]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zil.c
Illumos 4370, 4371
[mirror_zfs.git] / module / zfs / zil.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 */
25
26 /* Portions Copyright 2010 Robert Milkowski */
27
28 #include <sys/zfs_context.h>
29 #include <sys/spa.h>
30 #include <sys/dmu.h>
31 #include <sys/zap.h>
32 #include <sys/arc.h>
33 #include <sys/stat.h>
34 #include <sys/resource.h>
35 #include <sys/zil.h>
36 #include <sys/zil_impl.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/vdev_impl.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/dsl_pool.h>
41 #include <sys/metaslab.h>
42
43 /*
44 * The zfs intent log (ZIL) saves transaction records of system calls
45 * that change the file system in memory with enough information
46 * to be able to replay them. These are stored in memory until
47 * either the DMU transaction group (txg) commits them to the stable pool
48 * and they can be discarded, or they are flushed to the stable log
49 * (also in the pool) due to a fsync, O_DSYNC or other synchronous
50 * requirement. In the event of a panic or power fail then those log
51 * records (transactions) are replayed.
52 *
53 * There is one ZIL per file system. Its on-disk (pool) format consists
54 * of 3 parts:
55 *
56 * - ZIL header
57 * - ZIL blocks
58 * - ZIL records
59 *
60 * A log record holds a system call transaction. Log blocks can
61 * hold many log records and the blocks are chained together.
62 * Each ZIL block contains a block pointer (blkptr_t) to the next
63 * ZIL block in the chain. The ZIL header points to the first
64 * block in the chain. Note there is not a fixed place in the pool
65 * to hold blocks. They are dynamically allocated and freed as
66 * needed from the blocks available. Figure X shows the ZIL structure:
67 */
68
69 /*
70 * See zil.h for more information about these fields.
71 */
72 zil_stats_t zil_stats = {
73 { "zil_commit_count", KSTAT_DATA_UINT64 },
74 { "zil_commit_writer_count", KSTAT_DATA_UINT64 },
75 { "zil_itx_count", KSTAT_DATA_UINT64 },
76 { "zil_itx_indirect_count", KSTAT_DATA_UINT64 },
77 { "zil_itx_indirect_bytes", KSTAT_DATA_UINT64 },
78 { "zil_itx_copied_count", KSTAT_DATA_UINT64 },
79 { "zil_itx_copied_bytes", KSTAT_DATA_UINT64 },
80 { "zil_itx_needcopy_count", KSTAT_DATA_UINT64 },
81 { "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64 },
82 { "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64 },
83 { "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64 },
84 { "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64 },
85 { "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 },
86 };
87
88 static kstat_t *zil_ksp;
89
90 /*
91 * Disable intent logging replay. This global ZIL switch affects all pools.
92 */
93 int zil_replay_disable = 0;
94
95 /*
96 * Tunable parameter for debugging or performance analysis. Setting
97 * zfs_nocacheflush will cause corruption on power loss if a volatile
98 * out-of-order write cache is enabled.
99 */
100 int zfs_nocacheflush = 0;
101
102 static kmem_cache_t *zil_lwb_cache;
103
104 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
105
106 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
107 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
108
109
110 /*
111 * ziltest is by and large an ugly hack, but very useful in
112 * checking replay without tedious work.
113 * When running ziltest we want to keep all itx's and so maintain
114 * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG
115 * We subtract TXG_CONCURRENT_STATES to allow for common code.
116 */
117 #define ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES)
118
119 static int
120 zil_bp_compare(const void *x1, const void *x2)
121 {
122 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
123 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
124
125 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
126 return (-1);
127 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
128 return (1);
129
130 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
131 return (-1);
132 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
133 return (1);
134
135 return (0);
136 }
137
138 static void
139 zil_bp_tree_init(zilog_t *zilog)
140 {
141 avl_create(&zilog->zl_bp_tree, zil_bp_compare,
142 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
143 }
144
145 static void
146 zil_bp_tree_fini(zilog_t *zilog)
147 {
148 avl_tree_t *t = &zilog->zl_bp_tree;
149 zil_bp_node_t *zn;
150 void *cookie = NULL;
151
152 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
153 kmem_free(zn, sizeof (zil_bp_node_t));
154
155 avl_destroy(t);
156 }
157
158 int
159 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
160 {
161 avl_tree_t *t = &zilog->zl_bp_tree;
162 const dva_t *dva = BP_IDENTITY(bp);
163 zil_bp_node_t *zn;
164 avl_index_t where;
165
166 if (avl_find(t, dva, &where) != NULL)
167 return (SET_ERROR(EEXIST));
168
169 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_PUSHPAGE);
170 zn->zn_dva = *dva;
171 avl_insert(t, zn, where);
172
173 return (0);
174 }
175
176 static zil_header_t *
177 zil_header_in_syncing_context(zilog_t *zilog)
178 {
179 return ((zil_header_t *)zilog->zl_header);
180 }
181
182 static void
183 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
184 {
185 zio_cksum_t *zc = &bp->blk_cksum;
186
187 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
188 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
189 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
190 zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
191 }
192
193 /*
194 * Read a log block and make sure it's valid.
195 */
196 static int
197 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
198 char **end)
199 {
200 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
201 uint32_t aflags = ARC_WAIT;
202 arc_buf_t *abuf = NULL;
203 zbookmark_t zb;
204 int error;
205
206 if (zilog->zl_header->zh_claim_txg == 0)
207 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
208
209 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
210 zio_flags |= ZIO_FLAG_SPECULATIVE;
211
212 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
213 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
214
215 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
216 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
217
218 if (error == 0) {
219 zio_cksum_t cksum = bp->blk_cksum;
220
221 /*
222 * Validate the checksummed log block.
223 *
224 * Sequence numbers should be... sequential. The checksum
225 * verifier for the next block should be bp's checksum plus 1.
226 *
227 * Also check the log chain linkage and size used.
228 */
229 cksum.zc_word[ZIL_ZC_SEQ]++;
230
231 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
232 zil_chain_t *zilc = abuf->b_data;
233 char *lr = (char *)(zilc + 1);
234 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
235
236 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
237 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
238 error = SET_ERROR(ECKSUM);
239 } else {
240 bcopy(lr, dst, len);
241 *end = (char *)dst + len;
242 *nbp = zilc->zc_next_blk;
243 }
244 } else {
245 char *lr = abuf->b_data;
246 uint64_t size = BP_GET_LSIZE(bp);
247 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
248
249 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
250 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
251 (zilc->zc_nused > (size - sizeof (*zilc)))) {
252 error = SET_ERROR(ECKSUM);
253 } else {
254 bcopy(lr, dst, zilc->zc_nused);
255 *end = (char *)dst + zilc->zc_nused;
256 *nbp = zilc->zc_next_blk;
257 }
258 }
259
260 VERIFY(arc_buf_remove_ref(abuf, &abuf));
261 }
262
263 return (error);
264 }
265
266 /*
267 * Read a TX_WRITE log data block.
268 */
269 static int
270 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
271 {
272 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
273 const blkptr_t *bp = &lr->lr_blkptr;
274 uint32_t aflags = ARC_WAIT;
275 arc_buf_t *abuf = NULL;
276 zbookmark_t zb;
277 int error;
278
279 if (BP_IS_HOLE(bp)) {
280 if (wbuf != NULL)
281 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
282 return (0);
283 }
284
285 if (zilog->zl_header->zh_claim_txg == 0)
286 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
287
288 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
289 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
290
291 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
292 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
293
294 if (error == 0) {
295 if (wbuf != NULL)
296 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
297 (void) arc_buf_remove_ref(abuf, &abuf);
298 }
299
300 return (error);
301 }
302
303 /*
304 * Parse the intent log, and call parse_func for each valid record within.
305 */
306 int
307 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
308 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
309 {
310 const zil_header_t *zh = zilog->zl_header;
311 boolean_t claimed = !!zh->zh_claim_txg;
312 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
313 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
314 uint64_t max_blk_seq = 0;
315 uint64_t max_lr_seq = 0;
316 uint64_t blk_count = 0;
317 uint64_t lr_count = 0;
318 blkptr_t blk, next_blk;
319 char *lrbuf, *lrp;
320 int error = 0;
321
322 bzero(&next_blk, sizeof (blkptr_t));
323
324 /*
325 * Old logs didn't record the maximum zh_claim_lr_seq.
326 */
327 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
328 claim_lr_seq = UINT64_MAX;
329
330 /*
331 * Starting at the block pointed to by zh_log we read the log chain.
332 * For each block in the chain we strongly check that block to
333 * ensure its validity. We stop when an invalid block is found.
334 * For each block pointer in the chain we call parse_blk_func().
335 * For each record in each valid block we call parse_lr_func().
336 * If the log has been claimed, stop if we encounter a sequence
337 * number greater than the highest claimed sequence number.
338 */
339 lrbuf = zio_buf_alloc(SPA_MAXBLOCKSIZE);
340 zil_bp_tree_init(zilog);
341
342 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
343 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
344 int reclen;
345 char *end = NULL;
346
347 if (blk_seq > claim_blk_seq)
348 break;
349 if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
350 break;
351 ASSERT3U(max_blk_seq, <, blk_seq);
352 max_blk_seq = blk_seq;
353 blk_count++;
354
355 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
356 break;
357
358 error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
359 if (error != 0)
360 break;
361
362 for (lrp = lrbuf; lrp < end; lrp += reclen) {
363 lr_t *lr = (lr_t *)lrp;
364 reclen = lr->lrc_reclen;
365 ASSERT3U(reclen, >=, sizeof (lr_t));
366 if (lr->lrc_seq > claim_lr_seq)
367 goto done;
368 if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
369 goto done;
370 ASSERT3U(max_lr_seq, <, lr->lrc_seq);
371 max_lr_seq = lr->lrc_seq;
372 lr_count++;
373 }
374 }
375 done:
376 zilog->zl_parse_error = error;
377 zilog->zl_parse_blk_seq = max_blk_seq;
378 zilog->zl_parse_lr_seq = max_lr_seq;
379 zilog->zl_parse_blk_count = blk_count;
380 zilog->zl_parse_lr_count = lr_count;
381
382 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
383 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
384
385 zil_bp_tree_fini(zilog);
386 zio_buf_free(lrbuf, SPA_MAXBLOCKSIZE);
387
388 return (error);
389 }
390
391 static int
392 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
393 {
394 /*
395 * Claim log block if not already committed and not already claimed.
396 * If tx == NULL, just verify that the block is claimable.
397 */
398 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
399 zil_bp_tree_add(zilog, bp) != 0)
400 return (0);
401
402 return (zio_wait(zio_claim(NULL, zilog->zl_spa,
403 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
404 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
405 }
406
407 static int
408 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
409 {
410 lr_write_t *lr = (lr_write_t *)lrc;
411 int error;
412
413 if (lrc->lrc_txtype != TX_WRITE)
414 return (0);
415
416 /*
417 * If the block is not readable, don't claim it. This can happen
418 * in normal operation when a log block is written to disk before
419 * some of the dmu_sync() blocks it points to. In this case, the
420 * transaction cannot have been committed to anyone (we would have
421 * waited for all writes to be stable first), so it is semantically
422 * correct to declare this the end of the log.
423 */
424 if (lr->lr_blkptr.blk_birth >= first_txg &&
425 (error = zil_read_log_data(zilog, lr, NULL)) != 0)
426 return (error);
427 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
428 }
429
430 /* ARGSUSED */
431 static int
432 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
433 {
434 zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
435
436 return (0);
437 }
438
439 static int
440 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
441 {
442 lr_write_t *lr = (lr_write_t *)lrc;
443 blkptr_t *bp = &lr->lr_blkptr;
444
445 /*
446 * If we previously claimed it, we need to free it.
447 */
448 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
449 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
450 !BP_IS_HOLE(bp))
451 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
452
453 return (0);
454 }
455
456 static lwb_t *
457 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg, boolean_t fastwrite)
458 {
459 lwb_t *lwb;
460
461 lwb = kmem_cache_alloc(zil_lwb_cache, KM_PUSHPAGE);
462 lwb->lwb_zilog = zilog;
463 lwb->lwb_blk = *bp;
464 lwb->lwb_fastwrite = fastwrite;
465 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
466 lwb->lwb_max_txg = txg;
467 lwb->lwb_zio = NULL;
468 lwb->lwb_tx = NULL;
469 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
470 lwb->lwb_nused = sizeof (zil_chain_t);
471 lwb->lwb_sz = BP_GET_LSIZE(bp);
472 } else {
473 lwb->lwb_nused = 0;
474 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
475 }
476
477 mutex_enter(&zilog->zl_lock);
478 list_insert_tail(&zilog->zl_lwb_list, lwb);
479 mutex_exit(&zilog->zl_lock);
480
481 return (lwb);
482 }
483
484 /*
485 * Called when we create in-memory log transactions so that we know
486 * to cleanup the itxs at the end of spa_sync().
487 */
488 void
489 zilog_dirty(zilog_t *zilog, uint64_t txg)
490 {
491 dsl_pool_t *dp = zilog->zl_dmu_pool;
492 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
493
494 if (dsl_dataset_is_snapshot(ds))
495 panic("dirtying snapshot!");
496
497 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
498 /* up the hold count until we can be written out */
499 dmu_buf_add_ref(ds->ds_dbuf, zilog);
500 }
501 }
502
503 boolean_t
504 zilog_is_dirty(zilog_t *zilog)
505 {
506 dsl_pool_t *dp = zilog->zl_dmu_pool;
507 int t;
508
509 for (t = 0; t < TXG_SIZE; t++) {
510 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
511 return (B_TRUE);
512 }
513 return (B_FALSE);
514 }
515
516 /*
517 * Create an on-disk intent log.
518 */
519 static lwb_t *
520 zil_create(zilog_t *zilog)
521 {
522 const zil_header_t *zh = zilog->zl_header;
523 lwb_t *lwb = NULL;
524 uint64_t txg = 0;
525 dmu_tx_t *tx = NULL;
526 blkptr_t blk;
527 int error = 0;
528 boolean_t fastwrite = FALSE;
529
530 /*
531 * Wait for any previous destroy to complete.
532 */
533 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
534
535 ASSERT(zh->zh_claim_txg == 0);
536 ASSERT(zh->zh_replay_seq == 0);
537
538 blk = zh->zh_log;
539
540 /*
541 * Allocate an initial log block if:
542 * - there isn't one already
543 * - the existing block is the wrong endianess
544 */
545 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
546 tx = dmu_tx_create(zilog->zl_os);
547 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
548 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
549 txg = dmu_tx_get_txg(tx);
550
551 if (!BP_IS_HOLE(&blk)) {
552 zio_free_zil(zilog->zl_spa, txg, &blk);
553 BP_ZERO(&blk);
554 }
555
556 error = zio_alloc_zil(zilog->zl_spa, txg, &blk,
557 ZIL_MIN_BLKSZ, B_TRUE);
558 fastwrite = TRUE;
559
560 if (error == 0)
561 zil_init_log_chain(zilog, &blk);
562 }
563
564 /*
565 * Allocate a log write buffer (lwb) for the first log block.
566 */
567 if (error == 0)
568 lwb = zil_alloc_lwb(zilog, &blk, txg, fastwrite);
569
570 /*
571 * If we just allocated the first log block, commit our transaction
572 * and wait for zil_sync() to stuff the block poiner into zh_log.
573 * (zh is part of the MOS, so we cannot modify it in open context.)
574 */
575 if (tx != NULL) {
576 dmu_tx_commit(tx);
577 txg_wait_synced(zilog->zl_dmu_pool, txg);
578 }
579
580 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
581
582 return (lwb);
583 }
584
585 /*
586 * In one tx, free all log blocks and clear the log header.
587 * If keep_first is set, then we're replaying a log with no content.
588 * We want to keep the first block, however, so that the first
589 * synchronous transaction doesn't require a txg_wait_synced()
590 * in zil_create(). We don't need to txg_wait_synced() here either
591 * when keep_first is set, because both zil_create() and zil_destroy()
592 * will wait for any in-progress destroys to complete.
593 */
594 void
595 zil_destroy(zilog_t *zilog, boolean_t keep_first)
596 {
597 const zil_header_t *zh = zilog->zl_header;
598 lwb_t *lwb;
599 dmu_tx_t *tx;
600 uint64_t txg;
601
602 /*
603 * Wait for any previous destroy to complete.
604 */
605 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
606
607 zilog->zl_old_header = *zh; /* debugging aid */
608
609 if (BP_IS_HOLE(&zh->zh_log))
610 return;
611
612 tx = dmu_tx_create(zilog->zl_os);
613 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
614 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
615 txg = dmu_tx_get_txg(tx);
616
617 mutex_enter(&zilog->zl_lock);
618
619 ASSERT3U(zilog->zl_destroy_txg, <, txg);
620 zilog->zl_destroy_txg = txg;
621 zilog->zl_keep_first = keep_first;
622
623 if (!list_is_empty(&zilog->zl_lwb_list)) {
624 ASSERT(zh->zh_claim_txg == 0);
625 VERIFY(!keep_first);
626 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
627 ASSERT(lwb->lwb_zio == NULL);
628 if (lwb->lwb_fastwrite)
629 metaslab_fastwrite_unmark(zilog->zl_spa,
630 &lwb->lwb_blk);
631 list_remove(&zilog->zl_lwb_list, lwb);
632 if (lwb->lwb_buf != NULL)
633 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
634 zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk);
635 kmem_cache_free(zil_lwb_cache, lwb);
636 }
637 } else if (!keep_first) {
638 zil_destroy_sync(zilog, tx);
639 }
640 mutex_exit(&zilog->zl_lock);
641
642 dmu_tx_commit(tx);
643 }
644
645 void
646 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
647 {
648 ASSERT(list_is_empty(&zilog->zl_lwb_list));
649 (void) zil_parse(zilog, zil_free_log_block,
650 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
651 }
652
653 int
654 zil_claim(const char *osname, void *txarg)
655 {
656 dmu_tx_t *tx = txarg;
657 uint64_t first_txg = dmu_tx_get_txg(tx);
658 zilog_t *zilog;
659 zil_header_t *zh;
660 objset_t *os;
661 int error;
662
663 error = dmu_objset_own(osname, DMU_OST_ANY, B_FALSE, FTAG, &os);
664 if (error != 0) {
665 cmn_err(CE_WARN, "can't open objset for %s", osname);
666 return (0);
667 }
668
669 zilog = dmu_objset_zil(os);
670 zh = zil_header_in_syncing_context(zilog);
671
672 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
673 if (!BP_IS_HOLE(&zh->zh_log))
674 zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
675 BP_ZERO(&zh->zh_log);
676 dsl_dataset_dirty(dmu_objset_ds(os), tx);
677 dmu_objset_disown(os, FTAG);
678 return (0);
679 }
680
681 /*
682 * Claim all log blocks if we haven't already done so, and remember
683 * the highest claimed sequence number. This ensures that if we can
684 * read only part of the log now (e.g. due to a missing device),
685 * but we can read the entire log later, we will not try to replay
686 * or destroy beyond the last block we successfully claimed.
687 */
688 ASSERT3U(zh->zh_claim_txg, <=, first_txg);
689 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
690 (void) zil_parse(zilog, zil_claim_log_block,
691 zil_claim_log_record, tx, first_txg);
692 zh->zh_claim_txg = first_txg;
693 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
694 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
695 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
696 zh->zh_flags |= ZIL_REPLAY_NEEDED;
697 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
698 dsl_dataset_dirty(dmu_objset_ds(os), tx);
699 }
700
701 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
702 dmu_objset_disown(os, FTAG);
703 return (0);
704 }
705
706 /*
707 * Check the log by walking the log chain.
708 * Checksum errors are ok as they indicate the end of the chain.
709 * Any other error (no device or read failure) returns an error.
710 */
711 int
712 zil_check_log_chain(const char *osname, void *tx)
713 {
714 zilog_t *zilog;
715 objset_t *os;
716 blkptr_t *bp;
717 int error;
718
719 ASSERT(tx == NULL);
720
721 error = dmu_objset_hold(osname, FTAG, &os);
722 if (error != 0) {
723 cmn_err(CE_WARN, "can't open objset for %s", osname);
724 return (0);
725 }
726
727 zilog = dmu_objset_zil(os);
728 bp = (blkptr_t *)&zilog->zl_header->zh_log;
729
730 /*
731 * Check the first block and determine if it's on a log device
732 * which may have been removed or faulted prior to loading this
733 * pool. If so, there's no point in checking the rest of the log
734 * as its content should have already been synced to the pool.
735 */
736 if (!BP_IS_HOLE(bp)) {
737 vdev_t *vd;
738 boolean_t valid = B_TRUE;
739
740 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
741 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
742 if (vd->vdev_islog && vdev_is_dead(vd))
743 valid = vdev_log_state_valid(vd);
744 spa_config_exit(os->os_spa, SCL_STATE, FTAG);
745
746 if (!valid) {
747 dmu_objset_rele(os, FTAG);
748 return (0);
749 }
750 }
751
752 /*
753 * Because tx == NULL, zil_claim_log_block() will not actually claim
754 * any blocks, but just determine whether it is possible to do so.
755 * In addition to checking the log chain, zil_claim_log_block()
756 * will invoke zio_claim() with a done func of spa_claim_notify(),
757 * which will update spa_max_claim_txg. See spa_load() for details.
758 */
759 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
760 zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
761
762 dmu_objset_rele(os, FTAG);
763
764 return ((error == ECKSUM || error == ENOENT) ? 0 : error);
765 }
766
767 static int
768 zil_vdev_compare(const void *x1, const void *x2)
769 {
770 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
771 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
772
773 if (v1 < v2)
774 return (-1);
775 if (v1 > v2)
776 return (1);
777
778 return (0);
779 }
780
781 void
782 zil_add_block(zilog_t *zilog, const blkptr_t *bp)
783 {
784 avl_tree_t *t = &zilog->zl_vdev_tree;
785 avl_index_t where;
786 zil_vdev_node_t *zv, zvsearch;
787 int ndvas = BP_GET_NDVAS(bp);
788 int i;
789
790 if (zfs_nocacheflush)
791 return;
792
793 ASSERT(zilog->zl_writer);
794
795 /*
796 * Even though we're zl_writer, we still need a lock because the
797 * zl_get_data() callbacks may have dmu_sync() done callbacks
798 * that will run concurrently.
799 */
800 mutex_enter(&zilog->zl_vdev_lock);
801 for (i = 0; i < ndvas; i++) {
802 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
803 if (avl_find(t, &zvsearch, &where) == NULL) {
804 zv = kmem_alloc(sizeof (*zv), KM_PUSHPAGE);
805 zv->zv_vdev = zvsearch.zv_vdev;
806 avl_insert(t, zv, where);
807 }
808 }
809 mutex_exit(&zilog->zl_vdev_lock);
810 }
811
812 static void
813 zil_flush_vdevs(zilog_t *zilog)
814 {
815 spa_t *spa = zilog->zl_spa;
816 avl_tree_t *t = &zilog->zl_vdev_tree;
817 void *cookie = NULL;
818 zil_vdev_node_t *zv;
819 zio_t *zio;
820
821 ASSERT(zilog->zl_writer);
822
823 /*
824 * We don't need zl_vdev_lock here because we're the zl_writer,
825 * and all zl_get_data() callbacks are done.
826 */
827 if (avl_numnodes(t) == 0)
828 return;
829
830 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
831
832 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
833
834 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
835 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
836 if (vd != NULL)
837 zio_flush(zio, vd);
838 kmem_free(zv, sizeof (*zv));
839 }
840
841 /*
842 * Wait for all the flushes to complete. Not all devices actually
843 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
844 */
845 (void) zio_wait(zio);
846
847 spa_config_exit(spa, SCL_STATE, FTAG);
848 }
849
850 /*
851 * Function called when a log block write completes
852 */
853 static void
854 zil_lwb_write_done(zio_t *zio)
855 {
856 lwb_t *lwb = zio->io_private;
857 zilog_t *zilog = lwb->lwb_zilog;
858 dmu_tx_t *tx = lwb->lwb_tx;
859
860 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
861 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
862 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
863 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
864 ASSERT(!BP_IS_GANG(zio->io_bp));
865 ASSERT(!BP_IS_HOLE(zio->io_bp));
866 ASSERT(zio->io_bp->blk_fill == 0);
867
868 /*
869 * Ensure the lwb buffer pointer is cleared before releasing
870 * the txg. If we have had an allocation failure and
871 * the txg is waiting to sync then we want want zil_sync()
872 * to remove the lwb so that it's not picked up as the next new
873 * one in zil_commit_writer(). zil_sync() will only remove
874 * the lwb if lwb_buf is null.
875 */
876 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
877 mutex_enter(&zilog->zl_lock);
878 lwb->lwb_zio = NULL;
879 lwb->lwb_fastwrite = FALSE;
880 lwb->lwb_buf = NULL;
881 lwb->lwb_tx = NULL;
882 mutex_exit(&zilog->zl_lock);
883
884 /*
885 * Now that we've written this log block, we have a stable pointer
886 * to the next block in the chain, so it's OK to let the txg in
887 * which we allocated the next block sync.
888 */
889 dmu_tx_commit(tx);
890 }
891
892 /*
893 * Initialize the io for a log block.
894 */
895 static void
896 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
897 {
898 zbookmark_t zb;
899
900 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
901 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
902 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
903
904 if (zilog->zl_root_zio == NULL) {
905 zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
906 ZIO_FLAG_CANFAIL);
907 }
908
909 /* Lock so zil_sync() doesn't fastwrite_unmark after zio is created */
910 mutex_enter(&zilog->zl_lock);
911 if (lwb->lwb_zio == NULL) {
912 if (!lwb->lwb_fastwrite) {
913 metaslab_fastwrite_mark(zilog->zl_spa, &lwb->lwb_blk);
914 lwb->lwb_fastwrite = 1;
915 }
916 lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
917 0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk),
918 zil_lwb_write_done, lwb, ZIO_PRIORITY_SYNC_WRITE,
919 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE |
920 ZIO_FLAG_FASTWRITE, &zb);
921 }
922 mutex_exit(&zilog->zl_lock);
923 }
924
925 /*
926 * Define a limited set of intent log block sizes.
927 *
928 * These must be a multiple of 4KB. Note only the amount used (again
929 * aligned to 4KB) actually gets written. However, we can't always just
930 * allocate SPA_MAXBLOCKSIZE as the slog space could be exhausted.
931 */
932 uint64_t zil_block_buckets[] = {
933 4096, /* non TX_WRITE */
934 8192+4096, /* data base */
935 32*1024 + 4096, /* NFS writes */
936 UINT64_MAX
937 };
938
939 /*
940 * Use the slog as long as the current commit size is less than the
941 * limit or the total list size is less than 2X the limit. Limit
942 * checking is disabled by setting zil_slog_limit to UINT64_MAX.
943 */
944 unsigned long zil_slog_limit = 1024 * 1024;
945 #define USE_SLOG(zilog) (((zilog)->zl_cur_used < zil_slog_limit) || \
946 ((zilog)->zl_itx_list_sz < (zil_slog_limit << 1)))
947
948 /*
949 * Start a log block write and advance to the next log block.
950 * Calls are serialized.
951 */
952 static lwb_t *
953 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
954 {
955 lwb_t *nlwb = NULL;
956 zil_chain_t *zilc;
957 spa_t *spa = zilog->zl_spa;
958 blkptr_t *bp;
959 dmu_tx_t *tx;
960 uint64_t txg;
961 uint64_t zil_blksz, wsz;
962 int i, error;
963 boolean_t use_slog;
964
965 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
966 zilc = (zil_chain_t *)lwb->lwb_buf;
967 bp = &zilc->zc_next_blk;
968 } else {
969 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
970 bp = &zilc->zc_next_blk;
971 }
972
973 ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
974
975 /*
976 * Allocate the next block and save its address in this block
977 * before writing it in order to establish the log chain.
978 * Note that if the allocation of nlwb synced before we wrote
979 * the block that points at it (lwb), we'd leak it if we crashed.
980 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
981 * We dirty the dataset to ensure that zil_sync() will be called
982 * to clean up in the event of allocation failure or I/O failure.
983 */
984 tx = dmu_tx_create(zilog->zl_os);
985 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
986 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
987 txg = dmu_tx_get_txg(tx);
988
989 lwb->lwb_tx = tx;
990
991 /*
992 * Log blocks are pre-allocated. Here we select the size of the next
993 * block, based on size used in the last block.
994 * - first find the smallest bucket that will fit the block from a
995 * limited set of block sizes. This is because it's faster to write
996 * blocks allocated from the same metaslab as they are adjacent or
997 * close.
998 * - next find the maximum from the new suggested size and an array of
999 * previous sizes. This lessens a picket fence effect of wrongly
1000 * guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
1001 * requests.
1002 *
1003 * Note we only write what is used, but we can't just allocate
1004 * the maximum block size because we can exhaust the available
1005 * pool log space.
1006 */
1007 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1008 for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1009 continue;
1010 zil_blksz = zil_block_buckets[i];
1011 if (zil_blksz == UINT64_MAX)
1012 zil_blksz = SPA_MAXBLOCKSIZE;
1013 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1014 for (i = 0; i < ZIL_PREV_BLKS; i++)
1015 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1016 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1017
1018 BP_ZERO(bp);
1019 use_slog = USE_SLOG(zilog);
1020 error = zio_alloc_zil(spa, txg, bp, zil_blksz,
1021 USE_SLOG(zilog));
1022 if (use_slog) {
1023 ZIL_STAT_BUMP(zil_itx_metaslab_slog_count);
1024 ZIL_STAT_INCR(zil_itx_metaslab_slog_bytes, lwb->lwb_nused);
1025 } else {
1026 ZIL_STAT_BUMP(zil_itx_metaslab_normal_count);
1027 ZIL_STAT_INCR(zil_itx_metaslab_normal_bytes, lwb->lwb_nused);
1028 }
1029 if (error == 0) {
1030 ASSERT3U(bp->blk_birth, ==, txg);
1031 bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1032 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1033
1034 /*
1035 * Allocate a new log write buffer (lwb).
1036 */
1037 nlwb = zil_alloc_lwb(zilog, bp, txg, TRUE);
1038
1039 /* Record the block for later vdev flushing */
1040 zil_add_block(zilog, &lwb->lwb_blk);
1041 }
1042
1043 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1044 /* For Slim ZIL only write what is used. */
1045 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1046 ASSERT3U(wsz, <=, lwb->lwb_sz);
1047 zio_shrink(lwb->lwb_zio, wsz);
1048
1049 } else {
1050 wsz = lwb->lwb_sz;
1051 }
1052
1053 zilc->zc_pad = 0;
1054 zilc->zc_nused = lwb->lwb_nused;
1055 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1056
1057 /*
1058 * clear unused data for security
1059 */
1060 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1061
1062 zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */
1063
1064 /*
1065 * If there was an allocation failure then nlwb will be null which
1066 * forces a txg_wait_synced().
1067 */
1068 return (nlwb);
1069 }
1070
1071 static lwb_t *
1072 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1073 {
1074 lr_t *lrc = &itx->itx_lr; /* common log record */
1075 lr_write_t *lrw = (lr_write_t *)lrc;
1076 char *lr_buf;
1077 uint64_t txg = lrc->lrc_txg;
1078 uint64_t reclen = lrc->lrc_reclen;
1079 uint64_t dlen = 0;
1080
1081 if (lwb == NULL)
1082 return (NULL);
1083
1084 ASSERT(lwb->lwb_buf != NULL);
1085 ASSERT(zilog_is_dirty(zilog) ||
1086 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1087
1088 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY)
1089 dlen = P2ROUNDUP_TYPED(
1090 lrw->lr_length, sizeof (uint64_t), uint64_t);
1091
1092 zilog->zl_cur_used += (reclen + dlen);
1093
1094 zil_lwb_write_init(zilog, lwb);
1095
1096 /*
1097 * If this record won't fit in the current log block, start a new one.
1098 */
1099 if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1100 lwb = zil_lwb_write_start(zilog, lwb);
1101 if (lwb == NULL)
1102 return (NULL);
1103 zil_lwb_write_init(zilog, lwb);
1104 ASSERT(LWB_EMPTY(lwb));
1105 if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1106 txg_wait_synced(zilog->zl_dmu_pool, txg);
1107 return (lwb);
1108 }
1109 }
1110
1111 lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1112 bcopy(lrc, lr_buf, reclen);
1113 lrc = (lr_t *)lr_buf;
1114 lrw = (lr_write_t *)lrc;
1115
1116 ZIL_STAT_BUMP(zil_itx_count);
1117
1118 /*
1119 * If it's a write, fetch the data or get its blkptr as appropriate.
1120 */
1121 if (lrc->lrc_txtype == TX_WRITE) {
1122 if (txg > spa_freeze_txg(zilog->zl_spa))
1123 txg_wait_synced(zilog->zl_dmu_pool, txg);
1124 if (itx->itx_wr_state == WR_COPIED) {
1125 ZIL_STAT_BUMP(zil_itx_copied_count);
1126 ZIL_STAT_INCR(zil_itx_copied_bytes, lrw->lr_length);
1127 } else {
1128 char *dbuf;
1129 int error;
1130
1131 if (dlen) {
1132 ASSERT(itx->itx_wr_state == WR_NEED_COPY);
1133 dbuf = lr_buf + reclen;
1134 lrw->lr_common.lrc_reclen += dlen;
1135 ZIL_STAT_BUMP(zil_itx_needcopy_count);
1136 ZIL_STAT_INCR(zil_itx_needcopy_bytes,
1137 lrw->lr_length);
1138 } else {
1139 ASSERT(itx->itx_wr_state == WR_INDIRECT);
1140 dbuf = NULL;
1141 ZIL_STAT_BUMP(zil_itx_indirect_count);
1142 ZIL_STAT_INCR(zil_itx_indirect_bytes,
1143 lrw->lr_length);
1144 }
1145 error = zilog->zl_get_data(
1146 itx->itx_private, lrw, dbuf, lwb->lwb_zio);
1147 if (error == EIO) {
1148 txg_wait_synced(zilog->zl_dmu_pool, txg);
1149 return (lwb);
1150 }
1151 if (error != 0) {
1152 ASSERT(error == ENOENT || error == EEXIST ||
1153 error == EALREADY);
1154 return (lwb);
1155 }
1156 }
1157 }
1158
1159 /*
1160 * We're actually making an entry, so update lrc_seq to be the
1161 * log record sequence number. Note that this is generally not
1162 * equal to the itx sequence number because not all transactions
1163 * are synchronous, and sometimes spa_sync() gets there first.
1164 */
1165 lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
1166 lwb->lwb_nused += reclen + dlen;
1167 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1168 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1169 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1170
1171 return (lwb);
1172 }
1173
1174 itx_t *
1175 zil_itx_create(uint64_t txtype, size_t lrsize)
1176 {
1177 itx_t *itx;
1178
1179 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1180
1181 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize,
1182 KM_PUSHPAGE | KM_NODEBUG);
1183 itx->itx_lr.lrc_txtype = txtype;
1184 itx->itx_lr.lrc_reclen = lrsize;
1185 itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */
1186 itx->itx_lr.lrc_seq = 0; /* defensive */
1187 itx->itx_sync = B_TRUE; /* default is synchronous */
1188 itx->itx_callback = NULL;
1189 itx->itx_callback_data = NULL;
1190
1191 return (itx);
1192 }
1193
1194 void
1195 zil_itx_destroy(itx_t *itx)
1196 {
1197 kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1198 }
1199
1200 /*
1201 * Free up the sync and async itxs. The itxs_t has already been detached
1202 * so no locks are needed.
1203 */
1204 static void
1205 zil_itxg_clean(itxs_t *itxs)
1206 {
1207 itx_t *itx;
1208 list_t *list;
1209 avl_tree_t *t;
1210 void *cookie;
1211 itx_async_node_t *ian;
1212
1213 list = &itxs->i_sync_list;
1214 while ((itx = list_head(list)) != NULL) {
1215 if (itx->itx_callback != NULL)
1216 itx->itx_callback(itx->itx_callback_data);
1217 list_remove(list, itx);
1218 kmem_free(itx, offsetof(itx_t, itx_lr) +
1219 itx->itx_lr.lrc_reclen);
1220 }
1221
1222 cookie = NULL;
1223 t = &itxs->i_async_tree;
1224 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1225 list = &ian->ia_list;
1226 while ((itx = list_head(list)) != NULL) {
1227 if (itx->itx_callback != NULL)
1228 itx->itx_callback(itx->itx_callback_data);
1229 list_remove(list, itx);
1230 kmem_free(itx, offsetof(itx_t, itx_lr) +
1231 itx->itx_lr.lrc_reclen);
1232 }
1233 list_destroy(list);
1234 kmem_free(ian, sizeof (itx_async_node_t));
1235 }
1236 avl_destroy(t);
1237
1238 kmem_free(itxs, sizeof (itxs_t));
1239 }
1240
1241 static int
1242 zil_aitx_compare(const void *x1, const void *x2)
1243 {
1244 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1245 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1246
1247 if (o1 < o2)
1248 return (-1);
1249 if (o1 > o2)
1250 return (1);
1251
1252 return (0);
1253 }
1254
1255 /*
1256 * Remove all async itx with the given oid.
1257 */
1258 static void
1259 zil_remove_async(zilog_t *zilog, uint64_t oid)
1260 {
1261 uint64_t otxg, txg;
1262 itx_async_node_t *ian;
1263 avl_tree_t *t;
1264 avl_index_t where;
1265 list_t clean_list;
1266 itx_t *itx;
1267
1268 ASSERT(oid != 0);
1269 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1270
1271 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1272 otxg = ZILTEST_TXG;
1273 else
1274 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1275
1276 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1277 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1278
1279 mutex_enter(&itxg->itxg_lock);
1280 if (itxg->itxg_txg != txg) {
1281 mutex_exit(&itxg->itxg_lock);
1282 continue;
1283 }
1284
1285 /*
1286 * Locate the object node and append its list.
1287 */
1288 t = &itxg->itxg_itxs->i_async_tree;
1289 ian = avl_find(t, &oid, &where);
1290 if (ian != NULL)
1291 list_move_tail(&clean_list, &ian->ia_list);
1292 mutex_exit(&itxg->itxg_lock);
1293 }
1294 while ((itx = list_head(&clean_list)) != NULL) {
1295 if (itx->itx_callback != NULL)
1296 itx->itx_callback(itx->itx_callback_data);
1297 list_remove(&clean_list, itx);
1298 kmem_free(itx, offsetof(itx_t, itx_lr) +
1299 itx->itx_lr.lrc_reclen);
1300 }
1301 list_destroy(&clean_list);
1302 }
1303
1304 void
1305 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1306 {
1307 uint64_t txg;
1308 itxg_t *itxg;
1309 itxs_t *itxs, *clean = NULL;
1310
1311 /*
1312 * Object ids can be re-instantiated in the next txg so
1313 * remove any async transactions to avoid future leaks.
1314 * This can happen if a fsync occurs on the re-instantiated
1315 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1316 * the new file data and flushes a write record for the old object.
1317 */
1318 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1319 zil_remove_async(zilog, itx->itx_oid);
1320
1321 /*
1322 * Ensure the data of a renamed file is committed before the rename.
1323 */
1324 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1325 zil_async_to_sync(zilog, itx->itx_oid);
1326
1327 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1328 txg = ZILTEST_TXG;
1329 else
1330 txg = dmu_tx_get_txg(tx);
1331
1332 itxg = &zilog->zl_itxg[txg & TXG_MASK];
1333 mutex_enter(&itxg->itxg_lock);
1334 itxs = itxg->itxg_itxs;
1335 if (itxg->itxg_txg != txg) {
1336 if (itxs != NULL) {
1337 /*
1338 * The zil_clean callback hasn't got around to cleaning
1339 * this itxg. Save the itxs for release below.
1340 * This should be rare.
1341 */
1342 atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1343 itxg->itxg_sod = 0;
1344 clean = itxg->itxg_itxs;
1345 }
1346 ASSERT(itxg->itxg_sod == 0);
1347 itxg->itxg_txg = txg;
1348 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
1349 KM_PUSHPAGE);
1350
1351 list_create(&itxs->i_sync_list, sizeof (itx_t),
1352 offsetof(itx_t, itx_node));
1353 avl_create(&itxs->i_async_tree, zil_aitx_compare,
1354 sizeof (itx_async_node_t),
1355 offsetof(itx_async_node_t, ia_node));
1356 }
1357 if (itx->itx_sync) {
1358 list_insert_tail(&itxs->i_sync_list, itx);
1359 atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod);
1360 itxg->itxg_sod += itx->itx_sod;
1361 } else {
1362 avl_tree_t *t = &itxs->i_async_tree;
1363 uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1364 itx_async_node_t *ian;
1365 avl_index_t where;
1366
1367 ian = avl_find(t, &foid, &where);
1368 if (ian == NULL) {
1369 ian = kmem_alloc(sizeof (itx_async_node_t),
1370 KM_PUSHPAGE);
1371 list_create(&ian->ia_list, sizeof (itx_t),
1372 offsetof(itx_t, itx_node));
1373 ian->ia_foid = foid;
1374 avl_insert(t, ian, where);
1375 }
1376 list_insert_tail(&ian->ia_list, itx);
1377 }
1378
1379 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1380 zilog_dirty(zilog, txg);
1381 mutex_exit(&itxg->itxg_lock);
1382
1383 /* Release the old itxs now we've dropped the lock */
1384 if (clean != NULL)
1385 zil_itxg_clean(clean);
1386 }
1387
1388 /*
1389 * If there are any in-memory intent log transactions which have now been
1390 * synced then start up a taskq to free them. We should only do this after we
1391 * have written out the uberblocks (i.e. txg has been comitted) so that
1392 * don't inadvertently clean out in-memory log records that would be required
1393 * by zil_commit().
1394 */
1395 void
1396 zil_clean(zilog_t *zilog, uint64_t synced_txg)
1397 {
1398 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1399 itxs_t *clean_me;
1400
1401 mutex_enter(&itxg->itxg_lock);
1402 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1403 mutex_exit(&itxg->itxg_lock);
1404 return;
1405 }
1406 ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1407 ASSERT(itxg->itxg_txg != 0);
1408 ASSERT(zilog->zl_clean_taskq != NULL);
1409 atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1410 itxg->itxg_sod = 0;
1411 clean_me = itxg->itxg_itxs;
1412 itxg->itxg_itxs = NULL;
1413 itxg->itxg_txg = 0;
1414 mutex_exit(&itxg->itxg_lock);
1415 /*
1416 * Preferably start a task queue to free up the old itxs but
1417 * if taskq_dispatch can't allocate resources to do that then
1418 * free it in-line. This should be rare. Note, using TQ_SLEEP
1419 * created a bad performance problem.
1420 */
1421 if (taskq_dispatch(zilog->zl_clean_taskq,
1422 (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0)
1423 zil_itxg_clean(clean_me);
1424 }
1425
1426 /*
1427 * Get the list of itxs to commit into zl_itx_commit_list.
1428 */
1429 static void
1430 zil_get_commit_list(zilog_t *zilog)
1431 {
1432 uint64_t otxg, txg;
1433 list_t *commit_list = &zilog->zl_itx_commit_list;
1434 uint64_t push_sod = 0;
1435
1436 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1437 otxg = ZILTEST_TXG;
1438 else
1439 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1440
1441 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1442 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1443
1444 mutex_enter(&itxg->itxg_lock);
1445 if (itxg->itxg_txg != txg) {
1446 mutex_exit(&itxg->itxg_lock);
1447 continue;
1448 }
1449
1450 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1451 push_sod += itxg->itxg_sod;
1452 itxg->itxg_sod = 0;
1453
1454 mutex_exit(&itxg->itxg_lock);
1455 }
1456 atomic_add_64(&zilog->zl_itx_list_sz, -push_sod);
1457 }
1458
1459 /*
1460 * Move the async itxs for a specified object to commit into sync lists.
1461 */
1462 static void
1463 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1464 {
1465 uint64_t otxg, txg;
1466 itx_async_node_t *ian;
1467 avl_tree_t *t;
1468 avl_index_t where;
1469
1470 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1471 otxg = ZILTEST_TXG;
1472 else
1473 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1474
1475 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1476 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1477
1478 mutex_enter(&itxg->itxg_lock);
1479 if (itxg->itxg_txg != txg) {
1480 mutex_exit(&itxg->itxg_lock);
1481 continue;
1482 }
1483
1484 /*
1485 * If a foid is specified then find that node and append its
1486 * list. Otherwise walk the tree appending all the lists
1487 * to the sync list. We add to the end rather than the
1488 * beginning to ensure the create has happened.
1489 */
1490 t = &itxg->itxg_itxs->i_async_tree;
1491 if (foid != 0) {
1492 ian = avl_find(t, &foid, &where);
1493 if (ian != NULL) {
1494 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1495 &ian->ia_list);
1496 }
1497 } else {
1498 void *cookie = NULL;
1499
1500 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1501 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1502 &ian->ia_list);
1503 list_destroy(&ian->ia_list);
1504 kmem_free(ian, sizeof (itx_async_node_t));
1505 }
1506 }
1507 mutex_exit(&itxg->itxg_lock);
1508 }
1509 }
1510
1511 static void
1512 zil_commit_writer(zilog_t *zilog)
1513 {
1514 uint64_t txg;
1515 itx_t *itx;
1516 lwb_t *lwb;
1517 spa_t *spa = zilog->zl_spa;
1518 int error = 0;
1519
1520 ASSERT(zilog->zl_root_zio == NULL);
1521
1522 mutex_exit(&zilog->zl_lock);
1523
1524 zil_get_commit_list(zilog);
1525
1526 /*
1527 * Return if there's nothing to commit before we dirty the fs by
1528 * calling zil_create().
1529 */
1530 if (list_head(&zilog->zl_itx_commit_list) == NULL) {
1531 mutex_enter(&zilog->zl_lock);
1532 return;
1533 }
1534
1535 if (zilog->zl_suspend) {
1536 lwb = NULL;
1537 } else {
1538 lwb = list_tail(&zilog->zl_lwb_list);
1539 if (lwb == NULL)
1540 lwb = zil_create(zilog);
1541 }
1542
1543 DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
1544 for (itx = list_head(&zilog->zl_itx_commit_list); itx != NULL;
1545 itx = list_next(&zilog->zl_itx_commit_list, itx)) {
1546 txg = itx->itx_lr.lrc_txg;
1547 ASSERT(txg);
1548
1549 if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa))
1550 lwb = zil_lwb_commit(zilog, itx, lwb);
1551 }
1552 DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
1553
1554 /* write the last block out */
1555 if (lwb != NULL && lwb->lwb_zio != NULL)
1556 lwb = zil_lwb_write_start(zilog, lwb);
1557
1558 zilog->zl_cur_used = 0;
1559
1560 /*
1561 * Wait if necessary for the log blocks to be on stable storage.
1562 */
1563 if (zilog->zl_root_zio) {
1564 error = zio_wait(zilog->zl_root_zio);
1565 zilog->zl_root_zio = NULL;
1566 zil_flush_vdevs(zilog);
1567 }
1568
1569 if (error || lwb == NULL)
1570 txg_wait_synced(zilog->zl_dmu_pool, 0);
1571
1572 while ((itx = list_head(&zilog->zl_itx_commit_list))) {
1573 txg = itx->itx_lr.lrc_txg;
1574 ASSERT(txg);
1575
1576 if (itx->itx_callback != NULL)
1577 itx->itx_callback(itx->itx_callback_data);
1578 list_remove(&zilog->zl_itx_commit_list, itx);
1579 kmem_free(itx, offsetof(itx_t, itx_lr)
1580 + itx->itx_lr.lrc_reclen);
1581 }
1582
1583 mutex_enter(&zilog->zl_lock);
1584
1585 /*
1586 * Remember the highest committed log sequence number for ztest.
1587 * We only update this value when all the log writes succeeded,
1588 * because ztest wants to ASSERT that it got the whole log chain.
1589 */
1590 if (error == 0 && lwb != NULL)
1591 zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1592 }
1593
1594 /*
1595 * Commit zfs transactions to stable storage.
1596 * If foid is 0 push out all transactions, otherwise push only those
1597 * for that object or might reference that object.
1598 *
1599 * itxs are committed in batches. In a heavily stressed zil there will be
1600 * a commit writer thread who is writing out a bunch of itxs to the log
1601 * for a set of committing threads (cthreads) in the same batch as the writer.
1602 * Those cthreads are all waiting on the same cv for that batch.
1603 *
1604 * There will also be a different and growing batch of threads that are
1605 * waiting to commit (qthreads). When the committing batch completes
1606 * a transition occurs such that the cthreads exit and the qthreads become
1607 * cthreads. One of the new cthreads becomes the writer thread for the
1608 * batch. Any new threads arriving become new qthreads.
1609 *
1610 * Only 2 condition variables are needed and there's no transition
1611 * between the two cvs needed. They just flip-flop between qthreads
1612 * and cthreads.
1613 *
1614 * Using this scheme we can efficiently wakeup up only those threads
1615 * that have been committed.
1616 */
1617 void
1618 zil_commit(zilog_t *zilog, uint64_t foid)
1619 {
1620 uint64_t mybatch;
1621
1622 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
1623 return;
1624
1625 ZIL_STAT_BUMP(zil_commit_count);
1626
1627 /* move the async itxs for the foid to the sync queues */
1628 zil_async_to_sync(zilog, foid);
1629
1630 mutex_enter(&zilog->zl_lock);
1631 mybatch = zilog->zl_next_batch;
1632 while (zilog->zl_writer) {
1633 cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock);
1634 if (mybatch <= zilog->zl_com_batch) {
1635 mutex_exit(&zilog->zl_lock);
1636 return;
1637 }
1638 }
1639
1640 zilog->zl_next_batch++;
1641 zilog->zl_writer = B_TRUE;
1642 ZIL_STAT_BUMP(zil_commit_writer_count);
1643 zil_commit_writer(zilog);
1644 zilog->zl_com_batch = mybatch;
1645 zilog->zl_writer = B_FALSE;
1646
1647 /* wake up one thread to become the next writer */
1648 cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]);
1649
1650 /* wake up all threads waiting for this batch to be committed */
1651 cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]);
1652
1653 mutex_exit(&zilog->zl_lock);
1654 }
1655
1656 /*
1657 * Called in syncing context to free committed log blocks and update log header.
1658 */
1659 void
1660 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1661 {
1662 zil_header_t *zh = zil_header_in_syncing_context(zilog);
1663 uint64_t txg = dmu_tx_get_txg(tx);
1664 spa_t *spa = zilog->zl_spa;
1665 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
1666 lwb_t *lwb;
1667
1668 /*
1669 * We don't zero out zl_destroy_txg, so make sure we don't try
1670 * to destroy it twice.
1671 */
1672 if (spa_sync_pass(spa) != 1)
1673 return;
1674
1675 mutex_enter(&zilog->zl_lock);
1676
1677 ASSERT(zilog->zl_stop_sync == 0);
1678
1679 if (*replayed_seq != 0) {
1680 ASSERT(zh->zh_replay_seq < *replayed_seq);
1681 zh->zh_replay_seq = *replayed_seq;
1682 *replayed_seq = 0;
1683 }
1684
1685 if (zilog->zl_destroy_txg == txg) {
1686 blkptr_t blk = zh->zh_log;
1687
1688 ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1689
1690 bzero(zh, sizeof (zil_header_t));
1691 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
1692
1693 if (zilog->zl_keep_first) {
1694 /*
1695 * If this block was part of log chain that couldn't
1696 * be claimed because a device was missing during
1697 * zil_claim(), but that device later returns,
1698 * then this block could erroneously appear valid.
1699 * To guard against this, assign a new GUID to the new
1700 * log chain so it doesn't matter what blk points to.
1701 */
1702 zil_init_log_chain(zilog, &blk);
1703 zh->zh_log = blk;
1704 }
1705 }
1706
1707 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1708 zh->zh_log = lwb->lwb_blk;
1709 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1710 break;
1711
1712 ASSERT(lwb->lwb_zio == NULL);
1713
1714 list_remove(&zilog->zl_lwb_list, lwb);
1715 zio_free_zil(spa, txg, &lwb->lwb_blk);
1716 kmem_cache_free(zil_lwb_cache, lwb);
1717
1718 /*
1719 * If we don't have anything left in the lwb list then
1720 * we've had an allocation failure and we need to zero
1721 * out the zil_header blkptr so that we don't end
1722 * up freeing the same block twice.
1723 */
1724 if (list_head(&zilog->zl_lwb_list) == NULL)
1725 BP_ZERO(&zh->zh_log);
1726 }
1727
1728 /*
1729 * Remove fastwrite on any blocks that have been pre-allocated for
1730 * the next commit. This prevents fastwrite counter pollution by
1731 * unused, long-lived LWBs.
1732 */
1733 for (; lwb != NULL; lwb = list_next(&zilog->zl_lwb_list, lwb)) {
1734 if (lwb->lwb_fastwrite && !lwb->lwb_zio) {
1735 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
1736 lwb->lwb_fastwrite = 0;
1737 }
1738 }
1739
1740 mutex_exit(&zilog->zl_lock);
1741 }
1742
1743 void
1744 zil_init(void)
1745 {
1746 zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1747 sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1748
1749 zil_ksp = kstat_create("zfs", 0, "zil", "misc",
1750 KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
1751 KSTAT_FLAG_VIRTUAL);
1752
1753 if (zil_ksp != NULL) {
1754 zil_ksp->ks_data = &zil_stats;
1755 kstat_install(zil_ksp);
1756 }
1757 }
1758
1759 void
1760 zil_fini(void)
1761 {
1762 kmem_cache_destroy(zil_lwb_cache);
1763
1764 if (zil_ksp != NULL) {
1765 kstat_delete(zil_ksp);
1766 zil_ksp = NULL;
1767 }
1768 }
1769
1770 void
1771 zil_set_sync(zilog_t *zilog, uint64_t sync)
1772 {
1773 zilog->zl_sync = sync;
1774 }
1775
1776 void
1777 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
1778 {
1779 zilog->zl_logbias = logbias;
1780 }
1781
1782 zilog_t *
1783 zil_alloc(objset_t *os, zil_header_t *zh_phys)
1784 {
1785 zilog_t *zilog;
1786 int i;
1787
1788 zilog = kmem_zalloc(sizeof (zilog_t), KM_PUSHPAGE);
1789
1790 zilog->zl_header = zh_phys;
1791 zilog->zl_os = os;
1792 zilog->zl_spa = dmu_objset_spa(os);
1793 zilog->zl_dmu_pool = dmu_objset_pool(os);
1794 zilog->zl_destroy_txg = TXG_INITIAL - 1;
1795 zilog->zl_logbias = dmu_objset_logbias(os);
1796 zilog->zl_sync = dmu_objset_syncprop(os);
1797 zilog->zl_next_batch = 1;
1798
1799 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1800
1801 for (i = 0; i < TXG_SIZE; i++) {
1802 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
1803 MUTEX_DEFAULT, NULL);
1804 }
1805
1806 list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1807 offsetof(lwb_t, lwb_node));
1808
1809 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
1810 offsetof(itx_t, itx_node));
1811
1812 mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
1813
1814 avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
1815 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
1816
1817 cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
1818 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
1819 cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL);
1820 cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL);
1821
1822 return (zilog);
1823 }
1824
1825 void
1826 zil_free(zilog_t *zilog)
1827 {
1828 int i;
1829
1830 zilog->zl_stop_sync = 1;
1831
1832 ASSERT0(zilog->zl_suspend);
1833 ASSERT0(zilog->zl_suspending);
1834
1835 ASSERT(list_is_empty(&zilog->zl_lwb_list));
1836 list_destroy(&zilog->zl_lwb_list);
1837
1838 avl_destroy(&zilog->zl_vdev_tree);
1839 mutex_destroy(&zilog->zl_vdev_lock);
1840
1841 ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
1842 list_destroy(&zilog->zl_itx_commit_list);
1843
1844 for (i = 0; i < TXG_SIZE; i++) {
1845 /*
1846 * It's possible for an itx to be generated that doesn't dirty
1847 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
1848 * callback to remove the entry. We remove those here.
1849 *
1850 * Also free up the ziltest itxs.
1851 */
1852 if (zilog->zl_itxg[i].itxg_itxs)
1853 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
1854 mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
1855 }
1856
1857 mutex_destroy(&zilog->zl_lock);
1858
1859 cv_destroy(&zilog->zl_cv_writer);
1860 cv_destroy(&zilog->zl_cv_suspend);
1861 cv_destroy(&zilog->zl_cv_batch[0]);
1862 cv_destroy(&zilog->zl_cv_batch[1]);
1863
1864 kmem_free(zilog, sizeof (zilog_t));
1865 }
1866
1867 /*
1868 * Open an intent log.
1869 */
1870 zilog_t *
1871 zil_open(objset_t *os, zil_get_data_t *get_data)
1872 {
1873 zilog_t *zilog = dmu_objset_zil(os);
1874
1875 ASSERT(zilog->zl_clean_taskq == NULL);
1876 ASSERT(zilog->zl_get_data == NULL);
1877 ASSERT(list_is_empty(&zilog->zl_lwb_list));
1878
1879 zilog->zl_get_data = get_data;
1880 zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri,
1881 2, 2, TASKQ_PREPOPULATE);
1882
1883 return (zilog);
1884 }
1885
1886 /*
1887 * Close an intent log.
1888 */
1889 void
1890 zil_close(zilog_t *zilog)
1891 {
1892 lwb_t *lwb;
1893 uint64_t txg = 0;
1894
1895 zil_commit(zilog, 0); /* commit all itx */
1896
1897 /*
1898 * The lwb_max_txg for the stubby lwb will reflect the last activity
1899 * for the zil. After a txg_wait_synced() on the txg we know all the
1900 * callbacks have occurred that may clean the zil. Only then can we
1901 * destroy the zl_clean_taskq.
1902 */
1903 mutex_enter(&zilog->zl_lock);
1904 lwb = list_tail(&zilog->zl_lwb_list);
1905 if (lwb != NULL)
1906 txg = lwb->lwb_max_txg;
1907 mutex_exit(&zilog->zl_lock);
1908 if (txg)
1909 txg_wait_synced(zilog->zl_dmu_pool, txg);
1910 ASSERT(!zilog_is_dirty(zilog));
1911
1912 taskq_destroy(zilog->zl_clean_taskq);
1913 zilog->zl_clean_taskq = NULL;
1914 zilog->zl_get_data = NULL;
1915
1916 /*
1917 * We should have only one LWB left on the list; remove it now.
1918 */
1919 mutex_enter(&zilog->zl_lock);
1920 lwb = list_head(&zilog->zl_lwb_list);
1921 if (lwb != NULL) {
1922 ASSERT(lwb == list_tail(&zilog->zl_lwb_list));
1923 ASSERT(lwb->lwb_zio == NULL);
1924 if (lwb->lwb_fastwrite)
1925 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
1926 list_remove(&zilog->zl_lwb_list, lwb);
1927 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1928 kmem_cache_free(zil_lwb_cache, lwb);
1929 }
1930 mutex_exit(&zilog->zl_lock);
1931 }
1932
1933 static char *suspend_tag = "zil suspending";
1934
1935 /*
1936 * Suspend an intent log. While in suspended mode, we still honor
1937 * synchronous semantics, but we rely on txg_wait_synced() to do it.
1938 * On old version pools, we suspend the log briefly when taking a
1939 * snapshot so that it will have an empty intent log.
1940 *
1941 * Long holds are not really intended to be used the way we do here --
1942 * held for such a short time. A concurrent caller of dsl_dataset_long_held()
1943 * could fail. Therefore we take pains to only put a long hold if it is
1944 * actually necessary. Fortunately, it will only be necessary if the
1945 * objset is currently mounted (or the ZVOL equivalent). In that case it
1946 * will already have a long hold, so we are not really making things any worse.
1947 *
1948 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
1949 * zvol_state_t), and use their mechanism to prevent their hold from being
1950 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for
1951 * very little gain.
1952 *
1953 * if cookiep == NULL, this does both the suspend & resume.
1954 * Otherwise, it returns with the dataset "long held", and the cookie
1955 * should be passed into zil_resume().
1956 */
1957 int
1958 zil_suspend(const char *osname, void **cookiep)
1959 {
1960 objset_t *os;
1961 zilog_t *zilog;
1962 const zil_header_t *zh;
1963 int error;
1964
1965 error = dmu_objset_hold(osname, suspend_tag, &os);
1966 if (error != 0)
1967 return (error);
1968 zilog = dmu_objset_zil(os);
1969
1970 mutex_enter(&zilog->zl_lock);
1971 zh = zilog->zl_header;
1972
1973 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */
1974 mutex_exit(&zilog->zl_lock);
1975 dmu_objset_rele(os, suspend_tag);
1976 return (SET_ERROR(EBUSY));
1977 }
1978
1979 /*
1980 * Don't put a long hold in the cases where we can avoid it. This
1981 * is when there is no cookie so we are doing a suspend & resume
1982 * (i.e. called from zil_vdev_offline()), and there's nothing to do
1983 * for the suspend because it's already suspended, or there's no ZIL.
1984 */
1985 if (cookiep == NULL && !zilog->zl_suspending &&
1986 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
1987 mutex_exit(&zilog->zl_lock);
1988 dmu_objset_rele(os, suspend_tag);
1989 return (0);
1990 }
1991
1992 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
1993 dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
1994
1995 zilog->zl_suspend++;
1996
1997 if (zilog->zl_suspend > 1) {
1998 /*
1999 * Someone else is already suspending it.
2000 * Just wait for them to finish.
2001 */
2002
2003 while (zilog->zl_suspending)
2004 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
2005 mutex_exit(&zilog->zl_lock);
2006
2007 if (cookiep == NULL)
2008 zil_resume(os);
2009 else
2010 *cookiep = os;
2011 return (0);
2012 }
2013
2014 /*
2015 * If there is no pointer to an on-disk block, this ZIL must not
2016 * be active (e.g. filesystem not mounted), so there's nothing
2017 * to clean up.
2018 */
2019 if (BP_IS_HOLE(&zh->zh_log)) {
2020 ASSERT(cookiep != NULL); /* fast path already handled */
2021
2022 *cookiep = os;
2023 mutex_exit(&zilog->zl_lock);
2024 return (0);
2025 }
2026
2027 zilog->zl_suspending = B_TRUE;
2028 mutex_exit(&zilog->zl_lock);
2029
2030 zil_commit(zilog, 0);
2031
2032 zil_destroy(zilog, B_FALSE);
2033
2034 mutex_enter(&zilog->zl_lock);
2035 zilog->zl_suspending = B_FALSE;
2036 cv_broadcast(&zilog->zl_cv_suspend);
2037 mutex_exit(&zilog->zl_lock);
2038
2039 if (cookiep == NULL)
2040 zil_resume(os);
2041 else
2042 *cookiep = os;
2043 return (0);
2044 }
2045
2046 void
2047 zil_resume(void *cookie)
2048 {
2049 objset_t *os = cookie;
2050 zilog_t *zilog = dmu_objset_zil(os);
2051
2052 mutex_enter(&zilog->zl_lock);
2053 ASSERT(zilog->zl_suspend != 0);
2054 zilog->zl_suspend--;
2055 mutex_exit(&zilog->zl_lock);
2056 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
2057 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
2058 }
2059
2060 typedef struct zil_replay_arg {
2061 zil_replay_func_t *zr_replay;
2062 void *zr_arg;
2063 boolean_t zr_byteswap;
2064 char *zr_lr;
2065 } zil_replay_arg_t;
2066
2067 static int
2068 zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
2069 {
2070 char name[MAXNAMELEN];
2071
2072 zilog->zl_replaying_seq--; /* didn't actually replay this one */
2073
2074 dmu_objset_name(zilog->zl_os, name);
2075
2076 cmn_err(CE_WARN, "ZFS replay transaction error %d, "
2077 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
2078 (u_longlong_t)lr->lrc_seq,
2079 (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
2080 (lr->lrc_txtype & TX_CI) ? "CI" : "");
2081
2082 return (error);
2083 }
2084
2085 static int
2086 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
2087 {
2088 zil_replay_arg_t *zr = zra;
2089 const zil_header_t *zh = zilog->zl_header;
2090 uint64_t reclen = lr->lrc_reclen;
2091 uint64_t txtype = lr->lrc_txtype;
2092 int error = 0;
2093
2094 zilog->zl_replaying_seq = lr->lrc_seq;
2095
2096 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */
2097 return (0);
2098
2099 if (lr->lrc_txg < claim_txg) /* already committed */
2100 return (0);
2101
2102 /* Strip case-insensitive bit, still present in log record */
2103 txtype &= ~TX_CI;
2104
2105 if (txtype == 0 || txtype >= TX_MAX_TYPE)
2106 return (zil_replay_error(zilog, lr, EINVAL));
2107
2108 /*
2109 * If this record type can be logged out of order, the object
2110 * (lr_foid) may no longer exist. That's legitimate, not an error.
2111 */
2112 if (TX_OOO(txtype)) {
2113 error = dmu_object_info(zilog->zl_os,
2114 ((lr_ooo_t *)lr)->lr_foid, NULL);
2115 if (error == ENOENT || error == EEXIST)
2116 return (0);
2117 }
2118
2119 /*
2120 * Make a copy of the data so we can revise and extend it.
2121 */
2122 bcopy(lr, zr->zr_lr, reclen);
2123
2124 /*
2125 * If this is a TX_WRITE with a blkptr, suck in the data.
2126 */
2127 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
2128 error = zil_read_log_data(zilog, (lr_write_t *)lr,
2129 zr->zr_lr + reclen);
2130 if (error != 0)
2131 return (zil_replay_error(zilog, lr, error));
2132 }
2133
2134 /*
2135 * The log block containing this lr may have been byteswapped
2136 * so that we can easily examine common fields like lrc_txtype.
2137 * However, the log is a mix of different record types, and only the
2138 * replay vectors know how to byteswap their records. Therefore, if
2139 * the lr was byteswapped, undo it before invoking the replay vector.
2140 */
2141 if (zr->zr_byteswap)
2142 byteswap_uint64_array(zr->zr_lr, reclen);
2143
2144 /*
2145 * We must now do two things atomically: replay this log record,
2146 * and update the log header sequence number to reflect the fact that
2147 * we did so. At the end of each replay function the sequence number
2148 * is updated if we are in replay mode.
2149 */
2150 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
2151 if (error != 0) {
2152 /*
2153 * The DMU's dnode layer doesn't see removes until the txg
2154 * commits, so a subsequent claim can spuriously fail with
2155 * EEXIST. So if we receive any error we try syncing out
2156 * any removes then retry the transaction. Note that we
2157 * specify B_FALSE for byteswap now, so we don't do it twice.
2158 */
2159 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
2160 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
2161 if (error != 0)
2162 return (zil_replay_error(zilog, lr, error));
2163 }
2164 return (0);
2165 }
2166
2167 /* ARGSUSED */
2168 static int
2169 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
2170 {
2171 zilog->zl_replay_blks++;
2172
2173 return (0);
2174 }
2175
2176 /*
2177 * If this dataset has a non-empty intent log, replay it and destroy it.
2178 */
2179 void
2180 zil_replay(objset_t *os, void *arg, zil_replay_func_t replay_func[TX_MAX_TYPE])
2181 {
2182 zilog_t *zilog = dmu_objset_zil(os);
2183 const zil_header_t *zh = zilog->zl_header;
2184 zil_replay_arg_t zr;
2185
2186 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
2187 zil_destroy(zilog, B_TRUE);
2188 return;
2189 }
2190
2191 zr.zr_replay = replay_func;
2192 zr.zr_arg = arg;
2193 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
2194 zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_PUSHPAGE);
2195
2196 /*
2197 * Wait for in-progress removes to sync before starting replay.
2198 */
2199 txg_wait_synced(zilog->zl_dmu_pool, 0);
2200
2201 zilog->zl_replay = B_TRUE;
2202 zilog->zl_replay_time = ddi_get_lbolt();
2203 ASSERT(zilog->zl_replay_blks == 0);
2204 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
2205 zh->zh_claim_txg);
2206 vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
2207
2208 zil_destroy(zilog, B_FALSE);
2209 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
2210 zilog->zl_replay = B_FALSE;
2211 }
2212
2213 boolean_t
2214 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
2215 {
2216 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2217 return (B_TRUE);
2218
2219 if (zilog->zl_replay) {
2220 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
2221 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
2222 zilog->zl_replaying_seq;
2223 return (B_TRUE);
2224 }
2225
2226 return (B_FALSE);
2227 }
2228
2229 /* ARGSUSED */
2230 int
2231 zil_vdev_offline(const char *osname, void *arg)
2232 {
2233 int error;
2234
2235 error = zil_suspend(osname, NULL);
2236 if (error != 0)
2237 return (SET_ERROR(EEXIST));
2238 return (0);
2239 }
2240
2241 #if defined(_KERNEL) && defined(HAVE_SPL)
2242 module_param(zil_replay_disable, int, 0644);
2243 MODULE_PARM_DESC(zil_replay_disable, "Disable intent logging replay");
2244
2245 module_param(zfs_nocacheflush, int, 0644);
2246 MODULE_PARM_DESC(zfs_nocacheflush, "Disable cache flushes");
2247
2248 module_param(zil_slog_limit, ulong, 0644);
2249 MODULE_PARM_DESC(zil_slog_limit, "Max commit bytes to separate log device");
2250 #endif