]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zil.c
Clean up CSTYLEDs
[mirror_zfs.git] / module / zfs / zil.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Integros [integros.com]
25 * Copyright (c) 2018 Datto Inc.
26 */
27
28 /* Portions Copyright 2010 Robert Milkowski */
29
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/zap.h>
35 #include <sys/arc.h>
36 #include <sys/stat.h>
37 #include <sys/zil.h>
38 #include <sys/zil_impl.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/metaslab.h>
44 #include <sys/trace_zfs.h>
45 #include <sys/abd.h>
46
47 /*
48 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
49 * calls that change the file system. Each itx has enough information to
50 * be able to replay them after a system crash, power loss, or
51 * equivalent failure mode. These are stored in memory until either:
52 *
53 * 1. they are committed to the pool by the DMU transaction group
54 * (txg), at which point they can be discarded; or
55 * 2. they are committed to the on-disk ZIL for the dataset being
56 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous
57 * requirement).
58 *
59 * In the event of a crash or power loss, the itxs contained by each
60 * dataset's on-disk ZIL will be replayed when that dataset is first
61 * instantiated (e.g. if the dataset is a normal filesystem, when it is
62 * first mounted).
63 *
64 * As hinted at above, there is one ZIL per dataset (both the in-memory
65 * representation, and the on-disk representation). The on-disk format
66 * consists of 3 parts:
67 *
68 * - a single, per-dataset, ZIL header; which points to a chain of
69 * - zero or more ZIL blocks; each of which contains
70 * - zero or more ZIL records
71 *
72 * A ZIL record holds the information necessary to replay a single
73 * system call transaction. A ZIL block can hold many ZIL records, and
74 * the blocks are chained together, similarly to a singly linked list.
75 *
76 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
77 * block in the chain, and the ZIL header points to the first block in
78 * the chain.
79 *
80 * Note, there is not a fixed place in the pool to hold these ZIL
81 * blocks; they are dynamically allocated and freed as needed from the
82 * blocks available on the pool, though they can be preferentially
83 * allocated from a dedicated "log" vdev.
84 */
85
86 /*
87 * This controls the amount of time that a ZIL block (lwb) will remain
88 * "open" when it isn't "full", and it has a thread waiting for it to be
89 * committed to stable storage. Please refer to the zil_commit_waiter()
90 * function (and the comments within it) for more details.
91 */
92 static int zfs_commit_timeout_pct = 5;
93
94 /*
95 * See zil.h for more information about these fields.
96 */
97 static zil_stats_t zil_stats = {
98 { "zil_commit_count", KSTAT_DATA_UINT64 },
99 { "zil_commit_writer_count", KSTAT_DATA_UINT64 },
100 { "zil_itx_count", KSTAT_DATA_UINT64 },
101 { "zil_itx_indirect_count", KSTAT_DATA_UINT64 },
102 { "zil_itx_indirect_bytes", KSTAT_DATA_UINT64 },
103 { "zil_itx_copied_count", KSTAT_DATA_UINT64 },
104 { "zil_itx_copied_bytes", KSTAT_DATA_UINT64 },
105 { "zil_itx_needcopy_count", KSTAT_DATA_UINT64 },
106 { "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64 },
107 { "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64 },
108 { "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64 },
109 { "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64 },
110 { "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 },
111 };
112
113 static kstat_t *zil_ksp;
114
115 /*
116 * Disable intent logging replay. This global ZIL switch affects all pools.
117 */
118 int zil_replay_disable = 0;
119
120 /*
121 * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to
122 * the disk(s) by the ZIL after an LWB write has completed. Setting this
123 * will cause ZIL corruption on power loss if a volatile out-of-order
124 * write cache is enabled.
125 */
126 static int zil_nocacheflush = 0;
127
128 /*
129 * Limit SLOG write size per commit executed with synchronous priority.
130 * Any writes above that will be executed with lower (asynchronous) priority
131 * to limit potential SLOG device abuse by single active ZIL writer.
132 */
133 static unsigned long zil_slog_bulk = 768 * 1024;
134
135 static kmem_cache_t *zil_lwb_cache;
136 static kmem_cache_t *zil_zcw_cache;
137
138 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
139 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
140
141 static int
142 zil_bp_compare(const void *x1, const void *x2)
143 {
144 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
145 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
146
147 int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
148 if (likely(cmp))
149 return (cmp);
150
151 return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
152 }
153
154 static void
155 zil_bp_tree_init(zilog_t *zilog)
156 {
157 avl_create(&zilog->zl_bp_tree, zil_bp_compare,
158 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
159 }
160
161 static void
162 zil_bp_tree_fini(zilog_t *zilog)
163 {
164 avl_tree_t *t = &zilog->zl_bp_tree;
165 zil_bp_node_t *zn;
166 void *cookie = NULL;
167
168 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
169 kmem_free(zn, sizeof (zil_bp_node_t));
170
171 avl_destroy(t);
172 }
173
174 int
175 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
176 {
177 avl_tree_t *t = &zilog->zl_bp_tree;
178 const dva_t *dva;
179 zil_bp_node_t *zn;
180 avl_index_t where;
181
182 if (BP_IS_EMBEDDED(bp))
183 return (0);
184
185 dva = BP_IDENTITY(bp);
186
187 if (avl_find(t, dva, &where) != NULL)
188 return (SET_ERROR(EEXIST));
189
190 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
191 zn->zn_dva = *dva;
192 avl_insert(t, zn, where);
193
194 return (0);
195 }
196
197 static zil_header_t *
198 zil_header_in_syncing_context(zilog_t *zilog)
199 {
200 return ((zil_header_t *)zilog->zl_header);
201 }
202
203 static void
204 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
205 {
206 zio_cksum_t *zc = &bp->blk_cksum;
207
208 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0],
209 sizeof (zc->zc_word[ZIL_ZC_GUID_0]));
210 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1],
211 sizeof (zc->zc_word[ZIL_ZC_GUID_1]));
212 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
213 zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
214 }
215
216 /*
217 * Read a log block and make sure it's valid.
218 */
219 static int
220 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp,
221 blkptr_t *nbp, void *dst, char **end)
222 {
223 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
224 arc_flags_t aflags = ARC_FLAG_WAIT;
225 arc_buf_t *abuf = NULL;
226 zbookmark_phys_t zb;
227 int error;
228
229 if (zilog->zl_header->zh_claim_txg == 0)
230 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
231
232 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
233 zio_flags |= ZIO_FLAG_SPECULATIVE;
234
235 if (!decrypt)
236 zio_flags |= ZIO_FLAG_RAW;
237
238 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
239 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
240
241 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func,
242 &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
243
244 if (error == 0) {
245 zio_cksum_t cksum = bp->blk_cksum;
246
247 /*
248 * Validate the checksummed log block.
249 *
250 * Sequence numbers should be... sequential. The checksum
251 * verifier for the next block should be bp's checksum plus 1.
252 *
253 * Also check the log chain linkage and size used.
254 */
255 cksum.zc_word[ZIL_ZC_SEQ]++;
256
257 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
258 zil_chain_t *zilc = abuf->b_data;
259 char *lr = (char *)(zilc + 1);
260 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
261
262 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
263 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
264 error = SET_ERROR(ECKSUM);
265 } else {
266 ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
267 bcopy(lr, dst, len);
268 *end = (char *)dst + len;
269 *nbp = zilc->zc_next_blk;
270 }
271 } else {
272 char *lr = abuf->b_data;
273 uint64_t size = BP_GET_LSIZE(bp);
274 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
275
276 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
277 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
278 (zilc->zc_nused > (size - sizeof (*zilc)))) {
279 error = SET_ERROR(ECKSUM);
280 } else {
281 ASSERT3U(zilc->zc_nused, <=,
282 SPA_OLD_MAXBLOCKSIZE);
283 bcopy(lr, dst, zilc->zc_nused);
284 *end = (char *)dst + zilc->zc_nused;
285 *nbp = zilc->zc_next_blk;
286 }
287 }
288
289 arc_buf_destroy(abuf, &abuf);
290 }
291
292 return (error);
293 }
294
295 /*
296 * Read a TX_WRITE log data block.
297 */
298 static int
299 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
300 {
301 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
302 const blkptr_t *bp = &lr->lr_blkptr;
303 arc_flags_t aflags = ARC_FLAG_WAIT;
304 arc_buf_t *abuf = NULL;
305 zbookmark_phys_t zb;
306 int error;
307
308 if (BP_IS_HOLE(bp)) {
309 if (wbuf != NULL)
310 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
311 return (0);
312 }
313
314 if (zilog->zl_header->zh_claim_txg == 0)
315 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
316
317 /*
318 * If we are not using the resulting data, we are just checking that
319 * it hasn't been corrupted so we don't need to waste CPU time
320 * decompressing and decrypting it.
321 */
322 if (wbuf == NULL)
323 zio_flags |= ZIO_FLAG_RAW;
324
325 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
326 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
327
328 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
329 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
330
331 if (error == 0) {
332 if (wbuf != NULL)
333 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
334 arc_buf_destroy(abuf, &abuf);
335 }
336
337 return (error);
338 }
339
340 /*
341 * Parse the intent log, and call parse_func for each valid record within.
342 */
343 int
344 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
345 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg,
346 boolean_t decrypt)
347 {
348 const zil_header_t *zh = zilog->zl_header;
349 boolean_t claimed = !!zh->zh_claim_txg;
350 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
351 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
352 uint64_t max_blk_seq = 0;
353 uint64_t max_lr_seq = 0;
354 uint64_t blk_count = 0;
355 uint64_t lr_count = 0;
356 blkptr_t blk, next_blk;
357 char *lrbuf, *lrp;
358 int error = 0;
359
360 bzero(&next_blk, sizeof (blkptr_t));
361
362 /*
363 * Old logs didn't record the maximum zh_claim_lr_seq.
364 */
365 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
366 claim_lr_seq = UINT64_MAX;
367
368 /*
369 * Starting at the block pointed to by zh_log we read the log chain.
370 * For each block in the chain we strongly check that block to
371 * ensure its validity. We stop when an invalid block is found.
372 * For each block pointer in the chain we call parse_blk_func().
373 * For each record in each valid block we call parse_lr_func().
374 * If the log has been claimed, stop if we encounter a sequence
375 * number greater than the highest claimed sequence number.
376 */
377 lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
378 zil_bp_tree_init(zilog);
379
380 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
381 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
382 int reclen;
383 char *end = NULL;
384
385 if (blk_seq > claim_blk_seq)
386 break;
387
388 error = parse_blk_func(zilog, &blk, arg, txg);
389 if (error != 0)
390 break;
391 ASSERT3U(max_blk_seq, <, blk_seq);
392 max_blk_seq = blk_seq;
393 blk_count++;
394
395 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
396 break;
397
398 error = zil_read_log_block(zilog, decrypt, &blk, &next_blk,
399 lrbuf, &end);
400 if (error != 0)
401 break;
402
403 for (lrp = lrbuf; lrp < end; lrp += reclen) {
404 lr_t *lr = (lr_t *)lrp;
405 reclen = lr->lrc_reclen;
406 ASSERT3U(reclen, >=, sizeof (lr_t));
407 if (lr->lrc_seq > claim_lr_seq)
408 goto done;
409
410 error = parse_lr_func(zilog, lr, arg, txg);
411 if (error != 0)
412 goto done;
413 ASSERT3U(max_lr_seq, <, lr->lrc_seq);
414 max_lr_seq = lr->lrc_seq;
415 lr_count++;
416 }
417 }
418 done:
419 zilog->zl_parse_error = error;
420 zilog->zl_parse_blk_seq = max_blk_seq;
421 zilog->zl_parse_lr_seq = max_lr_seq;
422 zilog->zl_parse_blk_count = blk_count;
423 zilog->zl_parse_lr_count = lr_count;
424
425 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
426 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq) ||
427 (decrypt && error == EIO));
428
429 zil_bp_tree_fini(zilog);
430 zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
431
432 return (error);
433 }
434
435 static int
436 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
437 uint64_t first_txg)
438 {
439 (void) tx;
440 ASSERT(!BP_IS_HOLE(bp));
441
442 /*
443 * As we call this function from the context of a rewind to a
444 * checkpoint, each ZIL block whose txg is later than the txg
445 * that we rewind to is invalid. Thus, we return -1 so
446 * zil_parse() doesn't attempt to read it.
447 */
448 if (bp->blk_birth >= first_txg)
449 return (-1);
450
451 if (zil_bp_tree_add(zilog, bp) != 0)
452 return (0);
453
454 zio_free(zilog->zl_spa, first_txg, bp);
455 return (0);
456 }
457
458 static int
459 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
460 uint64_t first_txg)
461 {
462 (void) zilog, (void) lrc, (void) tx, (void) first_txg;
463 return (0);
464 }
465
466 static int
467 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
468 uint64_t first_txg)
469 {
470 /*
471 * Claim log block if not already committed and not already claimed.
472 * If tx == NULL, just verify that the block is claimable.
473 */
474 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
475 zil_bp_tree_add(zilog, bp) != 0)
476 return (0);
477
478 return (zio_wait(zio_claim(NULL, zilog->zl_spa,
479 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
480 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
481 }
482
483 static int
484 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
485 uint64_t first_txg)
486 {
487 lr_write_t *lr = (lr_write_t *)lrc;
488 int error;
489
490 if (lrc->lrc_txtype != TX_WRITE)
491 return (0);
492
493 /*
494 * If the block is not readable, don't claim it. This can happen
495 * in normal operation when a log block is written to disk before
496 * some of the dmu_sync() blocks it points to. In this case, the
497 * transaction cannot have been committed to anyone (we would have
498 * waited for all writes to be stable first), so it is semantically
499 * correct to declare this the end of the log.
500 */
501 if (lr->lr_blkptr.blk_birth >= first_txg) {
502 error = zil_read_log_data(zilog, lr, NULL);
503 if (error != 0)
504 return (error);
505 }
506
507 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
508 }
509
510 static int
511 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
512 uint64_t claim_txg)
513 {
514 (void) claim_txg;
515
516 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
517
518 return (0);
519 }
520
521 static int
522 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
523 uint64_t claim_txg)
524 {
525 lr_write_t *lr = (lr_write_t *)lrc;
526 blkptr_t *bp = &lr->lr_blkptr;
527
528 /*
529 * If we previously claimed it, we need to free it.
530 */
531 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
532 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
533 !BP_IS_HOLE(bp))
534 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
535
536 return (0);
537 }
538
539 static int
540 zil_lwb_vdev_compare(const void *x1, const void *x2)
541 {
542 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
543 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
544
545 return (TREE_CMP(v1, v2));
546 }
547
548 static lwb_t *
549 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg,
550 boolean_t fastwrite)
551 {
552 lwb_t *lwb;
553
554 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
555 lwb->lwb_zilog = zilog;
556 lwb->lwb_blk = *bp;
557 lwb->lwb_fastwrite = fastwrite;
558 lwb->lwb_slog = slog;
559 lwb->lwb_state = LWB_STATE_CLOSED;
560 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
561 lwb->lwb_max_txg = txg;
562 lwb->lwb_write_zio = NULL;
563 lwb->lwb_root_zio = NULL;
564 lwb->lwb_tx = NULL;
565 lwb->lwb_issued_timestamp = 0;
566 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
567 lwb->lwb_nused = sizeof (zil_chain_t);
568 lwb->lwb_sz = BP_GET_LSIZE(bp);
569 } else {
570 lwb->lwb_nused = 0;
571 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
572 }
573
574 mutex_enter(&zilog->zl_lock);
575 list_insert_tail(&zilog->zl_lwb_list, lwb);
576 mutex_exit(&zilog->zl_lock);
577
578 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
579 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
580 VERIFY(list_is_empty(&lwb->lwb_waiters));
581 VERIFY(list_is_empty(&lwb->lwb_itxs));
582
583 return (lwb);
584 }
585
586 static void
587 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
588 {
589 ASSERT(MUTEX_HELD(&zilog->zl_lock));
590 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
591 VERIFY(list_is_empty(&lwb->lwb_waiters));
592 VERIFY(list_is_empty(&lwb->lwb_itxs));
593 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
594 ASSERT3P(lwb->lwb_write_zio, ==, NULL);
595 ASSERT3P(lwb->lwb_root_zio, ==, NULL);
596 ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
597 ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
598 lwb->lwb_state == LWB_STATE_FLUSH_DONE);
599
600 /*
601 * Clear the zilog's field to indicate this lwb is no longer
602 * valid, and prevent use-after-free errors.
603 */
604 if (zilog->zl_last_lwb_opened == lwb)
605 zilog->zl_last_lwb_opened = NULL;
606
607 kmem_cache_free(zil_lwb_cache, lwb);
608 }
609
610 /*
611 * Called when we create in-memory log transactions so that we know
612 * to cleanup the itxs at the end of spa_sync().
613 */
614 static void
615 zilog_dirty(zilog_t *zilog, uint64_t txg)
616 {
617 dsl_pool_t *dp = zilog->zl_dmu_pool;
618 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
619
620 ASSERT(spa_writeable(zilog->zl_spa));
621
622 if (ds->ds_is_snapshot)
623 panic("dirtying snapshot!");
624
625 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
626 /* up the hold count until we can be written out */
627 dmu_buf_add_ref(ds->ds_dbuf, zilog);
628
629 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
630 }
631 }
632
633 /*
634 * Determine if the zil is dirty in the specified txg. Callers wanting to
635 * ensure that the dirty state does not change must hold the itxg_lock for
636 * the specified txg. Holding the lock will ensure that the zil cannot be
637 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
638 * state.
639 */
640 static boolean_t __maybe_unused
641 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
642 {
643 dsl_pool_t *dp = zilog->zl_dmu_pool;
644
645 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
646 return (B_TRUE);
647 return (B_FALSE);
648 }
649
650 /*
651 * Determine if the zil is dirty. The zil is considered dirty if it has
652 * any pending itx records that have not been cleaned by zil_clean().
653 */
654 static boolean_t
655 zilog_is_dirty(zilog_t *zilog)
656 {
657 dsl_pool_t *dp = zilog->zl_dmu_pool;
658
659 for (int t = 0; t < TXG_SIZE; t++) {
660 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
661 return (B_TRUE);
662 }
663 return (B_FALSE);
664 }
665
666 /*
667 * Create an on-disk intent log.
668 */
669 static lwb_t *
670 zil_create(zilog_t *zilog)
671 {
672 const zil_header_t *zh = zilog->zl_header;
673 lwb_t *lwb = NULL;
674 uint64_t txg = 0;
675 dmu_tx_t *tx = NULL;
676 blkptr_t blk;
677 int error = 0;
678 boolean_t fastwrite = FALSE;
679 boolean_t slog = FALSE;
680
681 /*
682 * Wait for any previous destroy to complete.
683 */
684 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
685
686 ASSERT(zh->zh_claim_txg == 0);
687 ASSERT(zh->zh_replay_seq == 0);
688
689 blk = zh->zh_log;
690
691 /*
692 * Allocate an initial log block if:
693 * - there isn't one already
694 * - the existing block is the wrong endianness
695 */
696 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
697 tx = dmu_tx_create(zilog->zl_os);
698 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
699 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
700 txg = dmu_tx_get_txg(tx);
701
702 if (!BP_IS_HOLE(&blk)) {
703 zio_free(zilog->zl_spa, txg, &blk);
704 BP_ZERO(&blk);
705 }
706
707 error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk,
708 ZIL_MIN_BLKSZ, &slog);
709 fastwrite = TRUE;
710
711 if (error == 0)
712 zil_init_log_chain(zilog, &blk);
713 }
714
715 /*
716 * Allocate a log write block (lwb) for the first log block.
717 */
718 if (error == 0)
719 lwb = zil_alloc_lwb(zilog, &blk, slog, txg, fastwrite);
720
721 /*
722 * If we just allocated the first log block, commit our transaction
723 * and wait for zil_sync() to stuff the block pointer into zh_log.
724 * (zh is part of the MOS, so we cannot modify it in open context.)
725 */
726 if (tx != NULL) {
727 dmu_tx_commit(tx);
728 txg_wait_synced(zilog->zl_dmu_pool, txg);
729 }
730
731 ASSERT(error != 0 || bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
732 IMPLY(error == 0, lwb != NULL);
733
734 return (lwb);
735 }
736
737 /*
738 * In one tx, free all log blocks and clear the log header. If keep_first
739 * is set, then we're replaying a log with no content. We want to keep the
740 * first block, however, so that the first synchronous transaction doesn't
741 * require a txg_wait_synced() in zil_create(). We don't need to
742 * txg_wait_synced() here either when keep_first is set, because both
743 * zil_create() and zil_destroy() will wait for any in-progress destroys
744 * to complete.
745 */
746 void
747 zil_destroy(zilog_t *zilog, boolean_t keep_first)
748 {
749 const zil_header_t *zh = zilog->zl_header;
750 lwb_t *lwb;
751 dmu_tx_t *tx;
752 uint64_t txg;
753
754 /*
755 * Wait for any previous destroy to complete.
756 */
757 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
758
759 zilog->zl_old_header = *zh; /* debugging aid */
760
761 if (BP_IS_HOLE(&zh->zh_log))
762 return;
763
764 tx = dmu_tx_create(zilog->zl_os);
765 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
766 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
767 txg = dmu_tx_get_txg(tx);
768
769 mutex_enter(&zilog->zl_lock);
770
771 ASSERT3U(zilog->zl_destroy_txg, <, txg);
772 zilog->zl_destroy_txg = txg;
773 zilog->zl_keep_first = keep_first;
774
775 if (!list_is_empty(&zilog->zl_lwb_list)) {
776 ASSERT(zh->zh_claim_txg == 0);
777 VERIFY(!keep_first);
778 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
779 if (lwb->lwb_fastwrite)
780 metaslab_fastwrite_unmark(zilog->zl_spa,
781 &lwb->lwb_blk);
782
783 list_remove(&zilog->zl_lwb_list, lwb);
784 if (lwb->lwb_buf != NULL)
785 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
786 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
787 zil_free_lwb(zilog, lwb);
788 }
789 } else if (!keep_first) {
790 zil_destroy_sync(zilog, tx);
791 }
792 mutex_exit(&zilog->zl_lock);
793
794 dmu_tx_commit(tx);
795 }
796
797 void
798 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
799 {
800 ASSERT(list_is_empty(&zilog->zl_lwb_list));
801 (void) zil_parse(zilog, zil_free_log_block,
802 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE);
803 }
804
805 int
806 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
807 {
808 dmu_tx_t *tx = txarg;
809 zilog_t *zilog;
810 uint64_t first_txg;
811 zil_header_t *zh;
812 objset_t *os;
813 int error;
814
815 error = dmu_objset_own_obj(dp, ds->ds_object,
816 DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os);
817 if (error != 0) {
818 /*
819 * EBUSY indicates that the objset is inconsistent, in which
820 * case it can not have a ZIL.
821 */
822 if (error != EBUSY) {
823 cmn_err(CE_WARN, "can't open objset for %llu, error %u",
824 (unsigned long long)ds->ds_object, error);
825 }
826
827 return (0);
828 }
829
830 zilog = dmu_objset_zil(os);
831 zh = zil_header_in_syncing_context(zilog);
832 ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
833 first_txg = spa_min_claim_txg(zilog->zl_spa);
834
835 /*
836 * If the spa_log_state is not set to be cleared, check whether
837 * the current uberblock is a checkpoint one and if the current
838 * header has been claimed before moving on.
839 *
840 * If the current uberblock is a checkpointed uberblock then
841 * one of the following scenarios took place:
842 *
843 * 1] We are currently rewinding to the checkpoint of the pool.
844 * 2] We crashed in the middle of a checkpoint rewind but we
845 * did manage to write the checkpointed uberblock to the
846 * vdev labels, so when we tried to import the pool again
847 * the checkpointed uberblock was selected from the import
848 * procedure.
849 *
850 * In both cases we want to zero out all the ZIL blocks, except
851 * the ones that have been claimed at the time of the checkpoint
852 * (their zh_claim_txg != 0). The reason is that these blocks
853 * may be corrupted since we may have reused their locations on
854 * disk after we took the checkpoint.
855 *
856 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
857 * when we first figure out whether the current uberblock is
858 * checkpointed or not. Unfortunately, that would discard all
859 * the logs, including the ones that are claimed, and we would
860 * leak space.
861 */
862 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
863 (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
864 zh->zh_claim_txg == 0)) {
865 if (!BP_IS_HOLE(&zh->zh_log)) {
866 (void) zil_parse(zilog, zil_clear_log_block,
867 zil_noop_log_record, tx, first_txg, B_FALSE);
868 }
869 BP_ZERO(&zh->zh_log);
870 if (os->os_encrypted)
871 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
872 dsl_dataset_dirty(dmu_objset_ds(os), tx);
873 dmu_objset_disown(os, B_FALSE, FTAG);
874 return (0);
875 }
876
877 /*
878 * If we are not rewinding and opening the pool normally, then
879 * the min_claim_txg should be equal to the first txg of the pool.
880 */
881 ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
882
883 /*
884 * Claim all log blocks if we haven't already done so, and remember
885 * the highest claimed sequence number. This ensures that if we can
886 * read only part of the log now (e.g. due to a missing device),
887 * but we can read the entire log later, we will not try to replay
888 * or destroy beyond the last block we successfully claimed.
889 */
890 ASSERT3U(zh->zh_claim_txg, <=, first_txg);
891 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
892 (void) zil_parse(zilog, zil_claim_log_block,
893 zil_claim_log_record, tx, first_txg, B_FALSE);
894 zh->zh_claim_txg = first_txg;
895 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
896 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
897 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
898 zh->zh_flags |= ZIL_REPLAY_NEEDED;
899 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
900 if (os->os_encrypted)
901 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
902 dsl_dataset_dirty(dmu_objset_ds(os), tx);
903 }
904
905 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
906 dmu_objset_disown(os, B_FALSE, FTAG);
907 return (0);
908 }
909
910 /*
911 * Check the log by walking the log chain.
912 * Checksum errors are ok as they indicate the end of the chain.
913 * Any other error (no device or read failure) returns an error.
914 */
915 int
916 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
917 {
918 (void) dp;
919 zilog_t *zilog;
920 objset_t *os;
921 blkptr_t *bp;
922 int error;
923
924 ASSERT(tx == NULL);
925
926 error = dmu_objset_from_ds(ds, &os);
927 if (error != 0) {
928 cmn_err(CE_WARN, "can't open objset %llu, error %d",
929 (unsigned long long)ds->ds_object, error);
930 return (0);
931 }
932
933 zilog = dmu_objset_zil(os);
934 bp = (blkptr_t *)&zilog->zl_header->zh_log;
935
936 if (!BP_IS_HOLE(bp)) {
937 vdev_t *vd;
938 boolean_t valid = B_TRUE;
939
940 /*
941 * Check the first block and determine if it's on a log device
942 * which may have been removed or faulted prior to loading this
943 * pool. If so, there's no point in checking the rest of the
944 * log as its content should have already been synced to the
945 * pool.
946 */
947 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
948 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
949 if (vd->vdev_islog && vdev_is_dead(vd))
950 valid = vdev_log_state_valid(vd);
951 spa_config_exit(os->os_spa, SCL_STATE, FTAG);
952
953 if (!valid)
954 return (0);
955
956 /*
957 * Check whether the current uberblock is checkpointed (e.g.
958 * we are rewinding) and whether the current header has been
959 * claimed or not. If it hasn't then skip verifying it. We
960 * do this because its ZIL blocks may be part of the pool's
961 * state before the rewind, which is no longer valid.
962 */
963 zil_header_t *zh = zil_header_in_syncing_context(zilog);
964 if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
965 zh->zh_claim_txg == 0)
966 return (0);
967 }
968
969 /*
970 * Because tx == NULL, zil_claim_log_block() will not actually claim
971 * any blocks, but just determine whether it is possible to do so.
972 * In addition to checking the log chain, zil_claim_log_block()
973 * will invoke zio_claim() with a done func of spa_claim_notify(),
974 * which will update spa_max_claim_txg. See spa_load() for details.
975 */
976 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
977 zilog->zl_header->zh_claim_txg ? -1ULL :
978 spa_min_claim_txg(os->os_spa), B_FALSE);
979
980 return ((error == ECKSUM || error == ENOENT) ? 0 : error);
981 }
982
983 /*
984 * When an itx is "skipped", this function is used to properly mark the
985 * waiter as "done, and signal any thread(s) waiting on it. An itx can
986 * be skipped (and not committed to an lwb) for a variety of reasons,
987 * one of them being that the itx was committed via spa_sync(), prior to
988 * it being committed to an lwb; this can happen if a thread calling
989 * zil_commit() is racing with spa_sync().
990 */
991 static void
992 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
993 {
994 mutex_enter(&zcw->zcw_lock);
995 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
996 zcw->zcw_done = B_TRUE;
997 cv_broadcast(&zcw->zcw_cv);
998 mutex_exit(&zcw->zcw_lock);
999 }
1000
1001 /*
1002 * This function is used when the given waiter is to be linked into an
1003 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
1004 * At this point, the waiter will no longer be referenced by the itx,
1005 * and instead, will be referenced by the lwb.
1006 */
1007 static void
1008 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
1009 {
1010 /*
1011 * The lwb_waiters field of the lwb is protected by the zilog's
1012 * zl_lock, thus it must be held when calling this function.
1013 */
1014 ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
1015
1016 mutex_enter(&zcw->zcw_lock);
1017 ASSERT(!list_link_active(&zcw->zcw_node));
1018 ASSERT3P(zcw->zcw_lwb, ==, NULL);
1019 ASSERT3P(lwb, !=, NULL);
1020 ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
1021 lwb->lwb_state == LWB_STATE_ISSUED ||
1022 lwb->lwb_state == LWB_STATE_WRITE_DONE);
1023
1024 list_insert_tail(&lwb->lwb_waiters, zcw);
1025 zcw->zcw_lwb = lwb;
1026 mutex_exit(&zcw->zcw_lock);
1027 }
1028
1029 /*
1030 * This function is used when zio_alloc_zil() fails to allocate a ZIL
1031 * block, and the given waiter must be linked to the "nolwb waiters"
1032 * list inside of zil_process_commit_list().
1033 */
1034 static void
1035 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
1036 {
1037 mutex_enter(&zcw->zcw_lock);
1038 ASSERT(!list_link_active(&zcw->zcw_node));
1039 ASSERT3P(zcw->zcw_lwb, ==, NULL);
1040 list_insert_tail(nolwb, zcw);
1041 mutex_exit(&zcw->zcw_lock);
1042 }
1043
1044 void
1045 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
1046 {
1047 avl_tree_t *t = &lwb->lwb_vdev_tree;
1048 avl_index_t where;
1049 zil_vdev_node_t *zv, zvsearch;
1050 int ndvas = BP_GET_NDVAS(bp);
1051 int i;
1052
1053 if (zil_nocacheflush)
1054 return;
1055
1056 mutex_enter(&lwb->lwb_vdev_lock);
1057 for (i = 0; i < ndvas; i++) {
1058 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1059 if (avl_find(t, &zvsearch, &where) == NULL) {
1060 zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1061 zv->zv_vdev = zvsearch.zv_vdev;
1062 avl_insert(t, zv, where);
1063 }
1064 }
1065 mutex_exit(&lwb->lwb_vdev_lock);
1066 }
1067
1068 static void
1069 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
1070 {
1071 avl_tree_t *src = &lwb->lwb_vdev_tree;
1072 avl_tree_t *dst = &nlwb->lwb_vdev_tree;
1073 void *cookie = NULL;
1074 zil_vdev_node_t *zv;
1075
1076 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1077 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1078 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1079
1080 /*
1081 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
1082 * not need the protection of lwb_vdev_lock (it will only be modified
1083 * while holding zilog->zl_lock) as its writes and those of its
1084 * children have all completed. The younger 'nlwb' may be waiting on
1085 * future writes to additional vdevs.
1086 */
1087 mutex_enter(&nlwb->lwb_vdev_lock);
1088 /*
1089 * Tear down the 'lwb' vdev tree, ensuring that entries which do not
1090 * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
1091 */
1092 while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
1093 avl_index_t where;
1094
1095 if (avl_find(dst, zv, &where) == NULL) {
1096 avl_insert(dst, zv, where);
1097 } else {
1098 kmem_free(zv, sizeof (*zv));
1099 }
1100 }
1101 mutex_exit(&nlwb->lwb_vdev_lock);
1102 }
1103
1104 void
1105 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1106 {
1107 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1108 }
1109
1110 /*
1111 * This function is a called after all vdevs associated with a given lwb
1112 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
1113 * as the lwb write completes, if "zil_nocacheflush" is set. Further,
1114 * all "previous" lwb's will have completed before this function is
1115 * called; i.e. this function is called for all previous lwbs before
1116 * it's called for "this" lwb (enforced via zio the dependencies
1117 * configured in zil_lwb_set_zio_dependency()).
1118 *
1119 * The intention is for this function to be called as soon as the
1120 * contents of an lwb are considered "stable" on disk, and will survive
1121 * any sudden loss of power. At this point, any threads waiting for the
1122 * lwb to reach this state are signalled, and the "waiter" structures
1123 * are marked "done".
1124 */
1125 static void
1126 zil_lwb_flush_vdevs_done(zio_t *zio)
1127 {
1128 lwb_t *lwb = zio->io_private;
1129 zilog_t *zilog = lwb->lwb_zilog;
1130 dmu_tx_t *tx = lwb->lwb_tx;
1131 zil_commit_waiter_t *zcw;
1132 itx_t *itx;
1133
1134 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1135
1136 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1137
1138 mutex_enter(&zilog->zl_lock);
1139
1140 /*
1141 * Ensure the lwb buffer pointer is cleared before releasing the
1142 * txg. If we have had an allocation failure and the txg is
1143 * waiting to sync then we want zil_sync() to remove the lwb so
1144 * that it's not picked up as the next new one in
1145 * zil_process_commit_list(). zil_sync() will only remove the
1146 * lwb if lwb_buf is null.
1147 */
1148 lwb->lwb_buf = NULL;
1149 lwb->lwb_tx = NULL;
1150
1151 ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
1152 zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;
1153
1154 lwb->lwb_root_zio = NULL;
1155
1156 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1157 lwb->lwb_state = LWB_STATE_FLUSH_DONE;
1158
1159 if (zilog->zl_last_lwb_opened == lwb) {
1160 /*
1161 * Remember the highest committed log sequence number
1162 * for ztest. We only update this value when all the log
1163 * writes succeeded, because ztest wants to ASSERT that
1164 * it got the whole log chain.
1165 */
1166 zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1167 }
1168
1169 while ((itx = list_head(&lwb->lwb_itxs)) != NULL) {
1170 list_remove(&lwb->lwb_itxs, itx);
1171 zil_itx_destroy(itx);
1172 }
1173
1174 while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
1175 mutex_enter(&zcw->zcw_lock);
1176
1177 ASSERT(list_link_active(&zcw->zcw_node));
1178 list_remove(&lwb->lwb_waiters, zcw);
1179
1180 ASSERT3P(zcw->zcw_lwb, ==, lwb);
1181 zcw->zcw_lwb = NULL;
1182 /*
1183 * We expect any ZIO errors from child ZIOs to have been
1184 * propagated "up" to this specific LWB's root ZIO, in
1185 * order for this error handling to work correctly. This
1186 * includes ZIO errors from either this LWB's write or
1187 * flush, as well as any errors from other dependent LWBs
1188 * (e.g. a root LWB ZIO that might be a child of this LWB).
1189 *
1190 * With that said, it's important to note that LWB flush
1191 * errors are not propagated up to the LWB root ZIO.
1192 * This is incorrect behavior, and results in VDEV flush
1193 * errors not being handled correctly here. See the
1194 * comment above the call to "zio_flush" for details.
1195 */
1196
1197 zcw->zcw_zio_error = zio->io_error;
1198
1199 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1200 zcw->zcw_done = B_TRUE;
1201 cv_broadcast(&zcw->zcw_cv);
1202
1203 mutex_exit(&zcw->zcw_lock);
1204 }
1205
1206 mutex_exit(&zilog->zl_lock);
1207
1208 /*
1209 * Now that we've written this log block, we have a stable pointer
1210 * to the next block in the chain, so it's OK to let the txg in
1211 * which we allocated the next block sync.
1212 */
1213 dmu_tx_commit(tx);
1214 }
1215
1216 /*
1217 * This is called when an lwb's write zio completes. The callback's
1218 * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs
1219 * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved
1220 * in writing out this specific lwb's data, and in the case that cache
1221 * flushes have been deferred, vdevs involved in writing the data for
1222 * previous lwbs. The writes corresponding to all the vdevs in the
1223 * lwb_vdev_tree will have completed by the time this is called, due to
1224 * the zio dependencies configured in zil_lwb_set_zio_dependency(),
1225 * which takes deferred flushes into account. The lwb will be "done"
1226 * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio
1227 * completion callback for the lwb's root zio.
1228 */
1229 static void
1230 zil_lwb_write_done(zio_t *zio)
1231 {
1232 lwb_t *lwb = zio->io_private;
1233 spa_t *spa = zio->io_spa;
1234 zilog_t *zilog = lwb->lwb_zilog;
1235 avl_tree_t *t = &lwb->lwb_vdev_tree;
1236 void *cookie = NULL;
1237 zil_vdev_node_t *zv;
1238 lwb_t *nlwb;
1239
1240 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1241
1242 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1243 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1244 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1245 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1246 ASSERT(!BP_IS_GANG(zio->io_bp));
1247 ASSERT(!BP_IS_HOLE(zio->io_bp));
1248 ASSERT(BP_GET_FILL(zio->io_bp) == 0);
1249
1250 abd_free(zio->io_abd);
1251
1252 mutex_enter(&zilog->zl_lock);
1253 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1254 lwb->lwb_state = LWB_STATE_WRITE_DONE;
1255 lwb->lwb_write_zio = NULL;
1256 lwb->lwb_fastwrite = FALSE;
1257 nlwb = list_next(&zilog->zl_lwb_list, lwb);
1258 mutex_exit(&zilog->zl_lock);
1259
1260 if (avl_numnodes(t) == 0)
1261 return;
1262
1263 /*
1264 * If there was an IO error, we're not going to call zio_flush()
1265 * on these vdevs, so we simply empty the tree and free the
1266 * nodes. We avoid calling zio_flush() since there isn't any
1267 * good reason for doing so, after the lwb block failed to be
1268 * written out.
1269 *
1270 * Additionally, we don't perform any further error handling at
1271 * this point (e.g. setting "zcw_zio_error" appropriately), as
1272 * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus,
1273 * we expect any error seen here, to have been propagated to
1274 * that function).
1275 */
1276 if (zio->io_error != 0) {
1277 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1278 kmem_free(zv, sizeof (*zv));
1279 return;
1280 }
1281
1282 /*
1283 * If this lwb does not have any threads waiting for it to
1284 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE
1285 * command to the vdevs written to by "this" lwb, and instead
1286 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE
1287 * command for those vdevs. Thus, we merge the vdev tree of
1288 * "this" lwb with the vdev tree of the "next" lwb in the list,
1289 * and assume the "next" lwb will handle flushing the vdevs (or
1290 * deferring the flush(s) again).
1291 *
1292 * This is a useful performance optimization, especially for
1293 * workloads with lots of async write activity and few sync
1294 * write and/or fsync activity, as it has the potential to
1295 * coalesce multiple flush commands to a vdev into one.
1296 */
1297 if (list_head(&lwb->lwb_waiters) == NULL && nlwb != NULL) {
1298 zil_lwb_flush_defer(lwb, nlwb);
1299 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1300 return;
1301 }
1302
1303 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1304 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1305 if (vd != NULL) {
1306 /*
1307 * The "ZIO_FLAG_DONT_PROPAGATE" is currently
1308 * always used within "zio_flush". This means,
1309 * any errors when flushing the vdev(s), will
1310 * (unfortunately) not be handled correctly,
1311 * since these "zio_flush" errors will not be
1312 * propagated up to "zil_lwb_flush_vdevs_done".
1313 */
1314 zio_flush(lwb->lwb_root_zio, vd);
1315 }
1316 kmem_free(zv, sizeof (*zv));
1317 }
1318 }
1319
1320 static void
1321 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
1322 {
1323 lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1324
1325 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1326 ASSERT(MUTEX_HELD(&zilog->zl_lock));
1327
1328 /*
1329 * The zilog's "zl_last_lwb_opened" field is used to build the
1330 * lwb/zio dependency chain, which is used to preserve the
1331 * ordering of lwb completions that is required by the semantics
1332 * of the ZIL. Each new lwb zio becomes a parent of the
1333 * "previous" lwb zio, such that the new lwb's zio cannot
1334 * complete until the "previous" lwb's zio completes.
1335 *
1336 * This is required by the semantics of zil_commit(); the commit
1337 * waiters attached to the lwbs will be woken in the lwb zio's
1338 * completion callback, so this zio dependency graph ensures the
1339 * waiters are woken in the correct order (the same order the
1340 * lwbs were created).
1341 */
1342 if (last_lwb_opened != NULL &&
1343 last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) {
1344 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1345 last_lwb_opened->lwb_state == LWB_STATE_ISSUED ||
1346 last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE);
1347
1348 ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1349 zio_add_child(lwb->lwb_root_zio,
1350 last_lwb_opened->lwb_root_zio);
1351
1352 /*
1353 * If the previous lwb's write hasn't already completed,
1354 * we also want to order the completion of the lwb write
1355 * zios (above, we only order the completion of the lwb
1356 * root zios). This is required because of how we can
1357 * defer the DKIOCFLUSHWRITECACHE commands for each lwb.
1358 *
1359 * When the DKIOCFLUSHWRITECACHE commands are deferred,
1360 * the previous lwb will rely on this lwb to flush the
1361 * vdevs written to by that previous lwb. Thus, we need
1362 * to ensure this lwb doesn't issue the flush until
1363 * after the previous lwb's write completes. We ensure
1364 * this ordering by setting the zio parent/child
1365 * relationship here.
1366 *
1367 * Without this relationship on the lwb's write zio,
1368 * it's possible for this lwb's write to complete prior
1369 * to the previous lwb's write completing; and thus, the
1370 * vdevs for the previous lwb would be flushed prior to
1371 * that lwb's data being written to those vdevs (the
1372 * vdevs are flushed in the lwb write zio's completion
1373 * handler, zil_lwb_write_done()).
1374 */
1375 if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) {
1376 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1377 last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1378
1379 ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL);
1380 zio_add_child(lwb->lwb_write_zio,
1381 last_lwb_opened->lwb_write_zio);
1382 }
1383 }
1384 }
1385
1386
1387 /*
1388 * This function's purpose is to "open" an lwb such that it is ready to
1389 * accept new itxs being committed to it. To do this, the lwb's zio
1390 * structures are created, and linked to the lwb. This function is
1391 * idempotent; if the passed in lwb has already been opened, this
1392 * function is essentially a no-op.
1393 */
1394 static void
1395 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1396 {
1397 zbookmark_phys_t zb;
1398 zio_priority_t prio;
1399
1400 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1401 ASSERT3P(lwb, !=, NULL);
1402 EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1403 EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1404
1405 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1406 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1407 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1408
1409 /* Lock so zil_sync() doesn't fastwrite_unmark after zio is created */
1410 mutex_enter(&zilog->zl_lock);
1411 if (lwb->lwb_root_zio == NULL) {
1412 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1413 BP_GET_LSIZE(&lwb->lwb_blk));
1414
1415 if (!lwb->lwb_fastwrite) {
1416 metaslab_fastwrite_mark(zilog->zl_spa, &lwb->lwb_blk);
1417 lwb->lwb_fastwrite = 1;
1418 }
1419
1420 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1421 prio = ZIO_PRIORITY_SYNC_WRITE;
1422 else
1423 prio = ZIO_PRIORITY_ASYNC_WRITE;
1424
1425 lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1426 zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1427 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1428
1429 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1430 zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1431 BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1432 prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_FASTWRITE, &zb);
1433 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1434
1435 lwb->lwb_state = LWB_STATE_OPENED;
1436
1437 zil_lwb_set_zio_dependency(zilog, lwb);
1438 zilog->zl_last_lwb_opened = lwb;
1439 }
1440 mutex_exit(&zilog->zl_lock);
1441
1442 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1443 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1444 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1445 }
1446
1447 /*
1448 * Define a limited set of intent log block sizes.
1449 *
1450 * These must be a multiple of 4KB. Note only the amount used (again
1451 * aligned to 4KB) actually gets written. However, we can't always just
1452 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1453 */
1454 static const struct {
1455 uint64_t limit;
1456 uint64_t blksz;
1457 } zil_block_buckets[] = {
1458 { 4096, 4096 }, /* non TX_WRITE */
1459 { 8192 + 4096, 8192 + 4096 }, /* database */
1460 { 32768 + 4096, 32768 + 4096 }, /* NFS writes */
1461 { 65536 + 4096, 65536 + 4096 }, /* 64KB writes */
1462 { 131072, 131072 }, /* < 128KB writes */
1463 { 131072 +4096, 65536 + 4096 }, /* 128KB writes */
1464 { UINT64_MAX, SPA_OLD_MAXBLOCKSIZE}, /* > 128KB writes */
1465 };
1466
1467 /*
1468 * Maximum block size used by the ZIL. This is picked up when the ZIL is
1469 * initialized. Otherwise this should not be used directly; see
1470 * zl_max_block_size instead.
1471 */
1472 static int zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE;
1473
1474 /*
1475 * Start a log block write and advance to the next log block.
1476 * Calls are serialized.
1477 */
1478 static lwb_t *
1479 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1480 {
1481 lwb_t *nlwb = NULL;
1482 zil_chain_t *zilc;
1483 spa_t *spa = zilog->zl_spa;
1484 blkptr_t *bp;
1485 dmu_tx_t *tx;
1486 uint64_t txg;
1487 uint64_t zil_blksz, wsz;
1488 int i, error;
1489 boolean_t slog;
1490
1491 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1492 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1493 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1494 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1495
1496 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1497 zilc = (zil_chain_t *)lwb->lwb_buf;
1498 bp = &zilc->zc_next_blk;
1499 } else {
1500 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1501 bp = &zilc->zc_next_blk;
1502 }
1503
1504 ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1505
1506 /*
1507 * Allocate the next block and save its address in this block
1508 * before writing it in order to establish the log chain.
1509 * Note that if the allocation of nlwb synced before we wrote
1510 * the block that points at it (lwb), we'd leak it if we crashed.
1511 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
1512 * We dirty the dataset to ensure that zil_sync() will be called
1513 * to clean up in the event of allocation failure or I/O failure.
1514 */
1515
1516 tx = dmu_tx_create(zilog->zl_os);
1517
1518 /*
1519 * Since we are not going to create any new dirty data, and we
1520 * can even help with clearing the existing dirty data, we
1521 * should not be subject to the dirty data based delays. We
1522 * use TXG_NOTHROTTLE to bypass the delay mechanism.
1523 */
1524 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1525
1526 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1527 txg = dmu_tx_get_txg(tx);
1528
1529 lwb->lwb_tx = tx;
1530
1531 /*
1532 * Log blocks are pre-allocated. Here we select the size of the next
1533 * block, based on size used in the last block.
1534 * - first find the smallest bucket that will fit the block from a
1535 * limited set of block sizes. This is because it's faster to write
1536 * blocks allocated from the same metaslab as they are adjacent or
1537 * close.
1538 * - next find the maximum from the new suggested size and an array of
1539 * previous sizes. This lessens a picket fence effect of wrongly
1540 * guessing the size if we have a stream of say 2k, 64k, 2k, 64k
1541 * requests.
1542 *
1543 * Note we only write what is used, but we can't just allocate
1544 * the maximum block size because we can exhaust the available
1545 * pool log space.
1546 */
1547 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1548 for (i = 0; zil_blksz > zil_block_buckets[i].limit; i++)
1549 continue;
1550 zil_blksz = MIN(zil_block_buckets[i].blksz, zilog->zl_max_block_size);
1551 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1552 for (i = 0; i < ZIL_PREV_BLKS; i++)
1553 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1554 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1555
1556 BP_ZERO(bp);
1557 error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, zil_blksz, &slog);
1558 if (slog) {
1559 ZIL_STAT_BUMP(zil_itx_metaslab_slog_count);
1560 ZIL_STAT_INCR(zil_itx_metaslab_slog_bytes, lwb->lwb_nused);
1561 } else {
1562 ZIL_STAT_BUMP(zil_itx_metaslab_normal_count);
1563 ZIL_STAT_INCR(zil_itx_metaslab_normal_bytes, lwb->lwb_nused);
1564 }
1565 if (error == 0) {
1566 ASSERT3U(bp->blk_birth, ==, txg);
1567 bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1568 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1569
1570 /*
1571 * Allocate a new log write block (lwb).
1572 */
1573 nlwb = zil_alloc_lwb(zilog, bp, slog, txg, TRUE);
1574 }
1575
1576 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1577 /* For Slim ZIL only write what is used. */
1578 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1579 ASSERT3U(wsz, <=, lwb->lwb_sz);
1580 zio_shrink(lwb->lwb_write_zio, wsz);
1581
1582 } else {
1583 wsz = lwb->lwb_sz;
1584 }
1585
1586 zilc->zc_pad = 0;
1587 zilc->zc_nused = lwb->lwb_nused;
1588 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1589
1590 /*
1591 * clear unused data for security
1592 */
1593 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1594
1595 spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1596
1597 zil_lwb_add_block(lwb, &lwb->lwb_blk);
1598 lwb->lwb_issued_timestamp = gethrtime();
1599 lwb->lwb_state = LWB_STATE_ISSUED;
1600
1601 zio_nowait(lwb->lwb_root_zio);
1602 zio_nowait(lwb->lwb_write_zio);
1603
1604 /*
1605 * If there was an allocation failure then nlwb will be null which
1606 * forces a txg_wait_synced().
1607 */
1608 return (nlwb);
1609 }
1610
1611 /*
1612 * Maximum amount of write data that can be put into single log block.
1613 */
1614 uint64_t
1615 zil_max_log_data(zilog_t *zilog)
1616 {
1617 return (zilog->zl_max_block_size -
1618 sizeof (zil_chain_t) - sizeof (lr_write_t));
1619 }
1620
1621 /*
1622 * Maximum amount of log space we agree to waste to reduce number of
1623 * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~12%).
1624 */
1625 static inline uint64_t
1626 zil_max_waste_space(zilog_t *zilog)
1627 {
1628 return (zil_max_log_data(zilog) / 8);
1629 }
1630
1631 /*
1632 * Maximum amount of write data for WR_COPIED. For correctness, consumers
1633 * must fall back to WR_NEED_COPY if we can't fit the entire record into one
1634 * maximum sized log block, because each WR_COPIED record must fit in a
1635 * single log block. For space efficiency, we want to fit two records into a
1636 * max-sized log block.
1637 */
1638 uint64_t
1639 zil_max_copied_data(zilog_t *zilog)
1640 {
1641 return ((zilog->zl_max_block_size - sizeof (zil_chain_t)) / 2 -
1642 sizeof (lr_write_t));
1643 }
1644
1645 static lwb_t *
1646 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1647 {
1648 lr_t *lrcb, *lrc;
1649 lr_write_t *lrwb, *lrw;
1650 char *lr_buf;
1651 uint64_t dlen, dnow, dpad, lwb_sp, reclen, txg, max_log_data;
1652
1653 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1654 ASSERT3P(lwb, !=, NULL);
1655 ASSERT3P(lwb->lwb_buf, !=, NULL);
1656
1657 zil_lwb_write_open(zilog, lwb);
1658
1659 lrc = &itx->itx_lr;
1660 lrw = (lr_write_t *)lrc;
1661
1662 /*
1663 * A commit itx doesn't represent any on-disk state; instead
1664 * it's simply used as a place holder on the commit list, and
1665 * provides a mechanism for attaching a "commit waiter" onto the
1666 * correct lwb (such that the waiter can be signalled upon
1667 * completion of that lwb). Thus, we don't process this itx's
1668 * log record if it's a commit itx (these itx's don't have log
1669 * records), and instead link the itx's waiter onto the lwb's
1670 * list of waiters.
1671 *
1672 * For more details, see the comment above zil_commit().
1673 */
1674 if (lrc->lrc_txtype == TX_COMMIT) {
1675 mutex_enter(&zilog->zl_lock);
1676 zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1677 itx->itx_private = NULL;
1678 mutex_exit(&zilog->zl_lock);
1679 return (lwb);
1680 }
1681
1682 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1683 dlen = P2ROUNDUP_TYPED(
1684 lrw->lr_length, sizeof (uint64_t), uint64_t);
1685 dpad = dlen - lrw->lr_length;
1686 } else {
1687 dlen = dpad = 0;
1688 }
1689 reclen = lrc->lrc_reclen;
1690 zilog->zl_cur_used += (reclen + dlen);
1691 txg = lrc->lrc_txg;
1692
1693 ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
1694
1695 cont:
1696 /*
1697 * If this record won't fit in the current log block, start a new one.
1698 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1699 */
1700 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1701 max_log_data = zil_max_log_data(zilog);
1702 if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1703 lwb_sp < zil_max_waste_space(zilog) &&
1704 (dlen % max_log_data == 0 ||
1705 lwb_sp < reclen + dlen % max_log_data))) {
1706 lwb = zil_lwb_write_issue(zilog, lwb);
1707 if (lwb == NULL)
1708 return (NULL);
1709 zil_lwb_write_open(zilog, lwb);
1710 ASSERT(LWB_EMPTY(lwb));
1711 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1712
1713 /*
1714 * There must be enough space in the new, empty log block to
1715 * hold reclen. For WR_COPIED, we need to fit the whole
1716 * record in one block, and reclen is the header size + the
1717 * data size. For WR_NEED_COPY, we can create multiple
1718 * records, splitting the data into multiple blocks, so we
1719 * only need to fit one word of data per block; in this case
1720 * reclen is just the header size (no data).
1721 */
1722 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1723 }
1724
1725 dnow = MIN(dlen, lwb_sp - reclen);
1726 lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1727 bcopy(lrc, lr_buf, reclen);
1728 lrcb = (lr_t *)lr_buf; /* Like lrc, but inside lwb. */
1729 lrwb = (lr_write_t *)lrcb; /* Like lrw, but inside lwb. */
1730
1731 ZIL_STAT_BUMP(zil_itx_count);
1732
1733 /*
1734 * If it's a write, fetch the data or get its blkptr as appropriate.
1735 */
1736 if (lrc->lrc_txtype == TX_WRITE) {
1737 if (txg > spa_freeze_txg(zilog->zl_spa))
1738 txg_wait_synced(zilog->zl_dmu_pool, txg);
1739 if (itx->itx_wr_state == WR_COPIED) {
1740 ZIL_STAT_BUMP(zil_itx_copied_count);
1741 ZIL_STAT_INCR(zil_itx_copied_bytes, lrw->lr_length);
1742 } else {
1743 char *dbuf;
1744 int error;
1745
1746 if (itx->itx_wr_state == WR_NEED_COPY) {
1747 dbuf = lr_buf + reclen;
1748 lrcb->lrc_reclen += dnow;
1749 if (lrwb->lr_length > dnow)
1750 lrwb->lr_length = dnow;
1751 lrw->lr_offset += dnow;
1752 lrw->lr_length -= dnow;
1753 ZIL_STAT_BUMP(zil_itx_needcopy_count);
1754 ZIL_STAT_INCR(zil_itx_needcopy_bytes, dnow);
1755 } else {
1756 ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT);
1757 dbuf = NULL;
1758 ZIL_STAT_BUMP(zil_itx_indirect_count);
1759 ZIL_STAT_INCR(zil_itx_indirect_bytes,
1760 lrw->lr_length);
1761 }
1762
1763 /*
1764 * We pass in the "lwb_write_zio" rather than
1765 * "lwb_root_zio" so that the "lwb_write_zio"
1766 * becomes the parent of any zio's created by
1767 * the "zl_get_data" callback. The vdevs are
1768 * flushed after the "lwb_write_zio" completes,
1769 * so we want to make sure that completion
1770 * callback waits for these additional zio's,
1771 * such that the vdevs used by those zio's will
1772 * be included in the lwb's vdev tree, and those
1773 * vdevs will be properly flushed. If we passed
1774 * in "lwb_root_zio" here, then these additional
1775 * vdevs may not be flushed; e.g. if these zio's
1776 * completed after "lwb_write_zio" completed.
1777 */
1778 error = zilog->zl_get_data(itx->itx_private,
1779 itx->itx_gen, lrwb, dbuf, lwb,
1780 lwb->lwb_write_zio);
1781 if (dbuf != NULL && error == 0 && dnow == dlen)
1782 /* Zero any padding bytes in the last block. */
1783 bzero((char *)dbuf + lrwb->lr_length, dpad);
1784
1785 if (error == EIO) {
1786 txg_wait_synced(zilog->zl_dmu_pool, txg);
1787 return (lwb);
1788 }
1789 if (error != 0) {
1790 ASSERT(error == ENOENT || error == EEXIST ||
1791 error == EALREADY);
1792 return (lwb);
1793 }
1794 }
1795 }
1796
1797 /*
1798 * We're actually making an entry, so update lrc_seq to be the
1799 * log record sequence number. Note that this is generally not
1800 * equal to the itx sequence number because not all transactions
1801 * are synchronous, and sometimes spa_sync() gets there first.
1802 */
1803 lrcb->lrc_seq = ++zilog->zl_lr_seq;
1804 lwb->lwb_nused += reclen + dnow;
1805
1806 zil_lwb_add_txg(lwb, txg);
1807
1808 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1809 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1810
1811 dlen -= dnow;
1812 if (dlen > 0) {
1813 zilog->zl_cur_used += reclen;
1814 goto cont;
1815 }
1816
1817 return (lwb);
1818 }
1819
1820 itx_t *
1821 zil_itx_create(uint64_t txtype, size_t olrsize)
1822 {
1823 size_t itxsize, lrsize;
1824 itx_t *itx;
1825
1826 lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t);
1827 itxsize = offsetof(itx_t, itx_lr) + lrsize;
1828
1829 itx = zio_data_buf_alloc(itxsize);
1830 itx->itx_lr.lrc_txtype = txtype;
1831 itx->itx_lr.lrc_reclen = lrsize;
1832 itx->itx_lr.lrc_seq = 0; /* defensive */
1833 bzero((char *)&itx->itx_lr + olrsize, lrsize - olrsize);
1834 itx->itx_sync = B_TRUE; /* default is synchronous */
1835 itx->itx_callback = NULL;
1836 itx->itx_callback_data = NULL;
1837 itx->itx_size = itxsize;
1838
1839 return (itx);
1840 }
1841
1842 void
1843 zil_itx_destroy(itx_t *itx)
1844 {
1845 IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL);
1846 IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
1847
1848 if (itx->itx_callback != NULL)
1849 itx->itx_callback(itx->itx_callback_data);
1850
1851 zio_data_buf_free(itx, itx->itx_size);
1852 }
1853
1854 /*
1855 * Free up the sync and async itxs. The itxs_t has already been detached
1856 * so no locks are needed.
1857 */
1858 static void
1859 zil_itxg_clean(void *arg)
1860 {
1861 itx_t *itx;
1862 list_t *list;
1863 avl_tree_t *t;
1864 void *cookie;
1865 itxs_t *itxs = arg;
1866 itx_async_node_t *ian;
1867
1868 list = &itxs->i_sync_list;
1869 while ((itx = list_head(list)) != NULL) {
1870 /*
1871 * In the general case, commit itxs will not be found
1872 * here, as they'll be committed to an lwb via
1873 * zil_lwb_commit(), and free'd in that function. Having
1874 * said that, it is still possible for commit itxs to be
1875 * found here, due to the following race:
1876 *
1877 * - a thread calls zil_commit() which assigns the
1878 * commit itx to a per-txg i_sync_list
1879 * - zil_itxg_clean() is called (e.g. via spa_sync())
1880 * while the waiter is still on the i_sync_list
1881 *
1882 * There's nothing to prevent syncing the txg while the
1883 * waiter is on the i_sync_list. This normally doesn't
1884 * happen because spa_sync() is slower than zil_commit(),
1885 * but if zil_commit() calls txg_wait_synced() (e.g.
1886 * because zil_create() or zil_commit_writer_stall() is
1887 * called) we will hit this case.
1888 */
1889 if (itx->itx_lr.lrc_txtype == TX_COMMIT)
1890 zil_commit_waiter_skip(itx->itx_private);
1891
1892 list_remove(list, itx);
1893 zil_itx_destroy(itx);
1894 }
1895
1896 cookie = NULL;
1897 t = &itxs->i_async_tree;
1898 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1899 list = &ian->ia_list;
1900 while ((itx = list_head(list)) != NULL) {
1901 list_remove(list, itx);
1902 /* commit itxs should never be on the async lists. */
1903 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1904 zil_itx_destroy(itx);
1905 }
1906 list_destroy(list);
1907 kmem_free(ian, sizeof (itx_async_node_t));
1908 }
1909 avl_destroy(t);
1910
1911 kmem_free(itxs, sizeof (itxs_t));
1912 }
1913
1914 static int
1915 zil_aitx_compare(const void *x1, const void *x2)
1916 {
1917 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1918 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1919
1920 return (TREE_CMP(o1, o2));
1921 }
1922
1923 /*
1924 * Remove all async itx with the given oid.
1925 */
1926 void
1927 zil_remove_async(zilog_t *zilog, uint64_t oid)
1928 {
1929 uint64_t otxg, txg;
1930 itx_async_node_t *ian;
1931 avl_tree_t *t;
1932 avl_index_t where;
1933 list_t clean_list;
1934 itx_t *itx;
1935
1936 ASSERT(oid != 0);
1937 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1938
1939 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1940 otxg = ZILTEST_TXG;
1941 else
1942 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1943
1944 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1945 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1946
1947 mutex_enter(&itxg->itxg_lock);
1948 if (itxg->itxg_txg != txg) {
1949 mutex_exit(&itxg->itxg_lock);
1950 continue;
1951 }
1952
1953 /*
1954 * Locate the object node and append its list.
1955 */
1956 t = &itxg->itxg_itxs->i_async_tree;
1957 ian = avl_find(t, &oid, &where);
1958 if (ian != NULL)
1959 list_move_tail(&clean_list, &ian->ia_list);
1960 mutex_exit(&itxg->itxg_lock);
1961 }
1962 while ((itx = list_head(&clean_list)) != NULL) {
1963 list_remove(&clean_list, itx);
1964 /* commit itxs should never be on the async lists. */
1965 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1966 zil_itx_destroy(itx);
1967 }
1968 list_destroy(&clean_list);
1969 }
1970
1971 void
1972 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1973 {
1974 uint64_t txg;
1975 itxg_t *itxg;
1976 itxs_t *itxs, *clean = NULL;
1977
1978 /*
1979 * Ensure the data of a renamed file is committed before the rename.
1980 */
1981 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1982 zil_async_to_sync(zilog, itx->itx_oid);
1983
1984 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1985 txg = ZILTEST_TXG;
1986 else
1987 txg = dmu_tx_get_txg(tx);
1988
1989 itxg = &zilog->zl_itxg[txg & TXG_MASK];
1990 mutex_enter(&itxg->itxg_lock);
1991 itxs = itxg->itxg_itxs;
1992 if (itxg->itxg_txg != txg) {
1993 if (itxs != NULL) {
1994 /*
1995 * The zil_clean callback hasn't got around to cleaning
1996 * this itxg. Save the itxs for release below.
1997 * This should be rare.
1998 */
1999 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
2000 "txg %llu", (u_longlong_t)itxg->itxg_txg);
2001 clean = itxg->itxg_itxs;
2002 }
2003 itxg->itxg_txg = txg;
2004 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
2005 KM_SLEEP);
2006
2007 list_create(&itxs->i_sync_list, sizeof (itx_t),
2008 offsetof(itx_t, itx_node));
2009 avl_create(&itxs->i_async_tree, zil_aitx_compare,
2010 sizeof (itx_async_node_t),
2011 offsetof(itx_async_node_t, ia_node));
2012 }
2013 if (itx->itx_sync) {
2014 list_insert_tail(&itxs->i_sync_list, itx);
2015 } else {
2016 avl_tree_t *t = &itxs->i_async_tree;
2017 uint64_t foid =
2018 LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
2019 itx_async_node_t *ian;
2020 avl_index_t where;
2021
2022 ian = avl_find(t, &foid, &where);
2023 if (ian == NULL) {
2024 ian = kmem_alloc(sizeof (itx_async_node_t),
2025 KM_SLEEP);
2026 list_create(&ian->ia_list, sizeof (itx_t),
2027 offsetof(itx_t, itx_node));
2028 ian->ia_foid = foid;
2029 avl_insert(t, ian, where);
2030 }
2031 list_insert_tail(&ian->ia_list, itx);
2032 }
2033
2034 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
2035
2036 /*
2037 * We don't want to dirty the ZIL using ZILTEST_TXG, because
2038 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
2039 * need to be careful to always dirty the ZIL using the "real"
2040 * TXG (not itxg_txg) even when the SPA is frozen.
2041 */
2042 zilog_dirty(zilog, dmu_tx_get_txg(tx));
2043 mutex_exit(&itxg->itxg_lock);
2044
2045 /* Release the old itxs now we've dropped the lock */
2046 if (clean != NULL)
2047 zil_itxg_clean(clean);
2048 }
2049
2050 /*
2051 * If there are any in-memory intent log transactions which have now been
2052 * synced then start up a taskq to free them. We should only do this after we
2053 * have written out the uberblocks (i.e. txg has been committed) so that
2054 * don't inadvertently clean out in-memory log records that would be required
2055 * by zil_commit().
2056 */
2057 void
2058 zil_clean(zilog_t *zilog, uint64_t synced_txg)
2059 {
2060 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
2061 itxs_t *clean_me;
2062
2063 ASSERT3U(synced_txg, <, ZILTEST_TXG);
2064
2065 mutex_enter(&itxg->itxg_lock);
2066 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
2067 mutex_exit(&itxg->itxg_lock);
2068 return;
2069 }
2070 ASSERT3U(itxg->itxg_txg, <=, synced_txg);
2071 ASSERT3U(itxg->itxg_txg, !=, 0);
2072 clean_me = itxg->itxg_itxs;
2073 itxg->itxg_itxs = NULL;
2074 itxg->itxg_txg = 0;
2075 mutex_exit(&itxg->itxg_lock);
2076 /*
2077 * Preferably start a task queue to free up the old itxs but
2078 * if taskq_dispatch can't allocate resources to do that then
2079 * free it in-line. This should be rare. Note, using TQ_SLEEP
2080 * created a bad performance problem.
2081 */
2082 ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
2083 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
2084 taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
2085 zil_itxg_clean, clean_me, TQ_NOSLEEP);
2086 if (id == TASKQID_INVALID)
2087 zil_itxg_clean(clean_me);
2088 }
2089
2090 /*
2091 * This function will traverse the queue of itxs that need to be
2092 * committed, and move them onto the ZIL's zl_itx_commit_list.
2093 */
2094 static void
2095 zil_get_commit_list(zilog_t *zilog)
2096 {
2097 uint64_t otxg, txg;
2098 list_t *commit_list = &zilog->zl_itx_commit_list;
2099
2100 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2101
2102 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2103 otxg = ZILTEST_TXG;
2104 else
2105 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2106
2107 /*
2108 * This is inherently racy, since there is nothing to prevent
2109 * the last synced txg from changing. That's okay since we'll
2110 * only commit things in the future.
2111 */
2112 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2113 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2114
2115 mutex_enter(&itxg->itxg_lock);
2116 if (itxg->itxg_txg != txg) {
2117 mutex_exit(&itxg->itxg_lock);
2118 continue;
2119 }
2120
2121 /*
2122 * If we're adding itx records to the zl_itx_commit_list,
2123 * then the zil better be dirty in this "txg". We can assert
2124 * that here since we're holding the itxg_lock which will
2125 * prevent spa_sync from cleaning it. Once we add the itxs
2126 * to the zl_itx_commit_list we must commit it to disk even
2127 * if it's unnecessary (i.e. the txg was synced).
2128 */
2129 ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
2130 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
2131 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
2132
2133 mutex_exit(&itxg->itxg_lock);
2134 }
2135 }
2136
2137 /*
2138 * Move the async itxs for a specified object to commit into sync lists.
2139 */
2140 void
2141 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
2142 {
2143 uint64_t otxg, txg;
2144 itx_async_node_t *ian;
2145 avl_tree_t *t;
2146 avl_index_t where;
2147
2148 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2149 otxg = ZILTEST_TXG;
2150 else
2151 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2152
2153 /*
2154 * This is inherently racy, since there is nothing to prevent
2155 * the last synced txg from changing.
2156 */
2157 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2158 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2159
2160 mutex_enter(&itxg->itxg_lock);
2161 if (itxg->itxg_txg != txg) {
2162 mutex_exit(&itxg->itxg_lock);
2163 continue;
2164 }
2165
2166 /*
2167 * If a foid is specified then find that node and append its
2168 * list. Otherwise walk the tree appending all the lists
2169 * to the sync list. We add to the end rather than the
2170 * beginning to ensure the create has happened.
2171 */
2172 t = &itxg->itxg_itxs->i_async_tree;
2173 if (foid != 0) {
2174 ian = avl_find(t, &foid, &where);
2175 if (ian != NULL) {
2176 list_move_tail(&itxg->itxg_itxs->i_sync_list,
2177 &ian->ia_list);
2178 }
2179 } else {
2180 void *cookie = NULL;
2181
2182 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2183 list_move_tail(&itxg->itxg_itxs->i_sync_list,
2184 &ian->ia_list);
2185 list_destroy(&ian->ia_list);
2186 kmem_free(ian, sizeof (itx_async_node_t));
2187 }
2188 }
2189 mutex_exit(&itxg->itxg_lock);
2190 }
2191 }
2192
2193 /*
2194 * This function will prune commit itxs that are at the head of the
2195 * commit list (it won't prune past the first non-commit itx), and
2196 * either: a) attach them to the last lwb that's still pending
2197 * completion, or b) skip them altogether.
2198 *
2199 * This is used as a performance optimization to prevent commit itxs
2200 * from generating new lwbs when it's unnecessary to do so.
2201 */
2202 static void
2203 zil_prune_commit_list(zilog_t *zilog)
2204 {
2205 itx_t *itx;
2206
2207 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2208
2209 while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2210 lr_t *lrc = &itx->itx_lr;
2211 if (lrc->lrc_txtype != TX_COMMIT)
2212 break;
2213
2214 mutex_enter(&zilog->zl_lock);
2215
2216 lwb_t *last_lwb = zilog->zl_last_lwb_opened;
2217 if (last_lwb == NULL ||
2218 last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
2219 /*
2220 * All of the itxs this waiter was waiting on
2221 * must have already completed (or there were
2222 * never any itx's for it to wait on), so it's
2223 * safe to skip this waiter and mark it done.
2224 */
2225 zil_commit_waiter_skip(itx->itx_private);
2226 } else {
2227 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
2228 itx->itx_private = NULL;
2229 }
2230
2231 mutex_exit(&zilog->zl_lock);
2232
2233 list_remove(&zilog->zl_itx_commit_list, itx);
2234 zil_itx_destroy(itx);
2235 }
2236
2237 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2238 }
2239
2240 static void
2241 zil_commit_writer_stall(zilog_t *zilog)
2242 {
2243 /*
2244 * When zio_alloc_zil() fails to allocate the next lwb block on
2245 * disk, we must call txg_wait_synced() to ensure all of the
2246 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
2247 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
2248 * to zil_process_commit_list()) will have to call zil_create(),
2249 * and start a new ZIL chain.
2250 *
2251 * Since zil_alloc_zil() failed, the lwb that was previously
2252 * issued does not have a pointer to the "next" lwb on disk.
2253 * Thus, if another ZIL writer thread was to allocate the "next"
2254 * on-disk lwb, that block could be leaked in the event of a
2255 * crash (because the previous lwb on-disk would not point to
2256 * it).
2257 *
2258 * We must hold the zilog's zl_issuer_lock while we do this, to
2259 * ensure no new threads enter zil_process_commit_list() until
2260 * all lwb's in the zl_lwb_list have been synced and freed
2261 * (which is achieved via the txg_wait_synced() call).
2262 */
2263 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2264 txg_wait_synced(zilog->zl_dmu_pool, 0);
2265 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
2266 }
2267
2268 /*
2269 * This function will traverse the commit list, creating new lwbs as
2270 * needed, and committing the itxs from the commit list to these newly
2271 * created lwbs. Additionally, as a new lwb is created, the previous
2272 * lwb will be issued to the zio layer to be written to disk.
2273 */
2274 static void
2275 zil_process_commit_list(zilog_t *zilog)
2276 {
2277 spa_t *spa = zilog->zl_spa;
2278 list_t nolwb_itxs;
2279 list_t nolwb_waiters;
2280 lwb_t *lwb;
2281 itx_t *itx;
2282
2283 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2284
2285 /*
2286 * Return if there's nothing to commit before we dirty the fs by
2287 * calling zil_create().
2288 */
2289 if (list_head(&zilog->zl_itx_commit_list) == NULL)
2290 return;
2291
2292 list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
2293 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2294 offsetof(zil_commit_waiter_t, zcw_node));
2295
2296 lwb = list_tail(&zilog->zl_lwb_list);
2297 if (lwb == NULL) {
2298 lwb = zil_create(zilog);
2299 } else {
2300 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2301 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2302 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2303 }
2304
2305 while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2306 lr_t *lrc = &itx->itx_lr;
2307 uint64_t txg = lrc->lrc_txg;
2308
2309 ASSERT3U(txg, !=, 0);
2310
2311 if (lrc->lrc_txtype == TX_COMMIT) {
2312 DTRACE_PROBE2(zil__process__commit__itx,
2313 zilog_t *, zilog, itx_t *, itx);
2314 } else {
2315 DTRACE_PROBE2(zil__process__normal__itx,
2316 zilog_t *, zilog, itx_t *, itx);
2317 }
2318
2319 list_remove(&zilog->zl_itx_commit_list, itx);
2320
2321 boolean_t synced = txg <= spa_last_synced_txg(spa);
2322 boolean_t frozen = txg > spa_freeze_txg(spa);
2323
2324 /*
2325 * If the txg of this itx has already been synced out, then
2326 * we don't need to commit this itx to an lwb. This is
2327 * because the data of this itx will have already been
2328 * written to the main pool. This is inherently racy, and
2329 * it's still ok to commit an itx whose txg has already
2330 * been synced; this will result in a write that's
2331 * unnecessary, but will do no harm.
2332 *
2333 * With that said, we always want to commit TX_COMMIT itxs
2334 * to an lwb, regardless of whether or not that itx's txg
2335 * has been synced out. We do this to ensure any OPENED lwb
2336 * will always have at least one zil_commit_waiter_t linked
2337 * to the lwb.
2338 *
2339 * As a counter-example, if we skipped TX_COMMIT itx's
2340 * whose txg had already been synced, the following
2341 * situation could occur if we happened to be racing with
2342 * spa_sync:
2343 *
2344 * 1. We commit a non-TX_COMMIT itx to an lwb, where the
2345 * itx's txg is 10 and the last synced txg is 9.
2346 * 2. spa_sync finishes syncing out txg 10.
2347 * 3. We move to the next itx in the list, it's a TX_COMMIT
2348 * whose txg is 10, so we skip it rather than committing
2349 * it to the lwb used in (1).
2350 *
2351 * If the itx that is skipped in (3) is the last TX_COMMIT
2352 * itx in the commit list, than it's possible for the lwb
2353 * used in (1) to remain in the OPENED state indefinitely.
2354 *
2355 * To prevent the above scenario from occurring, ensuring
2356 * that once an lwb is OPENED it will transition to ISSUED
2357 * and eventually DONE, we always commit TX_COMMIT itx's to
2358 * an lwb here, even if that itx's txg has already been
2359 * synced.
2360 *
2361 * Finally, if the pool is frozen, we _always_ commit the
2362 * itx. The point of freezing the pool is to prevent data
2363 * from being written to the main pool via spa_sync, and
2364 * instead rely solely on the ZIL to persistently store the
2365 * data; i.e. when the pool is frozen, the last synced txg
2366 * value can't be trusted.
2367 */
2368 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2369 if (lwb != NULL) {
2370 lwb = zil_lwb_commit(zilog, itx, lwb);
2371
2372 if (lwb == NULL)
2373 list_insert_tail(&nolwb_itxs, itx);
2374 else
2375 list_insert_tail(&lwb->lwb_itxs, itx);
2376 } else {
2377 if (lrc->lrc_txtype == TX_COMMIT) {
2378 zil_commit_waiter_link_nolwb(
2379 itx->itx_private, &nolwb_waiters);
2380 }
2381
2382 list_insert_tail(&nolwb_itxs, itx);
2383 }
2384 } else {
2385 ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT);
2386 zil_itx_destroy(itx);
2387 }
2388 }
2389
2390 if (lwb == NULL) {
2391 /*
2392 * This indicates zio_alloc_zil() failed to allocate the
2393 * "next" lwb on-disk. When this happens, we must stall
2394 * the ZIL write pipeline; see the comment within
2395 * zil_commit_writer_stall() for more details.
2396 */
2397 zil_commit_writer_stall(zilog);
2398
2399 /*
2400 * Additionally, we have to signal and mark the "nolwb"
2401 * waiters as "done" here, since without an lwb, we
2402 * can't do this via zil_lwb_flush_vdevs_done() like
2403 * normal.
2404 */
2405 zil_commit_waiter_t *zcw;
2406 while ((zcw = list_head(&nolwb_waiters)) != NULL) {
2407 zil_commit_waiter_skip(zcw);
2408 list_remove(&nolwb_waiters, zcw);
2409 }
2410
2411 /*
2412 * And finally, we have to destroy the itx's that
2413 * couldn't be committed to an lwb; this will also call
2414 * the itx's callback if one exists for the itx.
2415 */
2416 while ((itx = list_head(&nolwb_itxs)) != NULL) {
2417 list_remove(&nolwb_itxs, itx);
2418 zil_itx_destroy(itx);
2419 }
2420 } else {
2421 ASSERT(list_is_empty(&nolwb_waiters));
2422 ASSERT3P(lwb, !=, NULL);
2423 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2424 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2425 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2426
2427 /*
2428 * At this point, the ZIL block pointed at by the "lwb"
2429 * variable is in one of the following states: "closed"
2430 * or "open".
2431 *
2432 * If it's "closed", then no itxs have been committed to
2433 * it, so there's no point in issuing its zio (i.e. it's
2434 * "empty").
2435 *
2436 * If it's "open", then it contains one or more itxs that
2437 * eventually need to be committed to stable storage. In
2438 * this case we intentionally do not issue the lwb's zio
2439 * to disk yet, and instead rely on one of the following
2440 * two mechanisms for issuing the zio:
2441 *
2442 * 1. Ideally, there will be more ZIL activity occurring
2443 * on the system, such that this function will be
2444 * immediately called again (not necessarily by the same
2445 * thread) and this lwb's zio will be issued via
2446 * zil_lwb_commit(). This way, the lwb is guaranteed to
2447 * be "full" when it is issued to disk, and we'll make
2448 * use of the lwb's size the best we can.
2449 *
2450 * 2. If there isn't sufficient ZIL activity occurring on
2451 * the system, such that this lwb's zio isn't issued via
2452 * zil_lwb_commit(), zil_commit_waiter() will issue the
2453 * lwb's zio. If this occurs, the lwb is not guaranteed
2454 * to be "full" by the time its zio is issued, and means
2455 * the size of the lwb was "too large" given the amount
2456 * of ZIL activity occurring on the system at that time.
2457 *
2458 * We do this for a couple of reasons:
2459 *
2460 * 1. To try and reduce the number of IOPs needed to
2461 * write the same number of itxs. If an lwb has space
2462 * available in its buffer for more itxs, and more itxs
2463 * will be committed relatively soon (relative to the
2464 * latency of performing a write), then it's beneficial
2465 * to wait for these "next" itxs. This way, more itxs
2466 * can be committed to stable storage with fewer writes.
2467 *
2468 * 2. To try and use the largest lwb block size that the
2469 * incoming rate of itxs can support. Again, this is to
2470 * try and pack as many itxs into as few lwbs as
2471 * possible, without significantly impacting the latency
2472 * of each individual itx.
2473 */
2474 }
2475 }
2476
2477 /*
2478 * This function is responsible for ensuring the passed in commit waiter
2479 * (and associated commit itx) is committed to an lwb. If the waiter is
2480 * not already committed to an lwb, all itxs in the zilog's queue of
2481 * itxs will be processed. The assumption is the passed in waiter's
2482 * commit itx will found in the queue just like the other non-commit
2483 * itxs, such that when the entire queue is processed, the waiter will
2484 * have been committed to an lwb.
2485 *
2486 * The lwb associated with the passed in waiter is not guaranteed to
2487 * have been issued by the time this function completes. If the lwb is
2488 * not issued, we rely on future calls to zil_commit_writer() to issue
2489 * the lwb, or the timeout mechanism found in zil_commit_waiter().
2490 */
2491 static void
2492 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2493 {
2494 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2495 ASSERT(spa_writeable(zilog->zl_spa));
2496
2497 mutex_enter(&zilog->zl_issuer_lock);
2498
2499 if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2500 /*
2501 * It's possible that, while we were waiting to acquire
2502 * the "zl_issuer_lock", another thread committed this
2503 * waiter to an lwb. If that occurs, we bail out early,
2504 * without processing any of the zilog's queue of itxs.
2505 *
2506 * On certain workloads and system configurations, the
2507 * "zl_issuer_lock" can become highly contended. In an
2508 * attempt to reduce this contention, we immediately drop
2509 * the lock if the waiter has already been processed.
2510 *
2511 * We've measured this optimization to reduce CPU spent
2512 * contending on this lock by up to 5%, using a system
2513 * with 32 CPUs, low latency storage (~50 usec writes),
2514 * and 1024 threads performing sync writes.
2515 */
2516 goto out;
2517 }
2518
2519 ZIL_STAT_BUMP(zil_commit_writer_count);
2520
2521 zil_get_commit_list(zilog);
2522 zil_prune_commit_list(zilog);
2523 zil_process_commit_list(zilog);
2524
2525 out:
2526 mutex_exit(&zilog->zl_issuer_lock);
2527 }
2528
2529 static void
2530 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2531 {
2532 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2533 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2534 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2535
2536 lwb_t *lwb = zcw->zcw_lwb;
2537 ASSERT3P(lwb, !=, NULL);
2538 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
2539
2540 /*
2541 * If the lwb has already been issued by another thread, we can
2542 * immediately return since there's no work to be done (the
2543 * point of this function is to issue the lwb). Additionally, we
2544 * do this prior to acquiring the zl_issuer_lock, to avoid
2545 * acquiring it when it's not necessary to do so.
2546 */
2547 if (lwb->lwb_state == LWB_STATE_ISSUED ||
2548 lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2549 lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2550 return;
2551
2552 /*
2553 * In order to call zil_lwb_write_issue() we must hold the
2554 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
2555 * since we're already holding the commit waiter's "zcw_lock",
2556 * and those two locks are acquired in the opposite order
2557 * elsewhere.
2558 */
2559 mutex_exit(&zcw->zcw_lock);
2560 mutex_enter(&zilog->zl_issuer_lock);
2561 mutex_enter(&zcw->zcw_lock);
2562
2563 /*
2564 * Since we just dropped and re-acquired the commit waiter's
2565 * lock, we have to re-check to see if the waiter was marked
2566 * "done" during that process. If the waiter was marked "done",
2567 * the "lwb" pointer is no longer valid (it can be free'd after
2568 * the waiter is marked "done"), so without this check we could
2569 * wind up with a use-after-free error below.
2570 */
2571 if (zcw->zcw_done)
2572 goto out;
2573
2574 ASSERT3P(lwb, ==, zcw->zcw_lwb);
2575
2576 /*
2577 * We've already checked this above, but since we hadn't acquired
2578 * the zilog's zl_issuer_lock, we have to perform this check a
2579 * second time while holding the lock.
2580 *
2581 * We don't need to hold the zl_lock since the lwb cannot transition
2582 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
2583 * _can_ transition from ISSUED to DONE, but it's OK to race with
2584 * that transition since we treat the lwb the same, whether it's in
2585 * the ISSUED or DONE states.
2586 *
2587 * The important thing, is we treat the lwb differently depending on
2588 * if it's ISSUED or OPENED, and block any other threads that might
2589 * attempt to issue this lwb. For that reason we hold the
2590 * zl_issuer_lock when checking the lwb_state; we must not call
2591 * zil_lwb_write_issue() if the lwb had already been issued.
2592 *
2593 * See the comment above the lwb_state_t structure definition for
2594 * more details on the lwb states, and locking requirements.
2595 */
2596 if (lwb->lwb_state == LWB_STATE_ISSUED ||
2597 lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2598 lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2599 goto out;
2600
2601 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2602
2603 /*
2604 * As described in the comments above zil_commit_waiter() and
2605 * zil_process_commit_list(), we need to issue this lwb's zio
2606 * since we've reached the commit waiter's timeout and it still
2607 * hasn't been issued.
2608 */
2609 lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2610
2611 IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED);
2612
2613 /*
2614 * Since the lwb's zio hadn't been issued by the time this thread
2615 * reached its timeout, we reset the zilog's "zl_cur_used" field
2616 * to influence the zil block size selection algorithm.
2617 *
2618 * By having to issue the lwb's zio here, it means the size of the
2619 * lwb was too large, given the incoming throughput of itxs. By
2620 * setting "zl_cur_used" to zero, we communicate this fact to the
2621 * block size selection algorithm, so it can take this information
2622 * into account, and potentially select a smaller size for the
2623 * next lwb block that is allocated.
2624 */
2625 zilog->zl_cur_used = 0;
2626
2627 if (nlwb == NULL) {
2628 /*
2629 * When zil_lwb_write_issue() returns NULL, this
2630 * indicates zio_alloc_zil() failed to allocate the
2631 * "next" lwb on-disk. When this occurs, the ZIL write
2632 * pipeline must be stalled; see the comment within the
2633 * zil_commit_writer_stall() function for more details.
2634 *
2635 * We must drop the commit waiter's lock prior to
2636 * calling zil_commit_writer_stall() or else we can wind
2637 * up with the following deadlock:
2638 *
2639 * - This thread is waiting for the txg to sync while
2640 * holding the waiter's lock; txg_wait_synced() is
2641 * used within txg_commit_writer_stall().
2642 *
2643 * - The txg can't sync because it is waiting for this
2644 * lwb's zio callback to call dmu_tx_commit().
2645 *
2646 * - The lwb's zio callback can't call dmu_tx_commit()
2647 * because it's blocked trying to acquire the waiter's
2648 * lock, which occurs prior to calling dmu_tx_commit()
2649 */
2650 mutex_exit(&zcw->zcw_lock);
2651 zil_commit_writer_stall(zilog);
2652 mutex_enter(&zcw->zcw_lock);
2653 }
2654
2655 out:
2656 mutex_exit(&zilog->zl_issuer_lock);
2657 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2658 }
2659
2660 /*
2661 * This function is responsible for performing the following two tasks:
2662 *
2663 * 1. its primary responsibility is to block until the given "commit
2664 * waiter" is considered "done".
2665 *
2666 * 2. its secondary responsibility is to issue the zio for the lwb that
2667 * the given "commit waiter" is waiting on, if this function has
2668 * waited "long enough" and the lwb is still in the "open" state.
2669 *
2670 * Given a sufficient amount of itxs being generated and written using
2671 * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2672 * function. If this does not occur, this secondary responsibility will
2673 * ensure the lwb is issued even if there is not other synchronous
2674 * activity on the system.
2675 *
2676 * For more details, see zil_process_commit_list(); more specifically,
2677 * the comment at the bottom of that function.
2678 */
2679 static void
2680 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2681 {
2682 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2683 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2684 ASSERT(spa_writeable(zilog->zl_spa));
2685
2686 mutex_enter(&zcw->zcw_lock);
2687
2688 /*
2689 * The timeout is scaled based on the lwb latency to avoid
2690 * significantly impacting the latency of each individual itx.
2691 * For more details, see the comment at the bottom of the
2692 * zil_process_commit_list() function.
2693 */
2694 int pct = MAX(zfs_commit_timeout_pct, 1);
2695 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2696 hrtime_t wakeup = gethrtime() + sleep;
2697 boolean_t timedout = B_FALSE;
2698
2699 while (!zcw->zcw_done) {
2700 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2701
2702 lwb_t *lwb = zcw->zcw_lwb;
2703
2704 /*
2705 * Usually, the waiter will have a non-NULL lwb field here,
2706 * but it's possible for it to be NULL as a result of
2707 * zil_commit() racing with spa_sync().
2708 *
2709 * When zil_clean() is called, it's possible for the itxg
2710 * list (which may be cleaned via a taskq) to contain
2711 * commit itxs. When this occurs, the commit waiters linked
2712 * off of these commit itxs will not be committed to an
2713 * lwb. Additionally, these commit waiters will not be
2714 * marked done until zil_commit_waiter_skip() is called via
2715 * zil_itxg_clean().
2716 *
2717 * Thus, it's possible for this commit waiter (i.e. the
2718 * "zcw" variable) to be found in this "in between" state;
2719 * where it's "zcw_lwb" field is NULL, and it hasn't yet
2720 * been skipped, so it's "zcw_done" field is still B_FALSE.
2721 */
2722 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2723
2724 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2725 ASSERT3B(timedout, ==, B_FALSE);
2726
2727 /*
2728 * If the lwb hasn't been issued yet, then we
2729 * need to wait with a timeout, in case this
2730 * function needs to issue the lwb after the
2731 * timeout is reached; responsibility (2) from
2732 * the comment above this function.
2733 */
2734 int rc = cv_timedwait_hires(&zcw->zcw_cv,
2735 &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2736 CALLOUT_FLAG_ABSOLUTE);
2737
2738 if (rc != -1 || zcw->zcw_done)
2739 continue;
2740
2741 timedout = B_TRUE;
2742 zil_commit_waiter_timeout(zilog, zcw);
2743
2744 if (!zcw->zcw_done) {
2745 /*
2746 * If the commit waiter has already been
2747 * marked "done", it's possible for the
2748 * waiter's lwb structure to have already
2749 * been freed. Thus, we can only reliably
2750 * make these assertions if the waiter
2751 * isn't done.
2752 */
2753 ASSERT3P(lwb, ==, zcw->zcw_lwb);
2754 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2755 }
2756 } else {
2757 /*
2758 * If the lwb isn't open, then it must have already
2759 * been issued. In that case, there's no need to
2760 * use a timeout when waiting for the lwb to
2761 * complete.
2762 *
2763 * Additionally, if the lwb is NULL, the waiter
2764 * will soon be signaled and marked done via
2765 * zil_clean() and zil_itxg_clean(), so no timeout
2766 * is required.
2767 */
2768
2769 IMPLY(lwb != NULL,
2770 lwb->lwb_state == LWB_STATE_ISSUED ||
2771 lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2772 lwb->lwb_state == LWB_STATE_FLUSH_DONE);
2773 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2774 }
2775 }
2776
2777 mutex_exit(&zcw->zcw_lock);
2778 }
2779
2780 static zil_commit_waiter_t *
2781 zil_alloc_commit_waiter(void)
2782 {
2783 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
2784
2785 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
2786 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
2787 list_link_init(&zcw->zcw_node);
2788 zcw->zcw_lwb = NULL;
2789 zcw->zcw_done = B_FALSE;
2790 zcw->zcw_zio_error = 0;
2791
2792 return (zcw);
2793 }
2794
2795 static void
2796 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
2797 {
2798 ASSERT(!list_link_active(&zcw->zcw_node));
2799 ASSERT3P(zcw->zcw_lwb, ==, NULL);
2800 ASSERT3B(zcw->zcw_done, ==, B_TRUE);
2801 mutex_destroy(&zcw->zcw_lock);
2802 cv_destroy(&zcw->zcw_cv);
2803 kmem_cache_free(zil_zcw_cache, zcw);
2804 }
2805
2806 /*
2807 * This function is used to create a TX_COMMIT itx and assign it. This
2808 * way, it will be linked into the ZIL's list of synchronous itxs, and
2809 * then later committed to an lwb (or skipped) when
2810 * zil_process_commit_list() is called.
2811 */
2812 static void
2813 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
2814 {
2815 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
2816 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
2817
2818 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
2819 itx->itx_sync = B_TRUE;
2820 itx->itx_private = zcw;
2821
2822 zil_itx_assign(zilog, itx, tx);
2823
2824 dmu_tx_commit(tx);
2825 }
2826
2827 /*
2828 * Commit ZFS Intent Log transactions (itxs) to stable storage.
2829 *
2830 * When writing ZIL transactions to the on-disk representation of the
2831 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
2832 * itxs can be committed to a single lwb. Once a lwb is written and
2833 * committed to stable storage (i.e. the lwb is written, and vdevs have
2834 * been flushed), each itx that was committed to that lwb is also
2835 * considered to be committed to stable storage.
2836 *
2837 * When an itx is committed to an lwb, the log record (lr_t) contained
2838 * by the itx is copied into the lwb's zio buffer, and once this buffer
2839 * is written to disk, it becomes an on-disk ZIL block.
2840 *
2841 * As itxs are generated, they're inserted into the ZIL's queue of
2842 * uncommitted itxs. The semantics of zil_commit() are such that it will
2843 * block until all itxs that were in the queue when it was called, are
2844 * committed to stable storage.
2845 *
2846 * If "foid" is zero, this means all "synchronous" and "asynchronous"
2847 * itxs, for all objects in the dataset, will be committed to stable
2848 * storage prior to zil_commit() returning. If "foid" is non-zero, all
2849 * "synchronous" itxs for all objects, but only "asynchronous" itxs
2850 * that correspond to the foid passed in, will be committed to stable
2851 * storage prior to zil_commit() returning.
2852 *
2853 * Generally speaking, when zil_commit() is called, the consumer doesn't
2854 * actually care about _all_ of the uncommitted itxs. Instead, they're
2855 * simply trying to waiting for a specific itx to be committed to disk,
2856 * but the interface(s) for interacting with the ZIL don't allow such
2857 * fine-grained communication. A better interface would allow a consumer
2858 * to create and assign an itx, and then pass a reference to this itx to
2859 * zil_commit(); such that zil_commit() would return as soon as that
2860 * specific itx was committed to disk (instead of waiting for _all_
2861 * itxs to be committed).
2862 *
2863 * When a thread calls zil_commit() a special "commit itx" will be
2864 * generated, along with a corresponding "waiter" for this commit itx.
2865 * zil_commit() will wait on this waiter's CV, such that when the waiter
2866 * is marked done, and signaled, zil_commit() will return.
2867 *
2868 * This commit itx is inserted into the queue of uncommitted itxs. This
2869 * provides an easy mechanism for determining which itxs were in the
2870 * queue prior to zil_commit() having been called, and which itxs were
2871 * added after zil_commit() was called.
2872 *
2873 * The commit it is special; it doesn't have any on-disk representation.
2874 * When a commit itx is "committed" to an lwb, the waiter associated
2875 * with it is linked onto the lwb's list of waiters. Then, when that lwb
2876 * completes, each waiter on the lwb's list is marked done and signaled
2877 * -- allowing the thread waiting on the waiter to return from zil_commit().
2878 *
2879 * It's important to point out a few critical factors that allow us
2880 * to make use of the commit itxs, commit waiters, per-lwb lists of
2881 * commit waiters, and zio completion callbacks like we're doing:
2882 *
2883 * 1. The list of waiters for each lwb is traversed, and each commit
2884 * waiter is marked "done" and signaled, in the zio completion
2885 * callback of the lwb's zio[*].
2886 *
2887 * * Actually, the waiters are signaled in the zio completion
2888 * callback of the root zio for the DKIOCFLUSHWRITECACHE commands
2889 * that are sent to the vdevs upon completion of the lwb zio.
2890 *
2891 * 2. When the itxs are inserted into the ZIL's queue of uncommitted
2892 * itxs, the order in which they are inserted is preserved[*]; as
2893 * itxs are added to the queue, they are added to the tail of
2894 * in-memory linked lists.
2895 *
2896 * When committing the itxs to lwbs (to be written to disk), they
2897 * are committed in the same order in which the itxs were added to
2898 * the uncommitted queue's linked list(s); i.e. the linked list of
2899 * itxs to commit is traversed from head to tail, and each itx is
2900 * committed to an lwb in that order.
2901 *
2902 * * To clarify:
2903 *
2904 * - the order of "sync" itxs is preserved w.r.t. other
2905 * "sync" itxs, regardless of the corresponding objects.
2906 * - the order of "async" itxs is preserved w.r.t. other
2907 * "async" itxs corresponding to the same object.
2908 * - the order of "async" itxs is *not* preserved w.r.t. other
2909 * "async" itxs corresponding to different objects.
2910 * - the order of "sync" itxs w.r.t. "async" itxs (or vice
2911 * versa) is *not* preserved, even for itxs that correspond
2912 * to the same object.
2913 *
2914 * For more details, see: zil_itx_assign(), zil_async_to_sync(),
2915 * zil_get_commit_list(), and zil_process_commit_list().
2916 *
2917 * 3. The lwbs represent a linked list of blocks on disk. Thus, any
2918 * lwb cannot be considered committed to stable storage, until its
2919 * "previous" lwb is also committed to stable storage. This fact,
2920 * coupled with the fact described above, means that itxs are
2921 * committed in (roughly) the order in which they were generated.
2922 * This is essential because itxs are dependent on prior itxs.
2923 * Thus, we *must not* deem an itx as being committed to stable
2924 * storage, until *all* prior itxs have also been committed to
2925 * stable storage.
2926 *
2927 * To enforce this ordering of lwb zio's, while still leveraging as
2928 * much of the underlying storage performance as possible, we rely
2929 * on two fundamental concepts:
2930 *
2931 * 1. The creation and issuance of lwb zio's is protected by
2932 * the zilog's "zl_issuer_lock", which ensures only a single
2933 * thread is creating and/or issuing lwb's at a time
2934 * 2. The "previous" lwb is a child of the "current" lwb
2935 * (leveraging the zio parent-child dependency graph)
2936 *
2937 * By relying on this parent-child zio relationship, we can have
2938 * many lwb zio's concurrently issued to the underlying storage,
2939 * but the order in which they complete will be the same order in
2940 * which they were created.
2941 */
2942 void
2943 zil_commit(zilog_t *zilog, uint64_t foid)
2944 {
2945 /*
2946 * We should never attempt to call zil_commit on a snapshot for
2947 * a couple of reasons:
2948 *
2949 * 1. A snapshot may never be modified, thus it cannot have any
2950 * in-flight itxs that would have modified the dataset.
2951 *
2952 * 2. By design, when zil_commit() is called, a commit itx will
2953 * be assigned to this zilog; as a result, the zilog will be
2954 * dirtied. We must not dirty the zilog of a snapshot; there's
2955 * checks in the code that enforce this invariant, and will
2956 * cause a panic if it's not upheld.
2957 */
2958 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
2959
2960 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2961 return;
2962
2963 if (!spa_writeable(zilog->zl_spa)) {
2964 /*
2965 * If the SPA is not writable, there should never be any
2966 * pending itxs waiting to be committed to disk. If that
2967 * weren't true, we'd skip writing those itxs out, and
2968 * would break the semantics of zil_commit(); thus, we're
2969 * verifying that truth before we return to the caller.
2970 */
2971 ASSERT(list_is_empty(&zilog->zl_lwb_list));
2972 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2973 for (int i = 0; i < TXG_SIZE; i++)
2974 ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
2975 return;
2976 }
2977
2978 /*
2979 * If the ZIL is suspended, we don't want to dirty it by calling
2980 * zil_commit_itx_assign() below, nor can we write out
2981 * lwbs like would be done in zil_commit_write(). Thus, we
2982 * simply rely on txg_wait_synced() to maintain the necessary
2983 * semantics, and avoid calling those functions altogether.
2984 */
2985 if (zilog->zl_suspend > 0) {
2986 txg_wait_synced(zilog->zl_dmu_pool, 0);
2987 return;
2988 }
2989
2990 zil_commit_impl(zilog, foid);
2991 }
2992
2993 void
2994 zil_commit_impl(zilog_t *zilog, uint64_t foid)
2995 {
2996 ZIL_STAT_BUMP(zil_commit_count);
2997
2998 /*
2999 * Move the "async" itxs for the specified foid to the "sync"
3000 * queues, such that they will be later committed (or skipped)
3001 * to an lwb when zil_process_commit_list() is called.
3002 *
3003 * Since these "async" itxs must be committed prior to this
3004 * call to zil_commit returning, we must perform this operation
3005 * before we call zil_commit_itx_assign().
3006 */
3007 zil_async_to_sync(zilog, foid);
3008
3009 /*
3010 * We allocate a new "waiter" structure which will initially be
3011 * linked to the commit itx using the itx's "itx_private" field.
3012 * Since the commit itx doesn't represent any on-disk state,
3013 * when it's committed to an lwb, rather than copying the its
3014 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
3015 * added to the lwb's list of waiters. Then, when the lwb is
3016 * committed to stable storage, each waiter in the lwb's list of
3017 * waiters will be marked "done", and signalled.
3018 *
3019 * We must create the waiter and assign the commit itx prior to
3020 * calling zil_commit_writer(), or else our specific commit itx
3021 * is not guaranteed to be committed to an lwb prior to calling
3022 * zil_commit_waiter().
3023 */
3024 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
3025 zil_commit_itx_assign(zilog, zcw);
3026
3027 zil_commit_writer(zilog, zcw);
3028 zil_commit_waiter(zilog, zcw);
3029
3030 if (zcw->zcw_zio_error != 0) {
3031 /*
3032 * If there was an error writing out the ZIL blocks that
3033 * this thread is waiting on, then we fallback to
3034 * relying on spa_sync() to write out the data this
3035 * thread is waiting on. Obviously this has performance
3036 * implications, but the expectation is for this to be
3037 * an exceptional case, and shouldn't occur often.
3038 */
3039 DTRACE_PROBE2(zil__commit__io__error,
3040 zilog_t *, zilog, zil_commit_waiter_t *, zcw);
3041 txg_wait_synced(zilog->zl_dmu_pool, 0);
3042 }
3043
3044 zil_free_commit_waiter(zcw);
3045 }
3046
3047 /*
3048 * Called in syncing context to free committed log blocks and update log header.
3049 */
3050 void
3051 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
3052 {
3053 zil_header_t *zh = zil_header_in_syncing_context(zilog);
3054 uint64_t txg = dmu_tx_get_txg(tx);
3055 spa_t *spa = zilog->zl_spa;
3056 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
3057 lwb_t *lwb;
3058
3059 /*
3060 * We don't zero out zl_destroy_txg, so make sure we don't try
3061 * to destroy it twice.
3062 */
3063 if (spa_sync_pass(spa) != 1)
3064 return;
3065
3066 mutex_enter(&zilog->zl_lock);
3067
3068 ASSERT(zilog->zl_stop_sync == 0);
3069
3070 if (*replayed_seq != 0) {
3071 ASSERT(zh->zh_replay_seq < *replayed_seq);
3072 zh->zh_replay_seq = *replayed_seq;
3073 *replayed_seq = 0;
3074 }
3075
3076 if (zilog->zl_destroy_txg == txg) {
3077 blkptr_t blk = zh->zh_log;
3078
3079 ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
3080
3081 bzero(zh, sizeof (zil_header_t));
3082 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
3083
3084 if (zilog->zl_keep_first) {
3085 /*
3086 * If this block was part of log chain that couldn't
3087 * be claimed because a device was missing during
3088 * zil_claim(), but that device later returns,
3089 * then this block could erroneously appear valid.
3090 * To guard against this, assign a new GUID to the new
3091 * log chain so it doesn't matter what blk points to.
3092 */
3093 zil_init_log_chain(zilog, &blk);
3094 zh->zh_log = blk;
3095 }
3096 }
3097
3098 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
3099 zh->zh_log = lwb->lwb_blk;
3100 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
3101 break;
3102 list_remove(&zilog->zl_lwb_list, lwb);
3103 zio_free(spa, txg, &lwb->lwb_blk);
3104 zil_free_lwb(zilog, lwb);
3105
3106 /*
3107 * If we don't have anything left in the lwb list then
3108 * we've had an allocation failure and we need to zero
3109 * out the zil_header blkptr so that we don't end
3110 * up freeing the same block twice.
3111 */
3112 if (list_head(&zilog->zl_lwb_list) == NULL)
3113 BP_ZERO(&zh->zh_log);
3114 }
3115
3116 /*
3117 * Remove fastwrite on any blocks that have been pre-allocated for
3118 * the next commit. This prevents fastwrite counter pollution by
3119 * unused, long-lived LWBs.
3120 */
3121 for (; lwb != NULL; lwb = list_next(&zilog->zl_lwb_list, lwb)) {
3122 if (lwb->lwb_fastwrite && !lwb->lwb_write_zio) {
3123 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
3124 lwb->lwb_fastwrite = 0;
3125 }
3126 }
3127
3128 mutex_exit(&zilog->zl_lock);
3129 }
3130
3131 static int
3132 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
3133 {
3134 (void) unused, (void) kmflag;
3135 lwb_t *lwb = vbuf;
3136 list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
3137 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
3138 offsetof(zil_commit_waiter_t, zcw_node));
3139 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
3140 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
3141 mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
3142 return (0);
3143 }
3144
3145 static void
3146 zil_lwb_dest(void *vbuf, void *unused)
3147 {
3148 (void) unused;
3149 lwb_t *lwb = vbuf;
3150 mutex_destroy(&lwb->lwb_vdev_lock);
3151 avl_destroy(&lwb->lwb_vdev_tree);
3152 list_destroy(&lwb->lwb_waiters);
3153 list_destroy(&lwb->lwb_itxs);
3154 }
3155
3156 void
3157 zil_init(void)
3158 {
3159 zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
3160 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
3161
3162 zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
3163 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3164
3165 zil_ksp = kstat_create("zfs", 0, "zil", "misc",
3166 KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
3167 KSTAT_FLAG_VIRTUAL);
3168
3169 if (zil_ksp != NULL) {
3170 zil_ksp->ks_data = &zil_stats;
3171 kstat_install(zil_ksp);
3172 }
3173 }
3174
3175 void
3176 zil_fini(void)
3177 {
3178 kmem_cache_destroy(zil_zcw_cache);
3179 kmem_cache_destroy(zil_lwb_cache);
3180
3181 if (zil_ksp != NULL) {
3182 kstat_delete(zil_ksp);
3183 zil_ksp = NULL;
3184 }
3185 }
3186
3187 void
3188 zil_set_sync(zilog_t *zilog, uint64_t sync)
3189 {
3190 zilog->zl_sync = sync;
3191 }
3192
3193 void
3194 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
3195 {
3196 zilog->zl_logbias = logbias;
3197 }
3198
3199 zilog_t *
3200 zil_alloc(objset_t *os, zil_header_t *zh_phys)
3201 {
3202 zilog_t *zilog;
3203
3204 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
3205
3206 zilog->zl_header = zh_phys;
3207 zilog->zl_os = os;
3208 zilog->zl_spa = dmu_objset_spa(os);
3209 zilog->zl_dmu_pool = dmu_objset_pool(os);
3210 zilog->zl_destroy_txg = TXG_INITIAL - 1;
3211 zilog->zl_logbias = dmu_objset_logbias(os);
3212 zilog->zl_sync = dmu_objset_syncprop(os);
3213 zilog->zl_dirty_max_txg = 0;
3214 zilog->zl_last_lwb_opened = NULL;
3215 zilog->zl_last_lwb_latency = 0;
3216 zilog->zl_max_block_size = zil_maxblocksize;
3217
3218 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
3219 mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
3220
3221 for (int i = 0; i < TXG_SIZE; i++) {
3222 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
3223 MUTEX_DEFAULT, NULL);
3224 }
3225
3226 list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
3227 offsetof(lwb_t, lwb_node));
3228
3229 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
3230 offsetof(itx_t, itx_node));
3231
3232 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
3233
3234 return (zilog);
3235 }
3236
3237 void
3238 zil_free(zilog_t *zilog)
3239 {
3240 int i;
3241
3242 zilog->zl_stop_sync = 1;
3243
3244 ASSERT0(zilog->zl_suspend);
3245 ASSERT0(zilog->zl_suspending);
3246
3247 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3248 list_destroy(&zilog->zl_lwb_list);
3249
3250 ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
3251 list_destroy(&zilog->zl_itx_commit_list);
3252
3253 for (i = 0; i < TXG_SIZE; i++) {
3254 /*
3255 * It's possible for an itx to be generated that doesn't dirty
3256 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
3257 * callback to remove the entry. We remove those here.
3258 *
3259 * Also free up the ziltest itxs.
3260 */
3261 if (zilog->zl_itxg[i].itxg_itxs)
3262 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
3263 mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
3264 }
3265
3266 mutex_destroy(&zilog->zl_issuer_lock);
3267 mutex_destroy(&zilog->zl_lock);
3268
3269 cv_destroy(&zilog->zl_cv_suspend);
3270
3271 kmem_free(zilog, sizeof (zilog_t));
3272 }
3273
3274 /*
3275 * Open an intent log.
3276 */
3277 zilog_t *
3278 zil_open(objset_t *os, zil_get_data_t *get_data)
3279 {
3280 zilog_t *zilog = dmu_objset_zil(os);
3281
3282 ASSERT3P(zilog->zl_get_data, ==, NULL);
3283 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3284 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3285
3286 zilog->zl_get_data = get_data;
3287
3288 return (zilog);
3289 }
3290
3291 /*
3292 * Close an intent log.
3293 */
3294 void
3295 zil_close(zilog_t *zilog)
3296 {
3297 lwb_t *lwb;
3298 uint64_t txg;
3299
3300 if (!dmu_objset_is_snapshot(zilog->zl_os)) {
3301 zil_commit(zilog, 0);
3302 } else {
3303 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
3304 ASSERT0(zilog->zl_dirty_max_txg);
3305 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
3306 }
3307
3308 mutex_enter(&zilog->zl_lock);
3309 lwb = list_tail(&zilog->zl_lwb_list);
3310 if (lwb == NULL)
3311 txg = zilog->zl_dirty_max_txg;
3312 else
3313 txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
3314 mutex_exit(&zilog->zl_lock);
3315
3316 /*
3317 * We need to use txg_wait_synced() to wait long enough for the
3318 * ZIL to be clean, and to wait for all pending lwbs to be
3319 * written out.
3320 */
3321 if (txg != 0)
3322 txg_wait_synced(zilog->zl_dmu_pool, txg);
3323
3324 if (zilog_is_dirty(zilog))
3325 zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog,
3326 (u_longlong_t)txg);
3327 if (txg < spa_freeze_txg(zilog->zl_spa))
3328 VERIFY(!zilog_is_dirty(zilog));
3329
3330 zilog->zl_get_data = NULL;
3331
3332 /*
3333 * We should have only one lwb left on the list; remove it now.
3334 */
3335 mutex_enter(&zilog->zl_lock);
3336 lwb = list_head(&zilog->zl_lwb_list);
3337 if (lwb != NULL) {
3338 ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
3339 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
3340
3341 if (lwb->lwb_fastwrite)
3342 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
3343
3344 list_remove(&zilog->zl_lwb_list, lwb);
3345 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
3346 zil_free_lwb(zilog, lwb);
3347 }
3348 mutex_exit(&zilog->zl_lock);
3349 }
3350
3351 static char *suspend_tag = "zil suspending";
3352
3353 /*
3354 * Suspend an intent log. While in suspended mode, we still honor
3355 * synchronous semantics, but we rely on txg_wait_synced() to do it.
3356 * On old version pools, we suspend the log briefly when taking a
3357 * snapshot so that it will have an empty intent log.
3358 *
3359 * Long holds are not really intended to be used the way we do here --
3360 * held for such a short time. A concurrent caller of dsl_dataset_long_held()
3361 * could fail. Therefore we take pains to only put a long hold if it is
3362 * actually necessary. Fortunately, it will only be necessary if the
3363 * objset is currently mounted (or the ZVOL equivalent). In that case it
3364 * will already have a long hold, so we are not really making things any worse.
3365 *
3366 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3367 * zvol_state_t), and use their mechanism to prevent their hold from being
3368 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for
3369 * very little gain.
3370 *
3371 * if cookiep == NULL, this does both the suspend & resume.
3372 * Otherwise, it returns with the dataset "long held", and the cookie
3373 * should be passed into zil_resume().
3374 */
3375 int
3376 zil_suspend(const char *osname, void **cookiep)
3377 {
3378 objset_t *os;
3379 zilog_t *zilog;
3380 const zil_header_t *zh;
3381 int error;
3382
3383 error = dmu_objset_hold(osname, suspend_tag, &os);
3384 if (error != 0)
3385 return (error);
3386 zilog = dmu_objset_zil(os);
3387
3388 mutex_enter(&zilog->zl_lock);
3389 zh = zilog->zl_header;
3390
3391 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */
3392 mutex_exit(&zilog->zl_lock);
3393 dmu_objset_rele(os, suspend_tag);
3394 return (SET_ERROR(EBUSY));
3395 }
3396
3397 /*
3398 * Don't put a long hold in the cases where we can avoid it. This
3399 * is when there is no cookie so we are doing a suspend & resume
3400 * (i.e. called from zil_vdev_offline()), and there's nothing to do
3401 * for the suspend because it's already suspended, or there's no ZIL.
3402 */
3403 if (cookiep == NULL && !zilog->zl_suspending &&
3404 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3405 mutex_exit(&zilog->zl_lock);
3406 dmu_objset_rele(os, suspend_tag);
3407 return (0);
3408 }
3409
3410 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3411 dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3412
3413 zilog->zl_suspend++;
3414
3415 if (zilog->zl_suspend > 1) {
3416 /*
3417 * Someone else is already suspending it.
3418 * Just wait for them to finish.
3419 */
3420
3421 while (zilog->zl_suspending)
3422 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
3423 mutex_exit(&zilog->zl_lock);
3424
3425 if (cookiep == NULL)
3426 zil_resume(os);
3427 else
3428 *cookiep = os;
3429 return (0);
3430 }
3431
3432 /*
3433 * If there is no pointer to an on-disk block, this ZIL must not
3434 * be active (e.g. filesystem not mounted), so there's nothing
3435 * to clean up.
3436 */
3437 if (BP_IS_HOLE(&zh->zh_log)) {
3438 ASSERT(cookiep != NULL); /* fast path already handled */
3439
3440 *cookiep = os;
3441 mutex_exit(&zilog->zl_lock);
3442 return (0);
3443 }
3444
3445 /*
3446 * The ZIL has work to do. Ensure that the associated encryption
3447 * key will remain mapped while we are committing the log by
3448 * grabbing a reference to it. If the key isn't loaded we have no
3449 * choice but to return an error until the wrapping key is loaded.
3450 */
3451 if (os->os_encrypted &&
3452 dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) {
3453 zilog->zl_suspend--;
3454 mutex_exit(&zilog->zl_lock);
3455 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3456 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3457 return (SET_ERROR(EACCES));
3458 }
3459
3460 zilog->zl_suspending = B_TRUE;
3461 mutex_exit(&zilog->zl_lock);
3462
3463 /*
3464 * We need to use zil_commit_impl to ensure we wait for all
3465 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwbs to be committed
3466 * to disk before proceeding. If we used zil_commit instead, it
3467 * would just call txg_wait_synced(), because zl_suspend is set.
3468 * txg_wait_synced() doesn't wait for these lwb's to be
3469 * LWB_STATE_FLUSH_DONE before returning.
3470 */
3471 zil_commit_impl(zilog, 0);
3472
3473 /*
3474 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
3475 * use txg_wait_synced() to ensure the data from the zilog has
3476 * migrated to the main pool before calling zil_destroy().
3477 */
3478 txg_wait_synced(zilog->zl_dmu_pool, 0);
3479
3480 zil_destroy(zilog, B_FALSE);
3481
3482 mutex_enter(&zilog->zl_lock);
3483 zilog->zl_suspending = B_FALSE;
3484 cv_broadcast(&zilog->zl_cv_suspend);
3485 mutex_exit(&zilog->zl_lock);
3486
3487 if (os->os_encrypted)
3488 dsl_dataset_remove_key_mapping(dmu_objset_ds(os));
3489
3490 if (cookiep == NULL)
3491 zil_resume(os);
3492 else
3493 *cookiep = os;
3494 return (0);
3495 }
3496
3497 void
3498 zil_resume(void *cookie)
3499 {
3500 objset_t *os = cookie;
3501 zilog_t *zilog = dmu_objset_zil(os);
3502
3503 mutex_enter(&zilog->zl_lock);
3504 ASSERT(zilog->zl_suspend != 0);
3505 zilog->zl_suspend--;
3506 mutex_exit(&zilog->zl_lock);
3507 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3508 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3509 }
3510
3511 typedef struct zil_replay_arg {
3512 zil_replay_func_t *const *zr_replay;
3513 void *zr_arg;
3514 boolean_t zr_byteswap;
3515 char *zr_lr;
3516 } zil_replay_arg_t;
3517
3518 static int
3519 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error)
3520 {
3521 char name[ZFS_MAX_DATASET_NAME_LEN];
3522
3523 zilog->zl_replaying_seq--; /* didn't actually replay this one */
3524
3525 dmu_objset_name(zilog->zl_os, name);
3526
3527 cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3528 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3529 (u_longlong_t)lr->lrc_seq,
3530 (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3531 (lr->lrc_txtype & TX_CI) ? "CI" : "");
3532
3533 return (error);
3534 }
3535
3536 static int
3537 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra,
3538 uint64_t claim_txg)
3539 {
3540 zil_replay_arg_t *zr = zra;
3541 const zil_header_t *zh = zilog->zl_header;
3542 uint64_t reclen = lr->lrc_reclen;
3543 uint64_t txtype = lr->lrc_txtype;
3544 int error = 0;
3545
3546 zilog->zl_replaying_seq = lr->lrc_seq;
3547
3548 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */
3549 return (0);
3550
3551 if (lr->lrc_txg < claim_txg) /* already committed */
3552 return (0);
3553
3554 /* Strip case-insensitive bit, still present in log record */
3555 txtype &= ~TX_CI;
3556
3557 if (txtype == 0 || txtype >= TX_MAX_TYPE)
3558 return (zil_replay_error(zilog, lr, EINVAL));
3559
3560 /*
3561 * If this record type can be logged out of order, the object
3562 * (lr_foid) may no longer exist. That's legitimate, not an error.
3563 */
3564 if (TX_OOO(txtype)) {
3565 error = dmu_object_info(zilog->zl_os,
3566 LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
3567 if (error == ENOENT || error == EEXIST)
3568 return (0);
3569 }
3570
3571 /*
3572 * Make a copy of the data so we can revise and extend it.
3573 */
3574 bcopy(lr, zr->zr_lr, reclen);
3575
3576 /*
3577 * If this is a TX_WRITE with a blkptr, suck in the data.
3578 */
3579 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3580 error = zil_read_log_data(zilog, (lr_write_t *)lr,
3581 zr->zr_lr + reclen);
3582 if (error != 0)
3583 return (zil_replay_error(zilog, lr, error));
3584 }
3585
3586 /*
3587 * The log block containing this lr may have been byteswapped
3588 * so that we can easily examine common fields like lrc_txtype.
3589 * However, the log is a mix of different record types, and only the
3590 * replay vectors know how to byteswap their records. Therefore, if
3591 * the lr was byteswapped, undo it before invoking the replay vector.
3592 */
3593 if (zr->zr_byteswap)
3594 byteswap_uint64_array(zr->zr_lr, reclen);
3595
3596 /*
3597 * We must now do two things atomically: replay this log record,
3598 * and update the log header sequence number to reflect the fact that
3599 * we did so. At the end of each replay function the sequence number
3600 * is updated if we are in replay mode.
3601 */
3602 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
3603 if (error != 0) {
3604 /*
3605 * The DMU's dnode layer doesn't see removes until the txg
3606 * commits, so a subsequent claim can spuriously fail with
3607 * EEXIST. So if we receive any error we try syncing out
3608 * any removes then retry the transaction. Note that we
3609 * specify B_FALSE for byteswap now, so we don't do it twice.
3610 */
3611 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3612 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
3613 if (error != 0)
3614 return (zil_replay_error(zilog, lr, error));
3615 }
3616 return (0);
3617 }
3618
3619 static int
3620 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg)
3621 {
3622 (void) bp, (void) arg, (void) claim_txg;
3623
3624 zilog->zl_replay_blks++;
3625
3626 return (0);
3627 }
3628
3629 /*
3630 * If this dataset has a non-empty intent log, replay it and destroy it.
3631 */
3632 void
3633 zil_replay(objset_t *os, void *arg,
3634 zil_replay_func_t *const replay_func[TX_MAX_TYPE])
3635 {
3636 zilog_t *zilog = dmu_objset_zil(os);
3637 const zil_header_t *zh = zilog->zl_header;
3638 zil_replay_arg_t zr;
3639
3640 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
3641 zil_destroy(zilog, B_TRUE);
3642 return;
3643 }
3644
3645 zr.zr_replay = replay_func;
3646 zr.zr_arg = arg;
3647 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
3648 zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
3649
3650 /*
3651 * Wait for in-progress removes to sync before starting replay.
3652 */
3653 txg_wait_synced(zilog->zl_dmu_pool, 0);
3654
3655 zilog->zl_replay = B_TRUE;
3656 zilog->zl_replay_time = ddi_get_lbolt();
3657 ASSERT(zilog->zl_replay_blks == 0);
3658 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
3659 zh->zh_claim_txg, B_TRUE);
3660 vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
3661
3662 zil_destroy(zilog, B_FALSE);
3663 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
3664 zilog->zl_replay = B_FALSE;
3665 }
3666
3667 boolean_t
3668 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
3669 {
3670 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3671 return (B_TRUE);
3672
3673 if (zilog->zl_replay) {
3674 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
3675 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3676 zilog->zl_replaying_seq;
3677 return (B_TRUE);
3678 }
3679
3680 return (B_FALSE);
3681 }
3682
3683 int
3684 zil_reset(const char *osname, void *arg)
3685 {
3686 (void) arg;
3687
3688 int error = zil_suspend(osname, NULL);
3689 /* EACCES means crypto key not loaded */
3690 if ((error == EACCES) || (error == EBUSY))
3691 return (SET_ERROR(error));
3692 if (error != 0)
3693 return (SET_ERROR(EEXIST));
3694 return (0);
3695 }
3696
3697 EXPORT_SYMBOL(zil_alloc);
3698 EXPORT_SYMBOL(zil_free);
3699 EXPORT_SYMBOL(zil_open);
3700 EXPORT_SYMBOL(zil_close);
3701 EXPORT_SYMBOL(zil_replay);
3702 EXPORT_SYMBOL(zil_replaying);
3703 EXPORT_SYMBOL(zil_destroy);
3704 EXPORT_SYMBOL(zil_destroy_sync);
3705 EXPORT_SYMBOL(zil_itx_create);
3706 EXPORT_SYMBOL(zil_itx_destroy);
3707 EXPORT_SYMBOL(zil_itx_assign);
3708 EXPORT_SYMBOL(zil_commit);
3709 EXPORT_SYMBOL(zil_claim);
3710 EXPORT_SYMBOL(zil_check_log_chain);
3711 EXPORT_SYMBOL(zil_sync);
3712 EXPORT_SYMBOL(zil_clean);
3713 EXPORT_SYMBOL(zil_suspend);
3714 EXPORT_SYMBOL(zil_resume);
3715 EXPORT_SYMBOL(zil_lwb_add_block);
3716 EXPORT_SYMBOL(zil_bp_tree_add);
3717 EXPORT_SYMBOL(zil_set_sync);
3718 EXPORT_SYMBOL(zil_set_logbias);
3719
3720 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, INT, ZMOD_RW,
3721 "ZIL block open timeout percentage");
3722
3723 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW,
3724 "Disable intent logging replay");
3725
3726 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW,
3727 "Disable ZIL cache flushes");
3728
3729 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, ULONG, ZMOD_RW,
3730 "Limit in bytes slog sync writes per commit");
3731
3732 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, INT, ZMOD_RW,
3733 "Limit in bytes of ZIL log block size");