAT_BUMP(zil_commit_count);
3058
3059 /*
3060 * Move the "async" itxs for the specified foid to the "sync"
3061 * queues, such that they will be later committed (or skipped)
3062 * to an lwb when zil_process_commit_list() is called.
3063 *
3064 * Since these "async" itxs must be committed prior to this
3065 * call to zil_commit returning, we must perform this operation
3066 * before we call zil_commit_itx_assign().
3067 */
3068 zil_async_to_sync(zilog, foid);
3069
3070 /*
3071 * We allocate a new "waiter" structure which will initially be
3072 * linked to the commit itx using the itx's "itx_private" field.
3073 * Since the commit itx doesn't represent any on-disk state,
3074 * when it's committed to an lwb, rather than copying the its
3075 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
3076 * added to the lwb's list of waiters. Then, when the lwb is
3077 * committed to stable storage, each waiter in the lwb's list of
3078 * waiters will be marked "done", and signalled.
3079 *
3080 * We must create the waiter and assign the commit itx prior to
3081 * calling zil_commit_writer(), or else our specific commit itx
3082 * is not guaranteed to be committed to an lwb prior to calling
3083 * zil_commit_waiter().
3084 */
3085 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
3086 zil_commit_itx_assign(zilog, zcw);
3087
3088 zil_commit_writer(zilog, zcw);
3089 zil_commit_waiter(zilog, zcw);
3090
3091 if (zcw->zcw_zio_error != 0) {
3092 /*
3093 * If there was an error writing out the ZIL blocks that
3094 * this thread is waiting on, then we fallback to
3095 * relying on spa_sync() to write out the data this
3096 * thread is waiting on. Obviously this has performance
3097 * implications, but the expectation is for this to be
3098 * an exceptional case, and shouldn't occur often.
3099 */
3100 DTRACE_PROBE2(zil__commit__io__error,
3101 zilog_t *, zilog, zil_commit_waiter_t *, zcw);
3102 txg_wait_synced(zilog->zl_dmu_pool, 0);
3103 }
3104
3105 zil_free_commit_waiter(zcw);
3106 }
3107
3108 /*
3109 * Called in syncing context to free committed log blocks and update log header.
3110 */
3111 void
3112 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
3113 {
3114 zil_header_t *zh = zil_header_in_syncing_context(zilog);
3115 uint64_t txg = dmu_tx_get_txg(tx);
3116 spa_t *spa = zilog->zl_spa;
3117 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
3118 lwb_t *lwb;
3119
3120 /*
3121 * We don't zero out zl_destroy_txg, so make sure we don't try
3122 * to destroy it twice.
3123 */
3124 if (spa_sync_pass(spa) != 1)
3125 return;
3126
3127 mutex_enter(&zilog->zl_lock);
3128
3129 ASSERT(zilog->zl_stop_sync == 0);
3130
3131 if (*replayed_seq != 0) {
3132 ASSERT(zh->zh_replay_seq < *replayed_seq);
3133 zh->zh_replay_seq = *replayed_seq;
3134 *replayed_seq = 0;
3135 }
3136
3137 if (zilog->zl_destroy_txg == txg) {
3138 blkptr_t blk = zh->zh_log;
3139 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
3140
3141 ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
3142
3143 memset(zh, 0, sizeof (zil_header_t));
3144 memset(zilog->zl_replayed_seq, 0,
3145 sizeof (zilog->zl_replayed_seq));
3146
3147 if (zilog->zl_keep_first) {
3148 /*
3149 * If this block was part of log chain that couldn't
3150 * be claimed because a device was missing during
3151 * zil_claim(), but that device later returns,
3152 * then this block could erroneously appear valid.
3153 * To guard against this, assign a new GUID to the new
3154 * log chain so it doesn't matter what blk points to.
3155 */
3156 zil_init_log_chain(zilog, &blk);
3157 zh->zh_log = blk;
3158 } else {
3159 /*
3160 * A destroyed ZIL chain can't contain any TX_SETSAXATTR
3161 * records. So, deactivate the feature for this dataset.
3162 * We activate it again when we start a new ZIL chain.
3163 */
3164 if (dsl_dataset_feature_is_active(ds,
3165 SPA_FEATURE_ZILSAXATTR))
3166 dsl_dataset_deactivate_feature(ds,
3167 SPA_FEATURE_ZILSAXATTR, tx);
3168 }
3169 }
3170
3171 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
3172 zh->zh_log = lwb->lwb_blk;
3173 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
3174 break;
3175 list_remove(&zilog->zl_lwb_list, lwb);
3176 zio_free(spa, txg, &lwb->lwb_blk);
3177 zil_free_lwb(zilog, lwb);
3178
3179 /*
3180 * If we don't have anything left in the lwb list then
3181 * we've had an allocation failure and we need to zero
3182 * out the zil_header blkptr so that we don't end
3183 * up freeing the same block twice.
3184 */
3185 if (list_head(&zilog->zl_lwb_list) == NULL)
3186 BP_ZERO(&zh->zh_log);
3187 }
3188
3189 /*
3190 * Remove fastwrite on any blocks that have been pre-allocated for
3191 * the next commit. This prevents fastwrite counter pollution by
3192 * unused, long-lived LWBs.
3193 */
3194 for (; lwb != NULL; lwb = list_next(&zilog->zl_lwb_list, lwb)) {
3195 if (lwb->lwb_fastwrite && !lwb->lwb_write_zio) {
3196 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
3197 lwb->lwb_fastwrite = 0;
3198 }
3199 }
3200
3201 mutex_exit(&zilog->zl_lock);
3202 }
3203
3204 static int
3205 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
3206 {
3207 (void) unused, (void) kmflag;
3208 lwb_t *lwb = vbuf;
3209 list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
3210 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
3211 offsetof(zil_commit_waiter_t, zcw_node));
3212 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
3213 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
3214 mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
3215 return (0);
3216 }
3217
3218 static void
3219 zil_lwb_dest(void *vbuf, void *unused)
3220 {
3221 (void) unused;
3222 lwb_t *lwb = vbuf;
3223 mutex_destroy(&lwb->lwb_vdev_lock);
3224 avl_destroy(&lwb->lwb_vdev_tree);
3225 list_destroy(&lwb->lwb_waiters);
3226 list_destroy(&lwb->lwb_itxs);
3227 }
3228
3229 void
3230 zil_init(void)
3231 {
3232 zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
3233 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
3234
3235 zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
3236 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3237
3238 zil_ksp = kstat_create("zfs", 0, "zil", "misc",
3239 KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
3240 KSTAT_FLAG_VIRTUAL);
3241
3242 if (zil_ksp != NULL) {
3243 zil_ksp->ks_data = &zil_stats;
3244 kstat_install(zil_ksp);
3245 }
3246 }
3247
3248 void
3249 zil_fini(void)
3250 {
3251 kmem_cache_destroy(zil_zcw_cache);
3252 kmem_cache_destroy(zil_lwb_cache);
3253
3254 if (zil_ksp != NULL) {
3255 kstat_delete(zil_ksp);
3256 zil_ksp = NULL;
3257 }
3258 }
3259
3260 void
3261 zil_set_sync(zilog_t *zilog, uint64_t sync)
3262 {
3263 zilog->zl_sync = sync;
3264 }
3265
3266 void
3267 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
3268 {
3269 zilog->zl_logbias = logbias;
3270 }
3271
3272 zilog_t *
3273 zil_alloc(objset_t *os, zil_header_t *zh_phys)
3274 {
3275 zilog_t *zilog;
3276
3277 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
3278
3279 zilog->zl_header = zh_phys;
3280 zilog->zl_os = os;
3281 zilog->zl_spa = dmu_objset_spa(os);
3282 zilog->zl_dmu_pool = dmu_objset_pool(os);
3283 zilog->zl_destroy_txg = TXG_INITIAL - 1;
3284 zilog->zl_logbias = dmu_objset_logbias(os);
3285 zilog->zl_sync = dmu_objset_syncprop(os);
3286 zilog->zl_dirty_max_txg = 0;
3287 zilog->zl_last_lwb_opened = NULL;
3288 zilog->zl_last_lwb_latency = 0;
3289 zilog->zl_max_block_size = zil_maxblocksize;
3290
3291 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
3292 mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
3293
3294 for (int i = 0; i < TXG_SIZE; i++) {
3295 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
3296 MUTEX_DEFAULT, NULL);
3297 }
3298
3299 list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
3300 offsetof(lwb_t, lwb_node));
3301
3302 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
3303 offsetof(itx_t, itx_node));
3304
3305 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
3306
3307 return (zilog);
3308 }
3309
3310 void
3311 zil_free(zilog_t *zilog)
3312 {
3313 int i;
3314
3315 zilog->zl_stop_sync = 1;
3316
3317 ASSERT0(zilog->zl_suspend);
3318 ASSERT0(zilog->zl_suspending);
3319
3320 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3321 list_destroy(&zilog->zl_lwb_list);
3322
3323 ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
3324 list_destroy(&zilog->zl_itx_commit_list);
3325
3326 for (i = 0; i < TXG_SIZE; i++) {
3327 /*
3328 * It's possible for an itx to be generated that doesn't dirty
3329 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
3330 * callback to remove the entry. We remove those here.
3331 *
3332 * Also free up the ziltest itxs.
3333 */
3334 if (zilog->zl_itxg[i].itxg_itxs)
3335 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
3336 mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
3337 }
3338
3339 mutex_destroy(&zilog->zl_issuer_lock);
3340 mutex_destroy(&zilog->zl_lock);
3341
3342 cv_destroy(&zilog->zl_cv_suspend);
3343
3344 kmem_free(zilog, sizeof (zilog_t));
3345 }
3346
3347 /*
3348 * Open an intent log.
3349 */
3350 zilog_t *
3351 zil_open(objset_t *os, zil_get_data_t *get_data)
3352 {
3353 zilog_t *zilog = dmu_objset_zil(os);
3354
3355 ASSERT3P(zilog->zl_get_data, ==, NULL);
3356 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3357 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3358
3359 zilog->zl_get_data = get_data;
3360
3361 return (zilog);
3362 }
3363
3364 /*
3365 * Close an intent log.
3366 */
3367 void
3368 zil_close(zilog_t *zilog)
3369 {
3370 lwb_t *lwb;
3371 uint64_t txg;
3372
3373 if (!dmu_objset_is_snapshot(zilog->zl_os)) {
3374 zil_commit(zilog, 0);
3375 } else {
3376 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
3377 ASSERT0(zilog->zl_dirty_max_txg);
3378 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
3379 }
3380
3381 mutex_enter(&zilog->zl_lock);
3382 lwb = list_tail(&zilog->zl_lwb_list);
3383 if (lwb == NULL)
3384 txg = zilog->zl_dirty_max_txg;
3385 else
3386 txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
3387 mutex_exit(&zilog->zl_lock);
3388
3389 /*
3390 * We need to use txg_wait_synced() to wait long enough for the
3391 * ZIL to be clean, and to wait for all pending lwbs to be
3392 * written out.
3393 */
3394 if (txg != 0)
3395 txg_wait_synced(zilog->zl_dmu_pool, txg);
3396
3397 if (zilog_is_dirty(zilog))
3398 zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog,
3399 (u_longlong_t)txg);
3400 if (txg < spa_freeze_txg(zilog->zl_spa))
3401 VERIFY(!zilog_is_dirty(zilog));
3402
3403 zilog->zl_get_data = NULL;
3404
3405 /*
3406 * We should have only one lwb left on the list; remove it now.
3407 */
3408 mutex_enter(&zilog->zl_lock);
3409 lwb = list_head(&zilog->zl_lwb_list);
3410 if (lwb != NULL) {
3411 ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
3412 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
3413
3414 if (lwb->lwb_fastwrite)
3415 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
3416
3417 list_remove(&zilog->zl_lwb_list, lwb);
3418 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
3419 zil_free_lwb(zilog, lwb);
3420 }
3421 mutex_exit(&zilog->zl_lock);
3422 }
3423
3424 static char *suspend_tag = "zil suspending";
3425
3426 /*
3427 * Suspend an intent log. While in suspended mode, we still honor
3428 * synchronous semantics, but we rely on txg_wait_synced() to do it.
3429 * On old version pools, we suspend the log briefly when taking a
3430 * snapshot so that it will have an empty intent log.
3431 *
3432 * Long holds are not really intended to be used the way we do here --
3433 * held for such a short time. A concurrent caller of dsl_dataset_long_held()
3434 * could fail. Therefore we take pains to only put a long hold if it is
3435 * actually necessary. Fortunately, it will only be necessary if the
3436 * objset is currently mounted (or the ZVOL equivalent). In that case it
3437 * will already have a long hold, so we are not really making things any worse.
3438 *
3439 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3440 * zvol_state_t), and use their mechanism to prevent their hold from being
3441 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for
3442 * very little gain.
3443 *
3444 * if cookiep == NULL, this does both the suspend & resume.
3445 * Otherwise, it returns with the dataset "long held", and the cookie
3446 * should be passed into zil_resume().
3447 */
3448 int
3449 zil_suspend(const char *osname, void **cookiep)
3450 {
3451 objset_t *os;
3452 zilog_t *zilog;
3453 const zil_header_t *zh;
3454 int error;
3455
3456 error = dmu_objset_hold(osname, suspend_tag, &os);
3457 if (error != 0)
3458 return (error);
3459 zilog = dmu_objset_zil(os);
3460
3461 mutex_enter(&zilog->zl_lock);
3462 zh = zilog->zl_header;
3463
3464 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */
3465 mutex_exit(&zilog->zl_lock);
3466 dmu_objset_rele(os, suspend_tag);
3467 return (SET_ERROR(EBUSY));
3468 }
3469
3470 /*
3471 * Don't put a long hold in the cases where we can avoid it. This
3472 * is when there is no cookie so we are doing a suspend & resume
3473 * (i.e. called from zil_vdev_offline()), and there's nothing to do
3474 * for the suspend because it's already suspended, or there's no ZIL.
3475 */
3476 if (cookiep == NULL && !zilog->zl_suspending &&
3477 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3478 mutex_exit(&zilog->zl_lock);
3479 dmu_objset_rele(os, suspend_tag);
3480 return (0);
3481 }
3482
3483 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3484 dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3485
3486 zilog->zl_suspend++;
3487
3488 if (zilog->zl_suspend > 1) {
3489 /*
3490 * Someone else is already suspending it.
3491 * Just wait for them to finish.
3492 */
3493
3494 while (zilog->zl_suspending)
3495 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
3496 mutex_exit(&zilog->zl_lock);
3497
3498 if (cookiep == NULL)
3499 zil_resume(os);
3500 else
3501 *cookiep = os;
3502 return (0);
3503 }
3504
3505 /*
3506 * If there is no pointer to an on-disk block, this ZIL must not
3507 * be active (e.g. filesystem not mounted), so there's nothing
3508 * to clean up.
3509 */
3510 if (BP_IS_HOLE(&zh->zh_log)) {
3511 ASSERT(cookiep != NULL); /* fast path already handled */
3512
3513 *cookiep = os;
3514 mutex_exit(&zilog->zl_lock);
3515 return (0);
3516 }
3517
3518 /*
3519 * The ZIL has work to do. Ensure that the associated encryption
3520 * key will remain mapped while we are committing the log by
3521 * grabbing a reference to it. If the key isn't loaded we have no
3522 * choice but to return an error until the wrapping key is loaded.
3523 */
3524 if (os->os_encrypted &&
3525 dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) {
3526 zilog->zl_suspend--;
3527 mutex_exit(&zilog->zl_lock);
3528 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3529 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3530 return (SET_ERROR(EACCES));
3531 }
3532
3533 zilog->zl_suspending = B_TRUE;
3534 mutex_exit(&zilog->zl_lock);
3535
3536 /*
3537 * We need to use zil_commit_impl to ensure we wait for all
3538 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwbs to be committed
3539 * to disk before proceeding. If we used zil_commit instead, it
3540 * would just call txg_wait_synced(), because zl_suspend is set.
3541 * txg_wait_synced() doesn't wait for these lwb's to be
3542 * LWB_STATE_FLUSH_DONE before returning.
3543 */
3544 zil_commit_impl(zilog, 0);
3545
3546 /*
3547 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
3548 * use txg_wait_synced() to ensure the data from the zilog has
3549 * migrated to the main pool before calling zil_destroy().
3550 */
3551 txg_wait_synced(zilog->zl_dmu_pool, 0);
3552
3553 zil_destroy(zilog, B_FALSE);
3554
3555 mutex_enter(&zilog->zl_lock);
3556 zilog->zl_suspending = B_FALSE;
3557 cv_broadcast(&zilog->zl_cv_suspend);
3558 mutex_exit(&zilog->zl_lock);
3559
3560 if (os->os_encrypted)
3561 dsl_dataset_remove_key_mapping(dmu_objset_ds(os));
3562
3563 if (cookiep == NULL)
3564 zil_resume(os);
3565 else
3566 *cookiep = os;
3567 return (0);
3568 }
3569
3570 void
3571 zil_resume(void *cookie)
3572 {
3573 objset_t *os = cookie;
3574 zilog_t *zilog = dmu_objset_zil(os);
3575
3576 mutex_enter(&zilog->zl_lock);
3577 ASSERT(zilog->zl_suspend != 0);
3578 zilog->zl_suspend--;
3579 mutex_exit(&zilog->zl_lock);
3580 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3581 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3582 }
3583
3584 typedef struct zil_replay_arg {
3585 zil_replay_func_t *const *zr_replay;
3586 void *zr_arg;
3587 boolean_t zr_byteswap;
3588 char *zr_lr;
3589 } zil_replay_arg_t;
3590
3591 static int
3592 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error)
3593 {
3594 char name[ZFS_MAX_DATASET_NAME_LEN];
3595
3596 zilog->zl_replaying_seq--; /* didn't actually replay this one */
3597
3598 dmu_objset_name(zilog->zl_os, name);
3599
3600 cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3601 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3602 (u_longlong_t)lr->lrc_seq,
3603 (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3604 (lr->lrc_txtype & TX_CI) ? "CI" : "");
3605
3606 return (error);
3607 }
3608
3609 static int
3610 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra,
3611 uint64_t claim_txg)
3612 {
3613 zil_replay_arg_t *zr = zra;
3614 const zil_header_t *zh = zilog->zl_header;
3615 uint64_t reclen = lr->lrc_reclen;
3616 uint64_t txtype = lr->lrc_txtype;
3617 int error = 0;
3618
3619 zilog->zl_replaying_seq = lr->lrc_seq;
3620
3621 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */
3622 return (0);
3623
3624 if (lr->lrc_txg < claim_txg) /* already committed */
3625 return (0);
3626
3627 /* Strip case-insensitive bit, still present in log record */
3628 txtype &= ~TX_CI;
3629
3630 if (txtype == 0 || txtype >= TX_MAX_TYPE)
3631 return (zil_replay_error(zilog, lr, EINVAL));
3632
3633 /*
3634 * If this record type can be logged out of order, the object
3635 * (lr_foid) may no longer exist. That's legitimate, not an error.
3636 */
3637 if (TX_OOO(txtype)) {
3638 error = dmu_object_info(zilog->zl_os,
3639 LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
3640 if (error == ENOENT || error == EEXIST)
3641 return (0);
3642 }
3643
3644 /*
3645 * Make a copy of the data so we can revise and extend it.
3646 */
3647 memcpy(zr->zr_lr, lr, reclen);
3648
3649 /*
3650 * If this is a TX_WRITE with a blkptr, suck in the data.
3651 */
3652 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3653 error = zil_read_log_data(zilog, (lr_write_t *)lr,
3654 zr->zr_lr + reclen);
3655 if (error != 0)
3656 return (zil_replay_error(zilog, lr, error));
3657 }
3658
3659 /*
3660 * The log block containing this lr may have been byteswapped
3661 * so that we can easily examine common fields like lrc_txtype.
3662 * However, the log is a mix of different record types, and only the
3663 * replay vectors know how to byteswap their records. Therefore, if
3664 * the lr was byteswapped, undo it before invoking the replay vector.
3665 */
3666 if (zr->zr_byteswap)
3667 byteswap_uint64_array(zr->zr_lr, reclen);
3668
3669 /*
3670 * We must now do two things atomically: replay this log record,
3671 * and update the log header sequence number to reflect the fact that
3672 * we did so. At the end of each replay function the sequence number
3673 * is updated if we are in replay mode.
3674 */
3675 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
3676 if (error != 0) {
3677 /*
3678 * The DMU's dnode layer doesn't see removes until the txg
3679 * commits, so a subsequent claim can spuriously fail with
3680 * EEXIST. So if we receive any error we try syncing out
3681 * any removes then retry the transaction. Note that we
3682 * specify B_FALSE for byteswap now, so we don't do it twice.
3683 */
3684 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3685 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
3686 if (error != 0)
3687 return (zil_replay_error(zilog, lr, error));
3688 }
3689 return (0);
3690 }
3691
3692 static int
3693 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg)
3694 {
3695 (void) bp, (void) arg, (void) claim_txg;
3696
3697 zilog->zl_replay_blks++;
3698
3699 return (0);
3700 }
3701
3702 /*
3703 * If this dataset has a non-empty intent log, replay it and destroy it.
3704 */
3705 void
3706 zil_replay(objset_t *os, void *arg,
3707 zil_replay_func_t *const replay_func[TX_MAX_TYPE])
3708 {
3709 zilog_t *zilog = dmu_objset_zil(os);
3710 const zil_header_t *zh = zilog->zl_header;
3711 zil_replay_arg_t zr;
3712
3713 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
3714 zil_destroy(zilog, B_TRUE);
3715 return;
3716 }
3717
3718 zr.zr_replay = replay_func;
3719 zr.zr_arg = arg;
3720 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
3721 zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
3722
3723 /*
3724 * Wait for in-progress removes to sync before starting replay.
3725 */
3726 txg_wait_synced(zilog->zl_dmu_pool, 0);
3727
3728 zilog->zl_replay = B_TRUE;
3729 zilog->zl_replay_time = ddi_get_lbolt();
3730 ASSERT(zilog->zl_replay_blks == 0);
3731 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
3732 zh->zh_claim_txg, B_TRUE);
3733 vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
3734
3735 zil_destroy(zilog, B_FALSE);
3736 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
3737 zilog->zl_replay = B_FALSE;
3738 }
3739
3740 boolean_t
3741 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
3742 {
3743 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3744 return (B_TRUE);
3745
3746 if (zilog->zl_replay) {
3747 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
3748 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3749 zilog->zl_replaying_seq;
3750 return (B_TRUE);
3751 }
3752
3753 return (B_FALSE);
3754 }
3755
3756 int
3757 zil_reset(const char *osname, void *arg)
3758 {
3759 (void) arg;
3760
3761 int error = zil_suspend(osname, NULL);
3762 /* EACCES means crypto key not loaded */
3763 if ((error == EACCES) || (error == EBUSY))
3764 return (SET_ERROR(error));
3765 if (error != 0)
3766 return (SET_ERROR(EEXIST));
3767 return (0);
3768 }
3769
3770 EXPORT_SYMBOL(zil_alloc);
3771 EXPORT_SYMBOL(zil_free);
3772 EXPORT_SYMBOL(zil_open);
3773 EXPORT_SYMBOL(zil_close);
3774 EXPORT_SYMBOL(zil_replay);
3775 EXPORT_SYMBOL(zil_replaying);
3776 EXPORT_SYMBOL(zil_destroy);
3777 EXPORT_SYMBOL(zil_destroy_sync);
3778 EXPORT_SYMBOL(zil_itx_create);
3779 EXPORT_SYMBOL(zil_itx_destroy);
3780 EXPORT_SYMBOL(zil_itx_assign);
3781 EXPORT_SYMBOL(zil_commit);
3782 EXPORT_SYMBOL(zil_claim);
3783 EXPORT_SYMBOL(zil_check_log_chain);
3784 EXPORT_SYMBOL(zil_sync);
3785 EXPORT_SYMBOL(zil_clean);
3786 EXPORT_SYMBOL(zil_suspend);
3787 EXPORT_SYMBOL(zil_resume);
3788 EXPORT_SYMBOL(zil_lwb_add_block);
3789 EXPORT_SYMBOL(zil_bp_tree_add);
3790 EXPORT_SYMBOL(zil_set_sync);
3791 EXPORT_SYMBOL(zil_set_logbias);
3792
3793 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, INT, ZMOD_RW,
3794 "ZIL block open timeout percentage");
3795
3796 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW,
3797 "Disable intent logging replay");
3798
3799 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW,
3800 "Disable ZIL cache flushes");
3801
3802 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, ULONG, ZMOD_RW,
3803 "Limit in bytes slog sync writes per commit");
3804
3805 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, INT, ZMOD_RW,
3806 "Limit in bytes of ZIL log block size");