]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zil.c
zfs_rename: support RENAME_* flags
[mirror_zfs.git] / module / zfs / zil.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Integros [integros.com]
25 * Copyright (c) 2018 Datto Inc.
26 */
27
28 /* Portions Copyright 2010 Robert Milkowski */
29
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/zap.h>
35 #include <sys/arc.h>
36 #include <sys/stat.h>
37 #include <sys/zil.h>
38 #include <sys/zil_impl.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/metaslab.h>
44 #include <sys/trace_zfs.h>
45 #include <sys/abd.h>
46 #include <sys/wmsum.h>
47
48 /*
49 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
50 * calls that change the file system. Each itx has enough information to
51 * be able to replay them after a system crash, power loss, or
52 * equivalent failure mode. These are stored in memory until either:
53 *
54 * 1. they are committed to the pool by the DMU transaction group
55 * (txg), at which point they can be discarded; or
56 * 2. they are committed to the on-disk ZIL for the dataset being
57 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous
58 * requirement).
59 *
60 * In the event of a crash or power loss, the itxs contained by each
61 * dataset's on-disk ZIL will be replayed when that dataset is first
62 * instantiated (e.g. if the dataset is a normal filesystem, when it is
63 * first mounted).
64 *
65 * As hinted at above, there is one ZIL per dataset (both the in-memory
66 * representation, and the on-disk representation). The on-disk format
67 * consists of 3 parts:
68 *
69 * - a single, per-dataset, ZIL header; which points to a chain of
70 * - zero or more ZIL blocks; each of which contains
71 * - zero or more ZIL records
72 *
73 * A ZIL record holds the information necessary to replay a single
74 * system call transaction. A ZIL block can hold many ZIL records, and
75 * the blocks are chained together, similarly to a singly linked list.
76 *
77 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
78 * block in the chain, and the ZIL header points to the first block in
79 * the chain.
80 *
81 * Note, there is not a fixed place in the pool to hold these ZIL
82 * blocks; they are dynamically allocated and freed as needed from the
83 * blocks available on the pool, though they can be preferentially
84 * allocated from a dedicated "log" vdev.
85 */
86
87 /*
88 * This controls the amount of time that a ZIL block (lwb) will remain
89 * "open" when it isn't "full", and it has a thread waiting for it to be
90 * committed to stable storage. Please refer to the zil_commit_waiter()
91 * function (and the comments within it) for more details.
92 */
93 static uint_t zfs_commit_timeout_pct = 5;
94
95 /*
96 * See zil.h for more information about these fields.
97 */
98 static zil_kstat_values_t zil_stats = {
99 { "zil_commit_count", KSTAT_DATA_UINT64 },
100 { "zil_commit_writer_count", KSTAT_DATA_UINT64 },
101 { "zil_itx_count", KSTAT_DATA_UINT64 },
102 { "zil_itx_indirect_count", KSTAT_DATA_UINT64 },
103 { "zil_itx_indirect_bytes", KSTAT_DATA_UINT64 },
104 { "zil_itx_copied_count", KSTAT_DATA_UINT64 },
105 { "zil_itx_copied_bytes", KSTAT_DATA_UINT64 },
106 { "zil_itx_needcopy_count", KSTAT_DATA_UINT64 },
107 { "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64 },
108 { "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64 },
109 { "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64 },
110 { "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64 },
111 { "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 },
112 };
113
114 static zil_sums_t zil_sums_global;
115 static kstat_t *zil_kstats_global;
116
117 /*
118 * Disable intent logging replay. This global ZIL switch affects all pools.
119 */
120 int zil_replay_disable = 0;
121
122 /*
123 * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to
124 * the disk(s) by the ZIL after an LWB write has completed. Setting this
125 * will cause ZIL corruption on power loss if a volatile out-of-order
126 * write cache is enabled.
127 */
128 static int zil_nocacheflush = 0;
129
130 /*
131 * Limit SLOG write size per commit executed with synchronous priority.
132 * Any writes above that will be executed with lower (asynchronous) priority
133 * to limit potential SLOG device abuse by single active ZIL writer.
134 */
135 static uint64_t zil_slog_bulk = 768 * 1024;
136
137 static kmem_cache_t *zil_lwb_cache;
138 static kmem_cache_t *zil_zcw_cache;
139
140 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
141 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
142
143 static int
144 zil_bp_compare(const void *x1, const void *x2)
145 {
146 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
147 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
148
149 int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
150 if (likely(cmp))
151 return (cmp);
152
153 return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
154 }
155
156 static void
157 zil_bp_tree_init(zilog_t *zilog)
158 {
159 avl_create(&zilog->zl_bp_tree, zil_bp_compare,
160 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
161 }
162
163 static void
164 zil_bp_tree_fini(zilog_t *zilog)
165 {
166 avl_tree_t *t = &zilog->zl_bp_tree;
167 zil_bp_node_t *zn;
168 void *cookie = NULL;
169
170 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
171 kmem_free(zn, sizeof (zil_bp_node_t));
172
173 avl_destroy(t);
174 }
175
176 int
177 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
178 {
179 avl_tree_t *t = &zilog->zl_bp_tree;
180 const dva_t *dva;
181 zil_bp_node_t *zn;
182 avl_index_t where;
183
184 if (BP_IS_EMBEDDED(bp))
185 return (0);
186
187 dva = BP_IDENTITY(bp);
188
189 if (avl_find(t, dva, &where) != NULL)
190 return (SET_ERROR(EEXIST));
191
192 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
193 zn->zn_dva = *dva;
194 avl_insert(t, zn, where);
195
196 return (0);
197 }
198
199 static zil_header_t *
200 zil_header_in_syncing_context(zilog_t *zilog)
201 {
202 return ((zil_header_t *)zilog->zl_header);
203 }
204
205 static void
206 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
207 {
208 zio_cksum_t *zc = &bp->blk_cksum;
209
210 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0],
211 sizeof (zc->zc_word[ZIL_ZC_GUID_0]));
212 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1],
213 sizeof (zc->zc_word[ZIL_ZC_GUID_1]));
214 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
215 zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
216 }
217
218 static int
219 zil_kstats_global_update(kstat_t *ksp, int rw)
220 {
221 zil_kstat_values_t *zs = ksp->ks_data;
222 ASSERT3P(&zil_stats, ==, zs);
223
224 if (rw == KSTAT_WRITE) {
225 return (SET_ERROR(EACCES));
226 }
227
228 zil_kstat_values_update(zs, &zil_sums_global);
229
230 return (0);
231 }
232
233 /*
234 * Read a log block and make sure it's valid.
235 */
236 static int
237 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp,
238 blkptr_t *nbp, void *dst, char **end)
239 {
240 zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
241 arc_flags_t aflags = ARC_FLAG_WAIT;
242 arc_buf_t *abuf = NULL;
243 zbookmark_phys_t zb;
244 int error;
245
246 if (zilog->zl_header->zh_claim_txg == 0)
247 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
248
249 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
250 zio_flags |= ZIO_FLAG_SPECULATIVE;
251
252 if (!decrypt)
253 zio_flags |= ZIO_FLAG_RAW;
254
255 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
256 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
257
258 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func,
259 &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
260
261 if (error == 0) {
262 zio_cksum_t cksum = bp->blk_cksum;
263
264 /*
265 * Validate the checksummed log block.
266 *
267 * Sequence numbers should be... sequential. The checksum
268 * verifier for the next block should be bp's checksum plus 1.
269 *
270 * Also check the log chain linkage and size used.
271 */
272 cksum.zc_word[ZIL_ZC_SEQ]++;
273
274 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
275 zil_chain_t *zilc = abuf->b_data;
276 char *lr = (char *)(zilc + 1);
277 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
278
279 if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
280 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
281 error = SET_ERROR(ECKSUM);
282 } else {
283 ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
284 memcpy(dst, lr, len);
285 *end = (char *)dst + len;
286 *nbp = zilc->zc_next_blk;
287 }
288 } else {
289 char *lr = abuf->b_data;
290 uint64_t size = BP_GET_LSIZE(bp);
291 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
292
293 if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
294 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
295 (zilc->zc_nused > (size - sizeof (*zilc)))) {
296 error = SET_ERROR(ECKSUM);
297 } else {
298 ASSERT3U(zilc->zc_nused, <=,
299 SPA_OLD_MAXBLOCKSIZE);
300 memcpy(dst, lr, zilc->zc_nused);
301 *end = (char *)dst + zilc->zc_nused;
302 *nbp = zilc->zc_next_blk;
303 }
304 }
305
306 arc_buf_destroy(abuf, &abuf);
307 }
308
309 return (error);
310 }
311
312 /*
313 * Read a TX_WRITE log data block.
314 */
315 static int
316 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
317 {
318 zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
319 const blkptr_t *bp = &lr->lr_blkptr;
320 arc_flags_t aflags = ARC_FLAG_WAIT;
321 arc_buf_t *abuf = NULL;
322 zbookmark_phys_t zb;
323 int error;
324
325 if (BP_IS_HOLE(bp)) {
326 if (wbuf != NULL)
327 memset(wbuf, 0, MAX(BP_GET_LSIZE(bp), lr->lr_length));
328 return (0);
329 }
330
331 if (zilog->zl_header->zh_claim_txg == 0)
332 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
333
334 /*
335 * If we are not using the resulting data, we are just checking that
336 * it hasn't been corrupted so we don't need to waste CPU time
337 * decompressing and decrypting it.
338 */
339 if (wbuf == NULL)
340 zio_flags |= ZIO_FLAG_RAW;
341
342 ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
343 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
344 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
345
346 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
347 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
348
349 if (error == 0) {
350 if (wbuf != NULL)
351 memcpy(wbuf, abuf->b_data, arc_buf_size(abuf));
352 arc_buf_destroy(abuf, &abuf);
353 }
354
355 return (error);
356 }
357
358 void
359 zil_sums_init(zil_sums_t *zs)
360 {
361 wmsum_init(&zs->zil_commit_count, 0);
362 wmsum_init(&zs->zil_commit_writer_count, 0);
363 wmsum_init(&zs->zil_itx_count, 0);
364 wmsum_init(&zs->zil_itx_indirect_count, 0);
365 wmsum_init(&zs->zil_itx_indirect_bytes, 0);
366 wmsum_init(&zs->zil_itx_copied_count, 0);
367 wmsum_init(&zs->zil_itx_copied_bytes, 0);
368 wmsum_init(&zs->zil_itx_needcopy_count, 0);
369 wmsum_init(&zs->zil_itx_needcopy_bytes, 0);
370 wmsum_init(&zs->zil_itx_metaslab_normal_count, 0);
371 wmsum_init(&zs->zil_itx_metaslab_normal_bytes, 0);
372 wmsum_init(&zs->zil_itx_metaslab_slog_count, 0);
373 wmsum_init(&zs->zil_itx_metaslab_slog_bytes, 0);
374 }
375
376 void
377 zil_sums_fini(zil_sums_t *zs)
378 {
379 wmsum_fini(&zs->zil_commit_count);
380 wmsum_fini(&zs->zil_commit_writer_count);
381 wmsum_fini(&zs->zil_itx_count);
382 wmsum_fini(&zs->zil_itx_indirect_count);
383 wmsum_fini(&zs->zil_itx_indirect_bytes);
384 wmsum_fini(&zs->zil_itx_copied_count);
385 wmsum_fini(&zs->zil_itx_copied_bytes);
386 wmsum_fini(&zs->zil_itx_needcopy_count);
387 wmsum_fini(&zs->zil_itx_needcopy_bytes);
388 wmsum_fini(&zs->zil_itx_metaslab_normal_count);
389 wmsum_fini(&zs->zil_itx_metaslab_normal_bytes);
390 wmsum_fini(&zs->zil_itx_metaslab_slog_count);
391 wmsum_fini(&zs->zil_itx_metaslab_slog_bytes);
392 }
393
394 void
395 zil_kstat_values_update(zil_kstat_values_t *zs, zil_sums_t *zil_sums)
396 {
397 zs->zil_commit_count.value.ui64 =
398 wmsum_value(&zil_sums->zil_commit_count);
399 zs->zil_commit_writer_count.value.ui64 =
400 wmsum_value(&zil_sums->zil_commit_writer_count);
401 zs->zil_itx_count.value.ui64 =
402 wmsum_value(&zil_sums->zil_itx_count);
403 zs->zil_itx_indirect_count.value.ui64 =
404 wmsum_value(&zil_sums->zil_itx_indirect_count);
405 zs->zil_itx_indirect_bytes.value.ui64 =
406 wmsum_value(&zil_sums->zil_itx_indirect_bytes);
407 zs->zil_itx_copied_count.value.ui64 =
408 wmsum_value(&zil_sums->zil_itx_copied_count);
409 zs->zil_itx_copied_bytes.value.ui64 =
410 wmsum_value(&zil_sums->zil_itx_copied_bytes);
411 zs->zil_itx_needcopy_count.value.ui64 =
412 wmsum_value(&zil_sums->zil_itx_needcopy_count);
413 zs->zil_itx_needcopy_bytes.value.ui64 =
414 wmsum_value(&zil_sums->zil_itx_needcopy_bytes);
415 zs->zil_itx_metaslab_normal_count.value.ui64 =
416 wmsum_value(&zil_sums->zil_itx_metaslab_normal_count);
417 zs->zil_itx_metaslab_normal_bytes.value.ui64 =
418 wmsum_value(&zil_sums->zil_itx_metaslab_normal_bytes);
419 zs->zil_itx_metaslab_slog_count.value.ui64 =
420 wmsum_value(&zil_sums->zil_itx_metaslab_slog_count);
421 zs->zil_itx_metaslab_slog_bytes.value.ui64 =
422 wmsum_value(&zil_sums->zil_itx_metaslab_slog_bytes);
423 }
424
425 /*
426 * Parse the intent log, and call parse_func for each valid record within.
427 */
428 int
429 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
430 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg,
431 boolean_t decrypt)
432 {
433 const zil_header_t *zh = zilog->zl_header;
434 boolean_t claimed = !!zh->zh_claim_txg;
435 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
436 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
437 uint64_t max_blk_seq = 0;
438 uint64_t max_lr_seq = 0;
439 uint64_t blk_count = 0;
440 uint64_t lr_count = 0;
441 blkptr_t blk, next_blk = {{{{0}}}};
442 char *lrbuf, *lrp;
443 int error = 0;
444
445 /*
446 * Old logs didn't record the maximum zh_claim_lr_seq.
447 */
448 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
449 claim_lr_seq = UINT64_MAX;
450
451 /*
452 * Starting at the block pointed to by zh_log we read the log chain.
453 * For each block in the chain we strongly check that block to
454 * ensure its validity. We stop when an invalid block is found.
455 * For each block pointer in the chain we call parse_blk_func().
456 * For each record in each valid block we call parse_lr_func().
457 * If the log has been claimed, stop if we encounter a sequence
458 * number greater than the highest claimed sequence number.
459 */
460 lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
461 zil_bp_tree_init(zilog);
462
463 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
464 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
465 int reclen;
466 char *end = NULL;
467
468 if (blk_seq > claim_blk_seq)
469 break;
470
471 error = parse_blk_func(zilog, &blk, arg, txg);
472 if (error != 0)
473 break;
474 ASSERT3U(max_blk_seq, <, blk_seq);
475 max_blk_seq = blk_seq;
476 blk_count++;
477
478 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
479 break;
480
481 error = zil_read_log_block(zilog, decrypt, &blk, &next_blk,
482 lrbuf, &end);
483 if (error != 0)
484 break;
485
486 for (lrp = lrbuf; lrp < end; lrp += reclen) {
487 lr_t *lr = (lr_t *)lrp;
488 reclen = lr->lrc_reclen;
489 ASSERT3U(reclen, >=, sizeof (lr_t));
490 if (lr->lrc_seq > claim_lr_seq)
491 goto done;
492
493 error = parse_lr_func(zilog, lr, arg, txg);
494 if (error != 0)
495 goto done;
496 ASSERT3U(max_lr_seq, <, lr->lrc_seq);
497 max_lr_seq = lr->lrc_seq;
498 lr_count++;
499 }
500 }
501 done:
502 zilog->zl_parse_error = error;
503 zilog->zl_parse_blk_seq = max_blk_seq;
504 zilog->zl_parse_lr_seq = max_lr_seq;
505 zilog->zl_parse_blk_count = blk_count;
506 zilog->zl_parse_lr_count = lr_count;
507
508 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
509 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq) ||
510 (decrypt && error == EIO));
511
512 zil_bp_tree_fini(zilog);
513 zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
514
515 return (error);
516 }
517
518 static int
519 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
520 uint64_t first_txg)
521 {
522 (void) tx;
523 ASSERT(!BP_IS_HOLE(bp));
524
525 /*
526 * As we call this function from the context of a rewind to a
527 * checkpoint, each ZIL block whose txg is later than the txg
528 * that we rewind to is invalid. Thus, we return -1 so
529 * zil_parse() doesn't attempt to read it.
530 */
531 if (bp->blk_birth >= first_txg)
532 return (-1);
533
534 if (zil_bp_tree_add(zilog, bp) != 0)
535 return (0);
536
537 zio_free(zilog->zl_spa, first_txg, bp);
538 return (0);
539 }
540
541 static int
542 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
543 uint64_t first_txg)
544 {
545 (void) zilog, (void) lrc, (void) tx, (void) first_txg;
546 return (0);
547 }
548
549 static int
550 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
551 uint64_t first_txg)
552 {
553 /*
554 * Claim log block if not already committed and not already claimed.
555 * If tx == NULL, just verify that the block is claimable.
556 */
557 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
558 zil_bp_tree_add(zilog, bp) != 0)
559 return (0);
560
561 return (zio_wait(zio_claim(NULL, zilog->zl_spa,
562 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
563 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
564 }
565
566 static int
567 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
568 uint64_t first_txg)
569 {
570 lr_write_t *lr = (lr_write_t *)lrc;
571 int error;
572
573 if (lrc->lrc_txtype != TX_WRITE)
574 return (0);
575
576 /*
577 * If the block is not readable, don't claim it. This can happen
578 * in normal operation when a log block is written to disk before
579 * some of the dmu_sync() blocks it points to. In this case, the
580 * transaction cannot have been committed to anyone (we would have
581 * waited for all writes to be stable first), so it is semantically
582 * correct to declare this the end of the log.
583 */
584 if (lr->lr_blkptr.blk_birth >= first_txg) {
585 error = zil_read_log_data(zilog, lr, NULL);
586 if (error != 0)
587 return (error);
588 }
589
590 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
591 }
592
593 static int
594 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
595 uint64_t claim_txg)
596 {
597 (void) claim_txg;
598
599 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
600
601 return (0);
602 }
603
604 static int
605 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
606 uint64_t claim_txg)
607 {
608 lr_write_t *lr = (lr_write_t *)lrc;
609 blkptr_t *bp = &lr->lr_blkptr;
610
611 /*
612 * If we previously claimed it, we need to free it.
613 */
614 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
615 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
616 !BP_IS_HOLE(bp))
617 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
618
619 return (0);
620 }
621
622 static int
623 zil_lwb_vdev_compare(const void *x1, const void *x2)
624 {
625 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
626 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
627
628 return (TREE_CMP(v1, v2));
629 }
630
631 static lwb_t *
632 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg,
633 boolean_t fastwrite)
634 {
635 lwb_t *lwb;
636
637 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
638 lwb->lwb_zilog = zilog;
639 lwb->lwb_blk = *bp;
640 lwb->lwb_fastwrite = fastwrite;
641 lwb->lwb_slog = slog;
642 lwb->lwb_state = LWB_STATE_CLOSED;
643 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
644 lwb->lwb_max_txg = txg;
645 lwb->lwb_write_zio = NULL;
646 lwb->lwb_root_zio = NULL;
647 lwb->lwb_issued_timestamp = 0;
648 lwb->lwb_issued_txg = 0;
649 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
650 lwb->lwb_nused = sizeof (zil_chain_t);
651 lwb->lwb_sz = BP_GET_LSIZE(bp);
652 } else {
653 lwb->lwb_nused = 0;
654 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
655 }
656
657 mutex_enter(&zilog->zl_lock);
658 list_insert_tail(&zilog->zl_lwb_list, lwb);
659 mutex_exit(&zilog->zl_lock);
660
661 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
662 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
663 VERIFY(list_is_empty(&lwb->lwb_waiters));
664 VERIFY(list_is_empty(&lwb->lwb_itxs));
665
666 return (lwb);
667 }
668
669 static void
670 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
671 {
672 ASSERT(MUTEX_HELD(&zilog->zl_lock));
673 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
674 VERIFY(list_is_empty(&lwb->lwb_waiters));
675 VERIFY(list_is_empty(&lwb->lwb_itxs));
676 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
677 ASSERT3P(lwb->lwb_write_zio, ==, NULL);
678 ASSERT3P(lwb->lwb_root_zio, ==, NULL);
679 ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
680 ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
681 lwb->lwb_state == LWB_STATE_FLUSH_DONE);
682
683 /*
684 * Clear the zilog's field to indicate this lwb is no longer
685 * valid, and prevent use-after-free errors.
686 */
687 if (zilog->zl_last_lwb_opened == lwb)
688 zilog->zl_last_lwb_opened = NULL;
689
690 kmem_cache_free(zil_lwb_cache, lwb);
691 }
692
693 /*
694 * Called when we create in-memory log transactions so that we know
695 * to cleanup the itxs at the end of spa_sync().
696 */
697 static void
698 zilog_dirty(zilog_t *zilog, uint64_t txg)
699 {
700 dsl_pool_t *dp = zilog->zl_dmu_pool;
701 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
702
703 ASSERT(spa_writeable(zilog->zl_spa));
704
705 if (ds->ds_is_snapshot)
706 panic("dirtying snapshot!");
707
708 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
709 /* up the hold count until we can be written out */
710 dmu_buf_add_ref(ds->ds_dbuf, zilog);
711
712 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
713 }
714 }
715
716 /*
717 * Determine if the zil is dirty in the specified txg. Callers wanting to
718 * ensure that the dirty state does not change must hold the itxg_lock for
719 * the specified txg. Holding the lock will ensure that the zil cannot be
720 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
721 * state.
722 */
723 static boolean_t __maybe_unused
724 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
725 {
726 dsl_pool_t *dp = zilog->zl_dmu_pool;
727
728 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
729 return (B_TRUE);
730 return (B_FALSE);
731 }
732
733 /*
734 * Determine if the zil is dirty. The zil is considered dirty if it has
735 * any pending itx records that have not been cleaned by zil_clean().
736 */
737 static boolean_t
738 zilog_is_dirty(zilog_t *zilog)
739 {
740 dsl_pool_t *dp = zilog->zl_dmu_pool;
741
742 for (int t = 0; t < TXG_SIZE; t++) {
743 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
744 return (B_TRUE);
745 }
746 return (B_FALSE);
747 }
748
749 /*
750 * Its called in zil_commit context (zil_process_commit_list()/zil_create()).
751 * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled.
752 * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every
753 * zil_commit.
754 */
755 static void
756 zil_commit_activate_saxattr_feature(zilog_t *zilog)
757 {
758 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
759 uint64_t txg = 0;
760 dmu_tx_t *tx = NULL;
761
762 if (spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
763 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL &&
764 !dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)) {
765 tx = dmu_tx_create(zilog->zl_os);
766 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
767 dsl_dataset_dirty(ds, tx);
768 txg = dmu_tx_get_txg(tx);
769
770 mutex_enter(&ds->ds_lock);
771 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
772 (void *)B_TRUE;
773 mutex_exit(&ds->ds_lock);
774 dmu_tx_commit(tx);
775 txg_wait_synced(zilog->zl_dmu_pool, txg);
776 }
777 }
778
779 /*
780 * Create an on-disk intent log.
781 */
782 static lwb_t *
783 zil_create(zilog_t *zilog)
784 {
785 const zil_header_t *zh = zilog->zl_header;
786 lwb_t *lwb = NULL;
787 uint64_t txg = 0;
788 dmu_tx_t *tx = NULL;
789 blkptr_t blk;
790 int error = 0;
791 boolean_t fastwrite = FALSE;
792 boolean_t slog = FALSE;
793 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
794
795
796 /*
797 * Wait for any previous destroy to complete.
798 */
799 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
800
801 ASSERT(zh->zh_claim_txg == 0);
802 ASSERT(zh->zh_replay_seq == 0);
803
804 blk = zh->zh_log;
805
806 /*
807 * Allocate an initial log block if:
808 * - there isn't one already
809 * - the existing block is the wrong endianness
810 */
811 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
812 tx = dmu_tx_create(zilog->zl_os);
813 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
814 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
815 txg = dmu_tx_get_txg(tx);
816
817 if (!BP_IS_HOLE(&blk)) {
818 zio_free(zilog->zl_spa, txg, &blk);
819 BP_ZERO(&blk);
820 }
821
822 error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk,
823 ZIL_MIN_BLKSZ, &slog);
824 fastwrite = TRUE;
825
826 if (error == 0)
827 zil_init_log_chain(zilog, &blk);
828 }
829
830 /*
831 * Allocate a log write block (lwb) for the first log block.
832 */
833 if (error == 0)
834 lwb = zil_alloc_lwb(zilog, &blk, slog, txg, fastwrite);
835
836 /*
837 * If we just allocated the first log block, commit our transaction
838 * and wait for zil_sync() to stuff the block pointer into zh_log.
839 * (zh is part of the MOS, so we cannot modify it in open context.)
840 */
841 if (tx != NULL) {
842 /*
843 * If "zilsaxattr" feature is enabled on zpool, then activate
844 * it now when we're creating the ZIL chain. We can't wait with
845 * this until we write the first xattr log record because we
846 * need to wait for the feature activation to sync out.
847 */
848 if (spa_feature_is_enabled(zilog->zl_spa,
849 SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) !=
850 DMU_OST_ZVOL) {
851 mutex_enter(&ds->ds_lock);
852 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
853 (void *)B_TRUE;
854 mutex_exit(&ds->ds_lock);
855 }
856
857 dmu_tx_commit(tx);
858 txg_wait_synced(zilog->zl_dmu_pool, txg);
859 } else {
860 /*
861 * This branch covers the case where we enable the feature on a
862 * zpool that has existing ZIL headers.
863 */
864 zil_commit_activate_saxattr_feature(zilog);
865 }
866 IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
867 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL,
868 dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR));
869
870 ASSERT(error != 0 || memcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
871 IMPLY(error == 0, lwb != NULL);
872
873 return (lwb);
874 }
875
876 /*
877 * In one tx, free all log blocks and clear the log header. If keep_first
878 * is set, then we're replaying a log with no content. We want to keep the
879 * first block, however, so that the first synchronous transaction doesn't
880 * require a txg_wait_synced() in zil_create(). We don't need to
881 * txg_wait_synced() here either when keep_first is set, because both
882 * zil_create() and zil_destroy() will wait for any in-progress destroys
883 * to complete.
884 */
885 void
886 zil_destroy(zilog_t *zilog, boolean_t keep_first)
887 {
888 const zil_header_t *zh = zilog->zl_header;
889 lwb_t *lwb;
890 dmu_tx_t *tx;
891 uint64_t txg;
892
893 /*
894 * Wait for any previous destroy to complete.
895 */
896 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
897
898 zilog->zl_old_header = *zh; /* debugging aid */
899
900 if (BP_IS_HOLE(&zh->zh_log))
901 return;
902
903 tx = dmu_tx_create(zilog->zl_os);
904 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
905 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
906 txg = dmu_tx_get_txg(tx);
907
908 mutex_enter(&zilog->zl_lock);
909
910 ASSERT3U(zilog->zl_destroy_txg, <, txg);
911 zilog->zl_destroy_txg = txg;
912 zilog->zl_keep_first = keep_first;
913
914 if (!list_is_empty(&zilog->zl_lwb_list)) {
915 ASSERT(zh->zh_claim_txg == 0);
916 VERIFY(!keep_first);
917 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
918 if (lwb->lwb_fastwrite)
919 metaslab_fastwrite_unmark(zilog->zl_spa,
920 &lwb->lwb_blk);
921
922 list_remove(&zilog->zl_lwb_list, lwb);
923 if (lwb->lwb_buf != NULL)
924 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
925 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
926 zil_free_lwb(zilog, lwb);
927 }
928 } else if (!keep_first) {
929 zil_destroy_sync(zilog, tx);
930 }
931 mutex_exit(&zilog->zl_lock);
932
933 dmu_tx_commit(tx);
934 }
935
936 void
937 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
938 {
939 ASSERT(list_is_empty(&zilog->zl_lwb_list));
940 (void) zil_parse(zilog, zil_free_log_block,
941 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE);
942 }
943
944 int
945 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
946 {
947 dmu_tx_t *tx = txarg;
948 zilog_t *zilog;
949 uint64_t first_txg;
950 zil_header_t *zh;
951 objset_t *os;
952 int error;
953
954 error = dmu_objset_own_obj(dp, ds->ds_object,
955 DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os);
956 if (error != 0) {
957 /*
958 * EBUSY indicates that the objset is inconsistent, in which
959 * case it can not have a ZIL.
960 */
961 if (error != EBUSY) {
962 cmn_err(CE_WARN, "can't open objset for %llu, error %u",
963 (unsigned long long)ds->ds_object, error);
964 }
965
966 return (0);
967 }
968
969 zilog = dmu_objset_zil(os);
970 zh = zil_header_in_syncing_context(zilog);
971 ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
972 first_txg = spa_min_claim_txg(zilog->zl_spa);
973
974 /*
975 * If the spa_log_state is not set to be cleared, check whether
976 * the current uberblock is a checkpoint one and if the current
977 * header has been claimed before moving on.
978 *
979 * If the current uberblock is a checkpointed uberblock then
980 * one of the following scenarios took place:
981 *
982 * 1] We are currently rewinding to the checkpoint of the pool.
983 * 2] We crashed in the middle of a checkpoint rewind but we
984 * did manage to write the checkpointed uberblock to the
985 * vdev labels, so when we tried to import the pool again
986 * the checkpointed uberblock was selected from the import
987 * procedure.
988 *
989 * In both cases we want to zero out all the ZIL blocks, except
990 * the ones that have been claimed at the time of the checkpoint
991 * (their zh_claim_txg != 0). The reason is that these blocks
992 * may be corrupted since we may have reused their locations on
993 * disk after we took the checkpoint.
994 *
995 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
996 * when we first figure out whether the current uberblock is
997 * checkpointed or not. Unfortunately, that would discard all
998 * the logs, including the ones that are claimed, and we would
999 * leak space.
1000 */
1001 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
1002 (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1003 zh->zh_claim_txg == 0)) {
1004 if (!BP_IS_HOLE(&zh->zh_log)) {
1005 (void) zil_parse(zilog, zil_clear_log_block,
1006 zil_noop_log_record, tx, first_txg, B_FALSE);
1007 }
1008 BP_ZERO(&zh->zh_log);
1009 if (os->os_encrypted)
1010 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
1011 dsl_dataset_dirty(dmu_objset_ds(os), tx);
1012 dmu_objset_disown(os, B_FALSE, FTAG);
1013 return (0);
1014 }
1015
1016 /*
1017 * If we are not rewinding and opening the pool normally, then
1018 * the min_claim_txg should be equal to the first txg of the pool.
1019 */
1020 ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
1021
1022 /*
1023 * Claim all log blocks if we haven't already done so, and remember
1024 * the highest claimed sequence number. This ensures that if we can
1025 * read only part of the log now (e.g. due to a missing device),
1026 * but we can read the entire log later, we will not try to replay
1027 * or destroy beyond the last block we successfully claimed.
1028 */
1029 ASSERT3U(zh->zh_claim_txg, <=, first_txg);
1030 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
1031 (void) zil_parse(zilog, zil_claim_log_block,
1032 zil_claim_log_record, tx, first_txg, B_FALSE);
1033 zh->zh_claim_txg = first_txg;
1034 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
1035 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
1036 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
1037 zh->zh_flags |= ZIL_REPLAY_NEEDED;
1038 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
1039 if (os->os_encrypted)
1040 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
1041 dsl_dataset_dirty(dmu_objset_ds(os), tx);
1042 }
1043
1044 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
1045 dmu_objset_disown(os, B_FALSE, FTAG);
1046 return (0);
1047 }
1048
1049 /*
1050 * Check the log by walking the log chain.
1051 * Checksum errors are ok as they indicate the end of the chain.
1052 * Any other error (no device or read failure) returns an error.
1053 */
1054 int
1055 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
1056 {
1057 (void) dp;
1058 zilog_t *zilog;
1059 objset_t *os;
1060 blkptr_t *bp;
1061 int error;
1062
1063 ASSERT(tx == NULL);
1064
1065 error = dmu_objset_from_ds(ds, &os);
1066 if (error != 0) {
1067 cmn_err(CE_WARN, "can't open objset %llu, error %d",
1068 (unsigned long long)ds->ds_object, error);
1069 return (0);
1070 }
1071
1072 zilog = dmu_objset_zil(os);
1073 bp = (blkptr_t *)&zilog->zl_header->zh_log;
1074
1075 if (!BP_IS_HOLE(bp)) {
1076 vdev_t *vd;
1077 boolean_t valid = B_TRUE;
1078
1079 /*
1080 * Check the first block and determine if it's on a log device
1081 * which may have been removed or faulted prior to loading this
1082 * pool. If so, there's no point in checking the rest of the
1083 * log as its content should have already been synced to the
1084 * pool.
1085 */
1086 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
1087 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
1088 if (vd->vdev_islog && vdev_is_dead(vd))
1089 valid = vdev_log_state_valid(vd);
1090 spa_config_exit(os->os_spa, SCL_STATE, FTAG);
1091
1092 if (!valid)
1093 return (0);
1094
1095 /*
1096 * Check whether the current uberblock is checkpointed (e.g.
1097 * we are rewinding) and whether the current header has been
1098 * claimed or not. If it hasn't then skip verifying it. We
1099 * do this because its ZIL blocks may be part of the pool's
1100 * state before the rewind, which is no longer valid.
1101 */
1102 zil_header_t *zh = zil_header_in_syncing_context(zilog);
1103 if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1104 zh->zh_claim_txg == 0)
1105 return (0);
1106 }
1107
1108 /*
1109 * Because tx == NULL, zil_claim_log_block() will not actually claim
1110 * any blocks, but just determine whether it is possible to do so.
1111 * In addition to checking the log chain, zil_claim_log_block()
1112 * will invoke zio_claim() with a done func of spa_claim_notify(),
1113 * which will update spa_max_claim_txg. See spa_load() for details.
1114 */
1115 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
1116 zilog->zl_header->zh_claim_txg ? -1ULL :
1117 spa_min_claim_txg(os->os_spa), B_FALSE);
1118
1119 return ((error == ECKSUM || error == ENOENT) ? 0 : error);
1120 }
1121
1122 /*
1123 * When an itx is "skipped", this function is used to properly mark the
1124 * waiter as "done, and signal any thread(s) waiting on it. An itx can
1125 * be skipped (and not committed to an lwb) for a variety of reasons,
1126 * one of them being that the itx was committed via spa_sync(), prior to
1127 * it being committed to an lwb; this can happen if a thread calling
1128 * zil_commit() is racing with spa_sync().
1129 */
1130 static void
1131 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
1132 {
1133 mutex_enter(&zcw->zcw_lock);
1134 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1135 zcw->zcw_done = B_TRUE;
1136 cv_broadcast(&zcw->zcw_cv);
1137 mutex_exit(&zcw->zcw_lock);
1138 }
1139
1140 /*
1141 * This function is used when the given waiter is to be linked into an
1142 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
1143 * At this point, the waiter will no longer be referenced by the itx,
1144 * and instead, will be referenced by the lwb.
1145 */
1146 static void
1147 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
1148 {
1149 /*
1150 * The lwb_waiters field of the lwb is protected by the zilog's
1151 * zl_lock, thus it must be held when calling this function.
1152 */
1153 ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
1154
1155 mutex_enter(&zcw->zcw_lock);
1156 ASSERT(!list_link_active(&zcw->zcw_node));
1157 ASSERT3P(zcw->zcw_lwb, ==, NULL);
1158 ASSERT3P(lwb, !=, NULL);
1159 ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
1160 lwb->lwb_state == LWB_STATE_ISSUED ||
1161 lwb->lwb_state == LWB_STATE_WRITE_DONE);
1162
1163 list_insert_tail(&lwb->lwb_waiters, zcw);
1164 zcw->zcw_lwb = lwb;
1165 mutex_exit(&zcw->zcw_lock);
1166 }
1167
1168 /*
1169 * This function is used when zio_alloc_zil() fails to allocate a ZIL
1170 * block, and the given waiter must be linked to the "nolwb waiters"
1171 * list inside of zil_process_commit_list().
1172 */
1173 static void
1174 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
1175 {
1176 mutex_enter(&zcw->zcw_lock);
1177 ASSERT(!list_link_active(&zcw->zcw_node));
1178 ASSERT3P(zcw->zcw_lwb, ==, NULL);
1179 list_insert_tail(nolwb, zcw);
1180 mutex_exit(&zcw->zcw_lock);
1181 }
1182
1183 void
1184 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
1185 {
1186 avl_tree_t *t = &lwb->lwb_vdev_tree;
1187 avl_index_t where;
1188 zil_vdev_node_t *zv, zvsearch;
1189 int ndvas = BP_GET_NDVAS(bp);
1190 int i;
1191
1192 if (zil_nocacheflush)
1193 return;
1194
1195 mutex_enter(&lwb->lwb_vdev_lock);
1196 for (i = 0; i < ndvas; i++) {
1197 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1198 if (avl_find(t, &zvsearch, &where) == NULL) {
1199 zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1200 zv->zv_vdev = zvsearch.zv_vdev;
1201 avl_insert(t, zv, where);
1202 }
1203 }
1204 mutex_exit(&lwb->lwb_vdev_lock);
1205 }
1206
1207 static void
1208 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
1209 {
1210 avl_tree_t *src = &lwb->lwb_vdev_tree;
1211 avl_tree_t *dst = &nlwb->lwb_vdev_tree;
1212 void *cookie = NULL;
1213 zil_vdev_node_t *zv;
1214
1215 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1216 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1217 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1218
1219 /*
1220 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
1221 * not need the protection of lwb_vdev_lock (it will only be modified
1222 * while holding zilog->zl_lock) as its writes and those of its
1223 * children have all completed. The younger 'nlwb' may be waiting on
1224 * future writes to additional vdevs.
1225 */
1226 mutex_enter(&nlwb->lwb_vdev_lock);
1227 /*
1228 * Tear down the 'lwb' vdev tree, ensuring that entries which do not
1229 * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
1230 */
1231 while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
1232 avl_index_t where;
1233
1234 if (avl_find(dst, zv, &where) == NULL) {
1235 avl_insert(dst, zv, where);
1236 } else {
1237 kmem_free(zv, sizeof (*zv));
1238 }
1239 }
1240 mutex_exit(&nlwb->lwb_vdev_lock);
1241 }
1242
1243 void
1244 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1245 {
1246 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1247 }
1248
1249 /*
1250 * This function is a called after all vdevs associated with a given lwb
1251 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
1252 * as the lwb write completes, if "zil_nocacheflush" is set. Further,
1253 * all "previous" lwb's will have completed before this function is
1254 * called; i.e. this function is called for all previous lwbs before
1255 * it's called for "this" lwb (enforced via zio the dependencies
1256 * configured in zil_lwb_set_zio_dependency()).
1257 *
1258 * The intention is for this function to be called as soon as the
1259 * contents of an lwb are considered "stable" on disk, and will survive
1260 * any sudden loss of power. At this point, any threads waiting for the
1261 * lwb to reach this state are signalled, and the "waiter" structures
1262 * are marked "done".
1263 */
1264 static void
1265 zil_lwb_flush_vdevs_done(zio_t *zio)
1266 {
1267 lwb_t *lwb = zio->io_private;
1268 zilog_t *zilog = lwb->lwb_zilog;
1269 zil_commit_waiter_t *zcw;
1270 itx_t *itx;
1271 uint64_t txg;
1272
1273 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1274
1275 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1276
1277 mutex_enter(&zilog->zl_lock);
1278
1279 /*
1280 * If we have had an allocation failure and the txg is
1281 * waiting to sync then we want zil_sync() to remove the lwb so
1282 * that it's not picked up as the next new one in
1283 * zil_process_commit_list(). zil_sync() will only remove the
1284 * lwb if lwb_buf is null.
1285 */
1286 lwb->lwb_buf = NULL;
1287
1288 ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
1289 zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;
1290
1291 lwb->lwb_root_zio = NULL;
1292
1293 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1294 lwb->lwb_state = LWB_STATE_FLUSH_DONE;
1295
1296 if (zilog->zl_last_lwb_opened == lwb) {
1297 /*
1298 * Remember the highest committed log sequence number
1299 * for ztest. We only update this value when all the log
1300 * writes succeeded, because ztest wants to ASSERT that
1301 * it got the whole log chain.
1302 */
1303 zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1304 }
1305
1306 while ((itx = list_head(&lwb->lwb_itxs)) != NULL) {
1307 list_remove(&lwb->lwb_itxs, itx);
1308 zil_itx_destroy(itx);
1309 }
1310
1311 while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
1312 mutex_enter(&zcw->zcw_lock);
1313
1314 ASSERT(list_link_active(&zcw->zcw_node));
1315 list_remove(&lwb->lwb_waiters, zcw);
1316
1317 ASSERT3P(zcw->zcw_lwb, ==, lwb);
1318 zcw->zcw_lwb = NULL;
1319 /*
1320 * We expect any ZIO errors from child ZIOs to have been
1321 * propagated "up" to this specific LWB's root ZIO, in
1322 * order for this error handling to work correctly. This
1323 * includes ZIO errors from either this LWB's write or
1324 * flush, as well as any errors from other dependent LWBs
1325 * (e.g. a root LWB ZIO that might be a child of this LWB).
1326 *
1327 * With that said, it's important to note that LWB flush
1328 * errors are not propagated up to the LWB root ZIO.
1329 * This is incorrect behavior, and results in VDEV flush
1330 * errors not being handled correctly here. See the
1331 * comment above the call to "zio_flush" for details.
1332 */
1333
1334 zcw->zcw_zio_error = zio->io_error;
1335
1336 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1337 zcw->zcw_done = B_TRUE;
1338 cv_broadcast(&zcw->zcw_cv);
1339
1340 mutex_exit(&zcw->zcw_lock);
1341 }
1342
1343 mutex_exit(&zilog->zl_lock);
1344
1345 mutex_enter(&zilog->zl_lwb_io_lock);
1346 txg = lwb->lwb_issued_txg;
1347 ASSERT3U(zilog->zl_lwb_inflight[txg & TXG_MASK], >, 0);
1348 zilog->zl_lwb_inflight[txg & TXG_MASK]--;
1349 if (zilog->zl_lwb_inflight[txg & TXG_MASK] == 0)
1350 cv_broadcast(&zilog->zl_lwb_io_cv);
1351 mutex_exit(&zilog->zl_lwb_io_lock);
1352 }
1353
1354 /*
1355 * Wait for the completion of all issued write/flush of that txg provided.
1356 * It guarantees zil_lwb_flush_vdevs_done() is called and returned.
1357 */
1358 static void
1359 zil_lwb_flush_wait_all(zilog_t *zilog, uint64_t txg)
1360 {
1361 ASSERT3U(txg, ==, spa_syncing_txg(zilog->zl_spa));
1362
1363 mutex_enter(&zilog->zl_lwb_io_lock);
1364 while (zilog->zl_lwb_inflight[txg & TXG_MASK] > 0)
1365 cv_wait(&zilog->zl_lwb_io_cv, &zilog->zl_lwb_io_lock);
1366 mutex_exit(&zilog->zl_lwb_io_lock);
1367
1368 #ifdef ZFS_DEBUG
1369 mutex_enter(&zilog->zl_lock);
1370 mutex_enter(&zilog->zl_lwb_io_lock);
1371 lwb_t *lwb = list_head(&zilog->zl_lwb_list);
1372 while (lwb != NULL && lwb->lwb_max_txg <= txg) {
1373 if (lwb->lwb_issued_txg <= txg) {
1374 ASSERT(lwb->lwb_state != LWB_STATE_ISSUED);
1375 ASSERT(lwb->lwb_state != LWB_STATE_WRITE_DONE);
1376 IMPLY(lwb->lwb_issued_txg > 0,
1377 lwb->lwb_state == LWB_STATE_FLUSH_DONE);
1378 }
1379 IMPLY(lwb->lwb_state == LWB_STATE_FLUSH_DONE,
1380 lwb->lwb_buf == NULL);
1381 lwb = list_next(&zilog->zl_lwb_list, lwb);
1382 }
1383 mutex_exit(&zilog->zl_lwb_io_lock);
1384 mutex_exit(&zilog->zl_lock);
1385 #endif
1386 }
1387
1388 /*
1389 * This is called when an lwb's write zio completes. The callback's
1390 * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs
1391 * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved
1392 * in writing out this specific lwb's data, and in the case that cache
1393 * flushes have been deferred, vdevs involved in writing the data for
1394 * previous lwbs. The writes corresponding to all the vdevs in the
1395 * lwb_vdev_tree will have completed by the time this is called, due to
1396 * the zio dependencies configured in zil_lwb_set_zio_dependency(),
1397 * which takes deferred flushes into account. The lwb will be "done"
1398 * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio
1399 * completion callback for the lwb's root zio.
1400 */
1401 static void
1402 zil_lwb_write_done(zio_t *zio)
1403 {
1404 lwb_t *lwb = zio->io_private;
1405 spa_t *spa = zio->io_spa;
1406 zilog_t *zilog = lwb->lwb_zilog;
1407 avl_tree_t *t = &lwb->lwb_vdev_tree;
1408 void *cookie = NULL;
1409 zil_vdev_node_t *zv;
1410 lwb_t *nlwb;
1411
1412 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1413
1414 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1415 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1416 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1417 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1418 ASSERT(!BP_IS_GANG(zio->io_bp));
1419 ASSERT(!BP_IS_HOLE(zio->io_bp));
1420 ASSERT(BP_GET_FILL(zio->io_bp) == 0);
1421
1422 abd_free(zio->io_abd);
1423
1424 mutex_enter(&zilog->zl_lock);
1425 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1426 lwb->lwb_state = LWB_STATE_WRITE_DONE;
1427 lwb->lwb_write_zio = NULL;
1428 lwb->lwb_fastwrite = FALSE;
1429 nlwb = list_next(&zilog->zl_lwb_list, lwb);
1430 mutex_exit(&zilog->zl_lock);
1431
1432 if (avl_numnodes(t) == 0)
1433 return;
1434
1435 /*
1436 * If there was an IO error, we're not going to call zio_flush()
1437 * on these vdevs, so we simply empty the tree and free the
1438 * nodes. We avoid calling zio_flush() since there isn't any
1439 * good reason for doing so, after the lwb block failed to be
1440 * written out.
1441 *
1442 * Additionally, we don't perform any further error handling at
1443 * this point (e.g. setting "zcw_zio_error" appropriately), as
1444 * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus,
1445 * we expect any error seen here, to have been propagated to
1446 * that function).
1447 */
1448 if (zio->io_error != 0) {
1449 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1450 kmem_free(zv, sizeof (*zv));
1451 return;
1452 }
1453
1454 /*
1455 * If this lwb does not have any threads waiting for it to
1456 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE
1457 * command to the vdevs written to by "this" lwb, and instead
1458 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE
1459 * command for those vdevs. Thus, we merge the vdev tree of
1460 * "this" lwb with the vdev tree of the "next" lwb in the list,
1461 * and assume the "next" lwb will handle flushing the vdevs (or
1462 * deferring the flush(s) again).
1463 *
1464 * This is a useful performance optimization, especially for
1465 * workloads with lots of async write activity and few sync
1466 * write and/or fsync activity, as it has the potential to
1467 * coalesce multiple flush commands to a vdev into one.
1468 */
1469 if (list_head(&lwb->lwb_waiters) == NULL && nlwb != NULL) {
1470 zil_lwb_flush_defer(lwb, nlwb);
1471 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1472 return;
1473 }
1474
1475 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1476 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1477 if (vd != NULL) {
1478 /*
1479 * The "ZIO_FLAG_DONT_PROPAGATE" is currently
1480 * always used within "zio_flush". This means,
1481 * any errors when flushing the vdev(s), will
1482 * (unfortunately) not be handled correctly,
1483 * since these "zio_flush" errors will not be
1484 * propagated up to "zil_lwb_flush_vdevs_done".
1485 */
1486 zio_flush(lwb->lwb_root_zio, vd);
1487 }
1488 kmem_free(zv, sizeof (*zv));
1489 }
1490 }
1491
1492 static void
1493 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
1494 {
1495 lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1496
1497 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1498 ASSERT(MUTEX_HELD(&zilog->zl_lock));
1499
1500 /*
1501 * The zilog's "zl_last_lwb_opened" field is used to build the
1502 * lwb/zio dependency chain, which is used to preserve the
1503 * ordering of lwb completions that is required by the semantics
1504 * of the ZIL. Each new lwb zio becomes a parent of the
1505 * "previous" lwb zio, such that the new lwb's zio cannot
1506 * complete until the "previous" lwb's zio completes.
1507 *
1508 * This is required by the semantics of zil_commit(); the commit
1509 * waiters attached to the lwbs will be woken in the lwb zio's
1510 * completion callback, so this zio dependency graph ensures the
1511 * waiters are woken in the correct order (the same order the
1512 * lwbs were created).
1513 */
1514 if (last_lwb_opened != NULL &&
1515 last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) {
1516 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1517 last_lwb_opened->lwb_state == LWB_STATE_ISSUED ||
1518 last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE);
1519
1520 ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1521 zio_add_child(lwb->lwb_root_zio,
1522 last_lwb_opened->lwb_root_zio);
1523
1524 /*
1525 * If the previous lwb's write hasn't already completed,
1526 * we also want to order the completion of the lwb write
1527 * zios (above, we only order the completion of the lwb
1528 * root zios). This is required because of how we can
1529 * defer the DKIOCFLUSHWRITECACHE commands for each lwb.
1530 *
1531 * When the DKIOCFLUSHWRITECACHE commands are deferred,
1532 * the previous lwb will rely on this lwb to flush the
1533 * vdevs written to by that previous lwb. Thus, we need
1534 * to ensure this lwb doesn't issue the flush until
1535 * after the previous lwb's write completes. We ensure
1536 * this ordering by setting the zio parent/child
1537 * relationship here.
1538 *
1539 * Without this relationship on the lwb's write zio,
1540 * it's possible for this lwb's write to complete prior
1541 * to the previous lwb's write completing; and thus, the
1542 * vdevs for the previous lwb would be flushed prior to
1543 * that lwb's data being written to those vdevs (the
1544 * vdevs are flushed in the lwb write zio's completion
1545 * handler, zil_lwb_write_done()).
1546 */
1547 if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) {
1548 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1549 last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1550
1551 ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL);
1552 zio_add_child(lwb->lwb_write_zio,
1553 last_lwb_opened->lwb_write_zio);
1554 }
1555 }
1556 }
1557
1558
1559 /*
1560 * This function's purpose is to "open" an lwb such that it is ready to
1561 * accept new itxs being committed to it. To do this, the lwb's zio
1562 * structures are created, and linked to the lwb. This function is
1563 * idempotent; if the passed in lwb has already been opened, this
1564 * function is essentially a no-op.
1565 */
1566 static void
1567 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1568 {
1569 zbookmark_phys_t zb;
1570 zio_priority_t prio;
1571
1572 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1573 ASSERT3P(lwb, !=, NULL);
1574 EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1575 EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1576
1577 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1578 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1579 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1580
1581 /* Lock so zil_sync() doesn't fastwrite_unmark after zio is created */
1582 mutex_enter(&zilog->zl_lock);
1583 if (lwb->lwb_root_zio == NULL) {
1584 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1585 BP_GET_LSIZE(&lwb->lwb_blk));
1586
1587 if (!lwb->lwb_fastwrite) {
1588 metaslab_fastwrite_mark(zilog->zl_spa, &lwb->lwb_blk);
1589 lwb->lwb_fastwrite = 1;
1590 }
1591
1592 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1593 prio = ZIO_PRIORITY_SYNC_WRITE;
1594 else
1595 prio = ZIO_PRIORITY_ASYNC_WRITE;
1596
1597 lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1598 zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1599 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1600
1601 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1602 zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1603 BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1604 prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_FASTWRITE, &zb);
1605 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1606
1607 lwb->lwb_state = LWB_STATE_OPENED;
1608
1609 zil_lwb_set_zio_dependency(zilog, lwb);
1610 zilog->zl_last_lwb_opened = lwb;
1611 }
1612 mutex_exit(&zilog->zl_lock);
1613
1614 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1615 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1616 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1617 }
1618
1619 /*
1620 * Define a limited set of intent log block sizes.
1621 *
1622 * These must be a multiple of 4KB. Note only the amount used (again
1623 * aligned to 4KB) actually gets written. However, we can't always just
1624 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1625 */
1626 static const struct {
1627 uint64_t limit;
1628 uint64_t blksz;
1629 } zil_block_buckets[] = {
1630 { 4096, 4096 }, /* non TX_WRITE */
1631 { 8192 + 4096, 8192 + 4096 }, /* database */
1632 { 32768 + 4096, 32768 + 4096 }, /* NFS writes */
1633 { 65536 + 4096, 65536 + 4096 }, /* 64KB writes */
1634 { 131072, 131072 }, /* < 128KB writes */
1635 { 131072 +4096, 65536 + 4096 }, /* 128KB writes */
1636 { UINT64_MAX, SPA_OLD_MAXBLOCKSIZE}, /* > 128KB writes */
1637 };
1638
1639 /*
1640 * Maximum block size used by the ZIL. This is picked up when the ZIL is
1641 * initialized. Otherwise this should not be used directly; see
1642 * zl_max_block_size instead.
1643 */
1644 static uint_t zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE;
1645
1646 /*
1647 * Start a log block write and advance to the next log block.
1648 * Calls are serialized.
1649 */
1650 static lwb_t *
1651 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1652 {
1653 lwb_t *nlwb = NULL;
1654 zil_chain_t *zilc;
1655 spa_t *spa = zilog->zl_spa;
1656 blkptr_t *bp;
1657 dmu_tx_t *tx;
1658 uint64_t txg;
1659 uint64_t zil_blksz, wsz;
1660 int i, error;
1661 boolean_t slog;
1662
1663 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1664 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1665 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1666 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1667
1668 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1669 zilc = (zil_chain_t *)lwb->lwb_buf;
1670 bp = &zilc->zc_next_blk;
1671 } else {
1672 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1673 bp = &zilc->zc_next_blk;
1674 }
1675
1676 ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1677
1678 /*
1679 * Allocate the next block and save its address in this block
1680 * before writing it in order to establish the log chain.
1681 */
1682
1683 tx = dmu_tx_create(zilog->zl_os);
1684
1685 /*
1686 * Since we are not going to create any new dirty data, and we
1687 * can even help with clearing the existing dirty data, we
1688 * should not be subject to the dirty data based delays. We
1689 * use TXG_NOTHROTTLE to bypass the delay mechanism.
1690 */
1691 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1692
1693 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1694 txg = dmu_tx_get_txg(tx);
1695
1696 mutex_enter(&zilog->zl_lwb_io_lock);
1697 lwb->lwb_issued_txg = txg;
1698 zilog->zl_lwb_inflight[txg & TXG_MASK]++;
1699 zilog->zl_lwb_max_issued_txg = MAX(txg, zilog->zl_lwb_max_issued_txg);
1700 mutex_exit(&zilog->zl_lwb_io_lock);
1701
1702 /*
1703 * Log blocks are pre-allocated. Here we select the size of the next
1704 * block, based on size used in the last block.
1705 * - first find the smallest bucket that will fit the block from a
1706 * limited set of block sizes. This is because it's faster to write
1707 * blocks allocated from the same metaslab as they are adjacent or
1708 * close.
1709 * - next find the maximum from the new suggested size and an array of
1710 * previous sizes. This lessens a picket fence effect of wrongly
1711 * guessing the size if we have a stream of say 2k, 64k, 2k, 64k
1712 * requests.
1713 *
1714 * Note we only write what is used, but we can't just allocate
1715 * the maximum block size because we can exhaust the available
1716 * pool log space.
1717 */
1718 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1719 for (i = 0; zil_blksz > zil_block_buckets[i].limit; i++)
1720 continue;
1721 zil_blksz = MIN(zil_block_buckets[i].blksz, zilog->zl_max_block_size);
1722 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1723 for (i = 0; i < ZIL_PREV_BLKS; i++)
1724 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1725 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1726
1727 BP_ZERO(bp);
1728 error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, zil_blksz, &slog);
1729 if (slog) {
1730 ZIL_STAT_BUMP(zilog, zil_itx_metaslab_slog_count);
1731 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_bytes,
1732 lwb->lwb_nused);
1733 } else {
1734 ZIL_STAT_BUMP(zilog, zil_itx_metaslab_normal_count);
1735 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_bytes,
1736 lwb->lwb_nused);
1737 }
1738 if (error == 0) {
1739 ASSERT3U(bp->blk_birth, ==, txg);
1740 bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1741 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1742
1743 /*
1744 * Allocate a new log write block (lwb).
1745 */
1746 nlwb = zil_alloc_lwb(zilog, bp, slog, txg, TRUE);
1747 }
1748
1749 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1750 /* For Slim ZIL only write what is used. */
1751 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1752 ASSERT3U(wsz, <=, lwb->lwb_sz);
1753 zio_shrink(lwb->lwb_write_zio, wsz);
1754
1755 } else {
1756 wsz = lwb->lwb_sz;
1757 }
1758
1759 zilc->zc_pad = 0;
1760 zilc->zc_nused = lwb->lwb_nused;
1761 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1762
1763 /*
1764 * clear unused data for security
1765 */
1766 memset(lwb->lwb_buf + lwb->lwb_nused, 0, wsz - lwb->lwb_nused);
1767
1768 spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1769
1770 zil_lwb_add_block(lwb, &lwb->lwb_blk);
1771 lwb->lwb_issued_timestamp = gethrtime();
1772 lwb->lwb_state = LWB_STATE_ISSUED;
1773
1774 zio_nowait(lwb->lwb_root_zio);
1775 zio_nowait(lwb->lwb_write_zio);
1776
1777 dmu_tx_commit(tx);
1778
1779 /*
1780 * If there was an allocation failure then nlwb will be null which
1781 * forces a txg_wait_synced().
1782 */
1783 return (nlwb);
1784 }
1785
1786 /*
1787 * Maximum amount of write data that can be put into single log block.
1788 */
1789 uint64_t
1790 zil_max_log_data(zilog_t *zilog)
1791 {
1792 return (zilog->zl_max_block_size -
1793 sizeof (zil_chain_t) - sizeof (lr_write_t));
1794 }
1795
1796 /*
1797 * Maximum amount of log space we agree to waste to reduce number of
1798 * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~12%).
1799 */
1800 static inline uint64_t
1801 zil_max_waste_space(zilog_t *zilog)
1802 {
1803 return (zil_max_log_data(zilog) / 8);
1804 }
1805
1806 /*
1807 * Maximum amount of write data for WR_COPIED. For correctness, consumers
1808 * must fall back to WR_NEED_COPY if we can't fit the entire record into one
1809 * maximum sized log block, because each WR_COPIED record must fit in a
1810 * single log block. For space efficiency, we want to fit two records into a
1811 * max-sized log block.
1812 */
1813 uint64_t
1814 zil_max_copied_data(zilog_t *zilog)
1815 {
1816 return ((zilog->zl_max_block_size - sizeof (zil_chain_t)) / 2 -
1817 sizeof (lr_write_t));
1818 }
1819
1820 static lwb_t *
1821 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1822 {
1823 lr_t *lrcb, *lrc;
1824 lr_write_t *lrwb, *lrw;
1825 char *lr_buf;
1826 uint64_t dlen, dnow, dpad, lwb_sp, reclen, txg, max_log_data;
1827
1828 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1829 ASSERT3P(lwb, !=, NULL);
1830 ASSERT3P(lwb->lwb_buf, !=, NULL);
1831
1832 zil_lwb_write_open(zilog, lwb);
1833
1834 lrc = &itx->itx_lr;
1835 lrw = (lr_write_t *)lrc;
1836
1837 /*
1838 * A commit itx doesn't represent any on-disk state; instead
1839 * it's simply used as a place holder on the commit list, and
1840 * provides a mechanism for attaching a "commit waiter" onto the
1841 * correct lwb (such that the waiter can be signalled upon
1842 * completion of that lwb). Thus, we don't process this itx's
1843 * log record if it's a commit itx (these itx's don't have log
1844 * records), and instead link the itx's waiter onto the lwb's
1845 * list of waiters.
1846 *
1847 * For more details, see the comment above zil_commit().
1848 */
1849 if (lrc->lrc_txtype == TX_COMMIT) {
1850 mutex_enter(&zilog->zl_lock);
1851 zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1852 itx->itx_private = NULL;
1853 mutex_exit(&zilog->zl_lock);
1854 return (lwb);
1855 }
1856
1857 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1858 dlen = P2ROUNDUP_TYPED(
1859 lrw->lr_length, sizeof (uint64_t), uint64_t);
1860 dpad = dlen - lrw->lr_length;
1861 } else {
1862 dlen = dpad = 0;
1863 }
1864 reclen = lrc->lrc_reclen;
1865 zilog->zl_cur_used += (reclen + dlen);
1866 txg = lrc->lrc_txg;
1867
1868 ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
1869
1870 cont:
1871 /*
1872 * If this record won't fit in the current log block, start a new one.
1873 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1874 */
1875 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1876 max_log_data = zil_max_log_data(zilog);
1877 if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1878 lwb_sp < zil_max_waste_space(zilog) &&
1879 (dlen % max_log_data == 0 ||
1880 lwb_sp < reclen + dlen % max_log_data))) {
1881 lwb = zil_lwb_write_issue(zilog, lwb);
1882 if (lwb == NULL)
1883 return (NULL);
1884 zil_lwb_write_open(zilog, lwb);
1885 ASSERT(LWB_EMPTY(lwb));
1886 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1887
1888 /*
1889 * There must be enough space in the new, empty log block to
1890 * hold reclen. For WR_COPIED, we need to fit the whole
1891 * record in one block, and reclen is the header size + the
1892 * data size. For WR_NEED_COPY, we can create multiple
1893 * records, splitting the data into multiple blocks, so we
1894 * only need to fit one word of data per block; in this case
1895 * reclen is just the header size (no data).
1896 */
1897 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1898 }
1899
1900 dnow = MIN(dlen, lwb_sp - reclen);
1901 lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1902 memcpy(lr_buf, lrc, reclen);
1903 lrcb = (lr_t *)lr_buf; /* Like lrc, but inside lwb. */
1904 lrwb = (lr_write_t *)lrcb; /* Like lrw, but inside lwb. */
1905
1906 ZIL_STAT_BUMP(zilog, zil_itx_count);
1907
1908 /*
1909 * If it's a write, fetch the data or get its blkptr as appropriate.
1910 */
1911 if (lrc->lrc_txtype == TX_WRITE) {
1912 if (txg > spa_freeze_txg(zilog->zl_spa))
1913 txg_wait_synced(zilog->zl_dmu_pool, txg);
1914 if (itx->itx_wr_state == WR_COPIED) {
1915 ZIL_STAT_BUMP(zilog, zil_itx_copied_count);
1916 ZIL_STAT_INCR(zilog, zil_itx_copied_bytes,
1917 lrw->lr_length);
1918 } else {
1919 char *dbuf;
1920 int error;
1921
1922 if (itx->itx_wr_state == WR_NEED_COPY) {
1923 dbuf = lr_buf + reclen;
1924 lrcb->lrc_reclen += dnow;
1925 if (lrwb->lr_length > dnow)
1926 lrwb->lr_length = dnow;
1927 lrw->lr_offset += dnow;
1928 lrw->lr_length -= dnow;
1929 ZIL_STAT_BUMP(zilog, zil_itx_needcopy_count);
1930 ZIL_STAT_INCR(zilog, zil_itx_needcopy_bytes,
1931 dnow);
1932 } else {
1933 ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT);
1934 dbuf = NULL;
1935 ZIL_STAT_BUMP(zilog, zil_itx_indirect_count);
1936 ZIL_STAT_INCR(zilog, zil_itx_indirect_bytes,
1937 lrw->lr_length);
1938 }
1939
1940 /*
1941 * We pass in the "lwb_write_zio" rather than
1942 * "lwb_root_zio" so that the "lwb_write_zio"
1943 * becomes the parent of any zio's created by
1944 * the "zl_get_data" callback. The vdevs are
1945 * flushed after the "lwb_write_zio" completes,
1946 * so we want to make sure that completion
1947 * callback waits for these additional zio's,
1948 * such that the vdevs used by those zio's will
1949 * be included in the lwb's vdev tree, and those
1950 * vdevs will be properly flushed. If we passed
1951 * in "lwb_root_zio" here, then these additional
1952 * vdevs may not be flushed; e.g. if these zio's
1953 * completed after "lwb_write_zio" completed.
1954 */
1955 error = zilog->zl_get_data(itx->itx_private,
1956 itx->itx_gen, lrwb, dbuf, lwb,
1957 lwb->lwb_write_zio);
1958 if (dbuf != NULL && error == 0 && dnow == dlen)
1959 /* Zero any padding bytes in the last block. */
1960 memset((char *)dbuf + lrwb->lr_length, 0, dpad);
1961
1962 if (error == EIO) {
1963 txg_wait_synced(zilog->zl_dmu_pool, txg);
1964 return (lwb);
1965 }
1966 if (error != 0) {
1967 ASSERT(error == ENOENT || error == EEXIST ||
1968 error == EALREADY);
1969 return (lwb);
1970 }
1971 }
1972 }
1973
1974 /*
1975 * We're actually making an entry, so update lrc_seq to be the
1976 * log record sequence number. Note that this is generally not
1977 * equal to the itx sequence number because not all transactions
1978 * are synchronous, and sometimes spa_sync() gets there first.
1979 */
1980 lrcb->lrc_seq = ++zilog->zl_lr_seq;
1981 lwb->lwb_nused += reclen + dnow;
1982
1983 zil_lwb_add_txg(lwb, txg);
1984
1985 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1986 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1987
1988 dlen -= dnow;
1989 if (dlen > 0) {
1990 zilog->zl_cur_used += reclen;
1991 goto cont;
1992 }
1993
1994 return (lwb);
1995 }
1996
1997 itx_t *
1998 zil_itx_create(uint64_t txtype, size_t olrsize)
1999 {
2000 size_t itxsize, lrsize;
2001 itx_t *itx;
2002
2003 lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t);
2004 itxsize = offsetof(itx_t, itx_lr) + lrsize;
2005
2006 itx = zio_data_buf_alloc(itxsize);
2007 itx->itx_lr.lrc_txtype = txtype;
2008 itx->itx_lr.lrc_reclen = lrsize;
2009 itx->itx_lr.lrc_seq = 0; /* defensive */
2010 memset((char *)&itx->itx_lr + olrsize, 0, lrsize - olrsize);
2011 itx->itx_sync = B_TRUE; /* default is synchronous */
2012 itx->itx_callback = NULL;
2013 itx->itx_callback_data = NULL;
2014 itx->itx_size = itxsize;
2015
2016 return (itx);
2017 }
2018
2019 void
2020 zil_itx_destroy(itx_t *itx)
2021 {
2022 IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL);
2023 IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2024
2025 if (itx->itx_callback != NULL)
2026 itx->itx_callback(itx->itx_callback_data);
2027
2028 zio_data_buf_free(itx, itx->itx_size);
2029 }
2030
2031 /*
2032 * Free up the sync and async itxs. The itxs_t has already been detached
2033 * so no locks are needed.
2034 */
2035 static void
2036 zil_itxg_clean(void *arg)
2037 {
2038 itx_t *itx;
2039 list_t *list;
2040 avl_tree_t *t;
2041 void *cookie;
2042 itxs_t *itxs = arg;
2043 itx_async_node_t *ian;
2044
2045 list = &itxs->i_sync_list;
2046 while ((itx = list_head(list)) != NULL) {
2047 /*
2048 * In the general case, commit itxs will not be found
2049 * here, as they'll be committed to an lwb via
2050 * zil_lwb_commit(), and free'd in that function. Having
2051 * said that, it is still possible for commit itxs to be
2052 * found here, due to the following race:
2053 *
2054 * - a thread calls zil_commit() which assigns the
2055 * commit itx to a per-txg i_sync_list
2056 * - zil_itxg_clean() is called (e.g. via spa_sync())
2057 * while the waiter is still on the i_sync_list
2058 *
2059 * There's nothing to prevent syncing the txg while the
2060 * waiter is on the i_sync_list. This normally doesn't
2061 * happen because spa_sync() is slower than zil_commit(),
2062 * but if zil_commit() calls txg_wait_synced() (e.g.
2063 * because zil_create() or zil_commit_writer_stall() is
2064 * called) we will hit this case.
2065 */
2066 if (itx->itx_lr.lrc_txtype == TX_COMMIT)
2067 zil_commit_waiter_skip(itx->itx_private);
2068
2069 list_remove(list, itx);
2070 zil_itx_destroy(itx);
2071 }
2072
2073 cookie = NULL;
2074 t = &itxs->i_async_tree;
2075 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2076 list = &ian->ia_list;
2077 while ((itx = list_head(list)) != NULL) {
2078 list_remove(list, itx);
2079 /* commit itxs should never be on the async lists. */
2080 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2081 zil_itx_destroy(itx);
2082 }
2083 list_destroy(list);
2084 kmem_free(ian, sizeof (itx_async_node_t));
2085 }
2086 avl_destroy(t);
2087
2088 kmem_free(itxs, sizeof (itxs_t));
2089 }
2090
2091 static int
2092 zil_aitx_compare(const void *x1, const void *x2)
2093 {
2094 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
2095 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
2096
2097 return (TREE_CMP(o1, o2));
2098 }
2099
2100 /*
2101 * Remove all async itx with the given oid.
2102 */
2103 void
2104 zil_remove_async(zilog_t *zilog, uint64_t oid)
2105 {
2106 uint64_t otxg, txg;
2107 itx_async_node_t *ian;
2108 avl_tree_t *t;
2109 avl_index_t where;
2110 list_t clean_list;
2111 itx_t *itx;
2112
2113 ASSERT(oid != 0);
2114 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
2115
2116 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2117 otxg = ZILTEST_TXG;
2118 else
2119 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2120
2121 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2122 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2123
2124 mutex_enter(&itxg->itxg_lock);
2125 if (itxg->itxg_txg != txg) {
2126 mutex_exit(&itxg->itxg_lock);
2127 continue;
2128 }
2129
2130 /*
2131 * Locate the object node and append its list.
2132 */
2133 t = &itxg->itxg_itxs->i_async_tree;
2134 ian = avl_find(t, &oid, &where);
2135 if (ian != NULL)
2136 list_move_tail(&clean_list, &ian->ia_list);
2137 mutex_exit(&itxg->itxg_lock);
2138 }
2139 while ((itx = list_head(&clean_list)) != NULL) {
2140 list_remove(&clean_list, itx);
2141 /* commit itxs should never be on the async lists. */
2142 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2143 zil_itx_destroy(itx);
2144 }
2145 list_destroy(&clean_list);
2146 }
2147
2148 void
2149 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
2150 {
2151 uint64_t txg;
2152 itxg_t *itxg;
2153 itxs_t *itxs, *clean = NULL;
2154
2155 /*
2156 * Ensure the data of a renamed file is committed before the rename.
2157 */
2158 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
2159 zil_async_to_sync(zilog, itx->itx_oid);
2160
2161 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
2162 txg = ZILTEST_TXG;
2163 else
2164 txg = dmu_tx_get_txg(tx);
2165
2166 itxg = &zilog->zl_itxg[txg & TXG_MASK];
2167 mutex_enter(&itxg->itxg_lock);
2168 itxs = itxg->itxg_itxs;
2169 if (itxg->itxg_txg != txg) {
2170 if (itxs != NULL) {
2171 /*
2172 * The zil_clean callback hasn't got around to cleaning
2173 * this itxg. Save the itxs for release below.
2174 * This should be rare.
2175 */
2176 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
2177 "txg %llu", (u_longlong_t)itxg->itxg_txg);
2178 clean = itxg->itxg_itxs;
2179 }
2180 itxg->itxg_txg = txg;
2181 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
2182 KM_SLEEP);
2183
2184 list_create(&itxs->i_sync_list, sizeof (itx_t),
2185 offsetof(itx_t, itx_node));
2186 avl_create(&itxs->i_async_tree, zil_aitx_compare,
2187 sizeof (itx_async_node_t),
2188 offsetof(itx_async_node_t, ia_node));
2189 }
2190 if (itx->itx_sync) {
2191 list_insert_tail(&itxs->i_sync_list, itx);
2192 } else {
2193 avl_tree_t *t = &itxs->i_async_tree;
2194 uint64_t foid =
2195 LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
2196 itx_async_node_t *ian;
2197 avl_index_t where;
2198
2199 ian = avl_find(t, &foid, &where);
2200 if (ian == NULL) {
2201 ian = kmem_alloc(sizeof (itx_async_node_t),
2202 KM_SLEEP);
2203 list_create(&ian->ia_list, sizeof (itx_t),
2204 offsetof(itx_t, itx_node));
2205 ian->ia_foid = foid;
2206 avl_insert(t, ian, where);
2207 }
2208 list_insert_tail(&ian->ia_list, itx);
2209 }
2210
2211 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
2212
2213 /*
2214 * We don't want to dirty the ZIL using ZILTEST_TXG, because
2215 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
2216 * need to be careful to always dirty the ZIL using the "real"
2217 * TXG (not itxg_txg) even when the SPA is frozen.
2218 */
2219 zilog_dirty(zilog, dmu_tx_get_txg(tx));
2220 mutex_exit(&itxg->itxg_lock);
2221
2222 /* Release the old itxs now we've dropped the lock */
2223 if (clean != NULL)
2224 zil_itxg_clean(clean);
2225 }
2226
2227 /*
2228 * If there are any in-memory intent log transactions which have now been
2229 * synced then start up a taskq to free them. We should only do this after we
2230 * have written out the uberblocks (i.e. txg has been committed) so that
2231 * don't inadvertently clean out in-memory log records that would be required
2232 * by zil_commit().
2233 */
2234 void
2235 zil_clean(zilog_t *zilog, uint64_t synced_txg)
2236 {
2237 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
2238 itxs_t *clean_me;
2239
2240 ASSERT3U(synced_txg, <, ZILTEST_TXG);
2241
2242 mutex_enter(&itxg->itxg_lock);
2243 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
2244 mutex_exit(&itxg->itxg_lock);
2245 return;
2246 }
2247 ASSERT3U(itxg->itxg_txg, <=, synced_txg);
2248 ASSERT3U(itxg->itxg_txg, !=, 0);
2249 clean_me = itxg->itxg_itxs;
2250 itxg->itxg_itxs = NULL;
2251 itxg->itxg_txg = 0;
2252 mutex_exit(&itxg->itxg_lock);
2253 /*
2254 * Preferably start a task queue to free up the old itxs but
2255 * if taskq_dispatch can't allocate resources to do that then
2256 * free it in-line. This should be rare. Note, using TQ_SLEEP
2257 * created a bad performance problem.
2258 */
2259 ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
2260 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
2261 taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
2262 zil_itxg_clean, clean_me, TQ_NOSLEEP);
2263 if (id == TASKQID_INVALID)
2264 zil_itxg_clean(clean_me);
2265 }
2266
2267 /*
2268 * This function will traverse the queue of itxs that need to be
2269 * committed, and move them onto the ZIL's zl_itx_commit_list.
2270 */
2271 static void
2272 zil_get_commit_list(zilog_t *zilog)
2273 {
2274 uint64_t otxg, txg;
2275 list_t *commit_list = &zilog->zl_itx_commit_list;
2276
2277 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2278
2279 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2280 otxg = ZILTEST_TXG;
2281 else
2282 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2283
2284 /*
2285 * This is inherently racy, since there is nothing to prevent
2286 * the last synced txg from changing. That's okay since we'll
2287 * only commit things in the future.
2288 */
2289 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2290 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2291
2292 mutex_enter(&itxg->itxg_lock);
2293 if (itxg->itxg_txg != txg) {
2294 mutex_exit(&itxg->itxg_lock);
2295 continue;
2296 }
2297
2298 /*
2299 * If we're adding itx records to the zl_itx_commit_list,
2300 * then the zil better be dirty in this "txg". We can assert
2301 * that here since we're holding the itxg_lock which will
2302 * prevent spa_sync from cleaning it. Once we add the itxs
2303 * to the zl_itx_commit_list we must commit it to disk even
2304 * if it's unnecessary (i.e. the txg was synced).
2305 */
2306 ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
2307 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
2308 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
2309
2310 mutex_exit(&itxg->itxg_lock);
2311 }
2312 }
2313
2314 /*
2315 * Move the async itxs for a specified object to commit into sync lists.
2316 */
2317 void
2318 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
2319 {
2320 uint64_t otxg, txg;
2321 itx_async_node_t *ian;
2322 avl_tree_t *t;
2323 avl_index_t where;
2324
2325 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2326 otxg = ZILTEST_TXG;
2327 else
2328 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2329
2330 /*
2331 * This is inherently racy, since there is nothing to prevent
2332 * the last synced txg from changing.
2333 */
2334 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2335 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2336
2337 mutex_enter(&itxg->itxg_lock);
2338 if (itxg->itxg_txg != txg) {
2339 mutex_exit(&itxg->itxg_lock);
2340 continue;
2341 }
2342
2343 /*
2344 * If a foid is specified then find that node and append its
2345 * list. Otherwise walk the tree appending all the lists
2346 * to the sync list. We add to the end rather than the
2347 * beginning to ensure the create has happened.
2348 */
2349 t = &itxg->itxg_itxs->i_async_tree;
2350 if (foid != 0) {
2351 ian = avl_find(t, &foid, &where);
2352 if (ian != NULL) {
2353 list_move_tail(&itxg->itxg_itxs->i_sync_list,
2354 &ian->ia_list);
2355 }
2356 } else {
2357 void *cookie = NULL;
2358
2359 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2360 list_move_tail(&itxg->itxg_itxs->i_sync_list,
2361 &ian->ia_list);
2362 list_destroy(&ian->ia_list);
2363 kmem_free(ian, sizeof (itx_async_node_t));
2364 }
2365 }
2366 mutex_exit(&itxg->itxg_lock);
2367 }
2368 }
2369
2370 /*
2371 * This function will prune commit itxs that are at the head of the
2372 * commit list (it won't prune past the first non-commit itx), and
2373 * either: a) attach them to the last lwb that's still pending
2374 * completion, or b) skip them altogether.
2375 *
2376 * This is used as a performance optimization to prevent commit itxs
2377 * from generating new lwbs when it's unnecessary to do so.
2378 */
2379 static void
2380 zil_prune_commit_list(zilog_t *zilog)
2381 {
2382 itx_t *itx;
2383
2384 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2385
2386 while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2387 lr_t *lrc = &itx->itx_lr;
2388 if (lrc->lrc_txtype != TX_COMMIT)
2389 break;
2390
2391 mutex_enter(&zilog->zl_lock);
2392
2393 lwb_t *last_lwb = zilog->zl_last_lwb_opened;
2394 if (last_lwb == NULL ||
2395 last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
2396 /*
2397 * All of the itxs this waiter was waiting on
2398 * must have already completed (or there were
2399 * never any itx's for it to wait on), so it's
2400 * safe to skip this waiter and mark it done.
2401 */
2402 zil_commit_waiter_skip(itx->itx_private);
2403 } else {
2404 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
2405 itx->itx_private = NULL;
2406 }
2407
2408 mutex_exit(&zilog->zl_lock);
2409
2410 list_remove(&zilog->zl_itx_commit_list, itx);
2411 zil_itx_destroy(itx);
2412 }
2413
2414 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2415 }
2416
2417 static void
2418 zil_commit_writer_stall(zilog_t *zilog)
2419 {
2420 /*
2421 * When zio_alloc_zil() fails to allocate the next lwb block on
2422 * disk, we must call txg_wait_synced() to ensure all of the
2423 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
2424 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
2425 * to zil_process_commit_list()) will have to call zil_create(),
2426 * and start a new ZIL chain.
2427 *
2428 * Since zil_alloc_zil() failed, the lwb that was previously
2429 * issued does not have a pointer to the "next" lwb on disk.
2430 * Thus, if another ZIL writer thread was to allocate the "next"
2431 * on-disk lwb, that block could be leaked in the event of a
2432 * crash (because the previous lwb on-disk would not point to
2433 * it).
2434 *
2435 * We must hold the zilog's zl_issuer_lock while we do this, to
2436 * ensure no new threads enter zil_process_commit_list() until
2437 * all lwb's in the zl_lwb_list have been synced and freed
2438 * (which is achieved via the txg_wait_synced() call).
2439 */
2440 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2441 txg_wait_synced(zilog->zl_dmu_pool, 0);
2442 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
2443 }
2444
2445 /*
2446 * This function will traverse the commit list, creating new lwbs as
2447 * needed, and committing the itxs from the commit list to these newly
2448 * created lwbs. Additionally, as a new lwb is created, the previous
2449 * lwb will be issued to the zio layer to be written to disk.
2450 */
2451 static void
2452 zil_process_commit_list(zilog_t *zilog)
2453 {
2454 spa_t *spa = zilog->zl_spa;
2455 list_t nolwb_itxs;
2456 list_t nolwb_waiters;
2457 lwb_t *lwb;
2458 itx_t *itx;
2459
2460 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2461
2462 /*
2463 * Return if there's nothing to commit before we dirty the fs by
2464 * calling zil_create().
2465 */
2466 if (list_head(&zilog->zl_itx_commit_list) == NULL)
2467 return;
2468
2469 list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
2470 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2471 offsetof(zil_commit_waiter_t, zcw_node));
2472
2473 lwb = list_tail(&zilog->zl_lwb_list);
2474 if (lwb == NULL) {
2475 lwb = zil_create(zilog);
2476 } else {
2477 /*
2478 * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will
2479 * have already been created (zl_lwb_list not empty).
2480 */
2481 zil_commit_activate_saxattr_feature(zilog);
2482 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2483 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2484 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2485 }
2486
2487 while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2488 lr_t *lrc = &itx->itx_lr;
2489 uint64_t txg = lrc->lrc_txg;
2490
2491 ASSERT3U(txg, !=, 0);
2492
2493 if (lrc->lrc_txtype == TX_COMMIT) {
2494 DTRACE_PROBE2(zil__process__commit__itx,
2495 zilog_t *, zilog, itx_t *, itx);
2496 } else {
2497 DTRACE_PROBE2(zil__process__normal__itx,
2498 zilog_t *, zilog, itx_t *, itx);
2499 }
2500
2501 list_remove(&zilog->zl_itx_commit_list, itx);
2502
2503 boolean_t synced = txg <= spa_last_synced_txg(spa);
2504 boolean_t frozen = txg > spa_freeze_txg(spa);
2505
2506 /*
2507 * If the txg of this itx has already been synced out, then
2508 * we don't need to commit this itx to an lwb. This is
2509 * because the data of this itx will have already been
2510 * written to the main pool. This is inherently racy, and
2511 * it's still ok to commit an itx whose txg has already
2512 * been synced; this will result in a write that's
2513 * unnecessary, but will do no harm.
2514 *
2515 * With that said, we always want to commit TX_COMMIT itxs
2516 * to an lwb, regardless of whether or not that itx's txg
2517 * has been synced out. We do this to ensure any OPENED lwb
2518 * will always have at least one zil_commit_waiter_t linked
2519 * to the lwb.
2520 *
2521 * As a counter-example, if we skipped TX_COMMIT itx's
2522 * whose txg had already been synced, the following
2523 * situation could occur if we happened to be racing with
2524 * spa_sync:
2525 *
2526 * 1. We commit a non-TX_COMMIT itx to an lwb, where the
2527 * itx's txg is 10 and the last synced txg is 9.
2528 * 2. spa_sync finishes syncing out txg 10.
2529 * 3. We move to the next itx in the list, it's a TX_COMMIT
2530 * whose txg is 10, so we skip it rather than committing
2531 * it to the lwb used in (1).
2532 *
2533 * If the itx that is skipped in (3) is the last TX_COMMIT
2534 * itx in the commit list, than it's possible for the lwb
2535 * used in (1) to remain in the OPENED state indefinitely.
2536 *
2537 * To prevent the above scenario from occurring, ensuring
2538 * that once an lwb is OPENED it will transition to ISSUED
2539 * and eventually DONE, we always commit TX_COMMIT itx's to
2540 * an lwb here, even if that itx's txg has already been
2541 * synced.
2542 *
2543 * Finally, if the pool is frozen, we _always_ commit the
2544 * itx. The point of freezing the pool is to prevent data
2545 * from being written to the main pool via spa_sync, and
2546 * instead rely solely on the ZIL to persistently store the
2547 * data; i.e. when the pool is frozen, the last synced txg
2548 * value can't be trusted.
2549 */
2550 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2551 if (lwb != NULL) {
2552 lwb = zil_lwb_commit(zilog, itx, lwb);
2553
2554 if (lwb == NULL)
2555 list_insert_tail(&nolwb_itxs, itx);
2556 else
2557 list_insert_tail(&lwb->lwb_itxs, itx);
2558 } else {
2559 if (lrc->lrc_txtype == TX_COMMIT) {
2560 zil_commit_waiter_link_nolwb(
2561 itx->itx_private, &nolwb_waiters);
2562 }
2563
2564 list_insert_tail(&nolwb_itxs, itx);
2565 }
2566 } else {
2567 ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT);
2568 zil_itx_destroy(itx);
2569 }
2570 }
2571
2572 if (lwb == NULL) {
2573 /*
2574 * This indicates zio_alloc_zil() failed to allocate the
2575 * "next" lwb on-disk. When this happens, we must stall
2576 * the ZIL write pipeline; see the comment within
2577 * zil_commit_writer_stall() for more details.
2578 */
2579 zil_commit_writer_stall(zilog);
2580
2581 /*
2582 * Additionally, we have to signal and mark the "nolwb"
2583 * waiters as "done" here, since without an lwb, we
2584 * can't do this via zil_lwb_flush_vdevs_done() like
2585 * normal.
2586 */
2587 zil_commit_waiter_t *zcw;
2588 while ((zcw = list_head(&nolwb_waiters)) != NULL) {
2589 zil_commit_waiter_skip(zcw);
2590 list_remove(&nolwb_waiters, zcw);
2591 }
2592
2593 /*
2594 * And finally, we have to destroy the itx's that
2595 * couldn't be committed to an lwb; this will also call
2596 * the itx's callback if one exists for the itx.
2597 */
2598 while ((itx = list_head(&nolwb_itxs)) != NULL) {
2599 list_remove(&nolwb_itxs, itx);
2600 zil_itx_destroy(itx);
2601 }
2602 } else {
2603 ASSERT(list_is_empty(&nolwb_waiters));
2604 ASSERT3P(lwb, !=, NULL);
2605 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2606 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2607 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2608
2609 /*
2610 * At this point, the ZIL block pointed at by the "lwb"
2611 * variable is in one of the following states: "closed"
2612 * or "open".
2613 *
2614 * If it's "closed", then no itxs have been committed to
2615 * it, so there's no point in issuing its zio (i.e. it's
2616 * "empty").
2617 *
2618 * If it's "open", then it contains one or more itxs that
2619 * eventually need to be committed to stable storage. In
2620 * this case we intentionally do not issue the lwb's zio
2621 * to disk yet, and instead rely on one of the following
2622 * two mechanisms for issuing the zio:
2623 *
2624 * 1. Ideally, there will be more ZIL activity occurring
2625 * on the system, such that this function will be
2626 * immediately called again (not necessarily by the same
2627 * thread) and this lwb's zio will be issued via
2628 * zil_lwb_commit(). This way, the lwb is guaranteed to
2629 * be "full" when it is issued to disk, and we'll make
2630 * use of the lwb's size the best we can.
2631 *
2632 * 2. If there isn't sufficient ZIL activity occurring on
2633 * the system, such that this lwb's zio isn't issued via
2634 * zil_lwb_commit(), zil_commit_waiter() will issue the
2635 * lwb's zio. If this occurs, the lwb is not guaranteed
2636 * to be "full" by the time its zio is issued, and means
2637 * the size of the lwb was "too large" given the amount
2638 * of ZIL activity occurring on the system at that time.
2639 *
2640 * We do this for a couple of reasons:
2641 *
2642 * 1. To try and reduce the number of IOPs needed to
2643 * write the same number of itxs. If an lwb has space
2644 * available in its buffer for more itxs, and more itxs
2645 * will be committed relatively soon (relative to the
2646 * latency of performing a write), then it's beneficial
2647 * to wait for these "next" itxs. This way, more itxs
2648 * can be committed to stable storage with fewer writes.
2649 *
2650 * 2. To try and use the largest lwb block size that the
2651 * incoming rate of itxs can support. Again, this is to
2652 * try and pack as many itxs into as few lwbs as
2653 * possible, without significantly impacting the latency
2654 * of each individual itx.
2655 */
2656 }
2657 }
2658
2659 /*
2660 * This function is responsible for ensuring the passed in commit waiter
2661 * (and associated commit itx) is committed to an lwb. If the waiter is
2662 * not already committed to an lwb, all itxs in the zilog's queue of
2663 * itxs will be processed. The assumption is the passed in waiter's
2664 * commit itx will found in the queue just like the other non-commit
2665 * itxs, such that when the entire queue is processed, the waiter will
2666 * have been committed to an lwb.
2667 *
2668 * The lwb associated with the passed in waiter is not guaranteed to
2669 * have been issued by the time this function completes. If the lwb is
2670 * not issued, we rely on future calls to zil_commit_writer() to issue
2671 * the lwb, or the timeout mechanism found in zil_commit_waiter().
2672 */
2673 static void
2674 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2675 {
2676 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2677 ASSERT(spa_writeable(zilog->zl_spa));
2678
2679 mutex_enter(&zilog->zl_issuer_lock);
2680
2681 if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2682 /*
2683 * It's possible that, while we were waiting to acquire
2684 * the "zl_issuer_lock", another thread committed this
2685 * waiter to an lwb. If that occurs, we bail out early,
2686 * without processing any of the zilog's queue of itxs.
2687 *
2688 * On certain workloads and system configurations, the
2689 * "zl_issuer_lock" can become highly contended. In an
2690 * attempt to reduce this contention, we immediately drop
2691 * the lock if the waiter has already been processed.
2692 *
2693 * We've measured this optimization to reduce CPU spent
2694 * contending on this lock by up to 5%, using a system
2695 * with 32 CPUs, low latency storage (~50 usec writes),
2696 * and 1024 threads performing sync writes.
2697 */
2698 goto out;
2699 }
2700
2701 ZIL_STAT_BUMP(zilog, zil_commit_writer_count);
2702
2703 zil_get_commit_list(zilog);
2704 zil_prune_commit_list(zilog);
2705 zil_process_commit_list(zilog);
2706
2707 out:
2708 mutex_exit(&zilog->zl_issuer_lock);
2709 }
2710
2711 static void
2712 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2713 {
2714 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2715 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2716 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2717
2718 lwb_t *lwb = zcw->zcw_lwb;
2719 ASSERT3P(lwb, !=, NULL);
2720 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
2721
2722 /*
2723 * If the lwb has already been issued by another thread, we can
2724 * immediately return since there's no work to be done (the
2725 * point of this function is to issue the lwb). Additionally, we
2726 * do this prior to acquiring the zl_issuer_lock, to avoid
2727 * acquiring it when it's not necessary to do so.
2728 */
2729 if (lwb->lwb_state == LWB_STATE_ISSUED ||
2730 lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2731 lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2732 return;
2733
2734 /*
2735 * In order to call zil_lwb_write_issue() we must hold the
2736 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
2737 * since we're already holding the commit waiter's "zcw_lock",
2738 * and those two locks are acquired in the opposite order
2739 * elsewhere.
2740 */
2741 mutex_exit(&zcw->zcw_lock);
2742 mutex_enter(&zilog->zl_issuer_lock);
2743 mutex_enter(&zcw->zcw_lock);
2744
2745 /*
2746 * Since we just dropped and re-acquired the commit waiter's
2747 * lock, we have to re-check to see if the waiter was marked
2748 * "done" during that process. If the waiter was marked "done",
2749 * the "lwb" pointer is no longer valid (it can be free'd after
2750 * the waiter is marked "done"), so without this check we could
2751 * wind up with a use-after-free error below.
2752 */
2753 if (zcw->zcw_done)
2754 goto out;
2755
2756 ASSERT3P(lwb, ==, zcw->zcw_lwb);
2757
2758 /*
2759 * We've already checked this above, but since we hadn't acquired
2760 * the zilog's zl_issuer_lock, we have to perform this check a
2761 * second time while holding the lock.
2762 *
2763 * We don't need to hold the zl_lock since the lwb cannot transition
2764 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
2765 * _can_ transition from ISSUED to DONE, but it's OK to race with
2766 * that transition since we treat the lwb the same, whether it's in
2767 * the ISSUED or DONE states.
2768 *
2769 * The important thing, is we treat the lwb differently depending on
2770 * if it's ISSUED or OPENED, and block any other threads that might
2771 * attempt to issue this lwb. For that reason we hold the
2772 * zl_issuer_lock when checking the lwb_state; we must not call
2773 * zil_lwb_write_issue() if the lwb had already been issued.
2774 *
2775 * See the comment above the lwb_state_t structure definition for
2776 * more details on the lwb states, and locking requirements.
2777 */
2778 if (lwb->lwb_state == LWB_STATE_ISSUED ||
2779 lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2780 lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2781 goto out;
2782
2783 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2784
2785 /*
2786 * As described in the comments above zil_commit_waiter() and
2787 * zil_process_commit_list(), we need to issue this lwb's zio
2788 * since we've reached the commit waiter's timeout and it still
2789 * hasn't been issued.
2790 */
2791 lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2792
2793 IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED);
2794
2795 /*
2796 * Since the lwb's zio hadn't been issued by the time this thread
2797 * reached its timeout, we reset the zilog's "zl_cur_used" field
2798 * to influence the zil block size selection algorithm.
2799 *
2800 * By having to issue the lwb's zio here, it means the size of the
2801 * lwb was too large, given the incoming throughput of itxs. By
2802 * setting "zl_cur_used" to zero, we communicate this fact to the
2803 * block size selection algorithm, so it can take this information
2804 * into account, and potentially select a smaller size for the
2805 * next lwb block that is allocated.
2806 */
2807 zilog->zl_cur_used = 0;
2808
2809 if (nlwb == NULL) {
2810 /*
2811 * When zil_lwb_write_issue() returns NULL, this
2812 * indicates zio_alloc_zil() failed to allocate the
2813 * "next" lwb on-disk. When this occurs, the ZIL write
2814 * pipeline must be stalled; see the comment within the
2815 * zil_commit_writer_stall() function for more details.
2816 *
2817 * We must drop the commit waiter's lock prior to
2818 * calling zil_commit_writer_stall() or else we can wind
2819 * up with the following deadlock:
2820 *
2821 * - This thread is waiting for the txg to sync while
2822 * holding the waiter's lock; txg_wait_synced() is
2823 * used within txg_commit_writer_stall().
2824 *
2825 * - The txg can't sync because it is waiting for this
2826 * lwb's zio callback to call dmu_tx_commit().
2827 *
2828 * - The lwb's zio callback can't call dmu_tx_commit()
2829 * because it's blocked trying to acquire the waiter's
2830 * lock, which occurs prior to calling dmu_tx_commit()
2831 */
2832 mutex_exit(&zcw->zcw_lock);
2833 zil_commit_writer_stall(zilog);
2834 mutex_enter(&zcw->zcw_lock);
2835 }
2836
2837 out:
2838 mutex_exit(&zilog->zl_issuer_lock);
2839 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2840 }
2841
2842 /*
2843 * This function is responsible for performing the following two tasks:
2844 *
2845 * 1. its primary responsibility is to block until the given "commit
2846 * waiter" is considered "done".
2847 *
2848 * 2. its secondary responsibility is to issue the zio for the lwb that
2849 * the given "commit waiter" is waiting on, if this function has
2850 * waited "long enough" and the lwb is still in the "open" state.
2851 *
2852 * Given a sufficient amount of itxs being generated and written using
2853 * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2854 * function. If this does not occur, this secondary responsibility will
2855 * ensure the lwb is issued even if there is not other synchronous
2856 * activity on the system.
2857 *
2858 * For more details, see zil_process_commit_list(); more specifically,
2859 * the comment at the bottom of that function.
2860 */
2861 static void
2862 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2863 {
2864 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2865 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2866 ASSERT(spa_writeable(zilog->zl_spa));
2867
2868 mutex_enter(&zcw->zcw_lock);
2869
2870 /*
2871 * The timeout is scaled based on the lwb latency to avoid
2872 * significantly impacting the latency of each individual itx.
2873 * For more details, see the comment at the bottom of the
2874 * zil_process_commit_list() function.
2875 */
2876 int pct = MAX(zfs_commit_timeout_pct, 1);
2877 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2878 hrtime_t wakeup = gethrtime() + sleep;
2879 boolean_t timedout = B_FALSE;
2880
2881 while (!zcw->zcw_done) {
2882 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2883
2884 lwb_t *lwb = zcw->zcw_lwb;
2885
2886 /*
2887 * Usually, the waiter will have a non-NULL lwb field here,
2888 * but it's possible for it to be NULL as a result of
2889 * zil_commit() racing with spa_sync().
2890 *
2891 * When zil_clean() is called, it's possible for the itxg
2892 * list (which may be cleaned via a taskq) to contain
2893 * commit itxs. When this occurs, the commit waiters linked
2894 * off of these commit itxs will not be committed to an
2895 * lwb. Additionally, these commit waiters will not be
2896 * marked done until zil_commit_waiter_skip() is called via
2897 * zil_itxg_clean().
2898 *
2899 * Thus, it's possible for this commit waiter (i.e. the
2900 * "zcw" variable) to be found in this "in between" state;
2901 * where it's "zcw_lwb" field is NULL, and it hasn't yet
2902 * been skipped, so it's "zcw_done" field is still B_FALSE.
2903 */
2904 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2905
2906 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2907 ASSERT3B(timedout, ==, B_FALSE);
2908
2909 /*
2910 * If the lwb hasn't been issued yet, then we
2911 * need to wait with a timeout, in case this
2912 * function needs to issue the lwb after the
2913 * timeout is reached; responsibility (2) from
2914 * the comment above this function.
2915 */
2916 int rc = cv_timedwait_hires(&zcw->zcw_cv,
2917 &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2918 CALLOUT_FLAG_ABSOLUTE);
2919
2920 if (rc != -1 || zcw->zcw_done)
2921 continue;
2922
2923 timedout = B_TRUE;
2924 zil_commit_waiter_timeout(zilog, zcw);
2925
2926 if (!zcw->zcw_done) {
2927 /*
2928 * If the commit waiter has already been
2929 * marked "done", it's possible for the
2930 * waiter's lwb structure to have already
2931 * been freed. Thus, we can only reliably
2932 * make these assertions if the waiter
2933 * isn't done.
2934 */
2935 ASSERT3P(lwb, ==, zcw->zcw_lwb);
2936 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2937 }
2938 } else {
2939 /*
2940 * If the lwb isn't open, then it must have already
2941 * been issued. In that case, there's no need to
2942 * use a timeout when waiting for the lwb to
2943 * complete.
2944 *
2945 * Additionally, if the lwb is NULL, the waiter
2946 * will soon be signaled and marked done via
2947 * zil_clean() and zil_itxg_clean(), so no timeout
2948 * is required.
2949 */
2950
2951 IMPLY(lwb != NULL,
2952 lwb->lwb_state == LWB_STATE_ISSUED ||
2953 lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2954 lwb->lwb_state == LWB_STATE_FLUSH_DONE);
2955 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2956 }
2957 }
2958
2959 mutex_exit(&zcw->zcw_lock);
2960 }
2961
2962 static zil_commit_waiter_t *
2963 zil_alloc_commit_waiter(void)
2964 {
2965 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
2966
2967 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
2968 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
2969 list_link_init(&zcw->zcw_node);
2970 zcw->zcw_lwb = NULL;
2971 zcw->zcw_done = B_FALSE;
2972 zcw->zcw_zio_error = 0;
2973
2974 return (zcw);
2975 }
2976
2977 static void
2978 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
2979 {
2980 ASSERT(!list_link_active(&zcw->zcw_node));
2981 ASSERT3P(zcw->zcw_lwb, ==, NULL);
2982 ASSERT3B(zcw->zcw_done, ==, B_TRUE);
2983 mutex_destroy(&zcw->zcw_lock);
2984 cv_destroy(&zcw->zcw_cv);
2985 kmem_cache_free(zil_zcw_cache, zcw);
2986 }
2987
2988 /*
2989 * This function is used to create a TX_COMMIT itx and assign it. This
2990 * way, it will be linked into the ZIL's list of synchronous itxs, and
2991 * then later committed to an lwb (or skipped) when
2992 * zil_process_commit_list() is called.
2993 */
2994 static void
2995 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
2996 {
2997 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
2998 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
2999
3000 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
3001 itx->itx_sync = B_TRUE;
3002 itx->itx_private = zcw;
3003
3004 zil_itx_assign(zilog, itx, tx);
3005
3006 dmu_tx_commit(tx);
3007 }
3008
3009 /*
3010 * Commit ZFS Intent Log transactions (itxs) to stable storage.
3011 *
3012 * When writing ZIL transactions to the on-disk representation of the
3013 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
3014 * itxs can be committed to a single lwb. Once a lwb is written and
3015 * committed to stable storage (i.e. the lwb is written, and vdevs have
3016 * been flushed), each itx that was committed to that lwb is also
3017 * considered to be committed to stable storage.
3018 *
3019 * When an itx is committed to an lwb, the log record (lr_t) contained
3020 * by the itx is copied into the lwb's zio buffer, and once this buffer
3021 * is written to disk, it becomes an on-disk ZIL block.
3022 *
3023 * As itxs are generated, they're inserted into the ZIL's queue of
3024 * uncommitted itxs. The semantics of zil_commit() are such that it will
3025 * block until all itxs that were in the queue when it was called, are
3026 * committed to stable storage.
3027 *
3028 * If "foid" is zero, this means all "synchronous" and "asynchronous"
3029 * itxs, for all objects in the dataset, will be committed to stable
3030 * storage prior to zil_commit() returning. If "foid" is non-zero, all
3031 * "synchronous" itxs for all objects, but only "asynchronous" itxs
3032 * that correspond to the foid passed in, will be committed to stable
3033 * storage prior to zil_commit() returning.
3034 *
3035 * Generally speaking, when zil_commit() is called, the consumer doesn't
3036 * actually care about _all_ of the uncommitted itxs. Instead, they're
3037 * simply trying to waiting for a specific itx to be committed to disk,
3038 * but the interface(s) for interacting with the ZIL don't allow such
3039 * fine-grained communication. A better interface would allow a consumer
3040 * to create and assign an itx, and then pass a reference to this itx to
3041 * zil_commit(); such that zil_commit() would return as soon as that
3042 * specific itx was committed to disk (instead of waiting for _all_
3043 * itxs to be committed).
3044 *
3045 * When a thread calls zil_commit() a special "commit itx" will be
3046 * generated, along with a corresponding "waiter" for this commit itx.
3047 * zil_commit() will wait on this waiter's CV, such that when the waiter
3048 * is marked done, and signaled, zil_commit() will return.
3049 *
3050 * This commit itx is inserted into the queue of uncommitted itxs. This
3051 * provides an easy mechanism for determining which itxs were in the
3052 * queue prior to zil_commit() having been called, and which itxs were
3053 * added after zil_commit() was called.
3054 *
3055 * The commit itx is special; it doesn't have any on-disk representation.
3056 * When a commit itx is "committed" to an lwb, the waiter associated
3057 * with it is linked onto the lwb's list of waiters. Then, when that lwb
3058 * completes, each waiter on the lwb's list is marked done and signaled
3059 * -- allowing the thread waiting on the waiter to return from zil_commit().
3060 *
3061 * It's important to point out a few critical factors that allow us
3062 * to make use of the commit itxs, commit waiters, per-lwb lists of
3063 * commit waiters, and zio completion callbacks like we're doing:
3064 *
3065 * 1. The list of waiters for each lwb is traversed, and each commit
3066 * waiter is marked "done" and signaled, in the zio completion
3067 * callback of the lwb's zio[*].
3068 *
3069 * * Actually, the waiters are signaled in the zio completion
3070 * callback of the root zio for the DKIOCFLUSHWRITECACHE commands
3071 * that are sent to the vdevs upon completion of the lwb zio.
3072 *
3073 * 2. When the itxs are inserted into the ZIL's queue of uncommitted
3074 * itxs, the order in which they are inserted is preserved[*]; as
3075 * itxs are added to the queue, they are added to the tail of
3076 * in-memory linked lists.
3077 *
3078 * When committing the itxs to lwbs (to be written to disk), they
3079 * are committed in the same order in which the itxs were added to
3080 * the uncommitted queue's linked list(s); i.e. the linked list of
3081 * itxs to commit is traversed from head to tail, and each itx is
3082 * committed to an lwb in that order.
3083 *
3084 * * To clarify:
3085 *
3086 * - the order of "sync" itxs is preserved w.r.t. other
3087 * "sync" itxs, regardless of the corresponding objects.
3088 * - the order of "async" itxs is preserved w.r.t. other
3089 * "async" itxs corresponding to the same object.
3090 * - the order of "async" itxs is *not* preserved w.r.t. other
3091 * "async" itxs corresponding to different objects.
3092 * - the order of "sync" itxs w.r.t. "async" itxs (or vice
3093 * versa) is *not* preserved, even for itxs that correspond
3094 * to the same object.
3095 *
3096 * For more details, see: zil_itx_assign(), zil_async_to_sync(),
3097 * zil_get_commit_list(), and zil_process_commit_list().
3098 *
3099 * 3. The lwbs represent a linked list of blocks on disk. Thus, any
3100 * lwb cannot be considered committed to stable storage, until its
3101 * "previous" lwb is also committed to stable storage. This fact,
3102 * coupled with the fact described above, means that itxs are
3103 * committed in (roughly) the order in which they were generated.
3104 * This is essential because itxs are dependent on prior itxs.
3105 * Thus, we *must not* deem an itx as being committed to stable
3106 * storage, until *all* prior itxs have also been committed to
3107 * stable storage.
3108 *
3109 * To enforce this ordering of lwb zio's, while still leveraging as
3110 * much of the underlying storage performance as possible, we rely
3111 * on two fundamental concepts:
3112 *
3113 * 1. The creation and issuance of lwb zio's is protected by
3114 * the zilog's "zl_issuer_lock", which ensures only a single
3115 * thread is creating and/or issuing lwb's at a time
3116 * 2. The "previous" lwb is a child of the "current" lwb
3117 * (leveraging the zio parent-child dependency graph)
3118 *
3119 * By relying on this parent-child zio relationship, we can have
3120 * many lwb zio's concurrently issued to the underlying storage,
3121 * but the order in which they complete will be the same order in
3122 * which they were created.
3123 */
3124 void
3125 zil_commit(zilog_t *zilog, uint64_t foid)
3126 {
3127 /*
3128 * We should never attempt to call zil_commit on a snapshot for
3129 * a couple of reasons:
3130 *
3131 * 1. A snapshot may never be modified, thus it cannot have any
3132 * in-flight itxs that would have modified the dataset.
3133 *
3134 * 2. By design, when zil_commit() is called, a commit itx will
3135 * be assigned to this zilog; as a result, the zilog will be
3136 * dirtied. We must not dirty the zilog of a snapshot; there's
3137 * checks in the code that enforce this invariant, and will
3138 * cause a panic if it's not upheld.
3139 */
3140 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
3141
3142 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3143 return;
3144
3145 if (!spa_writeable(zilog->zl_spa)) {
3146 /*
3147 * If the SPA is not writable, there should never be any
3148 * pending itxs waiting to be committed to disk. If that
3149 * weren't true, we'd skip writing those itxs out, and
3150 * would break the semantics of zil_commit(); thus, we're
3151 * verifying that truth before we return to the caller.
3152 */
3153 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3154 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3155 for (int i = 0; i < TXG_SIZE; i++)
3156 ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
3157 return;
3158 }
3159
3160 /*
3161 * If the ZIL is suspended, we don't want to dirty it by calling
3162 * zil_commit_itx_assign() below, nor can we write out
3163 * lwbs like would be done in zil_commit_write(). Thus, we
3164 * simply rely on txg_wait_synced() to maintain the necessary
3165 * semantics, and avoid calling those functions altogether.
3166 */
3167 if (zilog->zl_suspend > 0) {
3168 txg_wait_synced(zilog->zl_dmu_pool, 0);
3169 return;
3170 }
3171
3172 zil_commit_impl(zilog, foid);
3173 }
3174
3175 void
3176 zil_commit_impl(zilog_t *zilog, uint64_t foid)
3177 {
3178 ZIL_STAT_BUMP(zilog, zil_commit_count);
3179
3180 /*
3181 * Move the "async" itxs for the specified foid to the "sync"
3182 * queues, such that they will be later committed (or skipped)
3183 * to an lwb when zil_process_commit_list() is called.
3184 *
3185 * Since these "async" itxs must be committed prior to this
3186 * call to zil_commit returning, we must perform this operation
3187 * before we call zil_commit_itx_assign().
3188 */
3189 zil_async_to_sync(zilog, foid);
3190
3191 /*
3192 * We allocate a new "waiter" structure which will initially be
3193 * linked to the commit itx using the itx's "itx_private" field.
3194 * Since the commit itx doesn't represent any on-disk state,
3195 * when it's committed to an lwb, rather than copying the its
3196 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
3197 * added to the lwb's list of waiters. Then, when the lwb is
3198 * committed to stable storage, each waiter in the lwb's list of
3199 * waiters will be marked "done", and signalled.
3200 *
3201 * We must create the waiter and assign the commit itx prior to
3202 * calling zil_commit_writer(), or else our specific commit itx
3203 * is not guaranteed to be committed to an lwb prior to calling
3204 * zil_commit_waiter().
3205 */
3206 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
3207 zil_commit_itx_assign(zilog, zcw);
3208
3209 zil_commit_writer(zilog, zcw);
3210 zil_commit_waiter(zilog, zcw);
3211
3212 if (zcw->zcw_zio_error != 0) {
3213 /*
3214 * If there was an error writing out the ZIL blocks that
3215 * this thread is waiting on, then we fallback to
3216 * relying on spa_sync() to write out the data this
3217 * thread is waiting on. Obviously this has performance
3218 * implications, but the expectation is for this to be
3219 * an exceptional case, and shouldn't occur often.
3220 */
3221 DTRACE_PROBE2(zil__commit__io__error,
3222 zilog_t *, zilog, zil_commit_waiter_t *, zcw);
3223 txg_wait_synced(zilog->zl_dmu_pool, 0);
3224 }
3225
3226 zil_free_commit_waiter(zcw);
3227 }
3228
3229 /*
3230 * Called in syncing context to free committed log blocks and update log header.
3231 */
3232 void
3233 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
3234 {
3235 zil_header_t *zh = zil_header_in_syncing_context(zilog);
3236 uint64_t txg = dmu_tx_get_txg(tx);
3237 spa_t *spa = zilog->zl_spa;
3238 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
3239 lwb_t *lwb;
3240
3241 /*
3242 * We don't zero out zl_destroy_txg, so make sure we don't try
3243 * to destroy it twice.
3244 */
3245 if (spa_sync_pass(spa) != 1)
3246 return;
3247
3248 zil_lwb_flush_wait_all(zilog, txg);
3249
3250 mutex_enter(&zilog->zl_lock);
3251
3252 ASSERT(zilog->zl_stop_sync == 0);
3253
3254 if (*replayed_seq != 0) {
3255 ASSERT(zh->zh_replay_seq < *replayed_seq);
3256 zh->zh_replay_seq = *replayed_seq;
3257 *replayed_seq = 0;
3258 }
3259
3260 if (zilog->zl_destroy_txg == txg) {
3261 blkptr_t blk = zh->zh_log;
3262 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
3263
3264 ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
3265
3266 memset(zh, 0, sizeof (zil_header_t));
3267 memset(zilog->zl_replayed_seq, 0,
3268 sizeof (zilog->zl_replayed_seq));
3269
3270 if (zilog->zl_keep_first) {
3271 /*
3272 * If this block was part of log chain that couldn't
3273 * be claimed because a device was missing during
3274 * zil_claim(), but that device later returns,
3275 * then this block could erroneously appear valid.
3276 * To guard against this, assign a new GUID to the new
3277 * log chain so it doesn't matter what blk points to.
3278 */
3279 zil_init_log_chain(zilog, &blk);
3280 zh->zh_log = blk;
3281 } else {
3282 /*
3283 * A destroyed ZIL chain can't contain any TX_SETSAXATTR
3284 * records. So, deactivate the feature for this dataset.
3285 * We activate it again when we start a new ZIL chain.
3286 */
3287 if (dsl_dataset_feature_is_active(ds,
3288 SPA_FEATURE_ZILSAXATTR))
3289 dsl_dataset_deactivate_feature(ds,
3290 SPA_FEATURE_ZILSAXATTR, tx);
3291 }
3292 }
3293
3294 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
3295 zh->zh_log = lwb->lwb_blk;
3296 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
3297 break;
3298 list_remove(&zilog->zl_lwb_list, lwb);
3299 zio_free(spa, txg, &lwb->lwb_blk);
3300 zil_free_lwb(zilog, lwb);
3301
3302 /*
3303 * If we don't have anything left in the lwb list then
3304 * we've had an allocation failure and we need to zero
3305 * out the zil_header blkptr so that we don't end
3306 * up freeing the same block twice.
3307 */
3308 if (list_head(&zilog->zl_lwb_list) == NULL)
3309 BP_ZERO(&zh->zh_log);
3310 }
3311
3312 /*
3313 * Remove fastwrite on any blocks that have been pre-allocated for
3314 * the next commit. This prevents fastwrite counter pollution by
3315 * unused, long-lived LWBs.
3316 */
3317 for (; lwb != NULL; lwb = list_next(&zilog->zl_lwb_list, lwb)) {
3318 if (lwb->lwb_fastwrite && !lwb->lwb_write_zio) {
3319 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
3320 lwb->lwb_fastwrite = 0;
3321 }
3322 }
3323
3324 mutex_exit(&zilog->zl_lock);
3325 }
3326
3327 static int
3328 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
3329 {
3330 (void) unused, (void) kmflag;
3331 lwb_t *lwb = vbuf;
3332 list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
3333 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
3334 offsetof(zil_commit_waiter_t, zcw_node));
3335 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
3336 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
3337 mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
3338 return (0);
3339 }
3340
3341 static void
3342 zil_lwb_dest(void *vbuf, void *unused)
3343 {
3344 (void) unused;
3345 lwb_t *lwb = vbuf;
3346 mutex_destroy(&lwb->lwb_vdev_lock);
3347 avl_destroy(&lwb->lwb_vdev_tree);
3348 list_destroy(&lwb->lwb_waiters);
3349 list_destroy(&lwb->lwb_itxs);
3350 }
3351
3352 void
3353 zil_init(void)
3354 {
3355 zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
3356 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
3357
3358 zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
3359 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3360
3361 zil_sums_init(&zil_sums_global);
3362 zil_kstats_global = kstat_create("zfs", 0, "zil", "misc",
3363 KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
3364 KSTAT_FLAG_VIRTUAL);
3365
3366 if (zil_kstats_global != NULL) {
3367 zil_kstats_global->ks_data = &zil_stats;
3368 zil_kstats_global->ks_update = zil_kstats_global_update;
3369 zil_kstats_global->ks_private = NULL;
3370 kstat_install(zil_kstats_global);
3371 }
3372 }
3373
3374 void
3375 zil_fini(void)
3376 {
3377 kmem_cache_destroy(zil_zcw_cache);
3378 kmem_cache_destroy(zil_lwb_cache);
3379
3380 if (zil_kstats_global != NULL) {
3381 kstat_delete(zil_kstats_global);
3382 zil_kstats_global = NULL;
3383 }
3384
3385 zil_sums_fini(&zil_sums_global);
3386 }
3387
3388 void
3389 zil_set_sync(zilog_t *zilog, uint64_t sync)
3390 {
3391 zilog->zl_sync = sync;
3392 }
3393
3394 void
3395 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
3396 {
3397 zilog->zl_logbias = logbias;
3398 }
3399
3400 zilog_t *
3401 zil_alloc(objset_t *os, zil_header_t *zh_phys)
3402 {
3403 zilog_t *zilog;
3404
3405 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
3406
3407 zilog->zl_header = zh_phys;
3408 zilog->zl_os = os;
3409 zilog->zl_spa = dmu_objset_spa(os);
3410 zilog->zl_dmu_pool = dmu_objset_pool(os);
3411 zilog->zl_destroy_txg = TXG_INITIAL - 1;
3412 zilog->zl_logbias = dmu_objset_logbias(os);
3413 zilog->zl_sync = dmu_objset_syncprop(os);
3414 zilog->zl_dirty_max_txg = 0;
3415 zilog->zl_last_lwb_opened = NULL;
3416 zilog->zl_last_lwb_latency = 0;
3417 zilog->zl_max_block_size = zil_maxblocksize;
3418
3419 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
3420 mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
3421 mutex_init(&zilog->zl_lwb_io_lock, NULL, MUTEX_DEFAULT, NULL);
3422
3423 for (int i = 0; i < TXG_SIZE; i++) {
3424 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
3425 MUTEX_DEFAULT, NULL);
3426 }
3427
3428 list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
3429 offsetof(lwb_t, lwb_node));
3430
3431 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
3432 offsetof(itx_t, itx_node));
3433
3434 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
3435 cv_init(&zilog->zl_lwb_io_cv, NULL, CV_DEFAULT, NULL);
3436
3437 return (zilog);
3438 }
3439
3440 void
3441 zil_free(zilog_t *zilog)
3442 {
3443 int i;
3444
3445 zilog->zl_stop_sync = 1;
3446
3447 ASSERT0(zilog->zl_suspend);
3448 ASSERT0(zilog->zl_suspending);
3449
3450 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3451 list_destroy(&zilog->zl_lwb_list);
3452
3453 ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
3454 list_destroy(&zilog->zl_itx_commit_list);
3455
3456 for (i = 0; i < TXG_SIZE; i++) {
3457 /*
3458 * It's possible for an itx to be generated that doesn't dirty
3459 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
3460 * callback to remove the entry. We remove those here.
3461 *
3462 * Also free up the ziltest itxs.
3463 */
3464 if (zilog->zl_itxg[i].itxg_itxs)
3465 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
3466 mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
3467 }
3468
3469 mutex_destroy(&zilog->zl_issuer_lock);
3470 mutex_destroy(&zilog->zl_lock);
3471 mutex_destroy(&zilog->zl_lwb_io_lock);
3472
3473 cv_destroy(&zilog->zl_cv_suspend);
3474 cv_destroy(&zilog->zl_lwb_io_cv);
3475
3476 kmem_free(zilog, sizeof (zilog_t));
3477 }
3478
3479 /*
3480 * Open an intent log.
3481 */
3482 zilog_t *
3483 zil_open(objset_t *os, zil_get_data_t *get_data, zil_sums_t *zil_sums)
3484 {
3485 zilog_t *zilog = dmu_objset_zil(os);
3486
3487 ASSERT3P(zilog->zl_get_data, ==, NULL);
3488 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3489 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3490
3491 zilog->zl_get_data = get_data;
3492 zilog->zl_sums = zil_sums;
3493
3494 return (zilog);
3495 }
3496
3497 /*
3498 * Close an intent log.
3499 */
3500 void
3501 zil_close(zilog_t *zilog)
3502 {
3503 lwb_t *lwb;
3504 uint64_t txg;
3505
3506 if (!dmu_objset_is_snapshot(zilog->zl_os)) {
3507 zil_commit(zilog, 0);
3508 } else {
3509 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
3510 ASSERT0(zilog->zl_dirty_max_txg);
3511 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
3512 }
3513
3514 mutex_enter(&zilog->zl_lock);
3515 lwb = list_tail(&zilog->zl_lwb_list);
3516 if (lwb == NULL)
3517 txg = zilog->zl_dirty_max_txg;
3518 else
3519 txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
3520 mutex_exit(&zilog->zl_lock);
3521
3522 /*
3523 * zl_lwb_max_issued_txg may be larger than lwb_max_txg. It depends
3524 * on the time when the dmu_tx transaction is assigned in
3525 * zil_lwb_write_issue().
3526 */
3527 mutex_enter(&zilog->zl_lwb_io_lock);
3528 txg = MAX(zilog->zl_lwb_max_issued_txg, txg);
3529 mutex_exit(&zilog->zl_lwb_io_lock);
3530
3531 /*
3532 * We need to use txg_wait_synced() to wait until that txg is synced.
3533 * zil_sync() will guarantee all lwbs up to that txg have been
3534 * written out, flushed, and cleaned.
3535 */
3536 if (txg != 0)
3537 txg_wait_synced(zilog->zl_dmu_pool, txg);
3538
3539 if (zilog_is_dirty(zilog))
3540 zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog,
3541 (u_longlong_t)txg);
3542 if (txg < spa_freeze_txg(zilog->zl_spa))
3543 VERIFY(!zilog_is_dirty(zilog));
3544
3545 zilog->zl_get_data = NULL;
3546
3547 /*
3548 * We should have only one lwb left on the list; remove it now.
3549 */
3550 mutex_enter(&zilog->zl_lock);
3551 lwb = list_head(&zilog->zl_lwb_list);
3552 if (lwb != NULL) {
3553 ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
3554 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
3555
3556 if (lwb->lwb_fastwrite)
3557 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
3558
3559 list_remove(&zilog->zl_lwb_list, lwb);
3560 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
3561 zil_free_lwb(zilog, lwb);
3562 }
3563 mutex_exit(&zilog->zl_lock);
3564 }
3565
3566 static const char *suspend_tag = "zil suspending";
3567
3568 /*
3569 * Suspend an intent log. While in suspended mode, we still honor
3570 * synchronous semantics, but we rely on txg_wait_synced() to do it.
3571 * On old version pools, we suspend the log briefly when taking a
3572 * snapshot so that it will have an empty intent log.
3573 *
3574 * Long holds are not really intended to be used the way we do here --
3575 * held for such a short time. A concurrent caller of dsl_dataset_long_held()
3576 * could fail. Therefore we take pains to only put a long hold if it is
3577 * actually necessary. Fortunately, it will only be necessary if the
3578 * objset is currently mounted (or the ZVOL equivalent). In that case it
3579 * will already have a long hold, so we are not really making things any worse.
3580 *
3581 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3582 * zvol_state_t), and use their mechanism to prevent their hold from being
3583 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for
3584 * very little gain.
3585 *
3586 * if cookiep == NULL, this does both the suspend & resume.
3587 * Otherwise, it returns with the dataset "long held", and the cookie
3588 * should be passed into zil_resume().
3589 */
3590 int
3591 zil_suspend(const char *osname, void **cookiep)
3592 {
3593 objset_t *os;
3594 zilog_t *zilog;
3595 const zil_header_t *zh;
3596 int error;
3597
3598 error = dmu_objset_hold(osname, suspend_tag, &os);
3599 if (error != 0)
3600 return (error);
3601 zilog = dmu_objset_zil(os);
3602
3603 mutex_enter(&zilog->zl_lock);
3604 zh = zilog->zl_header;
3605
3606 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */
3607 mutex_exit(&zilog->zl_lock);
3608 dmu_objset_rele(os, suspend_tag);
3609 return (SET_ERROR(EBUSY));
3610 }
3611
3612 /*
3613 * Don't put a long hold in the cases where we can avoid it. This
3614 * is when there is no cookie so we are doing a suspend & resume
3615 * (i.e. called from zil_vdev_offline()), and there's nothing to do
3616 * for the suspend because it's already suspended, or there's no ZIL.
3617 */
3618 if (cookiep == NULL && !zilog->zl_suspending &&
3619 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3620 mutex_exit(&zilog->zl_lock);
3621 dmu_objset_rele(os, suspend_tag);
3622 return (0);
3623 }
3624
3625 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3626 dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3627
3628 zilog->zl_suspend++;
3629
3630 if (zilog->zl_suspend > 1) {
3631 /*
3632 * Someone else is already suspending it.
3633 * Just wait for them to finish.
3634 */
3635
3636 while (zilog->zl_suspending)
3637 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
3638 mutex_exit(&zilog->zl_lock);
3639
3640 if (cookiep == NULL)
3641 zil_resume(os);
3642 else
3643 *cookiep = os;
3644 return (0);
3645 }
3646
3647 /*
3648 * If there is no pointer to an on-disk block, this ZIL must not
3649 * be active (e.g. filesystem not mounted), so there's nothing
3650 * to clean up.
3651 */
3652 if (BP_IS_HOLE(&zh->zh_log)) {
3653 ASSERT(cookiep != NULL); /* fast path already handled */
3654
3655 *cookiep = os;
3656 mutex_exit(&zilog->zl_lock);
3657 return (0);
3658 }
3659
3660 /*
3661 * The ZIL has work to do. Ensure that the associated encryption
3662 * key will remain mapped while we are committing the log by
3663 * grabbing a reference to it. If the key isn't loaded we have no
3664 * choice but to return an error until the wrapping key is loaded.
3665 */
3666 if (os->os_encrypted &&
3667 dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) {
3668 zilog->zl_suspend--;
3669 mutex_exit(&zilog->zl_lock);
3670 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3671 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3672 return (SET_ERROR(EACCES));
3673 }
3674
3675 zilog->zl_suspending = B_TRUE;
3676 mutex_exit(&zilog->zl_lock);
3677
3678 /*
3679 * We need to use zil_commit_impl to ensure we wait for all
3680 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwbs to be committed
3681 * to disk before proceeding. If we used zil_commit instead, it
3682 * would just call txg_wait_synced(), because zl_suspend is set.
3683 * txg_wait_synced() doesn't wait for these lwb's to be
3684 * LWB_STATE_FLUSH_DONE before returning.
3685 */
3686 zil_commit_impl(zilog, 0);
3687
3688 /*
3689 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
3690 * use txg_wait_synced() to ensure the data from the zilog has
3691 * migrated to the main pool before calling zil_destroy().
3692 */
3693 txg_wait_synced(zilog->zl_dmu_pool, 0);
3694
3695 zil_destroy(zilog, B_FALSE);
3696
3697 mutex_enter(&zilog->zl_lock);
3698 zilog->zl_suspending = B_FALSE;
3699 cv_broadcast(&zilog->zl_cv_suspend);
3700 mutex_exit(&zilog->zl_lock);
3701
3702 if (os->os_encrypted)
3703 dsl_dataset_remove_key_mapping(dmu_objset_ds(os));
3704
3705 if (cookiep == NULL)
3706 zil_resume(os);
3707 else
3708 *cookiep = os;
3709 return (0);
3710 }
3711
3712 void
3713 zil_resume(void *cookie)
3714 {
3715 objset_t *os = cookie;
3716 zilog_t *zilog = dmu_objset_zil(os);
3717
3718 mutex_enter(&zilog->zl_lock);
3719 ASSERT(zilog->zl_suspend != 0);
3720 zilog->zl_suspend--;
3721 mutex_exit(&zilog->zl_lock);
3722 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3723 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3724 }
3725
3726 typedef struct zil_replay_arg {
3727 zil_replay_func_t *const *zr_replay;
3728 void *zr_arg;
3729 boolean_t zr_byteswap;
3730 char *zr_lr;
3731 } zil_replay_arg_t;
3732
3733 static int
3734 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error)
3735 {
3736 char name[ZFS_MAX_DATASET_NAME_LEN];
3737
3738 zilog->zl_replaying_seq--; /* didn't actually replay this one */
3739
3740 dmu_objset_name(zilog->zl_os, name);
3741
3742 cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3743 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3744 (u_longlong_t)lr->lrc_seq,
3745 (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3746 (lr->lrc_txtype & TX_CI) ? "CI" : "");
3747
3748 return (error);
3749 }
3750
3751 static int
3752 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra,
3753 uint64_t claim_txg)
3754 {
3755 zil_replay_arg_t *zr = zra;
3756 const zil_header_t *zh = zilog->zl_header;
3757 uint64_t reclen = lr->lrc_reclen;
3758 uint64_t txtype = lr->lrc_txtype;
3759 int error = 0;
3760
3761 zilog->zl_replaying_seq = lr->lrc_seq;
3762
3763 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */
3764 return (0);
3765
3766 if (lr->lrc_txg < claim_txg) /* already committed */
3767 return (0);
3768
3769 /* Strip case-insensitive bit, still present in log record */
3770 txtype &= ~TX_CI;
3771
3772 if (txtype == 0 || txtype >= TX_MAX_TYPE)
3773 return (zil_replay_error(zilog, lr, EINVAL));
3774
3775 /*
3776 * If this record type can be logged out of order, the object
3777 * (lr_foid) may no longer exist. That's legitimate, not an error.
3778 */
3779 if (TX_OOO(txtype)) {
3780 error = dmu_object_info(zilog->zl_os,
3781 LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
3782 if (error == ENOENT || error == EEXIST)
3783 return (0);
3784 }
3785
3786 /*
3787 * Make a copy of the data so we can revise and extend it.
3788 */
3789 memcpy(zr->zr_lr, lr, reclen);
3790
3791 /*
3792 * If this is a TX_WRITE with a blkptr, suck in the data.
3793 */
3794 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3795 error = zil_read_log_data(zilog, (lr_write_t *)lr,
3796 zr->zr_lr + reclen);
3797 if (error != 0)
3798 return (zil_replay_error(zilog, lr, error));
3799 }
3800
3801 /*
3802 * The log block containing this lr may have been byteswapped
3803 * so that we can easily examine common fields like lrc_txtype.
3804 * However, the log is a mix of different record types, and only the
3805 * replay vectors know how to byteswap their records. Therefore, if
3806 * the lr was byteswapped, undo it before invoking the replay vector.
3807 */
3808 if (zr->zr_byteswap)
3809 byteswap_uint64_array(zr->zr_lr, reclen);
3810
3811 /*
3812 * We must now do two things atomically: replay this log record,
3813 * and update the log header sequence number to reflect the fact that
3814 * we did so. At the end of each replay function the sequence number
3815 * is updated if we are in replay mode.
3816 */
3817 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
3818 if (error != 0) {
3819 /*
3820 * The DMU's dnode layer doesn't see removes until the txg
3821 * commits, so a subsequent claim can spuriously fail with
3822 * EEXIST. So if we receive any error we try syncing out
3823 * any removes then retry the transaction. Note that we
3824 * specify B_FALSE for byteswap now, so we don't do it twice.
3825 */
3826 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3827 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
3828 if (error != 0)
3829 return (zil_replay_error(zilog, lr, error));
3830 }
3831 return (0);
3832 }
3833
3834 static int
3835 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg)
3836 {
3837 (void) bp, (void) arg, (void) claim_txg;
3838
3839 zilog->zl_replay_blks++;
3840
3841 return (0);
3842 }
3843
3844 /*
3845 * If this dataset has a non-empty intent log, replay it and destroy it.
3846 */
3847 void
3848 zil_replay(objset_t *os, void *arg,
3849 zil_replay_func_t *const replay_func[TX_MAX_TYPE])
3850 {
3851 zilog_t *zilog = dmu_objset_zil(os);
3852 const zil_header_t *zh = zilog->zl_header;
3853 zil_replay_arg_t zr;
3854
3855 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
3856 zil_destroy(zilog, B_TRUE);
3857 return;
3858 }
3859
3860 zr.zr_replay = replay_func;
3861 zr.zr_arg = arg;
3862 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
3863 zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
3864
3865 /*
3866 * Wait for in-progress removes to sync before starting replay.
3867 */
3868 txg_wait_synced(zilog->zl_dmu_pool, 0);
3869
3870 zilog->zl_replay = B_TRUE;
3871 zilog->zl_replay_time = ddi_get_lbolt();
3872 ASSERT(zilog->zl_replay_blks == 0);
3873 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
3874 zh->zh_claim_txg, B_TRUE);
3875 vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
3876
3877 zil_destroy(zilog, B_FALSE);
3878 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
3879 zilog->zl_replay = B_FALSE;
3880 }
3881
3882 boolean_t
3883 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
3884 {
3885 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3886 return (B_TRUE);
3887
3888 if (zilog->zl_replay) {
3889 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
3890 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3891 zilog->zl_replaying_seq;
3892 return (B_TRUE);
3893 }
3894
3895 return (B_FALSE);
3896 }
3897
3898 int
3899 zil_reset(const char *osname, void *arg)
3900 {
3901 (void) arg;
3902
3903 int error = zil_suspend(osname, NULL);
3904 /* EACCES means crypto key not loaded */
3905 if ((error == EACCES) || (error == EBUSY))
3906 return (SET_ERROR(error));
3907 if (error != 0)
3908 return (SET_ERROR(EEXIST));
3909 return (0);
3910 }
3911
3912 EXPORT_SYMBOL(zil_alloc);
3913 EXPORT_SYMBOL(zil_free);
3914 EXPORT_SYMBOL(zil_open);
3915 EXPORT_SYMBOL(zil_close);
3916 EXPORT_SYMBOL(zil_replay);
3917 EXPORT_SYMBOL(zil_replaying);
3918 EXPORT_SYMBOL(zil_destroy);
3919 EXPORT_SYMBOL(zil_destroy_sync);
3920 EXPORT_SYMBOL(zil_itx_create);
3921 EXPORT_SYMBOL(zil_itx_destroy);
3922 EXPORT_SYMBOL(zil_itx_assign);
3923 EXPORT_SYMBOL(zil_commit);
3924 EXPORT_SYMBOL(zil_claim);
3925 EXPORT_SYMBOL(zil_check_log_chain);
3926 EXPORT_SYMBOL(zil_sync);
3927 EXPORT_SYMBOL(zil_clean);
3928 EXPORT_SYMBOL(zil_suspend);
3929 EXPORT_SYMBOL(zil_resume);
3930 EXPORT_SYMBOL(zil_lwb_add_block);
3931 EXPORT_SYMBOL(zil_bp_tree_add);
3932 EXPORT_SYMBOL(zil_set_sync);
3933 EXPORT_SYMBOL(zil_set_logbias);
3934 EXPORT_SYMBOL(zil_sums_init);
3935 EXPORT_SYMBOL(zil_sums_fini);
3936 EXPORT_SYMBOL(zil_kstat_values_update);
3937
3938 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, UINT, ZMOD_RW,
3939 "ZIL block open timeout percentage");
3940
3941 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW,
3942 "Disable intent logging replay");
3943
3944 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW,
3945 "Disable ZIL cache flushes");
3946
3947 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, U64, ZMOD_RW,
3948 "Limit in bytes slog sync writes per commit");
3949
3950 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, UINT, ZMOD_RW,
3951 "Limit in bytes of ZIL log block size");