]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zil.c
Illumos 5056 - ZFS deadlock on db_mtx and dn_holds
[mirror_zfs.git] / module / zfs / zil.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 */
25
26 /* Portions Copyright 2010 Robert Milkowski */
27
28 #include <sys/zfs_context.h>
29 #include <sys/spa.h>
30 #include <sys/dmu.h>
31 #include <sys/zap.h>
32 #include <sys/arc.h>
33 #include <sys/stat.h>
34 #include <sys/resource.h>
35 #include <sys/zil.h>
36 #include <sys/zil_impl.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/vdev_impl.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/dsl_pool.h>
41 #include <sys/metaslab.h>
42 #include <sys/trace_zil.h>
43
44 /*
45 * The zfs intent log (ZIL) saves transaction records of system calls
46 * that change the file system in memory with enough information
47 * to be able to replay them. These are stored in memory until
48 * either the DMU transaction group (txg) commits them to the stable pool
49 * and they can be discarded, or they are flushed to the stable log
50 * (also in the pool) due to a fsync, O_DSYNC or other synchronous
51 * requirement. In the event of a panic or power fail then those log
52 * records (transactions) are replayed.
53 *
54 * There is one ZIL per file system. Its on-disk (pool) format consists
55 * of 3 parts:
56 *
57 * - ZIL header
58 * - ZIL blocks
59 * - ZIL records
60 *
61 * A log record holds a system call transaction. Log blocks can
62 * hold many log records and the blocks are chained together.
63 * Each ZIL block contains a block pointer (blkptr_t) to the next
64 * ZIL block in the chain. The ZIL header points to the first
65 * block in the chain. Note there is not a fixed place in the pool
66 * to hold blocks. They are dynamically allocated and freed as
67 * needed from the blocks available. Figure X shows the ZIL structure:
68 */
69
70 /*
71 * See zil.h for more information about these fields.
72 */
73 zil_stats_t zil_stats = {
74 { "zil_commit_count", KSTAT_DATA_UINT64 },
75 { "zil_commit_writer_count", KSTAT_DATA_UINT64 },
76 { "zil_itx_count", KSTAT_DATA_UINT64 },
77 { "zil_itx_indirect_count", KSTAT_DATA_UINT64 },
78 { "zil_itx_indirect_bytes", KSTAT_DATA_UINT64 },
79 { "zil_itx_copied_count", KSTAT_DATA_UINT64 },
80 { "zil_itx_copied_bytes", KSTAT_DATA_UINT64 },
81 { "zil_itx_needcopy_count", KSTAT_DATA_UINT64 },
82 { "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64 },
83 { "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64 },
84 { "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64 },
85 { "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64 },
86 { "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 },
87 };
88
89 static kstat_t *zil_ksp;
90
91 /*
92 * Disable intent logging replay. This global ZIL switch affects all pools.
93 */
94 int zil_replay_disable = 0;
95
96 /*
97 * Tunable parameter for debugging or performance analysis. Setting
98 * zfs_nocacheflush will cause corruption on power loss if a volatile
99 * out-of-order write cache is enabled.
100 */
101 int zfs_nocacheflush = 0;
102
103 static kmem_cache_t *zil_lwb_cache;
104
105 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
106
107 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
108 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
109
110
111 /*
112 * ziltest is by and large an ugly hack, but very useful in
113 * checking replay without tedious work.
114 * When running ziltest we want to keep all itx's and so maintain
115 * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG
116 * We subtract TXG_CONCURRENT_STATES to allow for common code.
117 */
118 #define ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES)
119
120 static int
121 zil_bp_compare(const void *x1, const void *x2)
122 {
123 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
124 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
125
126 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
127 return (-1);
128 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
129 return (1);
130
131 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
132 return (-1);
133 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
134 return (1);
135
136 return (0);
137 }
138
139 static void
140 zil_bp_tree_init(zilog_t *zilog)
141 {
142 avl_create(&zilog->zl_bp_tree, zil_bp_compare,
143 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
144 }
145
146 static void
147 zil_bp_tree_fini(zilog_t *zilog)
148 {
149 avl_tree_t *t = &zilog->zl_bp_tree;
150 zil_bp_node_t *zn;
151 void *cookie = NULL;
152
153 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
154 kmem_free(zn, sizeof (zil_bp_node_t));
155
156 avl_destroy(t);
157 }
158
159 int
160 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
161 {
162 avl_tree_t *t = &zilog->zl_bp_tree;
163 const dva_t *dva;
164 zil_bp_node_t *zn;
165 avl_index_t where;
166
167 if (BP_IS_EMBEDDED(bp))
168 return (0);
169
170 dva = BP_IDENTITY(bp);
171
172 if (avl_find(t, dva, &where) != NULL)
173 return (SET_ERROR(EEXIST));
174
175 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
176 zn->zn_dva = *dva;
177 avl_insert(t, zn, where);
178
179 return (0);
180 }
181
182 static zil_header_t *
183 zil_header_in_syncing_context(zilog_t *zilog)
184 {
185 return ((zil_header_t *)zilog->zl_header);
186 }
187
188 static void
189 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
190 {
191 zio_cksum_t *zc = &bp->blk_cksum;
192
193 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
194 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
195 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
196 zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
197 }
198
199 /*
200 * Read a log block and make sure it's valid.
201 */
202 static int
203 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
204 char **end)
205 {
206 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
207 uint32_t aflags = ARC_WAIT;
208 arc_buf_t *abuf = NULL;
209 zbookmark_phys_t zb;
210 int error;
211
212 if (zilog->zl_header->zh_claim_txg == 0)
213 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
214
215 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
216 zio_flags |= ZIO_FLAG_SPECULATIVE;
217
218 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
219 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
220
221 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
222 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
223
224 if (error == 0) {
225 zio_cksum_t cksum = bp->blk_cksum;
226
227 /*
228 * Validate the checksummed log block.
229 *
230 * Sequence numbers should be... sequential. The checksum
231 * verifier for the next block should be bp's checksum plus 1.
232 *
233 * Also check the log chain linkage and size used.
234 */
235 cksum.zc_word[ZIL_ZC_SEQ]++;
236
237 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
238 zil_chain_t *zilc = abuf->b_data;
239 char *lr = (char *)(zilc + 1);
240 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
241
242 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
243 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
244 error = SET_ERROR(ECKSUM);
245 } else {
246 bcopy(lr, dst, len);
247 *end = (char *)dst + len;
248 *nbp = zilc->zc_next_blk;
249 }
250 } else {
251 char *lr = abuf->b_data;
252 uint64_t size = BP_GET_LSIZE(bp);
253 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
254
255 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
256 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
257 (zilc->zc_nused > (size - sizeof (*zilc)))) {
258 error = SET_ERROR(ECKSUM);
259 } else {
260 bcopy(lr, dst, zilc->zc_nused);
261 *end = (char *)dst + zilc->zc_nused;
262 *nbp = zilc->zc_next_blk;
263 }
264 }
265
266 VERIFY(arc_buf_remove_ref(abuf, &abuf));
267 }
268
269 return (error);
270 }
271
272 /*
273 * Read a TX_WRITE log data block.
274 */
275 static int
276 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
277 {
278 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
279 const blkptr_t *bp = &lr->lr_blkptr;
280 uint32_t aflags = ARC_WAIT;
281 arc_buf_t *abuf = NULL;
282 zbookmark_phys_t zb;
283 int error;
284
285 if (BP_IS_HOLE(bp)) {
286 if (wbuf != NULL)
287 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
288 return (0);
289 }
290
291 if (zilog->zl_header->zh_claim_txg == 0)
292 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
293
294 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
295 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
296
297 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
298 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
299
300 if (error == 0) {
301 if (wbuf != NULL)
302 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
303 (void) arc_buf_remove_ref(abuf, &abuf);
304 }
305
306 return (error);
307 }
308
309 /*
310 * Parse the intent log, and call parse_func for each valid record within.
311 */
312 int
313 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
314 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
315 {
316 const zil_header_t *zh = zilog->zl_header;
317 boolean_t claimed = !!zh->zh_claim_txg;
318 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
319 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
320 uint64_t max_blk_seq = 0;
321 uint64_t max_lr_seq = 0;
322 uint64_t blk_count = 0;
323 uint64_t lr_count = 0;
324 blkptr_t blk, next_blk;
325 char *lrbuf, *lrp;
326 int error = 0;
327
328 bzero(&next_blk, sizeof (blkptr_t));
329
330 /*
331 * Old logs didn't record the maximum zh_claim_lr_seq.
332 */
333 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
334 claim_lr_seq = UINT64_MAX;
335
336 /*
337 * Starting at the block pointed to by zh_log we read the log chain.
338 * For each block in the chain we strongly check that block to
339 * ensure its validity. We stop when an invalid block is found.
340 * For each block pointer in the chain we call parse_blk_func().
341 * For each record in each valid block we call parse_lr_func().
342 * If the log has been claimed, stop if we encounter a sequence
343 * number greater than the highest claimed sequence number.
344 */
345 lrbuf = zio_buf_alloc(SPA_MAXBLOCKSIZE);
346 zil_bp_tree_init(zilog);
347
348 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
349 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
350 int reclen;
351 char *end = NULL;
352
353 if (blk_seq > claim_blk_seq)
354 break;
355 if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
356 break;
357 ASSERT3U(max_blk_seq, <, blk_seq);
358 max_blk_seq = blk_seq;
359 blk_count++;
360
361 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
362 break;
363
364 error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
365 if (error != 0)
366 break;
367
368 for (lrp = lrbuf; lrp < end; lrp += reclen) {
369 lr_t *lr = (lr_t *)lrp;
370 reclen = lr->lrc_reclen;
371 ASSERT3U(reclen, >=, sizeof (lr_t));
372 if (lr->lrc_seq > claim_lr_seq)
373 goto done;
374 if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
375 goto done;
376 ASSERT3U(max_lr_seq, <, lr->lrc_seq);
377 max_lr_seq = lr->lrc_seq;
378 lr_count++;
379 }
380 }
381 done:
382 zilog->zl_parse_error = error;
383 zilog->zl_parse_blk_seq = max_blk_seq;
384 zilog->zl_parse_lr_seq = max_lr_seq;
385 zilog->zl_parse_blk_count = blk_count;
386 zilog->zl_parse_lr_count = lr_count;
387
388 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
389 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
390
391 zil_bp_tree_fini(zilog);
392 zio_buf_free(lrbuf, SPA_MAXBLOCKSIZE);
393
394 return (error);
395 }
396
397 static int
398 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
399 {
400 /*
401 * Claim log block if not already committed and not already claimed.
402 * If tx == NULL, just verify that the block is claimable.
403 */
404 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
405 zil_bp_tree_add(zilog, bp) != 0)
406 return (0);
407
408 return (zio_wait(zio_claim(NULL, zilog->zl_spa,
409 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
410 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
411 }
412
413 static int
414 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
415 {
416 lr_write_t *lr = (lr_write_t *)lrc;
417 int error;
418
419 if (lrc->lrc_txtype != TX_WRITE)
420 return (0);
421
422 /*
423 * If the block is not readable, don't claim it. This can happen
424 * in normal operation when a log block is written to disk before
425 * some of the dmu_sync() blocks it points to. In this case, the
426 * transaction cannot have been committed to anyone (we would have
427 * waited for all writes to be stable first), so it is semantically
428 * correct to declare this the end of the log.
429 */
430 if (lr->lr_blkptr.blk_birth >= first_txg &&
431 (error = zil_read_log_data(zilog, lr, NULL)) != 0)
432 return (error);
433 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
434 }
435
436 /* ARGSUSED */
437 static int
438 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
439 {
440 zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
441
442 return (0);
443 }
444
445 static int
446 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
447 {
448 lr_write_t *lr = (lr_write_t *)lrc;
449 blkptr_t *bp = &lr->lr_blkptr;
450
451 /*
452 * If we previously claimed it, we need to free it.
453 */
454 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
455 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
456 !BP_IS_HOLE(bp))
457 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
458
459 return (0);
460 }
461
462 static lwb_t *
463 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg, boolean_t fastwrite)
464 {
465 lwb_t *lwb;
466
467 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
468 lwb->lwb_zilog = zilog;
469 lwb->lwb_blk = *bp;
470 lwb->lwb_fastwrite = fastwrite;
471 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
472 lwb->lwb_max_txg = txg;
473 lwb->lwb_zio = NULL;
474 lwb->lwb_tx = NULL;
475 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
476 lwb->lwb_nused = sizeof (zil_chain_t);
477 lwb->lwb_sz = BP_GET_LSIZE(bp);
478 } else {
479 lwb->lwb_nused = 0;
480 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
481 }
482
483 mutex_enter(&zilog->zl_lock);
484 list_insert_tail(&zilog->zl_lwb_list, lwb);
485 mutex_exit(&zilog->zl_lock);
486
487 return (lwb);
488 }
489
490 /*
491 * Called when we create in-memory log transactions so that we know
492 * to cleanup the itxs at the end of spa_sync().
493 */
494 void
495 zilog_dirty(zilog_t *zilog, uint64_t txg)
496 {
497 dsl_pool_t *dp = zilog->zl_dmu_pool;
498 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
499
500 if (ds->ds_is_snapshot)
501 panic("dirtying snapshot!");
502
503 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
504 /* up the hold count until we can be written out */
505 dmu_buf_add_ref(ds->ds_dbuf, zilog);
506 }
507 }
508
509 boolean_t
510 zilog_is_dirty(zilog_t *zilog)
511 {
512 dsl_pool_t *dp = zilog->zl_dmu_pool;
513 int t;
514
515 for (t = 0; t < TXG_SIZE; t++) {
516 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
517 return (B_TRUE);
518 }
519 return (B_FALSE);
520 }
521
522 /*
523 * Create an on-disk intent log.
524 */
525 static lwb_t *
526 zil_create(zilog_t *zilog)
527 {
528 const zil_header_t *zh = zilog->zl_header;
529 lwb_t *lwb = NULL;
530 uint64_t txg = 0;
531 dmu_tx_t *tx = NULL;
532 blkptr_t blk;
533 int error = 0;
534 boolean_t fastwrite = FALSE;
535
536 /*
537 * Wait for any previous destroy to complete.
538 */
539 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
540
541 ASSERT(zh->zh_claim_txg == 0);
542 ASSERT(zh->zh_replay_seq == 0);
543
544 blk = zh->zh_log;
545
546 /*
547 * Allocate an initial log block if:
548 * - there isn't one already
549 * - the existing block is the wrong endianess
550 */
551 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
552 tx = dmu_tx_create(zilog->zl_os);
553 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
554 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
555 txg = dmu_tx_get_txg(tx);
556
557 if (!BP_IS_HOLE(&blk)) {
558 zio_free_zil(zilog->zl_spa, txg, &blk);
559 BP_ZERO(&blk);
560 }
561
562 error = zio_alloc_zil(zilog->zl_spa, txg, &blk,
563 ZIL_MIN_BLKSZ, B_TRUE);
564 fastwrite = TRUE;
565
566 if (error == 0)
567 zil_init_log_chain(zilog, &blk);
568 }
569
570 /*
571 * Allocate a log write buffer (lwb) for the first log block.
572 */
573 if (error == 0)
574 lwb = zil_alloc_lwb(zilog, &blk, txg, fastwrite);
575
576 /*
577 * If we just allocated the first log block, commit our transaction
578 * and wait for zil_sync() to stuff the block poiner into zh_log.
579 * (zh is part of the MOS, so we cannot modify it in open context.)
580 */
581 if (tx != NULL) {
582 dmu_tx_commit(tx);
583 txg_wait_synced(zilog->zl_dmu_pool, txg);
584 }
585
586 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
587
588 return (lwb);
589 }
590
591 /*
592 * In one tx, free all log blocks and clear the log header.
593 * If keep_first is set, then we're replaying a log with no content.
594 * We want to keep the first block, however, so that the first
595 * synchronous transaction doesn't require a txg_wait_synced()
596 * in zil_create(). We don't need to txg_wait_synced() here either
597 * when keep_first is set, because both zil_create() and zil_destroy()
598 * will wait for any in-progress destroys to complete.
599 */
600 void
601 zil_destroy(zilog_t *zilog, boolean_t keep_first)
602 {
603 const zil_header_t *zh = zilog->zl_header;
604 lwb_t *lwb;
605 dmu_tx_t *tx;
606 uint64_t txg;
607
608 /*
609 * Wait for any previous destroy to complete.
610 */
611 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
612
613 zilog->zl_old_header = *zh; /* debugging aid */
614
615 if (BP_IS_HOLE(&zh->zh_log))
616 return;
617
618 tx = dmu_tx_create(zilog->zl_os);
619 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
620 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
621 txg = dmu_tx_get_txg(tx);
622
623 mutex_enter(&zilog->zl_lock);
624
625 ASSERT3U(zilog->zl_destroy_txg, <, txg);
626 zilog->zl_destroy_txg = txg;
627 zilog->zl_keep_first = keep_first;
628
629 if (!list_is_empty(&zilog->zl_lwb_list)) {
630 ASSERT(zh->zh_claim_txg == 0);
631 VERIFY(!keep_first);
632 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
633 ASSERT(lwb->lwb_zio == NULL);
634 if (lwb->lwb_fastwrite)
635 metaslab_fastwrite_unmark(zilog->zl_spa,
636 &lwb->lwb_blk);
637 list_remove(&zilog->zl_lwb_list, lwb);
638 if (lwb->lwb_buf != NULL)
639 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
640 zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk);
641 kmem_cache_free(zil_lwb_cache, lwb);
642 }
643 } else if (!keep_first) {
644 zil_destroy_sync(zilog, tx);
645 }
646 mutex_exit(&zilog->zl_lock);
647
648 dmu_tx_commit(tx);
649 }
650
651 void
652 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
653 {
654 ASSERT(list_is_empty(&zilog->zl_lwb_list));
655 (void) zil_parse(zilog, zil_free_log_block,
656 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
657 }
658
659 int
660 zil_claim(const char *osname, void *txarg)
661 {
662 dmu_tx_t *tx = txarg;
663 uint64_t first_txg = dmu_tx_get_txg(tx);
664 zilog_t *zilog;
665 zil_header_t *zh;
666 objset_t *os;
667 int error;
668
669 error = dmu_objset_own(osname, DMU_OST_ANY, B_FALSE, FTAG, &os);
670 if (error != 0) {
671 /*
672 * EBUSY indicates that the objset is inconsistent, in which
673 * case it can not have a ZIL.
674 */
675 if (error != EBUSY) {
676 cmn_err(CE_WARN, "can't open objset for %s, error %u",
677 osname, error);
678 }
679
680 return (0);
681 }
682
683 zilog = dmu_objset_zil(os);
684 zh = zil_header_in_syncing_context(zilog);
685
686 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
687 if (!BP_IS_HOLE(&zh->zh_log))
688 zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
689 BP_ZERO(&zh->zh_log);
690 dsl_dataset_dirty(dmu_objset_ds(os), tx);
691 dmu_objset_disown(os, FTAG);
692 return (0);
693 }
694
695 /*
696 * Claim all log blocks if we haven't already done so, and remember
697 * the highest claimed sequence number. This ensures that if we can
698 * read only part of the log now (e.g. due to a missing device),
699 * but we can read the entire log later, we will not try to replay
700 * or destroy beyond the last block we successfully claimed.
701 */
702 ASSERT3U(zh->zh_claim_txg, <=, first_txg);
703 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
704 (void) zil_parse(zilog, zil_claim_log_block,
705 zil_claim_log_record, tx, first_txg);
706 zh->zh_claim_txg = first_txg;
707 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
708 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
709 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
710 zh->zh_flags |= ZIL_REPLAY_NEEDED;
711 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
712 dsl_dataset_dirty(dmu_objset_ds(os), tx);
713 }
714
715 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
716 dmu_objset_disown(os, FTAG);
717 return (0);
718 }
719
720 /*
721 * Check the log by walking the log chain.
722 * Checksum errors are ok as they indicate the end of the chain.
723 * Any other error (no device or read failure) returns an error.
724 */
725 int
726 zil_check_log_chain(const char *osname, void *tx)
727 {
728 zilog_t *zilog;
729 objset_t *os;
730 blkptr_t *bp;
731 int error;
732
733 ASSERT(tx == NULL);
734
735 error = dmu_objset_hold(osname, FTAG, &os);
736 if (error != 0) {
737 cmn_err(CE_WARN, "can't open objset for %s", osname);
738 return (0);
739 }
740
741 zilog = dmu_objset_zil(os);
742 bp = (blkptr_t *)&zilog->zl_header->zh_log;
743
744 /*
745 * Check the first block and determine if it's on a log device
746 * which may have been removed or faulted prior to loading this
747 * pool. If so, there's no point in checking the rest of the log
748 * as its content should have already been synced to the pool.
749 */
750 if (!BP_IS_HOLE(bp)) {
751 vdev_t *vd;
752 boolean_t valid = B_TRUE;
753
754 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
755 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
756 if (vd->vdev_islog && vdev_is_dead(vd))
757 valid = vdev_log_state_valid(vd);
758 spa_config_exit(os->os_spa, SCL_STATE, FTAG);
759
760 if (!valid) {
761 dmu_objset_rele(os, FTAG);
762 return (0);
763 }
764 }
765
766 /*
767 * Because tx == NULL, zil_claim_log_block() will not actually claim
768 * any blocks, but just determine whether it is possible to do so.
769 * In addition to checking the log chain, zil_claim_log_block()
770 * will invoke zio_claim() with a done func of spa_claim_notify(),
771 * which will update spa_max_claim_txg. See spa_load() for details.
772 */
773 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
774 zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
775
776 dmu_objset_rele(os, FTAG);
777
778 return ((error == ECKSUM || error == ENOENT) ? 0 : error);
779 }
780
781 static int
782 zil_vdev_compare(const void *x1, const void *x2)
783 {
784 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
785 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
786
787 if (v1 < v2)
788 return (-1);
789 if (v1 > v2)
790 return (1);
791
792 return (0);
793 }
794
795 void
796 zil_add_block(zilog_t *zilog, const blkptr_t *bp)
797 {
798 avl_tree_t *t = &zilog->zl_vdev_tree;
799 avl_index_t where;
800 zil_vdev_node_t *zv, zvsearch;
801 int ndvas = BP_GET_NDVAS(bp);
802 int i;
803
804 if (zfs_nocacheflush)
805 return;
806
807 ASSERT(zilog->zl_writer);
808
809 /*
810 * Even though we're zl_writer, we still need a lock because the
811 * zl_get_data() callbacks may have dmu_sync() done callbacks
812 * that will run concurrently.
813 */
814 mutex_enter(&zilog->zl_vdev_lock);
815 for (i = 0; i < ndvas; i++) {
816 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
817 if (avl_find(t, &zvsearch, &where) == NULL) {
818 zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
819 zv->zv_vdev = zvsearch.zv_vdev;
820 avl_insert(t, zv, where);
821 }
822 }
823 mutex_exit(&zilog->zl_vdev_lock);
824 }
825
826 static void
827 zil_flush_vdevs(zilog_t *zilog)
828 {
829 spa_t *spa = zilog->zl_spa;
830 avl_tree_t *t = &zilog->zl_vdev_tree;
831 void *cookie = NULL;
832 zil_vdev_node_t *zv;
833 zio_t *zio;
834
835 ASSERT(zilog->zl_writer);
836
837 /*
838 * We don't need zl_vdev_lock here because we're the zl_writer,
839 * and all zl_get_data() callbacks are done.
840 */
841 if (avl_numnodes(t) == 0)
842 return;
843
844 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
845
846 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
847
848 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
849 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
850 if (vd != NULL)
851 zio_flush(zio, vd);
852 kmem_free(zv, sizeof (*zv));
853 }
854
855 /*
856 * Wait for all the flushes to complete. Not all devices actually
857 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
858 */
859 (void) zio_wait(zio);
860
861 spa_config_exit(spa, SCL_STATE, FTAG);
862 }
863
864 /*
865 * Function called when a log block write completes
866 */
867 static void
868 zil_lwb_write_done(zio_t *zio)
869 {
870 lwb_t *lwb = zio->io_private;
871 zilog_t *zilog = lwb->lwb_zilog;
872 dmu_tx_t *tx = lwb->lwb_tx;
873
874 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
875 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
876 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
877 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
878 ASSERT(!BP_IS_GANG(zio->io_bp));
879 ASSERT(!BP_IS_HOLE(zio->io_bp));
880 ASSERT(BP_GET_FILL(zio->io_bp) == 0);
881
882 /*
883 * Ensure the lwb buffer pointer is cleared before releasing
884 * the txg. If we have had an allocation failure and
885 * the txg is waiting to sync then we want want zil_sync()
886 * to remove the lwb so that it's not picked up as the next new
887 * one in zil_commit_writer(). zil_sync() will only remove
888 * the lwb if lwb_buf is null.
889 */
890 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
891 mutex_enter(&zilog->zl_lock);
892 lwb->lwb_zio = NULL;
893 lwb->lwb_fastwrite = FALSE;
894 lwb->lwb_buf = NULL;
895 lwb->lwb_tx = NULL;
896 mutex_exit(&zilog->zl_lock);
897
898 /*
899 * Now that we've written this log block, we have a stable pointer
900 * to the next block in the chain, so it's OK to let the txg in
901 * which we allocated the next block sync.
902 */
903 dmu_tx_commit(tx);
904 }
905
906 /*
907 * Initialize the io for a log block.
908 */
909 static void
910 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
911 {
912 zbookmark_phys_t zb;
913
914 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
915 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
916 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
917
918 if (zilog->zl_root_zio == NULL) {
919 zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
920 ZIO_FLAG_CANFAIL);
921 }
922
923 /* Lock so zil_sync() doesn't fastwrite_unmark after zio is created */
924 mutex_enter(&zilog->zl_lock);
925 if (lwb->lwb_zio == NULL) {
926 if (!lwb->lwb_fastwrite) {
927 metaslab_fastwrite_mark(zilog->zl_spa, &lwb->lwb_blk);
928 lwb->lwb_fastwrite = 1;
929 }
930 lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
931 0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk),
932 zil_lwb_write_done, lwb, ZIO_PRIORITY_SYNC_WRITE,
933 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE |
934 ZIO_FLAG_FASTWRITE, &zb);
935 }
936 mutex_exit(&zilog->zl_lock);
937 }
938
939 /*
940 * Define a limited set of intent log block sizes.
941 *
942 * These must be a multiple of 4KB. Note only the amount used (again
943 * aligned to 4KB) actually gets written. However, we can't always just
944 * allocate SPA_MAXBLOCKSIZE as the slog space could be exhausted.
945 */
946 uint64_t zil_block_buckets[] = {
947 4096, /* non TX_WRITE */
948 8192+4096, /* data base */
949 32*1024 + 4096, /* NFS writes */
950 UINT64_MAX
951 };
952
953 /*
954 * Use the slog as long as the current commit size is less than the
955 * limit or the total list size is less than 2X the limit. Limit
956 * checking is disabled by setting zil_slog_limit to UINT64_MAX.
957 */
958 unsigned long zil_slog_limit = 1024 * 1024;
959 #define USE_SLOG(zilog) (((zilog)->zl_cur_used < zil_slog_limit) || \
960 ((zilog)->zl_itx_list_sz < (zil_slog_limit << 1)))
961
962 /*
963 * Start a log block write and advance to the next log block.
964 * Calls are serialized.
965 */
966 static lwb_t *
967 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
968 {
969 lwb_t *nlwb = NULL;
970 zil_chain_t *zilc;
971 spa_t *spa = zilog->zl_spa;
972 blkptr_t *bp;
973 dmu_tx_t *tx;
974 uint64_t txg;
975 uint64_t zil_blksz, wsz;
976 int i, error;
977 boolean_t use_slog;
978
979 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
980 zilc = (zil_chain_t *)lwb->lwb_buf;
981 bp = &zilc->zc_next_blk;
982 } else {
983 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
984 bp = &zilc->zc_next_blk;
985 }
986
987 ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
988
989 /*
990 * Allocate the next block and save its address in this block
991 * before writing it in order to establish the log chain.
992 * Note that if the allocation of nlwb synced before we wrote
993 * the block that points at it (lwb), we'd leak it if we crashed.
994 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
995 * We dirty the dataset to ensure that zil_sync() will be called
996 * to clean up in the event of allocation failure or I/O failure.
997 */
998 tx = dmu_tx_create(zilog->zl_os);
999 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
1000 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1001 txg = dmu_tx_get_txg(tx);
1002
1003 lwb->lwb_tx = tx;
1004
1005 /*
1006 * Log blocks are pre-allocated. Here we select the size of the next
1007 * block, based on size used in the last block.
1008 * - first find the smallest bucket that will fit the block from a
1009 * limited set of block sizes. This is because it's faster to write
1010 * blocks allocated from the same metaslab as they are adjacent or
1011 * close.
1012 * - next find the maximum from the new suggested size and an array of
1013 * previous sizes. This lessens a picket fence effect of wrongly
1014 * guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
1015 * requests.
1016 *
1017 * Note we only write what is used, but we can't just allocate
1018 * the maximum block size because we can exhaust the available
1019 * pool log space.
1020 */
1021 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1022 for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1023 continue;
1024 zil_blksz = zil_block_buckets[i];
1025 if (zil_blksz == UINT64_MAX)
1026 zil_blksz = SPA_MAXBLOCKSIZE;
1027 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1028 for (i = 0; i < ZIL_PREV_BLKS; i++)
1029 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1030 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1031
1032 BP_ZERO(bp);
1033 use_slog = USE_SLOG(zilog);
1034 error = zio_alloc_zil(spa, txg, bp, zil_blksz,
1035 USE_SLOG(zilog));
1036 if (use_slog) {
1037 ZIL_STAT_BUMP(zil_itx_metaslab_slog_count);
1038 ZIL_STAT_INCR(zil_itx_metaslab_slog_bytes, lwb->lwb_nused);
1039 } else {
1040 ZIL_STAT_BUMP(zil_itx_metaslab_normal_count);
1041 ZIL_STAT_INCR(zil_itx_metaslab_normal_bytes, lwb->lwb_nused);
1042 }
1043 if (error == 0) {
1044 ASSERT3U(bp->blk_birth, ==, txg);
1045 bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1046 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1047
1048 /*
1049 * Allocate a new log write buffer (lwb).
1050 */
1051 nlwb = zil_alloc_lwb(zilog, bp, txg, TRUE);
1052
1053 /* Record the block for later vdev flushing */
1054 zil_add_block(zilog, &lwb->lwb_blk);
1055 }
1056
1057 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1058 /* For Slim ZIL only write what is used. */
1059 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1060 ASSERT3U(wsz, <=, lwb->lwb_sz);
1061 zio_shrink(lwb->lwb_zio, wsz);
1062
1063 } else {
1064 wsz = lwb->lwb_sz;
1065 }
1066
1067 zilc->zc_pad = 0;
1068 zilc->zc_nused = lwb->lwb_nused;
1069 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1070
1071 /*
1072 * clear unused data for security
1073 */
1074 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1075
1076 zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */
1077
1078 /*
1079 * If there was an allocation failure then nlwb will be null which
1080 * forces a txg_wait_synced().
1081 */
1082 return (nlwb);
1083 }
1084
1085 static lwb_t *
1086 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1087 {
1088 lr_t *lrc = &itx->itx_lr; /* common log record */
1089 lr_write_t *lrw = (lr_write_t *)lrc;
1090 char *lr_buf;
1091 uint64_t txg = lrc->lrc_txg;
1092 uint64_t reclen = lrc->lrc_reclen;
1093 uint64_t dlen = 0;
1094
1095 if (lwb == NULL)
1096 return (NULL);
1097
1098 ASSERT(lwb->lwb_buf != NULL);
1099 ASSERT(zilog_is_dirty(zilog) ||
1100 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1101
1102 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY)
1103 dlen = P2ROUNDUP_TYPED(
1104 lrw->lr_length, sizeof (uint64_t), uint64_t);
1105
1106 zilog->zl_cur_used += (reclen + dlen);
1107
1108 zil_lwb_write_init(zilog, lwb);
1109
1110 /*
1111 * If this record won't fit in the current log block, start a new one.
1112 */
1113 if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1114 lwb = zil_lwb_write_start(zilog, lwb);
1115 if (lwb == NULL)
1116 return (NULL);
1117 zil_lwb_write_init(zilog, lwb);
1118 ASSERT(LWB_EMPTY(lwb));
1119 if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1120 txg_wait_synced(zilog->zl_dmu_pool, txg);
1121 return (lwb);
1122 }
1123 }
1124
1125 lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1126 bcopy(lrc, lr_buf, reclen);
1127 lrc = (lr_t *)lr_buf;
1128 lrw = (lr_write_t *)lrc;
1129
1130 ZIL_STAT_BUMP(zil_itx_count);
1131
1132 /*
1133 * If it's a write, fetch the data or get its blkptr as appropriate.
1134 */
1135 if (lrc->lrc_txtype == TX_WRITE) {
1136 if (txg > spa_freeze_txg(zilog->zl_spa))
1137 txg_wait_synced(zilog->zl_dmu_pool, txg);
1138 if (itx->itx_wr_state == WR_COPIED) {
1139 ZIL_STAT_BUMP(zil_itx_copied_count);
1140 ZIL_STAT_INCR(zil_itx_copied_bytes, lrw->lr_length);
1141 } else {
1142 char *dbuf;
1143 int error;
1144
1145 if (dlen) {
1146 ASSERT(itx->itx_wr_state == WR_NEED_COPY);
1147 dbuf = lr_buf + reclen;
1148 lrw->lr_common.lrc_reclen += dlen;
1149 ZIL_STAT_BUMP(zil_itx_needcopy_count);
1150 ZIL_STAT_INCR(zil_itx_needcopy_bytes,
1151 lrw->lr_length);
1152 } else {
1153 ASSERT(itx->itx_wr_state == WR_INDIRECT);
1154 dbuf = NULL;
1155 ZIL_STAT_BUMP(zil_itx_indirect_count);
1156 ZIL_STAT_INCR(zil_itx_indirect_bytes,
1157 lrw->lr_length);
1158 }
1159 error = zilog->zl_get_data(
1160 itx->itx_private, lrw, dbuf, lwb->lwb_zio);
1161 if (error == EIO) {
1162 txg_wait_synced(zilog->zl_dmu_pool, txg);
1163 return (lwb);
1164 }
1165 if (error != 0) {
1166 ASSERT(error == ENOENT || error == EEXIST ||
1167 error == EALREADY);
1168 return (lwb);
1169 }
1170 }
1171 }
1172
1173 /*
1174 * We're actually making an entry, so update lrc_seq to be the
1175 * log record sequence number. Note that this is generally not
1176 * equal to the itx sequence number because not all transactions
1177 * are synchronous, and sometimes spa_sync() gets there first.
1178 */
1179 lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
1180 lwb->lwb_nused += reclen + dlen;
1181 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1182 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1183 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1184
1185 return (lwb);
1186 }
1187
1188 itx_t *
1189 zil_itx_create(uint64_t txtype, size_t lrsize)
1190 {
1191 itx_t *itx;
1192
1193 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1194
1195 itx = zio_data_buf_alloc(offsetof(itx_t, itx_lr) + lrsize);
1196 itx->itx_lr.lrc_txtype = txtype;
1197 itx->itx_lr.lrc_reclen = lrsize;
1198 itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */
1199 itx->itx_lr.lrc_seq = 0; /* defensive */
1200 itx->itx_sync = B_TRUE; /* default is synchronous */
1201 itx->itx_callback = NULL;
1202 itx->itx_callback_data = NULL;
1203
1204 return (itx);
1205 }
1206
1207 void
1208 zil_itx_destroy(itx_t *itx)
1209 {
1210 zio_data_buf_free(itx, offsetof(itx_t, itx_lr)+itx->itx_lr.lrc_reclen);
1211 }
1212
1213 /*
1214 * Free up the sync and async itxs. The itxs_t has already been detached
1215 * so no locks are needed.
1216 */
1217 static void
1218 zil_itxg_clean(itxs_t *itxs)
1219 {
1220 itx_t *itx;
1221 list_t *list;
1222 avl_tree_t *t;
1223 void *cookie;
1224 itx_async_node_t *ian;
1225
1226 list = &itxs->i_sync_list;
1227 while ((itx = list_head(list)) != NULL) {
1228 if (itx->itx_callback != NULL)
1229 itx->itx_callback(itx->itx_callback_data);
1230 list_remove(list, itx);
1231 zil_itx_destroy(itx);
1232 }
1233
1234 cookie = NULL;
1235 t = &itxs->i_async_tree;
1236 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1237 list = &ian->ia_list;
1238 while ((itx = list_head(list)) != NULL) {
1239 if (itx->itx_callback != NULL)
1240 itx->itx_callback(itx->itx_callback_data);
1241 list_remove(list, itx);
1242 zil_itx_destroy(itx);
1243 }
1244 list_destroy(list);
1245 kmem_free(ian, sizeof (itx_async_node_t));
1246 }
1247 avl_destroy(t);
1248
1249 kmem_free(itxs, sizeof (itxs_t));
1250 }
1251
1252 static int
1253 zil_aitx_compare(const void *x1, const void *x2)
1254 {
1255 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1256 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1257
1258 if (o1 < o2)
1259 return (-1);
1260 if (o1 > o2)
1261 return (1);
1262
1263 return (0);
1264 }
1265
1266 /*
1267 * Remove all async itx with the given oid.
1268 */
1269 static void
1270 zil_remove_async(zilog_t *zilog, uint64_t oid)
1271 {
1272 uint64_t otxg, txg;
1273 itx_async_node_t *ian;
1274 avl_tree_t *t;
1275 avl_index_t where;
1276 list_t clean_list;
1277 itx_t *itx;
1278
1279 ASSERT(oid != 0);
1280 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1281
1282 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1283 otxg = ZILTEST_TXG;
1284 else
1285 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1286
1287 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1288 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1289
1290 mutex_enter(&itxg->itxg_lock);
1291 if (itxg->itxg_txg != txg) {
1292 mutex_exit(&itxg->itxg_lock);
1293 continue;
1294 }
1295
1296 /*
1297 * Locate the object node and append its list.
1298 */
1299 t = &itxg->itxg_itxs->i_async_tree;
1300 ian = avl_find(t, &oid, &where);
1301 if (ian != NULL)
1302 list_move_tail(&clean_list, &ian->ia_list);
1303 mutex_exit(&itxg->itxg_lock);
1304 }
1305 while ((itx = list_head(&clean_list)) != NULL) {
1306 if (itx->itx_callback != NULL)
1307 itx->itx_callback(itx->itx_callback_data);
1308 list_remove(&clean_list, itx);
1309 zil_itx_destroy(itx);
1310 }
1311 list_destroy(&clean_list);
1312 }
1313
1314 void
1315 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1316 {
1317 uint64_t txg;
1318 itxg_t *itxg;
1319 itxs_t *itxs, *clean = NULL;
1320
1321 /*
1322 * Object ids can be re-instantiated in the next txg so
1323 * remove any async transactions to avoid future leaks.
1324 * This can happen if a fsync occurs on the re-instantiated
1325 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1326 * the new file data and flushes a write record for the old object.
1327 */
1328 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1329 zil_remove_async(zilog, itx->itx_oid);
1330
1331 /*
1332 * Ensure the data of a renamed file is committed before the rename.
1333 */
1334 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1335 zil_async_to_sync(zilog, itx->itx_oid);
1336
1337 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1338 txg = ZILTEST_TXG;
1339 else
1340 txg = dmu_tx_get_txg(tx);
1341
1342 itxg = &zilog->zl_itxg[txg & TXG_MASK];
1343 mutex_enter(&itxg->itxg_lock);
1344 itxs = itxg->itxg_itxs;
1345 if (itxg->itxg_txg != txg) {
1346 if (itxs != NULL) {
1347 /*
1348 * The zil_clean callback hasn't got around to cleaning
1349 * this itxg. Save the itxs for release below.
1350 * This should be rare.
1351 */
1352 atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1353 itxg->itxg_sod = 0;
1354 clean = itxg->itxg_itxs;
1355 }
1356 ASSERT(itxg->itxg_sod == 0);
1357 itxg->itxg_txg = txg;
1358 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
1359 KM_SLEEP);
1360
1361 list_create(&itxs->i_sync_list, sizeof (itx_t),
1362 offsetof(itx_t, itx_node));
1363 avl_create(&itxs->i_async_tree, zil_aitx_compare,
1364 sizeof (itx_async_node_t),
1365 offsetof(itx_async_node_t, ia_node));
1366 }
1367 if (itx->itx_sync) {
1368 list_insert_tail(&itxs->i_sync_list, itx);
1369 atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod);
1370 itxg->itxg_sod += itx->itx_sod;
1371 } else {
1372 avl_tree_t *t = &itxs->i_async_tree;
1373 uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1374 itx_async_node_t *ian;
1375 avl_index_t where;
1376
1377 ian = avl_find(t, &foid, &where);
1378 if (ian == NULL) {
1379 ian = kmem_alloc(sizeof (itx_async_node_t),
1380 KM_SLEEP);
1381 list_create(&ian->ia_list, sizeof (itx_t),
1382 offsetof(itx_t, itx_node));
1383 ian->ia_foid = foid;
1384 avl_insert(t, ian, where);
1385 }
1386 list_insert_tail(&ian->ia_list, itx);
1387 }
1388
1389 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1390 zilog_dirty(zilog, txg);
1391 mutex_exit(&itxg->itxg_lock);
1392
1393 /* Release the old itxs now we've dropped the lock */
1394 if (clean != NULL)
1395 zil_itxg_clean(clean);
1396 }
1397
1398 /*
1399 * If there are any in-memory intent log transactions which have now been
1400 * synced then start up a taskq to free them. We should only do this after we
1401 * have written out the uberblocks (i.e. txg has been comitted) so that
1402 * don't inadvertently clean out in-memory log records that would be required
1403 * by zil_commit().
1404 */
1405 void
1406 zil_clean(zilog_t *zilog, uint64_t synced_txg)
1407 {
1408 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1409 itxs_t *clean_me;
1410
1411 mutex_enter(&itxg->itxg_lock);
1412 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1413 mutex_exit(&itxg->itxg_lock);
1414 return;
1415 }
1416 ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1417 ASSERT(itxg->itxg_txg != 0);
1418 ASSERT(zilog->zl_clean_taskq != NULL);
1419 atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1420 itxg->itxg_sod = 0;
1421 clean_me = itxg->itxg_itxs;
1422 itxg->itxg_itxs = NULL;
1423 itxg->itxg_txg = 0;
1424 mutex_exit(&itxg->itxg_lock);
1425 /*
1426 * Preferably start a task queue to free up the old itxs but
1427 * if taskq_dispatch can't allocate resources to do that then
1428 * free it in-line. This should be rare. Note, using TQ_SLEEP
1429 * created a bad performance problem.
1430 */
1431 if (taskq_dispatch(zilog->zl_clean_taskq,
1432 (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0)
1433 zil_itxg_clean(clean_me);
1434 }
1435
1436 /*
1437 * Get the list of itxs to commit into zl_itx_commit_list.
1438 */
1439 static void
1440 zil_get_commit_list(zilog_t *zilog)
1441 {
1442 uint64_t otxg, txg;
1443 list_t *commit_list = &zilog->zl_itx_commit_list;
1444 uint64_t push_sod = 0;
1445
1446 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1447 otxg = ZILTEST_TXG;
1448 else
1449 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1450
1451 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1452 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1453
1454 mutex_enter(&itxg->itxg_lock);
1455 if (itxg->itxg_txg != txg) {
1456 mutex_exit(&itxg->itxg_lock);
1457 continue;
1458 }
1459
1460 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1461 push_sod += itxg->itxg_sod;
1462 itxg->itxg_sod = 0;
1463
1464 mutex_exit(&itxg->itxg_lock);
1465 }
1466 atomic_add_64(&zilog->zl_itx_list_sz, -push_sod);
1467 }
1468
1469 /*
1470 * Move the async itxs for a specified object to commit into sync lists.
1471 */
1472 static void
1473 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1474 {
1475 uint64_t otxg, txg;
1476 itx_async_node_t *ian;
1477 avl_tree_t *t;
1478 avl_index_t where;
1479
1480 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1481 otxg = ZILTEST_TXG;
1482 else
1483 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1484
1485 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1486 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1487
1488 mutex_enter(&itxg->itxg_lock);
1489 if (itxg->itxg_txg != txg) {
1490 mutex_exit(&itxg->itxg_lock);
1491 continue;
1492 }
1493
1494 /*
1495 * If a foid is specified then find that node and append its
1496 * list. Otherwise walk the tree appending all the lists
1497 * to the sync list. We add to the end rather than the
1498 * beginning to ensure the create has happened.
1499 */
1500 t = &itxg->itxg_itxs->i_async_tree;
1501 if (foid != 0) {
1502 ian = avl_find(t, &foid, &where);
1503 if (ian != NULL) {
1504 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1505 &ian->ia_list);
1506 }
1507 } else {
1508 void *cookie = NULL;
1509
1510 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1511 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1512 &ian->ia_list);
1513 list_destroy(&ian->ia_list);
1514 kmem_free(ian, sizeof (itx_async_node_t));
1515 }
1516 }
1517 mutex_exit(&itxg->itxg_lock);
1518 }
1519 }
1520
1521 static void
1522 zil_commit_writer(zilog_t *zilog)
1523 {
1524 uint64_t txg;
1525 itx_t *itx;
1526 lwb_t *lwb;
1527 spa_t *spa = zilog->zl_spa;
1528 int error = 0;
1529
1530 ASSERT(zilog->zl_root_zio == NULL);
1531
1532 mutex_exit(&zilog->zl_lock);
1533
1534 zil_get_commit_list(zilog);
1535
1536 /*
1537 * Return if there's nothing to commit before we dirty the fs by
1538 * calling zil_create().
1539 */
1540 if (list_head(&zilog->zl_itx_commit_list) == NULL) {
1541 mutex_enter(&zilog->zl_lock);
1542 return;
1543 }
1544
1545 if (zilog->zl_suspend) {
1546 lwb = NULL;
1547 } else {
1548 lwb = list_tail(&zilog->zl_lwb_list);
1549 if (lwb == NULL)
1550 lwb = zil_create(zilog);
1551 }
1552
1553 DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
1554 for (itx = list_head(&zilog->zl_itx_commit_list); itx != NULL;
1555 itx = list_next(&zilog->zl_itx_commit_list, itx)) {
1556 txg = itx->itx_lr.lrc_txg;
1557 ASSERT(txg);
1558
1559 if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa))
1560 lwb = zil_lwb_commit(zilog, itx, lwb);
1561 }
1562 DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
1563
1564 /* write the last block out */
1565 if (lwb != NULL && lwb->lwb_zio != NULL)
1566 lwb = zil_lwb_write_start(zilog, lwb);
1567
1568 zilog->zl_cur_used = 0;
1569
1570 /*
1571 * Wait if necessary for the log blocks to be on stable storage.
1572 */
1573 if (zilog->zl_root_zio) {
1574 error = zio_wait(zilog->zl_root_zio);
1575 zilog->zl_root_zio = NULL;
1576 zil_flush_vdevs(zilog);
1577 }
1578
1579 if (error || lwb == NULL)
1580 txg_wait_synced(zilog->zl_dmu_pool, 0);
1581
1582 while ((itx = list_head(&zilog->zl_itx_commit_list))) {
1583 txg = itx->itx_lr.lrc_txg;
1584 ASSERT(txg);
1585
1586 if (itx->itx_callback != NULL)
1587 itx->itx_callback(itx->itx_callback_data);
1588 list_remove(&zilog->zl_itx_commit_list, itx);
1589 zil_itx_destroy(itx);
1590 }
1591
1592 mutex_enter(&zilog->zl_lock);
1593
1594 /*
1595 * Remember the highest committed log sequence number for ztest.
1596 * We only update this value when all the log writes succeeded,
1597 * because ztest wants to ASSERT that it got the whole log chain.
1598 */
1599 if (error == 0 && lwb != NULL)
1600 zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1601 }
1602
1603 /*
1604 * Commit zfs transactions to stable storage.
1605 * If foid is 0 push out all transactions, otherwise push only those
1606 * for that object or might reference that object.
1607 *
1608 * itxs are committed in batches. In a heavily stressed zil there will be
1609 * a commit writer thread who is writing out a bunch of itxs to the log
1610 * for a set of committing threads (cthreads) in the same batch as the writer.
1611 * Those cthreads are all waiting on the same cv for that batch.
1612 *
1613 * There will also be a different and growing batch of threads that are
1614 * waiting to commit (qthreads). When the committing batch completes
1615 * a transition occurs such that the cthreads exit and the qthreads become
1616 * cthreads. One of the new cthreads becomes the writer thread for the
1617 * batch. Any new threads arriving become new qthreads.
1618 *
1619 * Only 2 condition variables are needed and there's no transition
1620 * between the two cvs needed. They just flip-flop between qthreads
1621 * and cthreads.
1622 *
1623 * Using this scheme we can efficiently wakeup up only those threads
1624 * that have been committed.
1625 */
1626 void
1627 zil_commit(zilog_t *zilog, uint64_t foid)
1628 {
1629 uint64_t mybatch;
1630
1631 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
1632 return;
1633
1634 ZIL_STAT_BUMP(zil_commit_count);
1635
1636 /* move the async itxs for the foid to the sync queues */
1637 zil_async_to_sync(zilog, foid);
1638
1639 mutex_enter(&zilog->zl_lock);
1640 mybatch = zilog->zl_next_batch;
1641 while (zilog->zl_writer) {
1642 cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock);
1643 if (mybatch <= zilog->zl_com_batch) {
1644 mutex_exit(&zilog->zl_lock);
1645 return;
1646 }
1647 }
1648
1649 zilog->zl_next_batch++;
1650 zilog->zl_writer = B_TRUE;
1651 ZIL_STAT_BUMP(zil_commit_writer_count);
1652 zil_commit_writer(zilog);
1653 zilog->zl_com_batch = mybatch;
1654 zilog->zl_writer = B_FALSE;
1655
1656 /* wake up one thread to become the next writer */
1657 cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]);
1658
1659 /* wake up all threads waiting for this batch to be committed */
1660 cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]);
1661
1662 mutex_exit(&zilog->zl_lock);
1663 }
1664
1665 /*
1666 * Called in syncing context to free committed log blocks and update log header.
1667 */
1668 void
1669 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1670 {
1671 zil_header_t *zh = zil_header_in_syncing_context(zilog);
1672 uint64_t txg = dmu_tx_get_txg(tx);
1673 spa_t *spa = zilog->zl_spa;
1674 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
1675 lwb_t *lwb;
1676
1677 /*
1678 * We don't zero out zl_destroy_txg, so make sure we don't try
1679 * to destroy it twice.
1680 */
1681 if (spa_sync_pass(spa) != 1)
1682 return;
1683
1684 mutex_enter(&zilog->zl_lock);
1685
1686 ASSERT(zilog->zl_stop_sync == 0);
1687
1688 if (*replayed_seq != 0) {
1689 ASSERT(zh->zh_replay_seq < *replayed_seq);
1690 zh->zh_replay_seq = *replayed_seq;
1691 *replayed_seq = 0;
1692 }
1693
1694 if (zilog->zl_destroy_txg == txg) {
1695 blkptr_t blk = zh->zh_log;
1696
1697 ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1698
1699 bzero(zh, sizeof (zil_header_t));
1700 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
1701
1702 if (zilog->zl_keep_first) {
1703 /*
1704 * If this block was part of log chain that couldn't
1705 * be claimed because a device was missing during
1706 * zil_claim(), but that device later returns,
1707 * then this block could erroneously appear valid.
1708 * To guard against this, assign a new GUID to the new
1709 * log chain so it doesn't matter what blk points to.
1710 */
1711 zil_init_log_chain(zilog, &blk);
1712 zh->zh_log = blk;
1713 }
1714 }
1715
1716 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1717 zh->zh_log = lwb->lwb_blk;
1718 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1719 break;
1720
1721 ASSERT(lwb->lwb_zio == NULL);
1722
1723 list_remove(&zilog->zl_lwb_list, lwb);
1724 zio_free_zil(spa, txg, &lwb->lwb_blk);
1725 kmem_cache_free(zil_lwb_cache, lwb);
1726
1727 /*
1728 * If we don't have anything left in the lwb list then
1729 * we've had an allocation failure and we need to zero
1730 * out the zil_header blkptr so that we don't end
1731 * up freeing the same block twice.
1732 */
1733 if (list_head(&zilog->zl_lwb_list) == NULL)
1734 BP_ZERO(&zh->zh_log);
1735 }
1736
1737 /*
1738 * Remove fastwrite on any blocks that have been pre-allocated for
1739 * the next commit. This prevents fastwrite counter pollution by
1740 * unused, long-lived LWBs.
1741 */
1742 for (; lwb != NULL; lwb = list_next(&zilog->zl_lwb_list, lwb)) {
1743 if (lwb->lwb_fastwrite && !lwb->lwb_zio) {
1744 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
1745 lwb->lwb_fastwrite = 0;
1746 }
1747 }
1748
1749 mutex_exit(&zilog->zl_lock);
1750 }
1751
1752 void
1753 zil_init(void)
1754 {
1755 zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1756 sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1757
1758 zil_ksp = kstat_create("zfs", 0, "zil", "misc",
1759 KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
1760 KSTAT_FLAG_VIRTUAL);
1761
1762 if (zil_ksp != NULL) {
1763 zil_ksp->ks_data = &zil_stats;
1764 kstat_install(zil_ksp);
1765 }
1766 }
1767
1768 void
1769 zil_fini(void)
1770 {
1771 kmem_cache_destroy(zil_lwb_cache);
1772
1773 if (zil_ksp != NULL) {
1774 kstat_delete(zil_ksp);
1775 zil_ksp = NULL;
1776 }
1777 }
1778
1779 void
1780 zil_set_sync(zilog_t *zilog, uint64_t sync)
1781 {
1782 zilog->zl_sync = sync;
1783 }
1784
1785 void
1786 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
1787 {
1788 zilog->zl_logbias = logbias;
1789 }
1790
1791 zilog_t *
1792 zil_alloc(objset_t *os, zil_header_t *zh_phys)
1793 {
1794 zilog_t *zilog;
1795 int i;
1796
1797 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
1798
1799 zilog->zl_header = zh_phys;
1800 zilog->zl_os = os;
1801 zilog->zl_spa = dmu_objset_spa(os);
1802 zilog->zl_dmu_pool = dmu_objset_pool(os);
1803 zilog->zl_destroy_txg = TXG_INITIAL - 1;
1804 zilog->zl_logbias = dmu_objset_logbias(os);
1805 zilog->zl_sync = dmu_objset_syncprop(os);
1806 zilog->zl_next_batch = 1;
1807
1808 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1809
1810 for (i = 0; i < TXG_SIZE; i++) {
1811 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
1812 MUTEX_DEFAULT, NULL);
1813 }
1814
1815 list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1816 offsetof(lwb_t, lwb_node));
1817
1818 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
1819 offsetof(itx_t, itx_node));
1820
1821 mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
1822
1823 avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
1824 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
1825
1826 cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
1827 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
1828 cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL);
1829 cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL);
1830
1831 return (zilog);
1832 }
1833
1834 void
1835 zil_free(zilog_t *zilog)
1836 {
1837 int i;
1838
1839 zilog->zl_stop_sync = 1;
1840
1841 ASSERT0(zilog->zl_suspend);
1842 ASSERT0(zilog->zl_suspending);
1843
1844 ASSERT(list_is_empty(&zilog->zl_lwb_list));
1845 list_destroy(&zilog->zl_lwb_list);
1846
1847 avl_destroy(&zilog->zl_vdev_tree);
1848 mutex_destroy(&zilog->zl_vdev_lock);
1849
1850 ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
1851 list_destroy(&zilog->zl_itx_commit_list);
1852
1853 for (i = 0; i < TXG_SIZE; i++) {
1854 /*
1855 * It's possible for an itx to be generated that doesn't dirty
1856 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
1857 * callback to remove the entry. We remove those here.
1858 *
1859 * Also free up the ziltest itxs.
1860 */
1861 if (zilog->zl_itxg[i].itxg_itxs)
1862 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
1863 mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
1864 }
1865
1866 mutex_destroy(&zilog->zl_lock);
1867
1868 cv_destroy(&zilog->zl_cv_writer);
1869 cv_destroy(&zilog->zl_cv_suspend);
1870 cv_destroy(&zilog->zl_cv_batch[0]);
1871 cv_destroy(&zilog->zl_cv_batch[1]);
1872
1873 kmem_free(zilog, sizeof (zilog_t));
1874 }
1875
1876 /*
1877 * Open an intent log.
1878 */
1879 zilog_t *
1880 zil_open(objset_t *os, zil_get_data_t *get_data)
1881 {
1882 zilog_t *zilog = dmu_objset_zil(os);
1883
1884 ASSERT(zilog->zl_clean_taskq == NULL);
1885 ASSERT(zilog->zl_get_data == NULL);
1886 ASSERT(list_is_empty(&zilog->zl_lwb_list));
1887
1888 zilog->zl_get_data = get_data;
1889 zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri,
1890 2, 2, TASKQ_PREPOPULATE);
1891
1892 return (zilog);
1893 }
1894
1895 /*
1896 * Close an intent log.
1897 */
1898 void
1899 zil_close(zilog_t *zilog)
1900 {
1901 lwb_t *lwb;
1902 uint64_t txg = 0;
1903
1904 zil_commit(zilog, 0); /* commit all itx */
1905
1906 /*
1907 * The lwb_max_txg for the stubby lwb will reflect the last activity
1908 * for the zil. After a txg_wait_synced() on the txg we know all the
1909 * callbacks have occurred that may clean the zil. Only then can we
1910 * destroy the zl_clean_taskq.
1911 */
1912 mutex_enter(&zilog->zl_lock);
1913 lwb = list_tail(&zilog->zl_lwb_list);
1914 if (lwb != NULL)
1915 txg = lwb->lwb_max_txg;
1916 mutex_exit(&zilog->zl_lock);
1917 if (txg)
1918 txg_wait_synced(zilog->zl_dmu_pool, txg);
1919 ASSERT(!zilog_is_dirty(zilog));
1920
1921 taskq_destroy(zilog->zl_clean_taskq);
1922 zilog->zl_clean_taskq = NULL;
1923 zilog->zl_get_data = NULL;
1924
1925 /*
1926 * We should have only one LWB left on the list; remove it now.
1927 */
1928 mutex_enter(&zilog->zl_lock);
1929 lwb = list_head(&zilog->zl_lwb_list);
1930 if (lwb != NULL) {
1931 ASSERT(lwb == list_tail(&zilog->zl_lwb_list));
1932 ASSERT(lwb->lwb_zio == NULL);
1933 if (lwb->lwb_fastwrite)
1934 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
1935 list_remove(&zilog->zl_lwb_list, lwb);
1936 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1937 kmem_cache_free(zil_lwb_cache, lwb);
1938 }
1939 mutex_exit(&zilog->zl_lock);
1940 }
1941
1942 static char *suspend_tag = "zil suspending";
1943
1944 /*
1945 * Suspend an intent log. While in suspended mode, we still honor
1946 * synchronous semantics, but we rely on txg_wait_synced() to do it.
1947 * On old version pools, we suspend the log briefly when taking a
1948 * snapshot so that it will have an empty intent log.
1949 *
1950 * Long holds are not really intended to be used the way we do here --
1951 * held for such a short time. A concurrent caller of dsl_dataset_long_held()
1952 * could fail. Therefore we take pains to only put a long hold if it is
1953 * actually necessary. Fortunately, it will only be necessary if the
1954 * objset is currently mounted (or the ZVOL equivalent). In that case it
1955 * will already have a long hold, so we are not really making things any worse.
1956 *
1957 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
1958 * zvol_state_t), and use their mechanism to prevent their hold from being
1959 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for
1960 * very little gain.
1961 *
1962 * if cookiep == NULL, this does both the suspend & resume.
1963 * Otherwise, it returns with the dataset "long held", and the cookie
1964 * should be passed into zil_resume().
1965 */
1966 int
1967 zil_suspend(const char *osname, void **cookiep)
1968 {
1969 objset_t *os;
1970 zilog_t *zilog;
1971 const zil_header_t *zh;
1972 int error;
1973
1974 error = dmu_objset_hold(osname, suspend_tag, &os);
1975 if (error != 0)
1976 return (error);
1977 zilog = dmu_objset_zil(os);
1978
1979 mutex_enter(&zilog->zl_lock);
1980 zh = zilog->zl_header;
1981
1982 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */
1983 mutex_exit(&zilog->zl_lock);
1984 dmu_objset_rele(os, suspend_tag);
1985 return (SET_ERROR(EBUSY));
1986 }
1987
1988 /*
1989 * Don't put a long hold in the cases where we can avoid it. This
1990 * is when there is no cookie so we are doing a suspend & resume
1991 * (i.e. called from zil_vdev_offline()), and there's nothing to do
1992 * for the suspend because it's already suspended, or there's no ZIL.
1993 */
1994 if (cookiep == NULL && !zilog->zl_suspending &&
1995 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
1996 mutex_exit(&zilog->zl_lock);
1997 dmu_objset_rele(os, suspend_tag);
1998 return (0);
1999 }
2000
2001 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
2002 dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
2003
2004 zilog->zl_suspend++;
2005
2006 if (zilog->zl_suspend > 1) {
2007 /*
2008 * Someone else is already suspending it.
2009 * Just wait for them to finish.
2010 */
2011
2012 while (zilog->zl_suspending)
2013 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
2014 mutex_exit(&zilog->zl_lock);
2015
2016 if (cookiep == NULL)
2017 zil_resume(os);
2018 else
2019 *cookiep = os;
2020 return (0);
2021 }
2022
2023 /*
2024 * If there is no pointer to an on-disk block, this ZIL must not
2025 * be active (e.g. filesystem not mounted), so there's nothing
2026 * to clean up.
2027 */
2028 if (BP_IS_HOLE(&zh->zh_log)) {
2029 ASSERT(cookiep != NULL); /* fast path already handled */
2030
2031 *cookiep = os;
2032 mutex_exit(&zilog->zl_lock);
2033 return (0);
2034 }
2035
2036 zilog->zl_suspending = B_TRUE;
2037 mutex_exit(&zilog->zl_lock);
2038
2039 zil_commit(zilog, 0);
2040
2041 zil_destroy(zilog, B_FALSE);
2042
2043 mutex_enter(&zilog->zl_lock);
2044 zilog->zl_suspending = B_FALSE;
2045 cv_broadcast(&zilog->zl_cv_suspend);
2046 mutex_exit(&zilog->zl_lock);
2047
2048 if (cookiep == NULL)
2049 zil_resume(os);
2050 else
2051 *cookiep = os;
2052 return (0);
2053 }
2054
2055 void
2056 zil_resume(void *cookie)
2057 {
2058 objset_t *os = cookie;
2059 zilog_t *zilog = dmu_objset_zil(os);
2060
2061 mutex_enter(&zilog->zl_lock);
2062 ASSERT(zilog->zl_suspend != 0);
2063 zilog->zl_suspend--;
2064 mutex_exit(&zilog->zl_lock);
2065 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
2066 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
2067 }
2068
2069 typedef struct zil_replay_arg {
2070 zil_replay_func_t *zr_replay;
2071 void *zr_arg;
2072 boolean_t zr_byteswap;
2073 char *zr_lr;
2074 } zil_replay_arg_t;
2075
2076 static int
2077 zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
2078 {
2079 char name[MAXNAMELEN];
2080
2081 zilog->zl_replaying_seq--; /* didn't actually replay this one */
2082
2083 dmu_objset_name(zilog->zl_os, name);
2084
2085 cmn_err(CE_WARN, "ZFS replay transaction error %d, "
2086 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
2087 (u_longlong_t)lr->lrc_seq,
2088 (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
2089 (lr->lrc_txtype & TX_CI) ? "CI" : "");
2090
2091 return (error);
2092 }
2093
2094 static int
2095 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
2096 {
2097 zil_replay_arg_t *zr = zra;
2098 const zil_header_t *zh = zilog->zl_header;
2099 uint64_t reclen = lr->lrc_reclen;
2100 uint64_t txtype = lr->lrc_txtype;
2101 int error = 0;
2102
2103 zilog->zl_replaying_seq = lr->lrc_seq;
2104
2105 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */
2106 return (0);
2107
2108 if (lr->lrc_txg < claim_txg) /* already committed */
2109 return (0);
2110
2111 /* Strip case-insensitive bit, still present in log record */
2112 txtype &= ~TX_CI;
2113
2114 if (txtype == 0 || txtype >= TX_MAX_TYPE)
2115 return (zil_replay_error(zilog, lr, EINVAL));
2116
2117 /*
2118 * If this record type can be logged out of order, the object
2119 * (lr_foid) may no longer exist. That's legitimate, not an error.
2120 */
2121 if (TX_OOO(txtype)) {
2122 error = dmu_object_info(zilog->zl_os,
2123 ((lr_ooo_t *)lr)->lr_foid, NULL);
2124 if (error == ENOENT || error == EEXIST)
2125 return (0);
2126 }
2127
2128 /*
2129 * Make a copy of the data so we can revise and extend it.
2130 */
2131 bcopy(lr, zr->zr_lr, reclen);
2132
2133 /*
2134 * If this is a TX_WRITE with a blkptr, suck in the data.
2135 */
2136 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
2137 error = zil_read_log_data(zilog, (lr_write_t *)lr,
2138 zr->zr_lr + reclen);
2139 if (error != 0)
2140 return (zil_replay_error(zilog, lr, error));
2141 }
2142
2143 /*
2144 * The log block containing this lr may have been byteswapped
2145 * so that we can easily examine common fields like lrc_txtype.
2146 * However, the log is a mix of different record types, and only the
2147 * replay vectors know how to byteswap their records. Therefore, if
2148 * the lr was byteswapped, undo it before invoking the replay vector.
2149 */
2150 if (zr->zr_byteswap)
2151 byteswap_uint64_array(zr->zr_lr, reclen);
2152
2153 /*
2154 * We must now do two things atomically: replay this log record,
2155 * and update the log header sequence number to reflect the fact that
2156 * we did so. At the end of each replay function the sequence number
2157 * is updated if we are in replay mode.
2158 */
2159 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
2160 if (error != 0) {
2161 /*
2162 * The DMU's dnode layer doesn't see removes until the txg
2163 * commits, so a subsequent claim can spuriously fail with
2164 * EEXIST. So if we receive any error we try syncing out
2165 * any removes then retry the transaction. Note that we
2166 * specify B_FALSE for byteswap now, so we don't do it twice.
2167 */
2168 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
2169 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
2170 if (error != 0)
2171 return (zil_replay_error(zilog, lr, error));
2172 }
2173 return (0);
2174 }
2175
2176 /* ARGSUSED */
2177 static int
2178 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
2179 {
2180 zilog->zl_replay_blks++;
2181
2182 return (0);
2183 }
2184
2185 /*
2186 * If this dataset has a non-empty intent log, replay it and destroy it.
2187 */
2188 void
2189 zil_replay(objset_t *os, void *arg, zil_replay_func_t replay_func[TX_MAX_TYPE])
2190 {
2191 zilog_t *zilog = dmu_objset_zil(os);
2192 const zil_header_t *zh = zilog->zl_header;
2193 zil_replay_arg_t zr;
2194
2195 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
2196 zil_destroy(zilog, B_TRUE);
2197 return;
2198 }
2199
2200 zr.zr_replay = replay_func;
2201 zr.zr_arg = arg;
2202 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
2203 zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
2204
2205 /*
2206 * Wait for in-progress removes to sync before starting replay.
2207 */
2208 txg_wait_synced(zilog->zl_dmu_pool, 0);
2209
2210 zilog->zl_replay = B_TRUE;
2211 zilog->zl_replay_time = ddi_get_lbolt();
2212 ASSERT(zilog->zl_replay_blks == 0);
2213 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
2214 zh->zh_claim_txg);
2215 vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
2216
2217 zil_destroy(zilog, B_FALSE);
2218 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
2219 zilog->zl_replay = B_FALSE;
2220 }
2221
2222 boolean_t
2223 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
2224 {
2225 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2226 return (B_TRUE);
2227
2228 if (zilog->zl_replay) {
2229 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
2230 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
2231 zilog->zl_replaying_seq;
2232 return (B_TRUE);
2233 }
2234
2235 return (B_FALSE);
2236 }
2237
2238 /* ARGSUSED */
2239 int
2240 zil_vdev_offline(const char *osname, void *arg)
2241 {
2242 int error;
2243
2244 error = zil_suspend(osname, NULL);
2245 if (error != 0)
2246 return (SET_ERROR(EEXIST));
2247 return (0);
2248 }
2249
2250 #if defined(_KERNEL) && defined(HAVE_SPL)
2251 EXPORT_SYMBOL(zil_alloc);
2252 EXPORT_SYMBOL(zil_free);
2253 EXPORT_SYMBOL(zil_open);
2254 EXPORT_SYMBOL(zil_close);
2255 EXPORT_SYMBOL(zil_replay);
2256 EXPORT_SYMBOL(zil_replaying);
2257 EXPORT_SYMBOL(zil_destroy);
2258 EXPORT_SYMBOL(zil_destroy_sync);
2259 EXPORT_SYMBOL(zil_itx_create);
2260 EXPORT_SYMBOL(zil_itx_destroy);
2261 EXPORT_SYMBOL(zil_itx_assign);
2262 EXPORT_SYMBOL(zil_commit);
2263 EXPORT_SYMBOL(zil_vdev_offline);
2264 EXPORT_SYMBOL(zil_claim);
2265 EXPORT_SYMBOL(zil_check_log_chain);
2266 EXPORT_SYMBOL(zil_sync);
2267 EXPORT_SYMBOL(zil_clean);
2268 EXPORT_SYMBOL(zil_suspend);
2269 EXPORT_SYMBOL(zil_resume);
2270 EXPORT_SYMBOL(zil_add_block);
2271 EXPORT_SYMBOL(zil_bp_tree_add);
2272 EXPORT_SYMBOL(zil_set_sync);
2273 EXPORT_SYMBOL(zil_set_logbias);
2274
2275 module_param(zil_replay_disable, int, 0644);
2276 MODULE_PARM_DESC(zil_replay_disable, "Disable intent logging replay");
2277
2278 module_param(zfs_nocacheflush, int, 0644);
2279 MODULE_PARM_DESC(zfs_nocacheflush, "Disable cache flushes");
2280
2281 module_param(zil_slog_limit, ulong, 0644);
2282 MODULE_PARM_DESC(zil_slog_limit, "Max commit bytes to separate log device");
2283 #endif